13.10.2013 Views

Presentation

Presentation

Presentation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ENGINEERING OF DAIRY PROTEINS AND THE MODULATION OF<br />

THEIR STRUCTURES -<br />

MICELLISATION AND IMMUNO REACTIVITIES OF<br />

DIMERIC DIMERIC BETA BETA CASEINS CASEINS.<br />

Thomas Haertlé<br />

Institut National de la Recherche Agronomique, Nantes, France<br />

The France-Egypt Year Of Science And Technology, 2010


Importance of milk<br />

Essential food of newborn (nutrition, immune protection,<br />

enzymes).<br />

Cow, goat and sheep in Western countries.<br />

Mare, water buffalo, camel, yak…in y Eastern countries.<br />

Consumed without or after transformation (cheeses, fermented<br />

milks).<br />

Of great importance for food industries of each human society.<br />

The France-Egypt Year Of Science And Technology, 2010


Average composition<br />

of f cow milk ilk<br />

Synthetisised by secretory epithelial cells (synthesis of<br />

components or their capture from blood)<br />

12 12-13 13 % of fd dry matter tt (120-130 (120 130 g/L) /L)<br />

PProteins i (32-35 g/L) LLactose (47-52 g/L) FFats<br />

(33-45 g/L)<br />

Caseins (26-28 ( g/L) g )<br />

Precipitation at pH 4,6<br />

The France-Egypt Year Of Science And Technology, 2010<br />

Salt min.<br />

(7 g/L)<br />

BLG<br />

(2 (2-44 g/L) /L)<br />

Wh Whey<br />

ALA<br />

(1-1,5 g/L) LF<br />

Ig BSA


Bovine caseins<br />

Casein αS1 αS2 β κ<br />

AA<br />

199<br />

207<br />

209<br />

169<br />

MM (kDa) 23,6 25,25<br />

24<br />

19<br />

Variants 5<br />

3<br />

6<br />

6<br />

Cys<br />

0<br />

2<br />

0<br />

2<br />

S-S Bridges 0<br />

0<br />

0<br />

0<br />

Ser-P Ser P<br />

8<br />

11<br />

5<br />

2<br />

Glycosylation No<br />

No<br />

No<br />

Yes<br />

Major ep. 6<br />

4<br />

6<br />

8<br />

Minor ep. 3 66<br />

3 0<br />

UUnknown k th three-dimensional di i l structures t t<br />

Unknown functions (nutritional, only ?)<br />

Quite often allergenic.<br />

The France-Egypt Year Of Science And Technology, 2010


Caséine κ<br />

169 aa<br />

19037 Da<br />

1<br />

Chymosine<br />

Glycosylation<br />

Cys y Cys y<br />

P of caseins<br />

11 Para-Kappa 88 105/106 CMP 149<br />

Hydrophobe<br />

Hydrophile/chargé -<br />

Caséine β<br />

209 aa<br />

23983 Da<br />

Amphiphile<br />

Plasmine Plasmine<br />

P PPP<br />

P<br />

1 15 17-19 35<br />

105/106<br />

209<br />

28/29 107/108<br />

Hydrophile/chargé -<br />

Caséine αs2 207 aa<br />

25226 Da<br />

Amphiphile<br />

PPP P P CysCys PPP<br />

P<br />

P P P<br />

Tè Très peu chargé h é<br />

Hydrophobe<br />

1 8-10 16 31 56 56-58 5 61<br />

129 131 143<br />

207<br />

36 40<br />

Hydrophile/chargé -<br />

Caséine αs1 199 aa<br />

23615 Da<br />

Hydrophobe<br />

Dipôle<br />

PP PPP P P P<br />

1 46 48 64-68<br />

75 115<br />

199<br />

Hydrophobe Hydrophile/chargé - Hydrophobe Hydrophobe<br />

169<br />

The France-Egypt Year Of Science And Technology, 2010<br />

Physico-chemical properties<br />

of caseins<br />

Casein micellisation according to Holt<br />

(1998)


