13.10.2013 Views

Testing linearity in cointegrating smooth transition regressions - Feweb

Testing linearity in cointegrating smooth transition regressions - Feweb

Testing linearity in cointegrating smooth transition regressions - Feweb

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Econometrics Journal (2004), volume 7, pp. 341–365.<br />

<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong><br />

IN CHOI ∗ AND PENTTI SAIKKONEN †<br />

∗ Department of Economics, Hong Kong University of Science and Technology,<br />

Clear Water Bay, Kowloon, Hong Kong<br />

E-mail: <strong>in</strong>choi@ust.hk<br />

† Department of Mathematics and Statistics, P.O. Box 54 (Union<strong>in</strong>katu 37),<br />

FIN-00014 University of Hels<strong>in</strong>ki, F<strong>in</strong>land<br />

E-mail: pentti.saikkonen@hels<strong>in</strong>ki.fi<br />

Received: November 2003<br />

Summary This paper develops statistical tests that can be used to test <strong>l<strong>in</strong>earity</strong> <strong>in</strong><br />

co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> regression models. These tests extend previous similar tests<br />

by consider<strong>in</strong>g I(1) regressors <strong>in</strong>stead of stationary or mix<strong>in</strong>g regressors and they also allow<br />

for more general <strong>transition</strong> mechanisms than <strong>in</strong> previous studies. As is typical <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g<br />

<strong>regressions</strong>, the regressors and errors of the model can be serially and contemporaneously<br />

correlated. In order to allow for this feature, an endogeneity correction based on a leads-and-lags<br />

approach is employed. The proposed tests are very simple to use because ord<strong>in</strong>ary least squares<br />

techniques and standard chi-square limit<strong>in</strong>g distributions apply. Simulation experiments<br />

<strong>in</strong>dicate that the tests have reasonable f<strong>in</strong>ite sample properties. Empirical applications to a<br />

U.K. money demand function illustrate the practical usefulness of the tests.<br />

Keywords: L<strong>in</strong>earity test, Co<strong>in</strong>tegration, Smooth <strong>transition</strong> regression, Money demand.<br />

1. INTRODUCTION<br />

S<strong>in</strong>ce its <strong>in</strong>troduction <strong>in</strong> the 1980s, the theory of co<strong>in</strong>tegration has undergone considerable<br />

development and become a central part of modern time series econometrics. Various econometric<br />

and statistical methods have been developed for the analysis of co<strong>in</strong>tegrated time series and<br />

many of them are now rout<strong>in</strong>ely applied <strong>in</strong> empirical studies. However, most of the methods<br />

presently available assume that the co<strong>in</strong>tegrat<strong>in</strong>g relations are l<strong>in</strong>ear, which accord<strong>in</strong>g to economic<br />

theory, need not be the case. For <strong>in</strong>stance, economic theories for money demand do not require<br />

the money demand function be l<strong>in</strong>ear (see, e.g. Baumol 1952; Tob<strong>in</strong> 1956; Baba et al. 1992),<br />

although <strong>l<strong>in</strong>earity</strong> has been assumed <strong>in</strong> most empirical studies. Be<strong>in</strong>g able to <strong>in</strong>vestigate the<br />

possibility of a non-l<strong>in</strong>ear co<strong>in</strong>tegrat<strong>in</strong>g relation is therefore of <strong>in</strong>terest, especially if an estimated<br />

l<strong>in</strong>ear co<strong>in</strong>tegrat<strong>in</strong>g relation is found to be far from that predicted by economic theory.<br />

The purpose of this paper is to develop test procedures that can be used to test the <strong>l<strong>in</strong>earity</strong> of<br />

a co<strong>in</strong>tegrat<strong>in</strong>g relation <strong>in</strong> the context of a non-l<strong>in</strong>ear co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> regression<br />

(STR) model. Our test procedures are based on the approach previously used for stationary<br />

C○ Royal Economic Society 2004. Published by Blackwell Publish<strong>in</strong>g Ltd, 9600 Gars<strong>in</strong>gton Road, Oxford OX4 2DQ, UK and 350 Ma<strong>in</strong><br />

Street, Malden, MA, 02148, USA.


342 In Choi and Pentti Saikkonen<br />

models by Luukkonen et al. (1988) and Granger and Teräsvirta (1993) amongst others (for further<br />

references, see Teräsvirta (1998) and van Dijk et al. (2002)). An advantage of this approach is<br />

that the result<strong>in</strong>g tests are very simple to use. Computations can be carried out by ord<strong>in</strong>ary least<br />

squares (OLS) and a standard chi-square criterion can be used to obta<strong>in</strong> asymptotically valid<br />

tests.<br />

Although our tests have the same basis as previous <strong>l<strong>in</strong>earity</strong> tests developed for STR models,<br />

the fact that we are work<strong>in</strong>g with a co<strong>in</strong>tegrat<strong>in</strong>g regression br<strong>in</strong>gs about notable new features<br />

to the test<strong>in</strong>g problem. Because of the co<strong>in</strong>tegration, we have to relax previous assumptions of<br />

stationary or mix<strong>in</strong>g regressors and allow for nonstationary I(1) regressors. Unlike <strong>in</strong> the previous<br />

literature, we will not assume that the regressors are exogenous <strong>in</strong> any sense. Instead, we follow<br />

the common practice <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>regressions</strong> and permit both serial and contemporaneous<br />

correlations between the regressors and the error term of the model. In order to allow for this<br />

feature, we use the leads-and-lags approach proposed by Saikkonen (1991), Phillips and Loretan<br />

(1991) and Stock and Watson (1993) for l<strong>in</strong>ear co<strong>in</strong>tegrat<strong>in</strong>g <strong>regressions</strong> and Saikkonen and<br />

Choi (2004) for somewhat more general co<strong>in</strong>tegrat<strong>in</strong>g STR <strong>regressions</strong> than those considered<br />

<strong>in</strong> this paper. As with co<strong>in</strong>tegrat<strong>in</strong>g <strong>regressions</strong> <strong>in</strong> general, the error term of our model can be<br />

serially correlated. A further po<strong>in</strong>t that makes our model more general than previous stationary<br />

STR models is that it may conta<strong>in</strong> several <strong>transition</strong> functions and more than a s<strong>in</strong>gle <strong>transition</strong><br />

variable.<br />

The rest of the paper is organized as follows. Section 2 <strong>in</strong>troduces the model, hypotheses<br />

and assumptions. Section 3 develops the <strong>l<strong>in</strong>earity</strong> tests. Section 4 extends the tests of Section<br />

3 to a more general model. Section 5 reports simulation results of the f<strong>in</strong>ite sample properties<br />

of the developed tests. Section 6 applies the tests to a U.K. money demand function. Section 7<br />

concludes.<br />

2. THE MODEL, HYPOTHESES AND ASSUMPTIONS<br />

Consider the co<strong>in</strong>tegrat<strong>in</strong>g STR model<br />

yt = µ + νg(zst) + α ′ xt + β ′ xt g (zst) + ut, t = 1, 2,...,T , (1)<br />

where xt = [x 1t, ..., xpt] ′ is a p-dimensional I(1) process, ut is a zero-mean stationary error term,<br />

and<br />

zst = γ (xst − c), γ = 0, s ∈{1,...,p}. (2)<br />

Furthermore, g(zst) is a <strong>smooth</strong>, real-valued <strong>transition</strong> function of the process xst and the scalar<br />

parameters γ and c. Of the other parameters of the model, µ and ν are scalars and α and β are<br />

p × 1 vectors. In model (1), there is a s<strong>in</strong>gle non-l<strong>in</strong>ear component g(zst) that is affected by the<br />

s<strong>in</strong>gle <strong>transition</strong> variable xst. It is straightforward to extend <strong>l<strong>in</strong>earity</strong> tests for this model to a model<br />

with multiple <strong>transition</strong> functions and <strong>transition</strong> variables. We will consider the extension after<br />

the tests for model (1) are fully developed.<br />

Model (1) is a non-l<strong>in</strong>ear extension of Engle and Granger’s (1987) l<strong>in</strong>ear co<strong>in</strong>tegrat<strong>in</strong>g<br />

regression. This model could be extended further by <strong>in</strong>clud<strong>in</strong>g additional I(1) regressors that<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 343<br />

are not affected by the <strong>transition</strong> functions. For simplicity, this extension is not made explicit <strong>in</strong><br />

this paper. 1 The non-l<strong>in</strong>ear nature of the model is determ<strong>in</strong>ed by the <strong>transition</strong> function g(zst). 2<br />

We are <strong>in</strong>terested <strong>in</strong> test<strong>in</strong>g the null hypothesis that model (1) reduces to a conventional l<strong>in</strong>ear<br />

co<strong>in</strong>tegrat<strong>in</strong>g regression. Thus, the null hypothesis of <strong>in</strong>terest is<br />

H0 : ν = 0 and β = 0. (3)<br />

The alternative simply states that the null hypothesis is not true.<br />

STR models have been used to describe economic relations that change <strong>smooth</strong>ly depend<strong>in</strong>g<br />

on the location of some economic variables. In model (1), an appropriate choice of the <strong>transition</strong><br />

function g(zst) allows the relationship between xt and yt to change depend<strong>in</strong>g on where xst are<br />

located relative to the parameter c. The <strong>smooth</strong>ness of the change is determ<strong>in</strong>ed by the parameter<br />

γ . Examples will be given later. Further examples and discussions on the STR model can be found<br />

<strong>in</strong> Granger and Teräsvirta (1993), Teräsvirta (1998) and van Dijk et al. (2002), although these<br />

authors do not explicitly consider the case of I(1) processes.<br />

As for the <strong>transition</strong> function g(z), we assume<br />

Assumption 1.<br />

(i) g(0) = 0.<br />

(ii) The function g(zst) is three times differentiable <strong>in</strong> an open ball <strong>in</strong> R with centre 0 and<br />

radius r(r > 0).<br />

= 0.<br />

(iii) ∂g(z)<br />

∂z |z=0<br />

(iv) ∂3 g(z)<br />

∂z 3 |z=0<br />

= 0.<br />

The most commonly used <strong>transition</strong> functions satisfy Assumption 1, as illustrated by the<br />

follow<strong>in</strong>g example and the examples given <strong>in</strong> the aforementioned references. More examples will<br />

be given when model (1) is generalized.<br />

Example 1. (One <strong>transition</strong> function, one <strong>transition</strong> variable and two regimes)<br />

1<br />

g (zst) =<br />

, γ > 0.<br />

1 + e 2<br />

In this example, the <strong>transition</strong> function is a logistic function that makes the regression coefficient<br />

for xt vary <strong>smooth</strong>ly between α − 1<br />

1<br />

β and α + 2 2β. When the value of the regressor x1t is<br />

sufficiently far below the value of the parameter c the regression coefficient takes a value close to<br />

α − 1<br />

2β; and when the value of the regressor xt <strong>in</strong>creases and exceeds the value of the parameter<br />

c the value of the regression coefficient changes and approaches α + 1<br />

β. The <strong>in</strong>tercept term<br />

2<br />

undergoes similar changes.<br />

−γ (xst−c) − 1<br />

1 When there are additional I(1) variables, we add the variables <strong>in</strong> levels and their differences <strong>in</strong> leads-and-lags to the<br />

auxiliary regression models on which our test statistics are based (see, e.g. equations (12), (14), (18) and (20)). Asymptotic<br />

distributions of our tests are not affected by this.<br />

2 Variables other than x 1t , ..., xpt may enter the <strong>transition</strong> function. Extend<strong>in</strong>g our tests to this case is straightforward. In<br />

addition, differences of the regressors may be considered as <strong>transition</strong> variables zit. But then, the endogeneity correction<br />

of this paper does not work.<br />

C○ Royal Economic Society 2004


344 In Choi and Pentti Saikkonen<br />

We will now discuss assumptions required for model (1). As already mentioned, we assume<br />

Assumption 2.<br />

xt = xt−1 + vt, t = 1, 2,..., (4)<br />

where vt is a zero-mean stationary process and the <strong>in</strong>itial value x0 may be any random vector<br />

with the property Ex 04 < ∞.<br />

Moreover, it will be convenient to assume that the (p + 1) -dimensional process wt = [ut v ′ t ]′<br />

satisfies the follow<strong>in</strong>g assumption employed by Hansen (1992) <strong>in</strong> a somewhat weaker form.<br />

Assumption 3. For some r > 4, wt = [ut v ′ t ]′ is a stationary, zero-mean, strong mix<strong>in</strong>g sequence<br />

with mix<strong>in</strong>g coefficients of size −4r/(r − 4) and Ewt r < ∞.<br />

Assumption 3 is fairly general. It covers a variety of weakly dependent processes and implies<br />

that an <strong>in</strong>variance pr<strong>in</strong>ciple applies to partial sums formed of the process wt (see Hansen 1992<br />

the proof of Theorem 3.1). It also permits the co<strong>in</strong>tegrated system def<strong>in</strong>ed by (1) and (4) to<br />

have non-l<strong>in</strong>ear short-run dynamics, which is convenient when the co<strong>in</strong>tegrat<strong>in</strong>g regression is<br />

non-l<strong>in</strong>ear.<br />

As discussed <strong>in</strong> Saikkonen and Choi (2004), Assumption 3 implies that the process wt has a<br />

cont<strong>in</strong>uous spectral density matrix f ww(λ) that we assume to satisfy.<br />

