14.10.2013 Views

Application of independent component analysis (ICA) to identify and ...

Application of independent component analysis (ICA) to identify and ...

Application of independent component analysis (ICA) to identify and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Application</strong> <strong>of</strong> <strong>independent</strong> <strong>component</strong> <strong>analysis</strong><br />

(<strong>ICA</strong>) <strong>to</strong> <strong>identify</strong> <strong>and</strong> separate tumor arterial<br />

input function (AIF) in dynamic contrast<br />

enhanced-MRI<br />

Hatef Mehrabian<br />

Chaitanya Ch<strong>and</strong>rana, Ian Pang, Rajiv Chopra, Anne Martel<br />

Field MITACS conference<br />

June 20, 2011


Illustrations: courtesy <strong>of</strong> http://www.reishiscience.com/Benefits_2.html<br />

In-vivo images: D. Fukumura et al., MICROVASCULAR RESEARCH, 2007.<br />

Tumor Angiogenesis<br />

100µm


100µm<br />

100µm<br />

Illustrations: courtesy <strong>of</strong> http://www.reishiscience.com/Benefits_2.html<br />

In-vivo images: D. Fukumura et al., MICROVASCULAR RESEARCH, 2007.<br />

Tumor Vasculature<br />

100µm


100µm<br />

100µm<br />

Illustrations: courtesy <strong>of</strong> http://www.reishiscience.com/Benefits_2.html<br />

In-vivo images: D. Fukumura et al., MICROVASCULAR RESEARCH, 2007.<br />

Tumor Vasculature


100µm<br />

Pharmacokinetic Modeling<br />

.. ..<br />

..<br />

.<br />

. ...<br />

.. .<br />

. .<br />

.. .<br />

.


100µm<br />

Pharmacokinetic Modeling


100µm<br />

K trans K ep<br />

Pharmacokinetic Modeling


100µm<br />

K trans K ep<br />

Pharmacokinetic Modeling<br />

Renal Cell Carcinoma<br />

DCE – MRI


MR Pixel<br />

0.5mm<br />

100µm<br />

0.02 mm<br />

K trans K ep<br />

Pharmacokinetic Modeling<br />

MR Slice<br />

0.5mm


IV<br />

EV<br />

Dynamic Contrast Enhanced MRI<br />

X


IV<br />

EV<br />

Dynamic Contrast Enhanced MRI<br />

X


x <br />

s IV<br />

s EV<br />

Dynamic Contrast Enhanced MRI<br />

x


x aIV <br />

s IV<br />

s EV<br />

a: contrast Concentration<br />

Dynamic Contrast Enhanced MRI<br />

x


a: contrast Concentration<br />

s: image<br />

s IV<br />

s EV<br />

x aIV sIV <br />

Dynamic Contrast Enhanced MRI<br />

x


a: contrast Concentration<br />

s: image<br />

s IV<br />

s EV<br />

x aIV IV<br />

s a <br />

sE<br />

Dynamic Contrast Enhanced MRI<br />

EV V<br />

x


x aIV IV<br />

a: contrast Concentration<br />

s: image<br />

s a <br />

sE<br />

Dynamic Contrast Enhanced MRI<br />

EV V<br />

x


X<br />

t<br />

Independent Component Analysis<br />

= +<br />

s s<br />

IV<br />

EV<br />

t


X<br />

t<br />

Independent Component Analysis<br />

= +<br />

s s<br />

IV<br />

EV<br />

X AS<br />

1, 2,...,<br />

N <br />

IV , EV <br />

<br />

s , <br />

X x x x<br />

A a a<br />

S s<br />

IV EV<br />

T<br />

t


Estima<strong>to</strong>r:<br />

X<br />

F A<br />

X | s , s <br />

t<br />

IV EV<br />

= +<br />

s s<br />

IV<br />

EV<br />

t<br />

Estimation Model


Estima<strong>to</strong>r: F X | A<br />

s , s <br />

X<br />

t<br />

Maximum Likelihood Estimation<br />

IV EV<br />

Maximum likelihood estima<strong>to</strong>r corresponds <strong>to</strong> the value<br />