20 - 300 nm<br />

(Schmidt, Schmidt, 1982 ; Walstra, 1984)<br />

1984<br />

Casein micelle<br />

The France-Egypt Year Of Science And Technology, 2010<br />

glucids<br />

submicelle<br />

α αs11 αs β 2<br />

κ<br />

CCP Colloidal Calcium<br />

Phosphate


P<br />

P P P<br />

β casein<br />

MKVLILACLV ALALARELEE LNVPGEIVES LSSSEESITR INKKIEKFQS<br />

EEQQQTEDEL QDKIHPFAQT QSLVYPFPGP IPNSLPQNIP PLTQTPVVVP<br />

PFLQPEVMGV Q SKVKEAMAPK HKEMPFPKYP VEPFTESQSL Q TLTDVENLHL<br />

PLPLLQSWMH QPHQPLPPTV MFPPQSVLSL SQSKVLPVPQ KAVPYPQRDM<br />

PIQAFLLYQE PVLGPVRGPF PIIV<br />

Phosphorylation calcium fixation (binding of other caseins by<br />

phosphocalcic bridges)<br />

Hydrophilic NN-terminus terminus (several negative charges)<br />

Long hydrophobe C-terminal sequence<br />

AMPHIPHILIC PROTEIN<br />

structures polyproline II<br />

Numerous Numerous prolines (35) scarce classic secondary structures (β sheets, sheets α helices …)<br />

)<br />

The France-Egypt Year Of Science And Technology, 2010<br />

P


Self-association of β casein<br />

Micellar aggregates<br />

Temperature and<br />

concentration ddependent d<br />

The France-Egypt Year Of Science And Technology, 2010<br />

Andrews et al. , 1979<br />

Payens et al., 1963<br />

Farrell et al., 2001<br />

Thurn et al. , 1987<br />

Kajiwara et al. , 1988<br />

Sood et al. , 1990<br />

Sood et al. , 1997<br />

Leclerc et al. , 1998<br />

Leclerc et al. , 1997


F I<br />

Trp 143<br />

monomer<br />

λ<br />

↑ °CC<br />

Intrinsic Fluorescence of<br />

tryptophan tryptophan (1) (1)<br />

F I<br />

micelle<br />

λ max Trp = 341 nm λ max Trp = 336 nm<br />

The France-Egypt Year Of Science And Technology, 2010<br />

λ


Enginering of β casein<br />

Recombinant β casein, wild type, expressed in E. coli : WT<br />

Recombinant β casein, mutated, expressed in E. coli: MU<br />

MRELEEL RELEELNVPG EIVESLSSSE ESITRINKKI EKFQSEEQQQ<br />

TEDELQDKIH PFAQTQSLVY PFPGPIPNSL PQNIPPLTQT PVVVPPFLQP<br />

EVMGVSKVKE AMAPKHKEMP FPKYPVEPFT ESQSLTLTDV ENLHLPLPLL<br />

QSWMHQPHQP LPPTVMFPPQ SVLSLSQSKV LPVPQKAVPY PQRDMPIQAF<br />

LLYQEPVLGP VRGPFPIIV<br />

Sequence containing three glutamates well conserved in Ruminants<br />

Addition of three negative charges: change of hydrophilic/hydrophobic ratio<br />