Assumption 4. The spectral density matrix f ww(λ) is bounded away from zero or the matrix<br />

f ww(λ) − εI p+1 is positive semi-def<strong>in</strong>ite for some ε>0.<br />

Assumption 4 specialized to the case λ = 0 implies that the components of the I(1) process xt<br />

are not co<strong>in</strong>tegrated. Conformably to the partition of the process wt, we write f ww(λ) = [fab(λ)]<br />

where a, b ∈ {u, v}. The long-run covariance matrix of the process wt is def<strong>in</strong>ed by = 2π f ww(0)<br />

and partitioned conformably with the other partitions as<br />

<br />

2 ωu ωuv<br />

=<br />

.<br />

ωvu vv<br />

Model (1) and subsequent discussions assume no drifts <strong>in</strong> the I(1) regressors. In some<br />

applications this may be restrictive and therefore we need to consider a model that allows for<br />

this feature. For this, we assume Assumption 5 <strong>in</strong>stead of Assumption 2.<br />

Assumption 5. Assumption 2 holds with xt generated by<br />

xt = µx + xt−1 + vt, t = 1, 2,..., (5)<br />

where µx = 0.<br />

Assumption 5 implies that the generat<strong>in</strong>g mechanism of the regressors can be written as<br />

xt = x0 + µxt +<br />

t<br />

v j, t = 1, 2,..., (6)<br />

j=1<br />

where the determ<strong>in</strong>istic time trend does not vanish. Its presence implies that it is reasonable to<br />

modify the def<strong>in</strong>ition of the <strong>transition</strong> variables zst. If the previous def<strong>in</strong>ition <strong>in</strong> (2) is used <strong>in</strong> the<br />

case of the logistic <strong>transition</strong> function, for example, the existence of the time trend implies that<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 345<br />

the <strong>transition</strong> function tends to decrease or <strong>in</strong>crease monotonically as the sample size grows. A<br />

more reasonable specification for the <strong>transition</strong> variables therefore appears to be<br />

zst = γ (xst − µsxt − c), γ = 0, (7)<br />

where µsx is the sth component of the vector µx. Thus, we assume that detrended regressors<br />

are used as <strong>transition</strong> variables. Except this the <strong>transition</strong> mechanism is similar to that assumed<br />

before.<br />

3. TEST PROCEDURES<br />

This section develops tests for the <strong>l<strong>in</strong>earity</strong> hypothesis (3) aga<strong>in</strong>st the general co<strong>in</strong>tegrat<strong>in</strong>g STR<br />

model (1). We consider the cases of both no drift and drift <strong>in</strong> regressors. This test<strong>in</strong>g problem is<br />

non-standard because the nuisance parameters γ and c are not identified under the null hypothesis.<br />

This can be seen from equation (1) because, under the null hypothesis, the <strong>transition</strong> functions<br />

g(zst) and, consequently, the parameters γ and c can take any values without any effect on the<br />

model specification.<br />

There has recently been a great <strong>in</strong>terest <strong>in</strong> obta<strong>in</strong><strong>in</strong>g test procedures when a nuisance parameter<br />

is not identified under the null hypothesis and significant progress has been made by Andrews<br />

(1993), Andrews and Ploberger (1994) and Hansen (1996). However, <strong>in</strong>stead of follow<strong>in</strong>g the<br />

approach of these authors, we proceed as <strong>in</strong> Luukkonen et al. (1988) and obta<strong>in</strong> very simple tests by<br />

replac<strong>in</strong>g the <strong>transition</strong> functions g(zst) with Taylor series approximations. This approach, which<br />

leads to standard tests, has recently been used by several authors (see Granger and Teräsvirta<br />

1993; Teräsvirta 1998; van Dijk et al. 2002, and the references there<strong>in</strong>). However, as po<strong>in</strong>ted out<br />

<strong>in</strong> the Introduction, there are important differences between our model and those employed by<br />

previous authors.<br />

As was done <strong>in</strong> Luukkonen et al. (1988), we consider two tests referred to as the first-order<br />

and third-order test. Both of these tests are similar to Lagrange Multiplier (LM) tests <strong>in</strong> that<br />

they require estimat<strong>in</strong>g the model only under the null hypothesis of <strong>l<strong>in</strong>earity</strong>. The simplicity of<br />

these tests stems from this fact because OLS can be used for parameter estimation under the null<br />

hypothesis.<br />

3.1. First-order test<br />

Suppose that on prior grounds the regressors can be assumed to satisfy Assumption 2 and,<br />

consequently, that the <strong>transition</strong> variables are given by (2). The first-order Taylor series approximation<br />

of the function g(zst) around the orig<strong>in</strong> is given by<br />

g(zst) ≈ bγ (xst − c), (8)<br />

where b = ∂g(z)<br />

∂z |z=0 . Substitut<strong>in</strong>g this approximation for g(zst) <strong>in</strong> model (1) yields<br />

yt = µ + νbγ (xst − c) + α ′ xt + β ′ xtbγ (xst − c) + ηt<br />

p<br />

θkxktxst + ηt, (9)<br />

= φ + ρ ′ xt +<br />

k=1<br />

where the parameters φ (scalar), ρ = [ρ 1, ..., ρ p] ′ and θ k (scalar) are def<strong>in</strong>ed implicitly.<br />

C○ Royal Economic Society 2004


346 In Choi and Pentti Saikkonen<br />

The error term ηt <strong>in</strong> model (9) is the sum of ut <strong>in</strong> model (1) and the approximation error.<br />

Under the null hypothesis (3), the approximation error vanishes and, consequently, ηt = ut. The<br />

idea is to test the orig<strong>in</strong>al null hypothesis (3) by test<strong>in</strong>g the null hypothesis<br />

H ′ 0 : θk = 0(k = 1,...,p) (10)<br />

<strong>in</strong> the auxiliary regression model (9).<br />

In order to motivate our test procedure, suppose that the error term ut <strong>in</strong> model (1) is Gaussian<br />

white noise and that the regressor vector xt is strictly exogenous. Then, <strong>in</strong>stead of the null<br />

hypothesis (3), the <strong>l<strong>in</strong>earity</strong> of the STR model (1) can be tested by test<strong>in</strong>g the null hypothesis<br />

H ′′<br />

0 : γ = 0. Under this null hypothesis the nuisance parameters ν and β are not identified. However,<br />

a test can be obta<strong>in</strong>ed <strong>in</strong> the same way as <strong>in</strong> Granger and Teräsvirta (1993, pp. 71–72). The first step<br />

is to derive an LM test for the null hypothesis H ′′<br />

0 by assum<strong>in</strong>g that the values of the unidentified<br />

nuisance parameters ν and β are fixed. This yields a test statistic that depends on the values<br />

given for the unidentified nuisance parameters. A standard approach <strong>in</strong> a case like this is to take<br />

the supremum of the obta<strong>in</strong>ed test statistic over the values of the nuisance parameters. It is easy<br />

to see that the test statistics obta<strong>in</strong>ed <strong>in</strong> this way is exactly the same as that obta<strong>in</strong>ed by us<strong>in</strong>g<br />

the standard LM test for test<strong>in</strong>g the null hypothesis (10) <strong>in</strong> the auxiliary regression model (9)<br />

(cf. Granger and Teräsvirta (1993, pp. 71–72)). Thus, <strong>in</strong> this special case the auxiliary regression<br />

model (9) and the related null hypothesis (10) can be used to obta<strong>in</strong> a ‘supLM’ test for the orig<strong>in</strong>al<br />

test<strong>in</strong>g problem.<br />

Motivated by the above discussion, we consider the LM test for the null hypothesis (10) <strong>in</strong><br />

the auxiliary regression model (9) even <strong>in</strong> the general case where the simplified assumptions used<br />

above are not satisfied. However, an endogeneity correction is needed because the regressors are<br />

allowed to be correlated with error term. Our endogeneity correction is based on the leads-andlags<br />

approach recently studied by Saikkonen and Choi (2004) <strong>in</strong> the context of a co<strong>in</strong>tegrat<strong>in</strong>g<br />

STR regression model more general than (1). Under Assumptions 3 and 4, we can express the<br />

error term ut <strong>in</strong> (1) as<br />

∞<br />

ut = π ′ jvt− j + et, (11)<br />

j=−∞<br />

where et is a zero-mean stationary process such that Eetv ′ t− j<br />

∞<br />

j=−∞<br />

π j < ∞<br />

= 0 for all j = 0, ±1, ..., and<br />

(see Saikkonen 1991; Saikkonen and Choi 2004). Expressions for the spectral density function<br />

and long-run variance of the process et can be obta<strong>in</strong>ed from the well-known formulas fee(λ) =<br />

fuu(λ) − f uv(λ) f −1<br />

vv (λ) f vu(λ) and ω2 e = ω2 −1<br />

u − ωuv vv ωvu, respectively.<br />

Now, recall that the error term ηt <strong>in</strong> (9) is the sum of ut and the approximation error due to<br />

the use of the Taylor series approximation (8). Us<strong>in</strong>g equations (4) and (11), we can thus write<br />

the auxiliary regression model (9) as<br />

yt = φ + ρ ′ xt +<br />

p<br />

θkxktxst +<br />

k=1<br />

= φ + ρ ′ xt + ζ ′ nt +<br />

K<br />

j=−K<br />

K<br />

j=−K<br />

π ′ j xt− j + ηKt<br />

π ′ j xt− j + ηKt, t = K + 1,...,T − K , (12)<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 347<br />

where signifies the difference operator, ζ = [θ 1, ..., θ p] ′ , nt = [x 1t xst, ..., xptxst] ′ , and the<br />

error term ηKt is the sum of the above-mentioned Taylor series approximation error and<br />

et + <br />

| j|>K<br />

π ′ j vt− j<br />

def<br />

= eKt.<br />

The augmented auxiliary regression model (12) will be used to test the null hypothesis (10) or,<br />

equivalently, ζ = 0. In order to elim<strong>in</strong>ate errors caused by truncat<strong>in</strong>g the <strong>in</strong>f<strong>in</strong>ite sum <strong>in</strong> (11), we<br />

have to consider asymptotics <strong>in</strong> which the <strong>in</strong>teger K tends to <strong>in</strong>f<strong>in</strong>ity with T at a suitable rate. To<br />

this end, we follow Saikkonen (1991) and Saikkonen and Choi (2004) and assume the follow<strong>in</strong>g:<br />

Assumption 6. K = o(T 3 1/2 ) and T | j|>K π j →0 as T →∞.<br />

Let M be the moment matrix for the auxiliary regression model (12) and (M −1 )nn the block<br />

of the matrix M−1 correspond<strong>in</strong>g to nt. Then the LM test for the null hypothesis (10) is def<strong>in</strong>ed<br />

as<br />

T1 = ˆζ ′ ˜ω 2 e (M−1 −1 )nn ˆζ,<br />

where ˆζ is the OLS estimator of ζ <strong>in</strong> (12) and ˜ω 2 e is a standard long-run variance estimator based<br />

on the residuals of the correspond<strong>in</strong>g restricted OLS estimation. In other words, ˜ω 2 e is obta<strong>in</strong>ed<br />

from ũt = yt − ˜φ − ˜ρ ′ xt − K j=−K ˜π ′ jxt− j where ˜φ, ˜ρ and ˜π j are the OLS estimators of the<br />

coefficients φ, ρ and π j, respectively, <strong>in</strong> the auxiliary regression model (12) constra<strong>in</strong>ed by<br />

ζ = 0.<br />

S<strong>in</strong>ce the null hypothesis implies that ηKt = eKt <strong>in</strong> (12) the limit<strong>in</strong>g null distribution of test<br />

statistic T1 can be <strong>in</strong>ferred from the results of Saikkonen and Choi (2004), which apply when<br />

