13.10.2013 Views

Dr. Girish Sahni

Dr. Girish Sahni

Dr. Girish Sahni

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Dr</strong>. <strong>Girish</strong> <strong>Sahni</strong><br />

INSTITUTE OF MICROBIAL TECHNOLOGY<br />

(CSIR) CHANDIGARH CHANDIGARH, INDIA


Design g of Target g Specific p Clot<br />

Busters<br />

by<br />

Protein Engineering Approaches


CSIR, IMTECH<br />

&<br />

the h microbial i bi lworld ld


Prevalence of Coronary Artery Disease<br />

Coronary artery disease has been the number<br />

one killer in the western world.<br />

As life-styles change, it has began to to affect<br />

millions across the worldwide.


* Th The discovery di of f clot l t dissolver di l drugs d has h led l d to t the th<br />

emergence of thrombolytic therapy.<br />

* Thrombolytic agents are mostly plasminogen<br />

activators.<br />

ti t


Schematic representation of the fibrinolytic system<br />

Plasminogen activators<br />

Plasminogen g activator<br />

Inhibitor<br />

Plasminogen g Plasmin<br />

Fibrin<br />

SK<br />

UK<br />

t-PA t PA<br />

APSAC<br />

α α22- Antiplasmin tpas<br />

Fibrin degradation<br />

product


SK SK:PG PG complex l<br />

Restored blood<br />

supply<br />

Fibrinogen<br />

Clotting factors<br />

Blood factors<br />

PG


All of the clot-buster clot buster drugs used in India<br />

and in most of the developing world<br />

were iimported t d till a few f years ago….<br />

Average cost of treatment for MI<br />

* Streptokinase : US $ 100 per dose<br />

• tPA : US $ 1200 per dose


Highlight<br />

Process developed developed at 300 litre fermentation fermentation scale<br />

scale<br />

• Negotiated & transferred in 2001<br />

• Commercialized by licensee in 2001<br />

• Recombinant form transferred in 2003<br />

clinical trials near completion, currently<br />

approaching commercialization<br />

• EEngineered i d( (clot-specific) l t ifi ) form f<br />

developed. Awaiting commercialization<br />

Average cost: US $ 20 !<br />

IMTECH


The challenge of constructing novel clotdissolver<br />

proteins with enhanced fibrin clot<br />

specificity p y


Acute need for second-generation Streptokinase<br />

derivatives with<br />

* increased plasma half-life<br />

* decreased immunogenicity<br />

* increased clot specificity


Molecular properties desired in a clot-specific<br />

Plasminogen g activator drug g<br />

Tight fibrin binding<br />

Localized plasminogen activation<br />

* Fibrin dependent activation<br />

* Time-delayed action<br />

* Plasmin dependent “molecular switch”


Structure-function studies on mechanism of<br />

hhuman plasminogen l i activation i i leading l di to the h<br />

design of clot-specific SK.<br />

Our fundamental studies over the last decade has<br />

revealed a unique mechanism for SK action at the<br />

molecular level that has enabled us to design<br />

improved versions of this life life-saver saver drug.


SK and PG form a very er tight binary binar complex comple<br />

SK PG


Our strategy to explore PG-binding<br />

domains in SK<br />

Streptokinase<br />

CnBr/Trypsin/Pepsin/V8 Protease<br />

“Large chunks”<br />

Probe b ffor PG-binding G bi di function/s<br />

f i /


Limited Proteolysis of Streptokinase with Trypsin<br />

1 59 143 293 414<br />

Nihalani et al., BBRC 1995; 217:1245<br />

Nihalani et al., Protein Sci. 1997; 6:1284<br />

Small peptides


Functional map of the plasminogen-interacting<br />

regions g in SK<br />

16 51 234 293 414<br />

SITE 1 SITE 2<br />

Region in SK that interacts with substrate PG<br />

Region in SK that interacts with partner PG to form a tight<br />

Region in SK that interacts with partner PG to form a tight<br />

binary complex


SK-α<br />

μPN<br />

SK-β<br />

SK- γ<br />

Crystal structure of SK in complex with the<br />

catalytic domain of HPN, solved at 2.9 Å<br />

Wang et al; Science (1998) 281: 1662


EK 281-282<br />

EK 272-273<br />

Ch dh t l 1999 P t i S i 8 2791<br />

Chaudhary et al., 1999., Protein Sci. 8: 2791;<br />

Yadav et al., 2008, BBA Proteins & Proteomics 1784: 1310<br />

Aneja et al., 2009., J Biol. Chem. 284:32642<br />

RE 248 248-249 249<br />

KK 256-257 256 257


Docking of kringle 5 of PG with the beta domain<br />

of SK<br />

Dhar et al., J. Biol. Chem. 2002; 277: 13257;<br />

Sundram et al 2003; J Biol Chem 2003; vol. 278: 30569


SK is a protein cofactor that modulates the<br />

substrate substrate preferance preferance of of plasmin plasmin by by providing providing Exosites Exosites<br />

SK<br />

PN Substrate PG<br />

Product PN<br />

Physiological functions


Some possible configurations for the design of FBD(4,5)-SK chimeric proteins.<br />