The France-Egypt Year Of Science And Technology, 2010


Same conditions as<br />

for DLS.<br />

λmmax<br />

Trp<br />

1 mg/mL<br />

00,4 4 mg/mL<br />

λmaxTrp<br />

0,2mg/mL<br />

λmaxTrp max Trp<br />

λm<br />

342<br />

340<br />

338<br />

336<br />

334<br />

332<br />

342<br />

340<br />

338<br />

336<br />

334<br />

332<br />

Native<br />

Intrinsic Fluorescence of<br />

Tryptophan Tryptophan (1) (1)<br />

(2)<br />

10 20 30 40 50<br />

Temperature, °C<br />

WT<br />

10 20 30 40 50<br />

T emperature, t °C<br />

Temperature, °C<br />

λmmaxTrp<br />

max Trp<br />

λm<br />

The France-Egypt Year Of Science And Technology, 2010<br />

342<br />

340<br />

338<br />

336<br />

334<br />

332<br />

MU<br />

10 20 30 40 50<br />

Temperature, °C


Beta casein native<br />

+ 3 HNeRELEELNVPGEIVESLSSSEESITRINKKIEKFQSEEQQQTEDELQDKIHPFAQTQSLVYPFPGPIPNS<br />

3<br />

LPQNIPPLTQTPVVVPPFLQPEVMGVSKVKEAMAPKHKEMPFPKYPVEPFTESQSLTLTDVENLHLPLPLLQ<br />

SWMHQPHQPLPPTVMFPPQSVLSLSQSKVLPVPQKAVPYPQRDMPIQAFLLYQEPVLGPVRGPFPIIV<br />

COO -<br />

Beta casein simple mutant C4<br />

+ 3 HNeMGRELECLNVPGEIVESLSSSEESITRINKKIEKFQSEEQQQTEDELQDKIHPFAQTQSLVYPFPGPIPNSLPQNIPPLTQTP<br />

VVVPPFLQPEVMGVSKVKEAMAPKHKEMPFPKYPVEPFTESQSLTLTDVENLHLPLPLLQSWMHQPHQPLPPTVMFPPQSVLSL<br />

SQSKVLPVPQKAVPYPQRDMPIQAFLLYQEPVLGPVRGPFPIIV COO -<br />

Q Q Q Q Q<br />

Beta casein simple mutant C208<br />

+ 3 HNeMGRELEKLNVPGEIVESLSSSEESITRINKKIEKFQSEEQQQTEDELQDKIHPFAQTQSLVYPFPGPIPNSLPQNIPPLTQTPV<br />

VVPPFLQPEVMGVSKVKEAMAPKHKEMPFPKYPVEPFTESQSLTLTDVENLHLPLPLLQSWMHQPHQPLPPTVMFPPQSVLSLS<br />

QSKVLPVPQKAVPYPQRDMPIQAFLLYQEPVLGPVRGPFPICV COO -<br />

Beta casein double mutant C4 - 208<br />

+ 3 HNeMGRELECLNVPGEIVESLSSSEESITRINKKIEKFQSEEQQQTEDELQDKIHPFAQTQSLVYPFPGPIPNSLPQNIPPLTQTP<br />

VVVPPFLQPEVMGVSKVKEAMAPKHKEMPFPKYPVEPFTESQSLTLTDVENLHLPLPLLQSWMHQPHQPLPPTVMFPPQSVLSL<br />

SQSKVLPVPQKAVPYPQRDMPIQAFLLYQEPVLGPVRGPFPICV COO -<br />

The France-Egypt Year Of Science And Technology, 2010


SDS-PAGE of bovine β casein and mutants.<br />

Experimental condition: SDS‐PAGE (12.5 % gel), under reducing conditions.<br />

Coomasie blue staining.<br />

The France-Egypt Year Of Science And Technology, 2010


SDS-PAGE<br />

BCN C4-<br />

208<br />

Oxydation<br />

24 h at 25°C pH 6,5<br />

WT<br />

BCN C4 BCN C4-<br />

208<br />

BCN C4 WT<br />

kDa 0 1 10 24 M 0 1 10 24 0 1 10 24 M 0 1 10 24<br />

97,4<br />

97,4<br />

Trimer<br />

66,2<br />

Dimer<br />

Monomer<br />

«Intra» a<br />

66,2<br />

45<br />

31<br />

2 cys 1 cys<br />

The France-Egypt Year Of Science And Technology, 2010<br />

2-mercaptoethanol<br />

kDa<br />

45<br />

31<br />

21,5


SDS-PAGE of the dimerizing β casein mutants<br />

Condition: Tris buffer 50 mM mM, pH 88.2 2 including 80 mM NaCl and H2O2 H2O2, 37 °CC,<br />

stirred, sterile.<br />

The France-Egypt Year Of Science And Technology, 2010


• RReasons ffor quicker i k dimerization di i ti kinetics ki ti of f C208 ßß-CNs CN<br />

Greater mobility y of C-terminal segment g<br />

Easier access of SH function<br />

Hydrophobic interactions<br />

• The dimerization sites in C6- and C-208 ß-CNs<br />

• RELECSH(4)NVPGEIVESLSSSEESITRINKKIEKFQSEEQQQTEDEL<br />

QDKIHPFAQTQSLVYPFPGPIPNSLPQNIPPLTQTPVVVPPFLQPEVMGV<br />

• SKVKEAMAPKHKEMPFPKYPVEPFTESQSLTLTDVENLHLPLPLLQSWMH<br />

• QPHQPLPPTVMFPPQSVLSLSQSKVLPVPQKAVPYPQRDM PIQAFLLYQ<br />

• EPVLGPVRGPF PIIVCSH (208)<br />

The France-Egypt Year Of Science And Technology, 2010


Hydrophilic Hydrophilic-Hydrophilic Hydrophilic patterns of different β CNs<br />

Native β CN has distinct arrangement of hydrophilic (ψ) -hydrophobic(φ)<br />

fragments (ψ- φ).<br />

The dimeric β CNs are in some sense symmetrical<br />

C208 β CND (ψ - φ ~ φ - ψ)<br />

C4 β CND (φ - ψ ~ ψ - φ)<br />

The France-Egypt Year Of Science And Technology, 2010<br />

"P "Palindromic" lid i"