θ ML that makes the obtained measurements more likely.<br />

<br />

<br />

1 2<br />

ML X | arg max{ p( x , x ,..., x )}<br />

= +<br />

<br />

s s<br />

IV<br />

EV<br />

t<br />

N


Estima<strong>to</strong>r:<br />

F A<br />

t<br />

Maximum Likelihood Estimation<br />

X | s , s <br />

IV EV<br />

= +<br />

T <br />

1 2 N<br />

ML X | A<br />

arg max px, x ,..., x | A <br />

<br />

X<br />

A<br />

s s<br />

IV<br />

EV<br />

t


Estima<strong>to</strong>r:<br />

F A<br />

t<br />

Maximum Likelihood Estimation<br />

X | s , s <br />

IV EV<br />

= +<br />

T <br />

1 2 N<br />

ML X | A<br />

arg max px, x ,..., x | A <br />

<br />

X<br />

A<br />

X AS<br />

p X p AS A p S<br />

1<br />

( ) ( ) det( ) <br />

( )<br />

s s<br />

IV<br />

EV<br />

t


Estima<strong>to</strong>r:<br />

F A<br />

t<br />

Maximum Likelihood Estimation<br />

X | s , s <br />

IV EV<br />

= +<br />

T <br />

1 2 N<br />

ML X | A<br />

arg max <br />

<br />

p x , x ,..., x<br />

A<br />

1<br />

argmax det A p S | A<br />

<br />

| A <br />

<br />

X<br />

A<br />

s s<br />

IV<br />

EV<br />

t


Estima<strong>to</strong>r:<br />

F A<br />

t<br />

Maximum Likelihood Estimation<br />

X | s , s <br />

IV EV<br />

= +<br />

T <br />

1 2 N<br />

ML X | A<br />

arg max <br />

<br />

p x , x ,..., x<br />

A<br />

| A <br />

<br />

1<br />

argmax det A p S | A<br />

A <br />

1<br />

argma x detA p s , | <br />

IV sEV A <br />

<br />

X<br />

A<br />

s s<br />

IV<br />

EV<br />

t


Estima<strong>to</strong>r:<br />

F A<br />

t<br />

Maximum Likelihood Estimation<br />

X | s , s <br />

IV EV<br />

= +<br />

T <br />

1 2 N<br />

ML X | A<br />

arg max <br />

<br />

p x , x ,..., x<br />

A<br />

| A <br />

<br />

1<br />

argmax det A p S | A<br />

If s A 1& s2 are <strong>independent</strong> <br />

1<br />

argma x detA p s , | <br />

IV sEV A <br />

p( s , s ) p( s ) <br />

p( s ) <br />

X<br />

A<br />

1 2 1 2<br />

s s<br />

IV<br />

EV<br />

t


Estima<strong>to</strong>r:<br />

F A<br />

t<br />

Maximum Likelihood Estimation<br />

X | s , s <br />

IV EV<br />

= +<br />

T <br />

1 2 N<br />

ML X | A<br />

arg max <br />

<br />

p x , x ,..., x<br />

A<br />

| A <br />

<br />

1<br />

argmax det A p S | A<br />

A <br />

1<br />

argma x detA p s , | <br />

IV sEV A <br />

A <br />

1<br />

arg mx a det A p s IV | ApsEV | A<br />

<br />

X<br />

A<br />

s s<br />

IV<br />

EV<br />

t


Independent Component Analysis<br />

<br />

1<br />

ML X | A arg max de t A p s | | <br />

IV A p sEV<br />

A <br />

<br />

A


Independent Component Analysis<br />

<br />

1<br />

ML X | A arg max de t A p s | | <br />

IV A p sEV<br />

A <br />

<br />

A<br />

p s ? i


s , s s ps p p<br />

Probability Density Function (pdf)<br />

i j i j<br />

0<br />

Es 2<br />

p s <br />

? i<br />

i<br />

<br />

2<br />

si<br />

E1


Probability Density Function (pdf)<br />

p s <br />

? i<br />

s 2<br />

p s <br />

p <br />

E s<br />

i i<br />

<br />

i<br />

s s<br />

2<br />

<br />

i i <br />

0


Independent Component Analysis (<strong>ICA</strong>)<br />

<br />

1<br />

ML X | A arg max de t A p s | | <br />

IV A p sEV<br />

A <br />

<br />

A<br />

<br />

1<br />

2log cosh <br />

exp <br />

p s <br />

i i s


• Dialysis Tubing<br />

2 cm<br />

2.5 cm<br />

Phan<strong>to</strong>m Study


• Dialysis Tubing<br />

• Pore size: 90-970 nm<br />

2 cm<br />

2.5 cm<br />

Phan<strong>to</strong>m Study<br />

300 µm


Phan<strong>to</strong>m Study<br />

1 mm<br />

Raw Data<br />

in-plane resolution=300µm


Intravascular<br />

Extravascular<br />

1 mm 1 mm 1 mm<br />

Separation Results (<strong>ICA</strong>)<br />

Phan<strong>to</strong>m Study<br />

Raw Data


• High resolution pre-contrast MR image<br />

1 mm 1 mm<br />

Validation<br />

DCE MRI Dataset High Resolution (Pre-contrast)


• High resolution pre-contrast MR image<br />

– Thresholding Binary mask<br />

1 mm 1 mm<br />

DCE MRI Dataset Mask<br />

Validation


Intravascular<br />

Extravascular<br />

1 mm 1 mm 1 mm<br />

Phan<strong>to</strong>m Study<br />

Raw Data<br />

Separation Results (<strong>ICA</strong>) Separation Results (Mask)


• Tumor in the Thigh muscle<br />

• Imaged with US <strong>and</strong> MRI<br />

In-vivo Experiment (MR data)<br />

1 cm<br />

Raw Data


• Tumor in the Thigh muscle<br />

• Imaged with US <strong>and</strong> MRI<br />

In-vivo Experiment (MR data)<br />

1 cm<br />

Raw Data<br />

1 cm 1 cm<br />

Extravascular Intravascular


• Tumor in the Thigh muscle<br />

• Imaged with US <strong>and</strong> MRI<br />

Ultrasound Contrast Agent (µBubbles)<br />

1 cm<br />

Raw Data


• Tumor in the Thigh muscle<br />

• Imaged with US <strong>and</strong> MRI<br />

Circulating µbubbles<br />

Ultrasound Contrast Agent (µBubbles)<br />

1 cm<br />

Raw Data


• Ultrasound Imaging<br />

• µBubbles stay intravascular<br />

In-vivo Experiment (MRI vs. US)<br />

1 cm<br />

1 cm<br />

Raw Data- US<br />

Intravascular-MR


Summary & Conclusions<br />

• Tumor vasculature is heterogeneous <strong>and</strong> leaky<br />

• MRI contrast agent is capable <strong>of</strong> leaking<br />

• Tumor is characterized based on the tracer dynamics<br />

• <strong>ICA</strong> is capable <strong>of</strong> separating the intravascular <strong>and</strong><br />

extravascular compartments <strong>and</strong> <strong>identify</strong>ing arterial<br />

input function<br />

• Results <strong>of</strong> phan<strong>to</strong>m <strong>and</strong> in-vivo experiment studies<br />

were promising


Acknowledgements


?<br />

Thank You

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!