Assumptions 2, 3, 4 and 6 are satisfied. To demonstrate this, note that Saikkonen and Choi (2004)<br />

study a non-l<strong>in</strong>ear co<strong>in</strong>tegrat<strong>in</strong>g regression model that conta<strong>in</strong>s model (12) (with ηKt = eKt) asa<br />

special case. The asymptotic results obta<strong>in</strong>ed <strong>in</strong> that paper were based on the so-called triangular<br />

array asymptotics. However, when the non-<strong>l<strong>in</strong>earity</strong> is def<strong>in</strong>ed by a homogeneous function, as is<br />

the case <strong>in</strong> (12), the same results are obta<strong>in</strong>ed when conventional asymptotics is applied <strong>in</strong>stead of<br />

the triangular array asymptotics. Therefore, the results of Saikkonen and Choi (2004) apply <strong>in</strong> the<br />

present context and imply that T ˆζ has a mixture normal limit<strong>in</strong>g distribution with (conditional)<br />

variance–covariance matrix given by the weak limit of ˜ω 2 e ((M/T 2 ) −1 )nn. Standard methods used<br />

to construct the consistent long-run variance estimator ˜ω 2 e (e.g. Andrews 1991) also work. These<br />

facts imply that, under the null hypothesis, ˜ω 2 e (M−1 −1/2 )nn ˆζ has a standard normal limit<strong>in</strong>g<br />

distribution and, consequently,<br />

T1<br />

d<br />

−→ χ 2 (p) as T →∞.<br />

Thus, we have shown that a standard chi-square criterion can be used to construct an asymptotic<br />

test for the <strong>l<strong>in</strong>earity</strong> hypothesis. For this result and other similar results reported below, note that<br />

the assumption of a stationary error term ut is crucial. Methods for test<strong>in</strong>g this assumption are<br />

not yet available.<br />

The above test is based on the assumption that there are no drifts <strong>in</strong> the regressors. Now suppose<br />

that this assumption is not appropriate so that Assumption 5 and equation (7) are assumed <strong>in</strong>stead<br />

of Assumption 2 and equation (2), respectively. The <strong>transition</strong> variables def<strong>in</strong>ed by equation<br />

(7) conta<strong>in</strong> the unknown drift parameter µx, which has to be replaced by an estimator to make<br />

the situation similar to that above. One possibility is to estimate µx by the sample mean of<br />

C○ Royal Economic Society 2004


348 In Choi and Pentti Saikkonen<br />

xt(t = 2, ..., T ) (see equation (5)). Another possibility is to use the OLS estimator <strong>in</strong> a l<strong>in</strong>ear<br />

regression of xt on constant and t (see equation (6)). We adopt the former approach and denote<br />

this estimator by ˆµx and its ith component by ˆµix.<br />

The arguments used to obta<strong>in</strong> the auxiliary regression model (12) can be repeated with xst<br />

replaced by xst − t ˆµsx. This yields the auxiliary regression model<br />

yt = φ + ρ ′ xt + ζ ′ ˆnt +<br />

K<br />

j=−K<br />

π ′ j xt− j + ηKt, t = K + 1,...,T − K , (13)<br />

where ˆnt = [(x1t − t ˆµ1x)(xst − t ˆµsx),...,(x pt − t ˆµpx)(xst − t ˆµsx)] ′ and the notation for the<br />

error term is the same as <strong>in</strong> (12) because the two error terms are identical under the assumed<br />

null hypothesis. In (13), xt conta<strong>in</strong>s both determ<strong>in</strong>istic and stochastic trends that need to be<br />

separated for our test. This can be done by us<strong>in</strong>g the model augmented by a time trend<br />

yt = φ + τt + ρ ′ xt + ζ ′ K<br />

ˆnt + π ′ jxt− j + ηKt, t = K + 1,...,T − K . (14)<br />

j=−K<br />

If model (13) is used, the moment matrix is s<strong>in</strong>gular <strong>in</strong> the limit that is expected to br<strong>in</strong>g lower<br />

power of the tests <strong>in</strong>troduced below. Indeed, unreported simulation results confirm serious loss<br />

of power <strong>in</strong> f<strong>in</strong>ite samples when (13) is used.<br />

Instead of T1 we now have the test statistic<br />

−1 ˆζµ,<br />

T1µ = ˆζ ′ 2<br />

µ ˜ω eµ (M −1 ) ˆn ˆn<br />

where ˆζµ is the OLS estimator of ζ <strong>in</strong> (14), (M −1 ) ˆn ˆn is def<strong>in</strong>ed <strong>in</strong> the same way as (M −1 )nn except<br />

that ˆnt is used <strong>in</strong> place of nt, and ˜ω 2 eµ is a long run variance estimator obta<strong>in</strong>ed from the OLS<br />

residuals of (14). When Assumptions 3–6 are satisfied the limit<strong>in</strong>g null distribution of test statistic<br />

T1µ is the same as that of T1, that is,<br />

T1µ<br />

d<br />

−→ χ 2 (p) as T →∞. (15)<br />

This result can be justified as follows. First, note that, by equation (6), model (14) can be<br />

transformed to<br />

yt = φ † + τ † t + ρ ′<br />

<br />

t<br />

v j<br />

+ ζ ′ ˆnt +<br />

K<br />

j=−K<br />

j=1<br />

π ′ j xt− j + ηKt, t = K + 1,...,T − K , (16)<br />

where φ † = φ + ρ ′ x 0 and τ † = ρ ′ µx. By the property of l<strong>in</strong>ear projection, this transformation<br />

leaves the OLS estimator of the parameter ζ <strong>in</strong> (14) and our <strong>l<strong>in</strong>earity</strong> test <strong>in</strong>variant. Thus, the<br />

limit<strong>in</strong>g distribution of test statistic T1µ can be derived by us<strong>in</strong>g this (<strong>in</strong>feasible) model <strong>in</strong>stead<br />

of (14). Let Bv(r)(0 ≤ r ≤ 1) be a p-dimensional Brownian motion. By standard arguments we<br />

have T 1/2 ( ˆµx − µx) d → Bv (1) and<br />

T −1/2 x[Tr] − ˆµx[Tr] = T −1/2<br />

[Tr]<br />

v j − T 1/2 ( ˆµx − µx) [Tr]<br />

T + T −1/2 x0<br />

d<br />

→ ¯Bv (r) ,<br />

j=1<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 349<br />

where ¯Bv (r) = Bv (r) − rBv (1) is a Brownian bridge. This result implies that the weak limit<br />

of T −1/2 ˆn[Tr] differs from that obta<strong>in</strong>ed for T −1/2n[Tr] only <strong>in</strong> that it is def<strong>in</strong>ed <strong>in</strong> terms of<br />

the Brownian bridge ¯Bv (r) <strong>in</strong>stead of the Brownian motion Bv(r). Second, the presence of the<br />

l<strong>in</strong>ear time trend regressor <strong>in</strong> model (16) does not change the fact that the regressors there<strong>in</strong><br />

are asymptotically <strong>in</strong>dependent of the regression errors. Therefore, ˜ω 2 e (M−1 −1/2 ) ˆζµ ˆn ˆn has a<br />

standard normal limit<strong>in</strong>g distribution which gives result (15).<br />

3.2. Third-order test<br />

In equations (9) and (12), the parameters θ k are not functions of the parameter ν, which only<br />

affects the parameters φ and ρ. Because the parameter ν cannot be separated from φ and ρ, test<br />

statistic T1 may have low power when the value of ν is large and the elements of β take small<br />

absolute values. To remedy this problem, we follow Luukkonen et al. (1988) and consider a test<br />

based on the third-order Taylor series approximation of g(zst).<br />

Assum<strong>in</strong>g that the <strong>transition</strong> variables are given by (2), the third-order Taylor series<br />

approximation of the function g(zst) around the orig<strong>in</strong> can be written as<br />

g(zst) ≈ bγ (xst − c) + dγ 2 (xst − c) 2 + hγ 3 (xst − c) 3 , (17)<br />

where b, d and h are constants determ<strong>in</strong>ed by partial derivatives of g(zst) at the orig<strong>in</strong>. 3 Because<br />

the motivation for us<strong>in</strong>g the third-order approximation is to improve the power of test statistic T1<br />

under ν = 0, we use the approximate relation (17) only for the <strong>transition</strong> of the <strong>in</strong>tercept term and<br />

cont<strong>in</strong>ue to use the relation (8) for the <strong>transition</strong> <strong>in</strong>volv<strong>in</strong>g the regressors. The result<strong>in</strong>g auxiliary<br />

regression model that corresponds to model (12) is then<br />

yt = µ + ν bγ (xst − c) + dγ 2 (xst − c) 2 + hγ 3 (xst − c) 3<br />

+ α ′ xt + β ′ xtbγ (xst − c) +<br />

= ψ + ξ ′ xt +<br />

K<br />

j=−K<br />

p<br />

ϕkxktxst + λx 3 st +<br />

k=1<br />

= ψ + ξ ′ xt + ς ′ ht +<br />

K<br />

j=−K<br />

π ′ j xt− j + η ∗ Kt<br />

K<br />

j=−K<br />

π ′ j xt− j + η ∗ Kt<br />

π ′ jxt− j + η ∗ Kt , t = K + 1,...,T − K . (18)<br />

Here ς = [ϕ 1, ..., ϕ p, λ] ′ and ht = [x 1t xst, ..., xptxst, x 3 st ]′ . Moreover, the p × 1 parameter vector<br />

ξ and the scalar parameters ϕ k, λ and ψ are def<strong>in</strong>ed implicitly.<br />

Instead of the orig<strong>in</strong>al null hypothesis (3), the idea is now to test the null hypothesis<br />

H ′′′<br />

0<br />

: ς = 0 (19)<br />

<strong>in</strong> the auxiliary regression model (18) us<strong>in</strong>g the LM test. In order to <strong>in</strong>troduce the test statistic,<br />

let ¯M be the moment matrix for the auxiliary regression model (18) and ( ¯M −1 )hh the block of the<br />

matrix ¯M −1 correspond<strong>in</strong>g to ht. Furthermore, let ˆς be the OLS estimator of ς <strong>in</strong> (18) and ˜ω 2 e a<br />

3 The second-order derivative of the logistic <strong>transition</strong> function <strong>in</strong> Example 1 takes the value zero at the orig<strong>in</strong> but this<br />

may not be the case for all other <strong>transition</strong> functions (cf. Example 3 <strong>in</strong> Section 4).<br />

C○ Royal Economic Society 2004


350 In Choi and Pentti Saikkonen<br />

standard long-run variance estimator based on the residuals of the correspond<strong>in</strong>g OLS estimation<br />

constra<strong>in</strong>ed by ς = 0. Then our test statistic is def<strong>in</strong>ed as<br />

T2 = ˆς ′ ˜ω 2 e ( ¯M −1 −1 )hh ˆς.<br />

In the same way as <strong>in</strong> the case of test statistic T1, we can use the results of Saikkonen and Choi<br />

(2004) to show that, when Assumptions 2, 3, 4 and 6 hold, the limit<strong>in</strong>g null distribution of test<br />

statistic T2 is given by<br />

T2<br />

d<br />

−→ χ 2 (p + 1) as T →∞.<br />

Thus, compared to the limit<strong>in</strong>g distribution of test statistic T1, the number of degrees of freedom<br />

has <strong>in</strong>creased by the number of additional restrictions <strong>in</strong>cluded <strong>in</strong> the auxiliary null hypothesis.<br />

Arguments similar to those <strong>in</strong> the previous section can be used to modify the above test to<br />

allow for drifts <strong>in</strong> the regressors. Thus, suppose that Assumption 2 and equation (2) are replaced<br />

by Assumption 5 and equation (7), respectively. Instead of the auxiliary regression model (18)<br />

we then base our test on<br />

yt = ψ + τt + ξ ′ xt + ς ′ ˆht +<br />

K<br />

j=−K<br />

π ′ jxt− j + η ∗ Kt , t = K + 1,...,T − K , (20)<br />

where ˆht is def<strong>in</strong>ed by replac<strong>in</strong>g xst <strong>in</strong> the def<strong>in</strong>ition of ht with xst − t ˆµsx. <strong>Test<strong>in</strong>g</strong> null hypothesis<br />

(19) <strong>in</strong> this auxiliary regression model leads to test statistic<br />

T2µ = ˆς ′ 2<br />

µ ˜ω eµ ( ¯M −1 −1 ) ˆh ˆh ˆςµ,<br />

where ˆςµ is the OLS estimator of ς <strong>in</strong> (20), ( ¯M −1 ) ˆh ˆh is an analog of ¯M −1 )hh based on ˆht <strong>in</strong>stead<br />

of ht, and ˜ω 2 eµ is a long run variance estimator obta<strong>in</strong>ed from the OLS residuals of (20) with the<br />

constra<strong>in</strong>t ζ = 0. In the same way as <strong>in</strong> the previous section we can show that, when Assumptions<br />

3–6 are satisfied, the limit<strong>in</strong>g null distribution of test statistic T2µ is the same as that of test statistic<br />

T2.<br />

If it is a priori known that the coefficients for regressors are not subject to <strong>smooth</strong> <strong>transition</strong><br />

(i.e. β = 0), our test can be based on the regression equation<br />

yt = µ + ν bγ (xst − c) + dγ 2 (xst − c) 2 + hγ 3 (xst − c) 3<br />

+ α ′ xt +<br />

K<br />

j=−K<br />

π ′ j xt− j + η ∗ Kt<br />

= ψ + ξ ′ xt + ϕx 2 st + λx 3 st +<br />

= ψ + ξ ′ xt + ς ′ ht +<br />

K<br />

j=−K<br />

K<br />

j=−K<br />

π ′ j xt− j + η ∗ Kt<br />

π ′ jxt− j + η ∗ Kt , t = K + 1,...,T − K , (21)<br />

where ς = [ϕ, λ] ′ and ht = [x 2 st , x 3 st ]′ . The test for the null hypothesis ς = 0, denoted by T3, is<br />

similarly def<strong>in</strong>ed and<br />

T3<br />

d<br />

−→ χ 2 (2) as T →∞.<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 351<br />