A. All the four FBD’s at the C-terminal of SK Fusion construct<br />

B. All the four FBD’s at the N-terminal of SK<br />

CFBD[1 C. FBD [1,2] 2]ffused dat the h CC-terminal i l of f SK<br />

D. FBD [1,2] fused at the N-terminal of SK<br />

E. FBD [4,5] fused at the C-terminal of SK<br />

F. FBD [4,5] fused at the N-terminal of SK<br />

GFBD[4 G. FBD [4,5] 5] fused f dat tb both thC C as well llas N-terminals Nt i l of f SK<br />

H. FBD [4,5] fused with in the body of SK<br />

SK-FBDs<br />

11,2,4&5 2 4&5<br />

FBD 1,2,4&5-<br />

SK<br />

SK-FBD 1,2<br />

FBD1,2- SK<br />

SK-FBD4,5<br />

FBD4,5-SK<br />

FBD4,5-SK-<br />

FBD4,5<br />

SK-FBD4,5<br />

SK-FBD4,5-<br />

SK.


Schematic representation of the engineered intergenic sequences<br />

of hybrid construct , FBD (4,5)- SK.<br />

TG site<br />

FBD<br />

4 5<br />

N<br />

C<br />

V- Q- A- Q- Q- I- V<br />

SK


SSchematic h ti representation t ti of f th the gene – bl blocks, k iincluding l di the th<br />

engineered intergenic sequences in the hybrid construct,<br />

FBD(4,5)– SK -FBD(4,5).<br />

TG site it FBD SK Gl Gly li linker k TG site it FBD<br />

4 5 4 5<br />

N C<br />

V-Q-A-Q-Q-I-V<br />

G-G-G<br />

QQ-A-Q-Q-I-V A Q Q I V


γ<br />

α<br />

γ<br />

β<br />

α<br />

β<br />

FBD<br />

FBD<br />

FBD<br />

FBD<br />

PN<br />

Design of a targeted “clot-buster” drug<br />

CLOTT<br />

PG No activation<br />

FBD<br />

FBD<br />

γ<br />

α<br />

β<br />

PN<br />

Degraded<br />

Clot


Plasmin-dependent activation of clot-specific<br />

streptokinase t t ki<br />

nSK<br />

Increasing PN<br />

PN depleted


Mechanism of delayed action<br />

Unlike native SK, protein engineered, clot-specific<br />

SK is activated in the presence of plasmin.<br />

Since the clot is plasmin-rich, and the blood plasma<br />

is plasmin-poor p p ( (due to its rapid p removal by yalpha-2 p<br />

Antiplasmin), the property of clot-specificity is<br />

iintroduced t d dautomatically. t ti ll


F<br />

E<br />

D<br />

C<br />

B<br />

A<br />

Schematic diagram of Circulatory plasma loop model system used<br />

for radioactive Fibrin clot lysis studies of SK, FBD(4,5)- FBD(4,5) SK and<br />

FBD(4,5)- SK- FBD(4,5).<br />

A. Magnetic stirrer, B. Magnetic bead, C. Reservoir containing plasma, E .Out let, F. Inlet into Reservoir, G<br />

.Peristaltic pump, H. Permeable Chamber containing Radiolabeled fibrin clot.<br />

H<br />

G


Clot dissolution with Native Streptokinase p<br />

Clot lyssis,<br />

%<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 30 60 90 120 150 180 210 240 270 300<br />

Time, min


Clot-specific p Engineered g Streptokinase p<br />

Clot C lysis, %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 30 60 90 120 150 180 210 240 270 300<br />

Time, min


Non-specific fibrinogenolysis by different<br />

proteins<br />

Plasma fibrinogen<br />

conc. (relative)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1 2<br />

3 4<br />

0 30 60 90 120 150 180 210 240 270 300<br />

5<br />

Time, min<br />

Curve 1 …. SK<br />

Curve 2 …. Constr. 1<br />

Curve 3 …. TPA<br />

Curve 4 …. Constr. 2<br />

Curve 5 …. Constr. 3<br />

Fibrinogenolysis in plasma milieu with different PG activators under conditions resulting in<br />

comparable lysis of clot but exhibiting varying circulating fibrinogen degradation due to “non-specific<br />

systemic” plasminogen activation. Note, however, the markedly high “fibrinogen protection” exhibited<br />

by the novel, clot-specific engineered SK (‘Construct 3’; curve 5).


Advantages of clot-specific clot specific streptokinase<br />

* Reduced systemic reactions (less side-effects)<br />

* Localized plasminogen activation<br />

* Decreased doses/economic benefits<br />

(greater efficacy at low doses)


CSSK Licensing to Nostrum Inc., USA in July 2006


The Group at IMTECH<br />

Abhay Pande K. Rajagopal<br />

Deepak Nihalani i i K L Dikshit i i<br />

Jagpreet Singh Vasudha Sundram<br />

Jayeeta Dhar Rajesh Kumar<br />

Amitabh Chaudhury Mahavir Yadav<br />

Paramjit j Kaur Nandita Garg g<br />

Anita Chaudhary<br />

S S Komath<br />

G P S Raghava


THANK YOU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!