This test may have higher power than T2 when β = 0. In some cases (e.g. Example 1), d = 0 and<br />

the auxiliary regression model reduces to<br />

yt = ψ + ξ ′ xt + λx 3 st +<br />

K<br />

j=−K<br />

In this case, T3 tests the null hypothesis λ = 0 and<br />

T3<br />

π ′ jxt− j + η ∗ Kt , t = K + 1,...,T − K .<br />

d<br />

−→ χ 2 (1) as T →∞.<br />

When regressors conta<strong>in</strong> drifts, we add a l<strong>in</strong>ear time trend <strong>in</strong> model (21) and use the detrended<br />

regressor xst − t ˆµsx <strong>in</strong>stead of xst. The result<strong>in</strong>g test will be denoted by T3µ.<br />

4. EXTENSIONS TO A MORE GENERAL MODEL<br />

The test procedures developed <strong>in</strong> the previous section can straightforwardly be extended to the<br />

co<strong>in</strong>tegrat<strong>in</strong>g STR model<br />

yt = µ +<br />

q<br />

ν j g j(z jt) + α ′ xt +<br />

j=1<br />

q<br />

j=1<br />

β ′ j xt g j<br />

where the components of the vector z jt = [z j1t,...,z jmj t] ′ are given by<br />

<br />

z jt + ut, t = 1, 2,...,T , (22)<br />

z jit = γ ji(xit − c ji),γji = 0, i = 1,...,m j, (23)<br />

and gj(zjt) is a <strong>smooth</strong>, real-valued <strong>transition</strong> function of the process xt and the scalar parameters<br />

γ j1, ..., γ jmj , c j1, ..., cjm j . In equations (22) and (23), parameter q denotes the number of<br />

<strong>transition</strong> functions and mj the number of <strong>transition</strong> variables for the <strong>transition</strong> function gj(·).<br />

Otherwise the notation is the same as <strong>in</strong> model (1).<br />

In model (22) different forms of <strong>smooth</strong> <strong>transition</strong>s may occur depend<strong>in</strong>g on more than a<br />

s<strong>in</strong>gle component of the vector xt. The counterpart of the <strong>l<strong>in</strong>earity</strong> hypothesis (3) is now<br />

H0 : ν j = 0 and β j = 0 for all j = 1,...,q.<br />

The alternative aga<strong>in</strong> states that the null hypothesis is not true.<br />

Model (1) with the logistic <strong>transition</strong> function def<strong>in</strong>ed <strong>in</strong> Example 1 is an obvious special case<br />

of model (22). More general cases are provided by the follow<strong>in</strong>g examples.<br />

Example 2. (Two <strong>transition</strong> functions, one <strong>transition</strong> variable for each <strong>transition</strong> function and<br />

three regimes; p = 1, q = 2, m 1 = m 2 = 1)<br />

g1 (z1t) =<br />

g2 (z2t) =<br />

1<br />

1 + e −γ11(x1t −c11)<br />

1<br />

1 + e −γ21(x1t −c21)<br />

− 1<br />

2 , γ11 > 0<br />

− 1<br />

2 , γ21 > 0.<br />

If we here assume that c21 > c11, then the coefficient for x1t changes slowly from α1 − 1<br />

2β11 − 1<br />

2β21 via α1 + 1<br />

2β11 − 1<br />

2β21 to α1 + 1<br />

2β11 + 1<br />

2β21 for <strong>in</strong>creas<strong>in</strong>g values of x1t. Thus, there are basically<br />

three data regimes <strong>in</strong> this example. A similar <strong>in</strong>terpretation applies when c11 > c21.<br />

C○ Royal Economic Society 2004


352 In Choi and Pentti Saikkonen<br />

Example 3. (One <strong>transition</strong> function, two <strong>transition</strong> variables and two regimes; p = 2, q = 1,<br />

m 1 = 2)<br />

g1 (z1t) =<br />

1<br />

1 + e −γ11(x1t −c11) ×<br />

1<br />

1 + e −γ12(x2t −c12)<br />

− 1<br />

4 , γ11 > 0, γ12 > 0.<br />

This example differs from the previous ones <strong>in</strong> that there are two <strong>transition</strong> variables x1t and<br />

x2t. Only when the values of both x1t and x2t are greater than c11 and c12, respectively, does the<br />

coefficient vector of xt become α + 3<br />

4β1. Otherwise, it is α − 1<br />

4β1. So there are two data regimes<br />

characterized by x1t and x2t.<br />

Example 4. (One <strong>transition</strong> function, two <strong>transition</strong> variables and three regimes; p = 2, q = 1,<br />

m 1 = 2)<br />

1<br />

g1 (z1t) =<br />

1 + e−γ11(x1t −c11) −<br />

1<br />

1 + e−γ12(x2t −c12) , γ11 > 0,γ12 > 0.<br />

There are three data regimes <strong>in</strong> this example. When the values of both x1t and x2t are either large<br />

or small simultaneously, the <strong>transition</strong> function takes the value 0. Otherwise, it takes the value<br />

either 1 or −1.<br />

In place of Assumption 1 we now have to use a similar assumption that allows for the fact<br />

that the argument of the function g is a vector. Specifically, we assume:<br />

Assumption 7.<br />

(i) gj(0) = 0 for all j.<br />

(ii) For all j, the function gj(zj) is three times differentiable <strong>in</strong> an open ball <strong>in</strong> Rm j with centre<br />

0 and radius rj(rj > 0).<br />

(iii) For all j, ∂g j (z j )<br />

= 0 for at least one i.<br />

∂z ji |z=0<br />

∂<br />

(iv) For all j,<br />

3g j (z j )<br />

= 0 for at least one (i, k, l).<br />

∂z ji∂z jk∂z jl |z=0<br />

It is straightforward to check that the <strong>transition</strong> functions of Examples 2–4 satisfy this<br />

assumption.<br />

In the present context, the first-order Taylor series approximation (8) is replaced by g j(z j) ≈<br />

m j<br />

i=1 b jiγ ji(xit − c ji) where b ji = ∂g j (z)<br />

. Follow<strong>in</strong>g the development <strong>in</strong> Section 3.1 it can be<br />

∂z ji |z=0<br />

seen here that the counterpart of the auxiliary regression model (12) is<br />

yt = φ + ρ ′ xt +<br />

p<br />

k=i<br />

m<br />

θkixktxit +<br />

i=1<br />

= φ + ρ ′ xt + ζ ′ n t +<br />

K<br />

j=−K<br />

K<br />

j=−K<br />

π ′ j xt− j + ηKt<br />

π ′ j xt− j + ηKt, t = K + 1,...,T − K , (24)<br />

where ζ = [θ11,...,θpm] ′ , nt = [x 2 1t ,...,x ptxmt] ′ and m = max{m 1, ..., mq}. The null hypothesis<br />

tested <strong>in</strong> this auxiliary regression model is H ′ 0 : ζ = 0. Analogously to test statistic T1 one<br />

obta<strong>in</strong>s<br />

T 1 = ˆζ ′ 2<br />

˜ω e (M −1 −1 )nn ˆζ ,<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 353<br />

where the notation differs from that used <strong>in</strong> test statistic T1 only <strong>in</strong> that the auxiliary regression<br />

model (24) is used <strong>in</strong>stead of (12). Arguments similar to those used for test statistic T1 show that,<br />

under the null hypothesis,<br />

d<br />

T 1 −→ χ 2<br />

<br />

(2p − m + 1)m<br />

as T →∞.<br />

2<br />

This result applies when Assumptions 2, 3, 4, 6 and 7 hold.<br />

If Assumption 5 is used <strong>in</strong>stead of Assumption 2 the regressor nt <strong>in</strong> the auxiliary regression<br />

model (24) is replaced by ˆn t = [(x1t − t ˆµ1x) 2 ,...,(x pt − t ˆµpx)(xmt − t ˆµmx)] ′ and a time trend is<br />

added to the regressor set. The result<strong>in</strong>g test statistic T 1µ , with the same limit<strong>in</strong>g null distribution<br />

as T 1 , is obta<strong>in</strong>ed <strong>in</strong> an obvious way.<br />

The third-order test procedure of Section 3.2 can readily be extended to the present context.<br />

The relevant Taylor series approximation is<br />

m<br />

j<br />

m<br />

j m<br />

j<br />

g j(z j) ≈ b jiγ ji(xit − c ji) + d jkiγ jiγ jk(xit − c ji)(xkt − c jk)<br />

i=1<br />

k=i<br />

i=1<br />

m<br />

j m<br />

j m<br />

j<br />

+<br />

h jlkiγ jiγ jkγ jl(xit − c ji)(xkt − c jk)(xlt − c jl).<br />

l=k<br />

k=i<br />

i=1<br />

Because the motivation is to improve the power of test statistic T 1 under ν j = 0 we aga<strong>in</strong> use<br />

the third-order approximation only for the <strong>transition</strong> of the <strong>in</strong>tercept term and cont<strong>in</strong>ue to use<br />

the first-order approximation for the <strong>transition</strong> <strong>in</strong>volv<strong>in</strong>g the regressors. Insert<strong>in</strong>g the preced<strong>in</strong>g<br />

approximation <strong>in</strong>to model (22) and comb<strong>in</strong><strong>in</strong>g terms <strong>in</strong> the result<strong>in</strong>g auxiliary regression model<br />

yields<br />

yt = ψ + ξ ′ xt +<br />

p<br />

k=i<br />

m<br />

ϕikxktxit +<br />

i=1<br />

= ψ + ξ ′ xt + ς ′ h t +<br />

K<br />

j=−K<br />

m<br />

l=k<br />

m<br />

k=i<br />

m<br />

λlkixitxktxlt +<br />

i=1<br />

K<br />

j=−K<br />

π ′ j xt− j + η ∗ Kt<br />

π ′ jxt− j + η ∗ Kt , t = K + 1,...,T − K , (25)<br />

where ς = [ϕ11,...,ϕmp,λ111, ...,λmmm] ′ , ht = [x 2 1t ,...,x ptxmt, x 3 1t ,...,x 3 mt ]′ hypothesis to be tested is H<br />

and the null<br />

′′′<br />

0 : ς = 0. The test statistic becomes<br />

T 2 = ˆς ′ ˜ω 2 e (M−1 −1 )hh ˆς,<br />

where the notation is as before except for be<strong>in</strong>g def<strong>in</strong>ed <strong>in</strong> terms of the auxiliary regression model<br />

(25). Under the conditions used for test statistic T 1 ,<br />

d<br />

T 2 −→ χ 2<br />

<br />

(2p − m + 1)m<br />

+<br />

2<br />

m(m + 1)(m + 2)<br />

<br />

6<br />

as T →∞.<br />

If Assumption 5 is used <strong>in</strong>stead of Assumption 2 the auxiliary regression model (25) is<br />

augmented by add<strong>in</strong>g a time trend to the regressor set and the regressor ht is replaced by ˆh t<br />

def<strong>in</strong>ed by replac<strong>in</strong>g xit <strong>in</strong> the def<strong>in</strong>ition of ht by xit − t ˆµix. The result<strong>in</strong>g test statistic T 2µ has<br />

the same limit<strong>in</strong>g null distribution as T 2 .<br />

Extension of the simplified third-order test T3 of Section 3.2, denoted by T 3 , should be based<br />

on the same model as for T 2 unless the second-order derivatives djki are zero for all i, j and k,<br />

C○ Royal Economic Society 2004


354 In Choi and Pentti Saikkonen<br />

and has the same limit<strong>in</strong>g distribution as T 2 . In this case, T 3 is no different from T 2 .Ifthe<br />

second-order derivatives are zero for all i, j and k, the second-order terms <strong>in</strong> model (25) vanish<br />

(i.e. ς = [λ111,...,λmmm] ′ ) and the limit<strong>in</strong>g distribution of T 3 will be χ 2 ( m(m+1)(m+2)<br />

). Extension<br />

6<br />

of T 3 to regressors with drifts can be made as described previously.<br />

We close this section with a remark that is relevant to all the tests we have developed. Because<br />

the auxiliary regression models used to obta<strong>in</strong> our tests can be considered as approximations of<br />

not only the enterta<strong>in</strong>ed STR models but also of other non-l<strong>in</strong>ear models, a rejection of the null<br />

hypothesis by any of these tests may be due to various non-l<strong>in</strong>earities. Therefore, a rejection of the<br />

<strong>l<strong>in</strong>earity</strong> hypothesis need not imply that the enterta<strong>in</strong>ed STR model is the correct or appropriate<br />

alternative. To put this <strong>in</strong> another way, our tests can also be seen as general tests aga<strong>in</strong>st non-l<strong>in</strong>ear<br />

co<strong>in</strong>tegration. Of course the previous similar tests obta<strong>in</strong>ed for stationary models are not different<br />

<strong>in</strong> this respect.<br />

5. SIMULATION<br />

This section reports simulation results for the empirical size and power of the <strong>l<strong>in</strong>earity</strong> tests studied<br />

<strong>in</strong> previous sections. When the tests for regressors with drifts were used, µx was estimated by the<br />

sample mean of xt. We considered three data-generat<strong>in</strong>g processes. The first one is the logistic<br />

STR model with one <strong>transition</strong> function, one <strong>transition</strong> variable and two regimes. That is, data<br />

were generated by<br />

yt = µ + νg(zt) + αxt + βxt g (zt) + ut;<br />

1<br />

g (zt) =<br />

1 + e−γ (xt<br />

1<br />

−<br />

−c) 2 ;<br />

<br />

<br />

xt<br />

ω ω<br />

= εt + Bεt−1; B = ;<br />

ut<br />

0 ω<br />

<br />

1 0.5<br />

εt ∼ iidN 0,<br />

.<br />

0.5 1<br />

(26)<br />

In this data generation, the coefficient for xt moves slowly between α − 1<br />

2β1 and α + 1<br />

2β1 and<br />

the <strong>in</strong>tercept term shows similar movements. In addition, the regressor xt and the error term ut<br />

are serially and contemporaneously correlated. The degree of correlation is controlled by the<br />

parameter ω. Larger values of ω imply that the regressors and errors are more correlated both<br />

serially and contemporaneously. Also, {xt} were generated such that c is located between the 15th<br />

and 85th percentiles of {xt}. The purpose of this scheme is to make the data-generat<strong>in</strong>g process<br />

non-l<strong>in</strong>ear under the alternative of non-<strong>l<strong>in</strong>earity</strong> without any exception. The parameter values for<br />

the experiment us<strong>in</strong>g (26) are (ν, β) = (0, 0), (0, 0.5), (0.5, 0), (0.5, 0.5), µ = α = c = 0 and<br />

γ = 1. 4 The parameter values (ν, β) = (0, 0) correspond to the null of <strong>l<strong>in</strong>earity</strong>, and the rest to the<br />

alternative of non-<strong>l<strong>in</strong>earity</strong>. We tried two sample sizes T = 100 and T = 200; and the numbers<br />

of leads and lags (K) used were 1, 2 and 3. Nom<strong>in</strong>al size was set at 5% and 5,000 iterations<br />

were performed to calculate the empirical size and power of test statistics T1, T2, T3, T1µ, T2µ and<br />

T3µ. The results are reported <strong>in</strong> Tables 1 and 3. The added product terms for T1, T2 and T3 are<br />

x2 t ,(x2t , x3t ) and x3t , respectively. Correspond<strong>in</strong>g detrended terms were used for T1µ, T2µ and T3µ.<br />

4In a previous version of this paper, we also considered the cases γ = 5, ∞. S<strong>in</strong>ce these provide similar results, we do<br />

not report them here.<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 355<br />

Table 1. Empirical size and power of <strong>l<strong>in</strong>earity</strong> tests.<br />

One <strong>transition</strong> function, one <strong>transition</strong> variable, two regimes and no drift.<br />

T1 T2 T3<br />

ω T (ν, β) K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3<br />

0.2 100 (0.0, 0.0) 0.064 0.071 0.076 0.072 0.076 0.083 0.067 0.076 0.080<br />

(0.0, 0.5) 0.853 0.844 0.835 0.867 0.855 0.852 0.355 0.366 0.370<br />

(0.5, 0.0) 0.120 0.125 0.128 0.118 0.122 0.131 0.116 0.124 0.124<br />

(0.5, 0.5) 0.836 0.830 0.824 0.859 0.854 0.842 0.358 0.367 0.373<br />

200 (0.0, 0.0) 0.057 0.061 0.062 0.058 0.060 0.064 0.061 0.061 0.060<br />

(0.0, 0.5) 0.968 0.967 0.967 0.988 0.985 0.984 0.558 0.563 0.559<br />

(0.5, 0.0) 0.176 0.176 0.176 0.167 0.176 0.174 0.213 0.218 0.217<br />

(0.5, 0.5) 0.957 0.955 0.955 0.977 0.976 0.976 0.529 0.535 0.537<br />

0.5 100 (0.0, 0.0) 0.070 0.078 0.082 0.074 0.080 0.085 0.071 0.073 0.080<br />

(0.0, 0.5) 0.889 0.888 0.886 0.916 0.912 0.910 0.404 0.413 0.417<br />

(0.5, 0.0) 0.116 0.119 0.122 0.107 0.122 0.124 0.119 0.145 0.134<br />

(0.5, 0.5) 0.880 0.876 0.874 0.904 0.906 0.898 0.393 0.402 0.409<br />

200 (0.0, 0.0) 0.060 0.062 0.066 0.062 0.062 0.064 0.064 0.067 0.067<br />

(0.0, 0.5) 0.984 0.983 0.983 0.995 0.995 0.995 0.589 0.587 0.593<br />

(0.5, 0.0) 0.162 0.163 0.166 0.154 0.166 0.159 0.158 0.185 0.168<br />

(0.5, 0.5) 0.972 0.972 0.973 0.986 0.987 0.987 0.572 0.573 0.581<br />

Notes:<br />

(i) Data were generated by (26).<br />

(ii) The parameter values (ν, β) = (0, 0) correspond to the null of <strong>l<strong>in</strong>earity</strong>, and the rest to the alternative of non-<strong>l<strong>in</strong>earity</strong>.<br />

(iii) Larger ω implies that the regressors and errors are more correlated both serially and contemporaneously.<br />

(iv) The number of iterations is 5000, and the nom<strong>in</strong>al size 5%.<br />

(v) The long-run variance was estimated us<strong>in</strong>g Andrews’ (1991) methods with an AR(4) approximation for the prefilter.<br />

The second data generation we considered is the three-regime, logistic <strong>smooth</strong> <strong>transition</strong><br />

model with one <strong>transition</strong> variable and two <strong>transition</strong> functions.<br />

yt = µ +<br />

2<br />

ν j g j(z jt) + αxt +<br />

j=1<br />

2<br />

β j xt g j<br />

j=1<br />

<br />

z jt + ut;<br />

1<br />

g1 (z1t) =<br />

1 + e−γ11(xt 1<br />

−<br />

−c11) 2 ; g2<br />

1<br />

(z2t) =<br />

1 + e−γ21(xt −c21)<br />

<br />

<br />

xt<br />

ω ω<br />

= εt + Bεt−1; B = ;<br />

ut<br />

0 ω<br />

<br />

1 0.5<br />

εt ∼ iidN 0,<br />

0.5 1<br />

− 1<br />

2 ;<br />

<br />

. (27)<br />

When c21 > c11, the coefficient for xt changes slowly from α − 1<br />

2 β1 − 1<br />

2 β2 via α + 1<br />

2 β1 − 1<br />

2 β2 to<br />

α + 1<br />

2 β1 + 1<br />

2 β2 for <strong>in</strong>creas<strong>in</strong>g values of xt. The coefficient for the <strong>in</strong>tercept term changes similarly.<br />

C○ Royal Economic Society 2004


356 In Choi and Pentti Saikkonen<br />

Table 2. Empirical size and power of <strong>l<strong>in</strong>earity</strong> tests.<br />

Two <strong>transition</strong> functions, one <strong>transition</strong> variable for each <strong>transition</strong> function, three regimes and no drift.<br />

T 1 T 2 T 3<br />

ω T (ν 1, ν 2, β 1, β 2) K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3<br />

0.2 100 (0.0, 0.0, 0.0, 0.0) 0.062 0.066 0.071 0.067 0.071 0.081 0.068 0.070 0.074<br />

(0.0, 0.0, 0.5, 1.0) 0.982 0.984 0.984 0.971 0.967 0.972 0.890 0.897 0.904<br />

(0.5, 1.0, 0.0, 0.0) 0.144 0.151 0.156 0.144 0.157 0.159 0.146 0.151 0.154<br />

(0.5, 1.0, 0.5, 1.0) 0.975 0.977 0.978 0.963 0.964 0.968 0.861 0.867 0.871<br />

200 (0.0, 0.0, 0.0, 0.0) 0.063 0.066 0.067 0.062 0.060 0.062 0.058 0.058 0.061<br />

(0.0, 0.0, 0.5, 1.0) 0.985 0.985 0.986 0.982 0.982 0.982 0.823 0.824 0.831<br />

(0.5, 1.0, 0.0, 0.0) 0.306 0.303 0.305 0.380 0.390 0.379 0.231 0.233 0.229<br />

(0.5, 1.0, 0.5, 1.0) 0.978 0.977 0.978 0.983 0.984 0.984 0.794 0.797 0.804<br />

0.5 100 (0.0, 0.0, 0.0, 0.0) 0.074 0.078 0.087 0.075 0.083 0.092 0.069 0.075 0.081<br />

(0.0, 0.0, 0.5, 1.0) 0.983 0.982 0.982 0.982 0.978 0.979 0.827 0.825 0.836<br />

(0.5, 1.0, 0.0, 0.0) 0.178 0.178 0.178 0.170 0.201 0.191 0.138 0.142 0.140<br />

(0.5, 1.0, 0.5, 1.0) 0.967 0.966 0.966 0.984 0.979 0.980 0.792 0.788 0.800<br />

200 (0.0, 0.0, 0.0, 0.0) 0.059 0.062 0.065 0.059 0.058 0.058 0.060 0.062 0.065<br />

(0.0, 0.0, 0.5, 1.0) 0.993 0.993 0.992 0.996 0.995 0.995 0.746 0.740 0.748<br />

(0.5, 1.0, 0.0, 0.0) 0.327 0.325 0.322 0.395 0.448 0.417 0.233 0.249 0.237<br />

(0.5, 1.0, 0.5, 1.0) 0.983 0.982 0.983 0.995 0.996 0.995 0.696 0.697 0.705<br />

Notes:<br />

(i) Data were generated by (27).<br />

(ii) The parameter values (ν 1, ν 2, β 1, β 2) = (0, 0, 0, 0) correspond to the null of <strong>l<strong>in</strong>earity</strong>, and the rest to the alternative<br />

of non-<strong>l<strong>in</strong>earity</strong>.<br />

(iii) Larger ω implies that the regressors and errors are more correlated both serially and contemporaneously.<br />

(iv) The number of iterations is 5000, and the nom<strong>in</strong>al size 5%.<br />

(v) The long-run variance was estimated us<strong>in</strong>g Andrews’ (1991) methods with an AR(4) approximation for the prefilter.<br />

As for the data-generat<strong>in</strong>g process (26), the regressor and error are serially and contemporaneously<br />

correlated <strong>in</strong> (27). Also, {xt} were generated such that c11 is greater than the 15th percentile of<br />

{xt} and c21 less than the 85th percentile of {xt}. Thus, the data-generat<strong>in</strong>g process (27) is always<br />

non-l<strong>in</strong>ear under the alternative of non-<strong>l<strong>in</strong>earity</strong>. We set µ = α = c11 = 0, c21 = 10, and considered<br />

(ν 1, ν 2, β 1, β 2) = (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.5, 1.0), (0.5, 1.0, 0.0, 0.0), (0.5, 1.0, 0.5, 1.0)<br />

and (γ 11, γ 21) = (1, 1). 5 The null hypothesis of <strong>l<strong>in</strong>earity</strong> corresponds to (ν 1, ν 2, β 1, β 2) =<br />

(0.0, 0.0, 0.0, 0.0). The employed sample sizes, numbers of leads and lags, nom<strong>in</strong>al size and<br />

number of iterations are the same as for Table 1. The results for the data-generat<strong>in</strong>g process (27)<br />

are reported <strong>in</strong> Tables 2 and 4. The added product terms for T 1 , T 2 and T 3 are x2 t ,(x2t , x3t ) and<br />

x3 t , respectively, and those for T 1µ , T 2µ and T 3µ are correspond<strong>in</strong>g detrended terms.<br />

5 In a previous version of this paper, we also considered the cases (γ 11, γ 21) = (5, 5), (∞, ∞). S<strong>in</strong>ce these provide<br />

similar results, we do not report them here.<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 357<br />

Table 3. Empirical size and power of <strong>l<strong>in</strong>earity</strong> tests.<br />

One <strong>transition</strong> function, two <strong>transition</strong> variables, two regimes and no drift.<br />

T 1<br />

ω T (ν, β 1, β 2) K = 1 K = 2 K = 3 K = 1 K = 2 K = 3<br />

0.2 100 (0.0, 0.0, 0.0) 0.109 0.130 0.157 0.141 0.174 0.227<br />

(0.0, 0.5, 1.0) 0.778 0.802 0.829 0.372 0.394 0.427<br />

(0.5, 0.0, 0.0) 0.134 0.154 0.180 0.158 0.191 0.234<br />

(0.5, 0.5, 1.0) 0.764 0.796 0.821 0.374 0.392 0.427<br />

200 (0.0, 0.0, 0.0) 0.070 0.076 0.081 0.074 0.083 0.090<br />

(0.0, 0.5, 1.0) 0.833 0.835 0.849 0.479 0.481 0.499<br />

(0.5, 0.0, 0.0) 0.136 0.147 0.153 0.119 0.135 0.144<br />

(0.5, 0.5, 1.0) 0.826 0.835 0.849 0.480 0.485 0.494<br />

0.5 100 (0.0, 0.0, 0.0) 0.101 0.126 0.163 0.125 0.153 0.199<br />

(0.0, 0.5, 1.0) 0.824 0.834 0.857 0.443 0.449 0.486<br />

(0.5, 0.0, 0.0) 0.131 0.148 0.190 0.128 0.164 0.209<br />

(0.5, 0.5, 1.0) 0.818 0.830 0.850 0.441 0.470 0.489<br />

200 (0.0, 0.0, 0.0) 0.073 0.074 0.086 0.073 0.081 0.092<br />

(0.0, 0.5, 1.0) 0.894 0.892 0.897 0.575 0.552 0.568<br />

(0.5, 0.0, 0.0) 0.131 0.135 0.147 0.111 0.132 0.144<br />

(0.5, 0.5, 1.0) 0.879 0.876 0.882 0.547 0.536 0.551<br />

Notes:<br />

(i) Data were generated by (28).<br />

(ii) T 2 and T 3 are the same for this data-generat<strong>in</strong>g process.<br />

(iii) The parameter values (ν, β 1, β 2) = (0, 0, 0) correspond to the null of <strong>l<strong>in</strong>earity</strong>, and the rest to the alternative of<br />

non-<strong>l<strong>in</strong>earity</strong>.<br />

(iv) Larger ω implies that the regressors and errors are more correlated both serially and contemporaneously.<br />

(v) The number of iterations is 5000, and the nom<strong>in</strong>al size 5%.<br />

(vi) The long-run variance was estimated us<strong>in</strong>g Andrews’ (1991) methods with an AR(4) approximation for the prefilter.<br />

The third data-generat<strong>in</strong>g process we considered is<br />

C○ Royal Economic Society 2004<br />

yt = µ + νg1(z1t) +<br />

2<br />

α j x jt +<br />

j=1<br />

2<br />

β j x jtg1 (z1t) + ut;<br />

1<br />

g1 (z1t) =<br />

1 + e−γ11(x1t −c11) ×<br />

1<br />

1 + e−γ12(x2t 1<br />

−<br />

−c12) 4 ;<br />

⎡ ⎤<br />

<br />

ω ω ω<br />

xt<br />

⎢ ⎥<br />

= εt + Bεt−1; B = ⎣ 0 ω ω⎦<br />

;<br />

ut<br />

0 0 ω<br />

⎛ ⎡<br />

1<br />

⎜ ⎢<br />

εt ∼ iidN ⎝0, ⎣ 0.5<br />

0.5<br />

1<br />

⎤⎞<br />

0.5<br />

⎥⎟<br />

0.5 ⎦⎠<br />

. (28)<br />

0.5 0.5 1<br />

j=1<br />

T 2


358 In Choi and Pentti Saikkonen<br />

In this data generation, there are two regressors and two <strong>transition</strong> variables. Only when the values<br />

of both x1t and x2t are greater than c11 and c12, respectively, the coefficient vector of xjt becomes<br />

α j + 3<br />

4β j. Otherwise, it is α j − 1<br />

4β j. So there are two data regimes characterized by x1t and x2t.<br />

Also, {x 1t} and {x 2t} were generated such that c11 is greater than the maximum of the 15th<br />

percentiles of {x 1t} and {x 2t} and c12 less than the m<strong>in</strong>imum of the 85th percentiles of {x 1t}<br />

and {x 2t}. Wesetµ = α1 = α2 = c11 = 0, c12 = 10, and considered (ν, β 1, β 2) = (0.0, 0.0,<br />

0.0), (0.0, 0.5, 1.0), (0.5, 0.0, 0.0), (0.5, 0.5, 1.0) and (γ 11, γ 12) = (1, 1). The null hypothesis<br />

of <strong>l<strong>in</strong>earity</strong> corresponds to (ν, β 1, β 2) = (0.0, 0.0, 0.0). The employed sample sizes, numbers of<br />

leads and lags, nom<strong>in</strong>al size and number of iterations are the same as for Table 1. The results for<br />

the data-generat<strong>in</strong>g process (28) are reported <strong>in</strong> Tables 3 and 6. The added product terms for T 1<br />

and T 2 are (x 2 1t , x 1t x 2t, x 2 2t ) and (x 2 1t , x 1t x 2t, x 2 2t , x 3 1t , x 2 1t x 2t, x 1t x 2 2t , x 3 2t ), respectively, and those<br />

for T 1µ and T 2µ are correspond<strong>in</strong>g detrended terms. For the data-generat<strong>in</strong>g process (28), T 3 and<br />

T 3µ are the same as T 2 and T 3µ , respectively, because the second derivatives of the <strong>transition</strong><br />

function are not identically zero at the orig<strong>in</strong>.<br />

We may summarize the simulation results <strong>in</strong> Tables 1–3 as follows:<br />

The tests keep the nom<strong>in</strong>al size reasonably well except <strong>in</strong> Table 3. Size distortions <strong>in</strong> Table 3<br />

seem to result from more product terms <strong>in</strong> the auxiliary regression model than <strong>in</strong> Tables 1<br />

and 2. Compar<strong>in</strong>g the test statistics, T2 (T 2 ) tends to reject more frequently than T1 (T 1 ) and<br />

T3 (T 2 ) under the null hypothesis. This is because T2 (T 2 ) has more product terms <strong>in</strong> the<br />

auxiliary regression model. Moreover, the rejection frequencies of the tests tend to <strong>in</strong>crease<br />

under the null hypothesis when the serial and contemporaneous correlations <strong>in</strong>crease. As<br />

the sample size grows, the empirical size of the tests improves.<br />

The power of the tests improves as the sample size becomes larger.<br />

The T3(T 3 ) test was designed <strong>in</strong> the hope that it has higher power when only the <strong>in</strong>tercept<br />

term is subject to <strong>smooth</strong> <strong>transition</strong>s. But even <strong>in</strong> this case, it does not show superior power.<br />

When the regression coefficients are subject to non-<strong>l<strong>in</strong>earity</strong>, it shows significantly lower<br />

power than the rest.<br />

T2(T 2 ) tends to reject more frequently than T1(T 1 ) under the alternative hypothesis.<br />

However, consider<strong>in</strong>g the tendency of T2(T 2 ) to reject more often under the null hypothesis,<br />

no one of the tests seems to dom<strong>in</strong>ate the other.<br />

When only the <strong>in</strong>tercept term is subject to non-<strong>l<strong>in</strong>earity</strong>, T2(T 2 ) does not show any noticeably<br />

higher power than T1(T 1 ) though it was designed to deal with the <strong>smooth</strong> <strong>transition</strong>s <strong>in</strong> the<br />

<strong>in</strong>tercept term.<br />

The empirical size and power of the tests are not affected significantly by the choice of the<br />

value of K.<br />

The simulation results for T1µ(T 1µ ), T2µ(T 1µ ) and T3µ(T 3µ ) (tests for the case of drift)<br />

reported <strong>in</strong> Tables 4–6 can essentially be summarized <strong>in</strong> the same manner as for the T1(T 1 ), T2(T 1 )<br />

and T3(T 3 ) tests. The only notable differences are:<br />

The tests tend to overreject relative to the tests without a l<strong>in</strong>ear time trend, but the size<br />

properties improve as the sample size grows. Obviously, the overrejection of the tests stems<br />

from the <strong>in</strong>clusion of a l<strong>in</strong>ear time trend term <strong>in</strong> the regression model and the detrend<strong>in</strong>g<br />

of the <strong>transition</strong> variables.<br />

The power of the tests are lower than that <strong>in</strong> Tables 1–3.<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 359<br />

Table 4. Empirical size and power of <strong>l<strong>in</strong>earity</strong> tests.<br />

One <strong>transition</strong> function, one <strong>transition</strong> variable, two regimes and drift.<br />

T1µ T2µ T3µ<br />

ω T (ν, β) K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3<br />

0.2 100 (0.0, 0.0) 0.081 0.084 0.091 0.087 0.099 0.105 0.082 0.088 0.096<br />

(0.0, 0.5) 0.662 0.666 0.671 0.617 0.625 0.627 0.658 0.665 0.667<br />

(0.5, 0.0) 0.113 0.119 0.125 0.114 0.127 0.133 0.108 0.117 0.l21<br />

(0.5, 0.5) 0.651 0.659 0.663 0.612 0.623 0.638 0.641 0.641 0.644<br />

200 (0.0, 0.0) 0.068 0.073 0.073 0.062 0.067 0.067 0.063 0.062 0.065<br />

(0.0, 0.5) 0.800 0.803 0.804 0.761 0.766 0.769 0.805 0.805 0.806<br />

(0.5, 0.0) 0.115 0.114 0.118 0.114 0.116 0.118 0.115 0.114 0.118<br />

(0.5, 0.5) 0.794 0.795 0.798 0.752 0.757 0.765 0.789 0.792 0.795<br />

0.5 100 (0.0, 0.0) 0.089 0.096 0.107 0.098 0.102 0.116 0.082 0.087 0.095<br />

(0.0, 0.5) 0.704 0.708 0.712 0.659 0.669 0.680 0.716 0.720 0.723<br />

(0.5, 0.0) 0.103 0.109 0.117 0.107 0.117 0.129 0.106 0.112 0.121<br />

(0.5, 0.5) 0.707 0.711 0.715 0.672 0.684 0.694 0.700 0.706 0.711<br />

200 (0.0, 0.0) 0.061 0.065 0.067 0.067 0.069 0.075 0.070 0.074 0.076<br />

(0.0, 0.5) 0.808 0.811 0.815 0.769 0.775 0.778 0.815 0.816 0.818<br />

(0.5, 0.0) 0.121 0.122 0.126 0.114 0.120 0.120 0.116 0.116 0.121<br />

(0.5, 0.5) 0.799 0.801 0.805 0.748 0.755 0.762 0.809 0.812 0.815<br />

Note: Data were generated as for Table 1, and the same methods as for Table 1 were used except that a l<strong>in</strong>ear time trend<br />

term is added to the regression model and that detrended regressors are used for the <strong>transition</strong> function.<br />

In order to improve the size properties of the tests, one may use critical values from the<br />

F-distribution 6 whose degrees of freedom are the number of product terms and the sample size<br />

m<strong>in</strong>us the number of regressors. For this approximation to work, the test statistics should be<br />

multiplied by the number of product terms <strong>in</strong> the auxiliary regression models. Accord<strong>in</strong>g to some<br />

simulation, this may or may not improve the size properties of the tests us<strong>in</strong>g the critical values<br />

from the chi-square distribution. When there are many product terms, us<strong>in</strong>g the F-distribution<br />

tends to slightly improve the size properties of the tests. Detailed results are not reported here to<br />

save space.<br />

6. APPLICATIONS TO THE U.K. MONEY DEMAND FUNCTION<br />

Estimation of a money demand function has been an important research topic <strong>in</strong> macroeconomics<br />

s<strong>in</strong>ce the late 1950s. More recently, methods for nonstationary time series have been applied<br />

to the money demand function and stable co<strong>in</strong>tegrat<strong>in</strong>g relations of the relevant variables have<br />

statistically been confirmed. A partial list of related studies <strong>in</strong>cludes Baba et al. (1992), Hendry<br />

and Ericsson (1991a,b), Ericsson (1998), Ericsson et al. (1998), Hoffman and Rasche (1991),<br />

6 One of the referees k<strong>in</strong>dly suggested this idea.<br />

C○ Royal Economic Society 2004


360 In Choi and Pentti Saikkonen<br />

Table 5. Empirical size and power of <strong>l<strong>in</strong>earity</strong> tests.<br />

Two <strong>transition</strong> functions, one <strong>transition</strong> variable for each <strong>transition</strong> function, three regimes and drift.<br />

T 1µ T 2µ T 3µ<br />

ω T (ν 1, ν 2, β 1, β 2) K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3<br />

0.2 100 (0.0, 0.0, 0.0, 0.0) 0.090 0.095 0.094 0.096 0.105 0.113 0.092 0.103 0.109<br />

(0.0, 0.0, 0.5, 1.0) 0.675 0.707 0.736 0.521 0.561 0.616 0.442 0.474 0.503<br />

(0.5, 1.0, 0.0, 0.0) 0.129 0.134 0.139 0.133 0.146 0.155 0.111 0.118 0.122<br />

(0.5, 1.0, 0.5, 1.0) 0.649 0.684 0.715 0.501 0.539 0.587 0.427 0.456 0.492<br />

200 (0.0, 0.0, 0.0, 0.0) 0.576 0.060 0.063 0.066 0.064 0.068 0.063 0.065 0.066<br />

(0.0, 0.0, 0.5, 1.0) 0.725 0.736 0.750 0.621 0.636 0.653 0.539 0.553 0.568<br />

(0.5, 1.0, 0.0, 0.0) 0.198 0.203 0.199 0.215 0.220 0.222 0.179 0.185 0.183<br />

(0.5, 1.0, 0.5, 1.0) 0.725 0.737 0.748 0.630 0.638 0.656 0.529 0.536 0.549<br />

0.5 100 (0.0, 0.0, 0.0, 0.0) 0.089 0.093 0.097 0.091 0.103 0.112 0.089 0.094 0.098<br />

(0.0, 0.0, 0.5, 1.0) 0.733 0.752 0.769 0.615 0.642 0.674 0.551 0.563 0.580<br />

(0.5, 1.0, 0.0, 0.0) 0.139 0.144 0.150 0.136 0.165 0.168 0.133 0.143 0.151<br />

(0.5, 1.0, 0.5, 1.0) 0.729 0.745 0.764 0.623 0.646 0.675 0.532 0.549 0.573<br />

200 (0.0, 0.0, 0.0, 0.0) 0.061 0.066 0.068 0.071 0.067 0.074 0.059 0.061 0.065<br />

(0.0, 0.0, 0.5, 1.0) 0.798 0.799 0.805 0.717 0.719 0.734 0.603 0.604 0.613<br />

(0.5, 1.0, 0.0, 0.0) 0.207 0.208 0.213 0.234 0.258 0.251 0.191 0.200 0.201<br />

(0.5, 1.0, 0.5, 1.0) 0.786 0.789 0.794 0.706 0.710 0.720 0.592 0.600 0.605<br />

Note: Data were generated as for Table 2, and the same methods as for Table 2 were used except that a l<strong>in</strong>ear time trend<br />

term is added to the regression model and that detrended regressors are used for the <strong>transition</strong> function.<br />

Hoffman et al. (1995), Lütkepohl et al. (1999), Stock and Watson (1993) and Teräsvirta and<br />

Eliasson (2001). Among these, Ericsson et al. (1998), Lütkepohl et al. (1999) and Teräsvirta and<br />

Eliasson (2001) use non-l<strong>in</strong>ear models for their empirical results. Ericsson et al. (1998) employ a<br />

non-l<strong>in</strong>ear specification for the error correction term <strong>in</strong> their error-correction equation for the U.K.<br />

money demand, and the latter two articles use the STR model for the differences of the German<br />

and U.K. M1, respectively. The error correction terms <strong>in</strong> Ericsson et al. (1998), Lütkepohl et<br />

al. (1999) and Teräsvirta and Eliasson (2001) assume l<strong>in</strong>ear long-run relation between money<br />

and other variables that is based on economic theories for money demand (e.g. Baba et al. 1992;<br />

Baumol (1952) and Tob<strong>in</strong> (1956)). Thus, non-<strong>l<strong>in</strong>earity</strong> <strong>in</strong> these studies is related only to short-run<br />

dynamics.<br />

Money is demanded for transactions motive. Hold<strong>in</strong>g money enables us to <strong>smooth</strong> out the<br />

differences between <strong>in</strong>come and expenditure stream. In a modern economy, money is also<br />

demanded as an asset that avoids the volatility of stock and bond markets. The classical long-run<br />

money demand function, build<strong>in</strong>g on these motives for hold<strong>in</strong>g money, can be written as<br />

M d /P = f (Y , R,P), (29)<br />

where M d denotes the nom<strong>in</strong>al money demand, P the price level, Y the real <strong>in</strong>come, R a vector of<br />

rates of return on assets outside money and on money itself and P the <strong>in</strong>flation rate. The rate of<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 361<br />

Table 6. Empirical size and power of <strong>l<strong>in</strong>earity</strong> tests.<br />

One <strong>transition</strong> function, two <strong>transition</strong> variables, two regimes and drift.<br />

T 1µ<br />

ω T (ν, β 1, β 2) K = 1 K = 2 K = 3 K = 1 K = 2 K = 3<br />

0.2 100 (0.0, 0.0, 0.0) 0.142 0.170 0.211 0.199 0.246 0.303<br />

(0.0, 0.5, 1.0) 0.486 0.541 0.608 0.230 0.258 0.313<br />

(0.5, 0.0, 0.0) 0.160 0.186 0.221 0.209 0.248 0.302<br />

(0.5, 0.5, 1.0) 0.498 0.546 0.615 0.232 0.269 0.315<br />

200 (0.0, 0.0, 0.0) 0.076 0.086 0.092 0.096 0.103 0.114<br />

(0.0, 0.5, 1.0) 0.587 0.603 0.624 0.330 0.337 0.360<br />

(0.5, 0.0, 0.0) 0.127 0.130 0.137 0.111 0.125 0.137<br />

(0.5, 0.5, 1.0) 0.581 0.602 0.627 0.326 0.344 0.367<br />

0.5 100 (0.0, 0.0, 0.0) 0.132 0.162 0.194 0.179 0.210 0.268<br />

(0.0, 0.5, 1.0) 0.603 0.645 0.688 0.317 0.349 0.404<br />

(0.5, 0.0, 0.0) 0.147 0.171 0.215 0.167 0.204 0.265<br />

(0.5, 0.5, 1.0) 0.592 0.639 0.679 0.317 0.356 0.410<br />

200 (0.0, 0.0, 0.0) 0.081 0.091 0.101 0.093 0.097 0.119<br />

(0.0, 0.5, 1.0) 0.669 0.682 0.701 0.408 0.413 0.435<br />

(0.5, 0.0, 0.0) 0.117 0.118 0.134 0.100 0.111 0.127<br />

(0.5, 0.5,1.0) 0.681 0.691 0.715 0.418 0.420 0.442<br />

Note: Data were generated as for Table 3, and the same methods as for Table 3 were used except that a l<strong>in</strong>ear time trend<br />

term is added to the regression model and that detrended regressors are used for the <strong>transition</strong> function.<br />

return on assets outside money signifies the opportunity cost of hold<strong>in</strong>g money rather than other<br />

f<strong>in</strong>ancial assets. The <strong>in</strong>flation rate is also the opportunity cost of hold<strong>in</strong>g money <strong>in</strong>stead of goods.<br />

It is normally expected that<br />

∂ f<br />

∂Y<br />

> 0;<br />

∂ f<br />

< 0;<br />

∂ Rout ∂ f<br />

> 0;<br />

∂ Rown ∂ f<br />

∂P<br />

where R out and R own denote the rates of return on assets outside money and on money itself,<br />

respectively. In the empirical literature of money demand, M1, GDP deflator, real GDP (or total<br />

f<strong>in</strong>al expenditure) and <strong>in</strong>flation rate (log difference of GDP deflator) have usually been used for<br />

M d , P, Y and P. For the vector of <strong>in</strong>terest rates R, rates of return on long term bonds and deposit<br />

rate have been used. Baba et al. (1992) conta<strong>in</strong> more detailed discussion on the choice of <strong>in</strong>terest<br />

rates for the money demand function.<br />

Economic theories for money demand do not necessarily require the long-run money demand<br />

function (29) be l<strong>in</strong>ear, though theories imply<strong>in</strong>g STR-like behaviour of the money demand<br />

function do not exists either accord<strong>in</strong>g to our knowledge. There are a couple of reasons that the<br />

money demand function may show STR-like behaviour. First, it is well known that many cyclical<br />

variables show an asymmetric behaviour over various phases of the bus<strong>in</strong>ess cycle (e.g. Neftci,<br />

1984). Thus, the money demand function may display STR-like behaviour depend<strong>in</strong>g on real<br />

<strong>in</strong>come and <strong>in</strong>flation rate that show cyclical movements over the phases of the bus<strong>in</strong>ess cycle.<br />

C○ Royal Economic Society 2004<br />

< 0,<br />

T 2µ


362 In Choi and Pentti Saikkonen<br />

Second, if the nom<strong>in</strong>al deposit <strong>in</strong>terest rate is so low (as <strong>in</strong> current Japan), the opportunity cost of<br />

hold<strong>in</strong>g money is so close to zero that the public may change their money hold<strong>in</strong>gs without any<br />

change <strong>in</strong> the <strong>in</strong>terest rate. In other words, money demand may be less responsive to the deposit<br />

rate when it is low than when it is high.<br />

In empirical analyses, however, l<strong>in</strong>ear specifications have been used for the long-run money<br />

demand equation, and possibilities of non-l<strong>in</strong>ear specifications of the long-run money demand<br />

have not been explored. As a first step towards non-l<strong>in</strong>ear modell<strong>in</strong>g of the long-run money<br />

demand function, this section tests the null of <strong>l<strong>in</strong>earity</strong> for the U.K. money demand function us<strong>in</strong>g<br />

the tests developed <strong>in</strong> Sections 3 and 4.<br />

In this paper, we focus on the U.K. quarterly data from 1982:Q3 to 1998:Q4. All the data were<br />

taken from International F<strong>in</strong>ancial Statistics. For money, we used seasonally adjusted M4 which<br />

comprises notes and co<strong>in</strong> <strong>in</strong> circulation outside the Bank of England, plus non-bank private sector<br />

sterl<strong>in</strong>g deposits held with U.K. bank<strong>in</strong>g <strong>in</strong>stitutions. Seasonally adjusted GDP and GDP deflator<br />

(1995 = 100) were used for nom<strong>in</strong>al <strong>in</strong>come and aggregate price, respectively. The log difference<br />

of the GDP deflator was used as <strong>in</strong>flation rate. As a rate of return on money, the deposit rate<br />

(per cent per annum) for <strong>in</strong>stant access sav<strong>in</strong>gs accounts was used. The 91-day Treasury bill rate<br />

(per cent per annum) was used for the rate of return on assets outside of money. Five variables—<br />

real money, real GDP, the Treasury bill rate, the deposit rate and the <strong>in</strong>flation rate—were used for<br />

our <strong>l<strong>in</strong>earity</strong> tests. Applications of the Dickey–Fuller test us<strong>in</strong>g Ng and Perron’s (1995) sequential<br />

lag selection method <strong>in</strong>dicate that the null of a unit root cannot be rejected at conventional levels<br />

for any of these variables. We took natural logs of the real money and real GDP. Natural logs<br />

are not taken of the <strong>in</strong>terest rates when structural <strong>regressions</strong> are fit <strong>in</strong> most previous studies (e.g.<br />

Stock and Watson, 1993). But co<strong>in</strong>tegration tests are applied to the natural logs of the <strong>in</strong>terest<br />

rates <strong>in</strong> some other studies (e.g. Hoffman and Rasche, 1991). Thus, we considered both types of<br />

the <strong>in</strong>terest rates <strong>in</strong> this study.<br />

The U.K. real GDP dur<strong>in</strong>g the sample period shows upward trend which may <strong>in</strong>dicate the<br />

presence of the determ<strong>in</strong>istic l<strong>in</strong>ear trend. Detrend<strong>in</strong>g the log of real GDP us<strong>in</strong>g the sample<br />

mean of the difference of the log GDP elim<strong>in</strong>ates the upward trend. These imply that it is more<br />

appropriate to use the auxiliary model (14) for our <strong>l<strong>in</strong>earity</strong> tests and that the detrended real GDP<br />

needs to be used as a <strong>transition</strong> variable.<br />

In Table 7, we report the test results. Transition variables <strong>in</strong> Table 7 imply the variables<br />

appear<strong>in</strong>g <strong>in</strong> the <strong>transition</strong> function. We assume that all the regression coefficients <strong>in</strong> the money<br />

demand function are subjected to <strong>transition</strong>s under the alternative. To calculate the T1µ(T 1µ ) test,<br />

the real money was regressed on the real GDP, Treasury bill rate, deposit rate, <strong>in</strong>flation rate, leads<br />

and lags of these variables, and the products of the <strong>transition</strong> variables and the regressors. For<br />

example, regressors used for the T1µ test <strong>in</strong> the first row of part (1) of Table 7 are the real GDP,<br />

Treasury bill rate, deposit rate, <strong>in</strong>flation rate, leads and lags of these variables and the products<br />

of the detrended real GDP (<strong>transition</strong> variable) and the four variables <strong>in</strong> level. For the T2µ test,<br />

the detrended real GDP to the third power was additionally used as a regressor <strong>in</strong> the auxiliary<br />

regression model.<br />

Part (1) of Table 7 reports the results when no logs were taken of the <strong>in</strong>terest rates. When<br />

the detrended log real GDP, Treasury bill rate and deposit rate are used as <strong>transition</strong> variables<br />

<strong>in</strong>dividually, the null of <strong>l<strong>in</strong>earity</strong> is rejected at some lags. Because the detrended log real GDP and<br />

deposit rate as <strong>transition</strong> variables show stronger evidence than the Treasury bill rate <strong>in</strong> terms of<br />

frequency of rejections <strong>in</strong> the table, we tested the null us<strong>in</strong>g the two variables jo<strong>in</strong>tly as <strong>transition</strong><br />

variables. The result shows that the T 1µ test rejects the null at lag 3. The detrended real GDP and<br />

Treasury bill rate as jo<strong>in</strong>t <strong>transition</strong> variables do not provide any rejection of the null. This aga<strong>in</strong><br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 363<br />

Table 7. L<strong>in</strong>earity test results for the U.K. money demand function (1982:Q3–1998:Q4).<br />

T1µ (T 1µ ) T2µ (T 2µ )<br />

Transition variables K = 1 K = 2 K = 3 K = 1 K = 2 K = 3<br />

(1) No log taken of the <strong>in</strong>terest rates<br />

Detrended rgdp 4.87 7.98 12.28∗ 6.18 10.55 14.71∗ TB 4.74 6.22 10.26∗ 5.79 8.53 13.21<br />

DR 6.77 9.64∗ 13.13∗ 6.93 9.80 13.15∗ <strong>in</strong>fl 1.82 2.48 5.44 2.64 3.96 7.80<br />

Detrended rgdp, TB 6.16 9.36 14.39 7.48 12.37 19.01<br />

Detrended rgdp, DR 8.37 12.62 16.30∗ 9.24 15.77 20.86<br />

(2) Log taken of the <strong>in</strong>terest rates<br />

Detrended rgdp 10.53∗ 17.86∗∗ 30.19∗∗ 11.57 19.83∗∗ 34.34∗∗ tb 7.13 5.87 8.27 7.51 7.06 20.17<br />

dr 10.99∗ 11.14∗ 13.57∗∗ 11.01 11.25 ∗ 17.21∗∗ <strong>in</strong>fl 5.23 7.39 12.35∗ 6.30 9.25 16.36∗∗ Detrended rgdp, dr 15.93 ∗ 21.53 ∗∗ 37.16 ∗∗ 16.82 27.14 ∗∗ 60.00 ∗∗<br />

Detrended rgdp, <strong>in</strong>fl 10.80 19.58 34.20 ∗∗ 13.66 23.08 46.65 ∗∗<br />

Notes:<br />

(i) rgdp: natural log of real GDP, TB: 91-day Treasury bill rate, DR: deposit rate, <strong>in</strong>fr: <strong>in</strong>flation rate (log difference of<br />

GDP), tb: natural log of TB, dr: natural log of DR.<br />

(ii) Transition variables imply the variables appear<strong>in</strong>g <strong>in</strong> the <strong>transition</strong> function gj(·).<br />

(iii) The long-run variance was estimated us<strong>in</strong>g Andrews’ (1991) methods with an AR(4) approximation for the prefilter.<br />

(iv) K denote the number of backward and forward lags <strong>in</strong> the auxiliary regression model.<br />

(v) ( ∗ ): significant at the 5% level; ( ∗∗ ): significant at the 1% level.<br />

(vi) When there is one <strong>transition</strong> variable, T1µ and T2µ have the asymptotic chi-square distributions with degrees of<br />

freedom four and five, respectively. When there are two <strong>transition</strong> variables, T1µ and T2µ have the asymptotic chi-square<br />

distributions with degrees of freedom 8 and 12, respectively.<br />

<strong>in</strong>dicates that the evidence of non-<strong>l<strong>in</strong>earity</strong> <strong>in</strong>duced by the Treasury bill rate is not too strong. 7<br />

When the <strong>in</strong>flation rate is used as a <strong>transition</strong> variable, there is no statistically significant evidence<br />

of non-<strong>l<strong>in</strong>earity</strong>. The results <strong>in</strong> part (1) <strong>in</strong>dicate that the detrended real GDP and deposit rate are<br />

important candidates for <strong>transition</strong> variables <strong>in</strong> modell<strong>in</strong>g the STR-type money demand function.<br />

Part (2) of Table 7 conta<strong>in</strong>s the results of us<strong>in</strong>g the <strong>in</strong>terest rates taken log of, and shows<br />

more evidence of non-<strong>l<strong>in</strong>earity</strong>. When the detrended GDP and deposit rate are used as <strong>transition</strong><br />

variables either <strong>in</strong>dividually or jo<strong>in</strong>tly, we f<strong>in</strong>d strong evidence of non-<strong>l<strong>in</strong>earity</strong>. The Treasury bill<br />

rate as a <strong>transition</strong> variable does not provide any statistically significant evidence of non-<strong>l<strong>in</strong>earity</strong>,<br />

but the <strong>in</strong>flation rate does at some lags. Furthermore, the <strong>in</strong>flation rate and the detrended real GDP<br />

as jo<strong>in</strong>t <strong>transition</strong> variables do provide some evidence for non-<strong>l<strong>in</strong>earity</strong>. 8 Accord<strong>in</strong>g to the results<br />

<strong>in</strong> part (2), the detrended GDP, deposit rate and <strong>in</strong>flation rate should be considered as <strong>transition</strong><br />

variables when modell<strong>in</strong>g the long-run money demand function us<strong>in</strong>g the STR model.<br />

7 The test results us<strong>in</strong>g the Treasury bill and deposit rates jo<strong>in</strong>tly as <strong>transition</strong> variables could not be produced because<br />

the data matrix <strong>in</strong> the auxiliary regression model became almost s<strong>in</strong>gular.<br />

8 Though it may be useful to obta<strong>in</strong> the test results us<strong>in</strong>g the deposit and <strong>in</strong>flation rates jo<strong>in</strong>tly as <strong>transition</strong> variables, we<br />

could not produce them because the data matrix <strong>in</strong> the auxiliary regression model ran <strong>in</strong>to the difficulty of s<strong>in</strong>gularity.<br />

C○ Royal Economic Society 2004


364 In Choi and Pentti Saikkonen<br />

The results <strong>in</strong> Table 7 <strong>in</strong>dicate that the detrended GDP, deposit rate and <strong>in</strong>flation rate are<br />

candidates for <strong>transition</strong> variables. Formal estimation of various <strong>smooth</strong> <strong>transition</strong> models needs<br />

to be performed <strong>in</strong> order to f<strong>in</strong>d which variables, <strong>in</strong>dividually or jo<strong>in</strong>tly, produce the best <strong>smooth</strong><br />

<strong>transition</strong> modell<strong>in</strong>g of the U.K. money demand function. The results <strong>in</strong> Table 7 provide rationale<br />

for pursu<strong>in</strong>g the non-l<strong>in</strong>ear modell<strong>in</strong>g, but a separate paper seems to be required to study the issue<br />

<strong>in</strong> depth.<br />

7. CONCLUSION<br />

We have developed tests that can be used to test <strong>l<strong>in</strong>earity</strong> <strong>in</strong> a general co<strong>in</strong>tegrat<strong>in</strong>g STR model<br />

with I(1) regressors. The regressors and errors of the model are allowed to be serially and<br />

contemporaneously correlated. In order to allow for this feature, an endogeneity correction based<br />

on a leads-and-lags approach is employed. The model’s <strong>transition</strong> mechanism is assumed to<br />

be more general than previously. The application of the proposed tests is simple because OLS<br />

techniques and standard chi-square limit<strong>in</strong>g distributions apply. Simulation experiments <strong>in</strong>dicate<br />

that the tests have reasonable f<strong>in</strong>ite sample properties. In empirical applications evidence of non<strong>l<strong>in</strong>earity</strong><br />

<strong>in</strong> the U.K. money demand function is found especially when the detrended real GDP<br />

and deposit rate are used as <strong>transition</strong> variables.<br />

ACKNOWLEDGEMENT<br />

Pentti Saikkonen thanks the Academy of F<strong>in</strong>land and the Yrjö Johnson Foundation for f<strong>in</strong>ancial support.<br />

REFERENCES<br />

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation.<br />

Econometrica 59, 817–58.<br />

Andrews, D. W. K. (1993). Tests for parameter <strong>in</strong>stability and structural change with unknown change po<strong>in</strong>t.<br />

Econometrica 61, 821–56.<br />

Andrews, D. W. K. and W. Ploberger (1994). Optimal tests when a nuisance parameter is present only under<br />

the alternative. Econometrica 62, 1383–1414.<br />

Baba, Y., D. F. Hendry and R. M. Starr (1992). The demand for M1 <strong>in</strong> the U.S.A., 1960–1988. Review of<br />

Economic Studies 59, 25–61.<br />

Baumol, W. J. (1952). The transactions demand for cash: An <strong>in</strong>ventory theoretic approach. Quarterly Journal<br />

of Economics 66, 545–56.<br />

Engle, R. and C. W. J. Granger (1987). Co<strong>in</strong>tegration and error correction: Representation, estimation and<br />

test<strong>in</strong>g. Econometrica 55, 251–76.<br />

Ericsson, N. R. (1998). Empirical modell<strong>in</strong>g of money demand. Empirical Economics 23, 295–315.<br />

Ericsson, N. R., D. F. Hendry and K. M. Prestwich (1998). The demand for broad money <strong>in</strong> United K<strong>in</strong>gdom.<br />

Scand<strong>in</strong>avian Journal of Economics 100, 289–324.<br />

Granger, C. W. J. and T. Teräsvirta (1993). Modell<strong>in</strong>g Non-l<strong>in</strong>ear Economic Relationships. Oxford, Oxford<br />

University Press.<br />

Hansen, B. E. (1992). Convergence to stochastic <strong>in</strong>tegrals for dependent heterogeneous processes.<br />

Econometric Theory 8, 489–500.<br />

C○ Royal Economic Society 2004


<strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> <strong>in</strong> co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong> 365<br />

Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null hypothesis.<br />

Econometrica 64, 413–30.<br />

Hendry, D. F. and N. R. Ericsson (1991a). An econometric analysis of U.K. money demand <strong>in</strong> Monetary<br />

Trends <strong>in</strong> the United States and the United K<strong>in</strong>gdom by Milton Friedman and Anna Schwartz. American<br />

Economic Review 81, 8–38.<br />

Hendry, D. F. and N. R. Ericsson (1991b). Model<strong>in</strong>g the demand for narrow money <strong>in</strong> the United K<strong>in</strong>gdom<br />

and the United States. European Economic Review 35, 833–86.<br />

Hoffman, D. L. and R. H. Rasche (1991). Long-run <strong>in</strong>come and <strong>in</strong>terest elasticities of money demand <strong>in</strong> the<br />

United States. Review of Economics and Statistics 78, 665–74.<br />

Hoffman, D. L., R. H. Rasche and M. A. Tieslau (1995). The stability of long-run money demand <strong>in</strong> five<br />

<strong>in</strong>dustrial countries. Journal of Monetary Economics 35, 317–39.<br />

Lütkepohl, H. T. Teräsvirta and J. Wolters (1999). Investigat<strong>in</strong>g stability and <strong>l<strong>in</strong>earity</strong> of a German M1<br />

demand function. Journal of Applied Econometrics 14, 511–25.<br />

Luukkonen, R., P. Saikkonen and T. Teräsvirta (1988). <strong>Test<strong>in</strong>g</strong> <strong>l<strong>in</strong>earity</strong> aga<strong>in</strong>st <strong>smooth</strong> <strong>transition</strong><br />

autoregressive models. Biometrika 75, 491–99.<br />

Neftci, S. A. (1984). Are economic time series asymmetric over the bus<strong>in</strong>ess cycle? Journal of Political<br />

Economy 92, 307–28.<br />

Ng, S. and P. Perron (1995). Unit root tests <strong>in</strong> ARMA models with data-dependent methods for the selection<br />

of the truncation lag. Journal of the American Statistical Association 90, 268–81.<br />

Phillips, P. C. B. and M. Loretan (1991). Estimat<strong>in</strong>g long run economic equilibria. Review of Economic<br />

Studies 58, 407–36.<br />

Saikkonen, P. (1991). Asymptotically efficient estimation of co<strong>in</strong>tegration <strong>regressions</strong>. Econometric Theory<br />

7, 1–21.<br />

Saikkonen, P. and I. Choi (2004). Co<strong>in</strong>tegrat<strong>in</strong>g <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong>. Econometric Theory 20,<br />

301–40.<br />

Stock, J. H. and M. W. Watson (1993). A simple estimator of co<strong>in</strong>tegrat<strong>in</strong>g vectors <strong>in</strong> higher order <strong>in</strong>tegrated<br />

systems. Econometrica 61, 783–820.<br />

Teräsvirta, T. (1998). Model<strong>in</strong>g economic relationships with <strong>smooth</strong> <strong>transition</strong> <strong>regressions</strong>. In A. Ullah and<br />

D.E.A. Giles (Eds.). Handbook of Applied Economic Statistics, pp. 507–552, Dekker, New York.<br />

Teräsvirta, T. and A.-C. Eliasson (2001). Non-l<strong>in</strong>ear error correction and the UK demand for broad money,<br />

1878-1993. Journal of Applied Econometrics 16, 277–88.<br />

Tob<strong>in</strong>, J. (1956). The <strong>in</strong>terest-elasticity of transactions demand for cash. Review of Economics and Statistics<br />

38, 241–47.<br />

van Dijk, D., T. Teräsvirta and P. H. Franses (2002). Smooth <strong>transition</strong> autoregressive models—A survey of<br />

recent developments. Econometric Review 22, 1–47.<br />

C○ Royal Economic Society 2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!