Casein β<br />

-C-C-<br />

-C-C- C C<br />

23983 Da<br />

Plasmin Plasmin<br />

P PPP<br />

P<br />

1 15 17 17-19 19 35<br />

105/106<br />

209<br />

28/29 107/108<br />

Hydrophilic/charged -<br />

Amphiphilic<br />

Little charged<br />

Hydrophobe<br />

The France-Egypt Year Of Science And Technology, 2010


Chhaperone-like<br />

activity ac (%)<br />

Chaperone-like activities of native and mutant monomeric<br />

ββ-CN. CN TTarget t protein t i - iinsulin li<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 0,025 0,05 0,075 0,1 0,125<br />

(ß-CN /Insulin) molar ratio<br />

Native β-CN (■), Wild type β-CN (□), C4 β-CN (▲) and C208 β-CN (∆)<br />

The France-Egypt Year Of Science And Technology, 2010<br />

Chemically-induced<br />

aggregation of insulin<br />

performed f di in the th présence é of f<br />

20 mM DTT at 40 °C.<br />

Mutant β-CNs exhibit<br />

considerably smaller<br />

chaperone chaperone-activities activities than that<br />

of native β-CN.


Importance of phosphoryl residues for chaperone<br />

acivities of ßß-CNs. CNs<br />

The hydrophilic segment of chaperones plays an essential role<br />

increasing solubilities of target proteins.<br />

The expressed in E. coli recombinant ß-CNs are not phosphorylated<br />

what decreases their amphiphilicity<br />

amphiphilicity.<br />

Amino acid Sequence of native ß-CN and the sites for phosphorylation<br />

Smaller polarity of hydrophilic domain is the reason for poorer<br />

chaperone p<br />

activities of the mutant ß-CNs.<br />

The France-Egypt Year Of Science And Technology, 2010


Consequence of Cys incorporation on chaperone-like<br />

chaperone like<br />

activities of ß-CN.<br />

Absence of cysteinyl residues, is one of the common features among<br />

different chaperone families.<br />

The C4 ß-CN and C208 ß-CN have cysteinyl residue in position 4 and 208,<br />

respectively.<br />

The ß-CNs containing cysteine showed almost similar chaperone-like<br />

activities ti iti as WT ßß-CN. CN<br />

Thus incorporation of cysteine has no significant consequence in<br />

chaperone chaperone-like like acti activity it of monomeric ßß-CN. CN<br />

The France-Egypt Year Of Science And Technology, 2010


Chape erone-like activity y (%)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Chaperone-like activities of the dimeric β-CN.<br />

TTarget t protein-ADH. t i ADH<br />

0 0,25 0,5 0,75 1 1,25 1,5 1,75<br />

(β−CN/ADH) molar ratio<br />

C208 ββ-CND CND (▲) (▲): HHydrophobic d h bi core, Pl Polar ends. d<br />

C4 β-CND (∆): Polar core, Hydrophobic ends.<br />

The France-Egypt Year Of Science And Technology, 2010<br />

Due to combination of flexibility and<br />

amphiphilicity, ß-CN acts as a surfactant<br />

molecule in solution.<br />

The dimeric β-CNs resembles<br />

somehow bis (gemini) - surfactants.<br />

C208 β-CND (ψ ‐ φ ~ φ ‐ ψ) has<br />

greater chaperone activity than C6 β-<br />

CND (ψ ‐ φ ~ φ ‐ ψ).<br />

C208 β-CND also shows greater<br />

chaperone activity than mutant β-CNs β CNs in<br />

monomeric state.


−<br />

Average IgE<br />

(ng/ml)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

The IgE-binding (immuno reactivity) of different molecular<br />

forms of ββ-CN. CN<br />

Sera from patients with milk<br />

allergies were used to<br />

determine immuno reactivities<br />

of different molecular forms of<br />

β-CN.<br />

Averaged results of 16 out of<br />

10 37 tested sera showing<br />

significantly greater IgE-<br />

5<br />

responses to different forms<br />

of ββ-CN CN<br />

0<br />

Native B-CN WT B-CN C4 B-CNM C208 B-CNM C4 B-CND C208 B-CND<br />

The France-Egypt Year Of Science And Technology, 2010


Summary<br />

ß-CN and its mutants undergo temperature-induced concentrationdependent<br />

micellisation.<br />

Polar phosphate residues and the NN-terminal terminal hydrophilic domain are<br />

important functional elements enhancing the chaperone-like activities of<br />

native β-CN.<br />

Dimerization of C208 β-CN with two distal hydrophilic domains improved<br />

considerably its chaperone-like activity in comparison with its monomeric<br />

form and with C4 β-CND.<br />

NN-terminal t i l hydrophilic h d hili domain d i plays l significant i ifi t role l as important i t t<br />

functional elements enhancing the chaperone-like activity of native β-CN<br />

Exposure of hydrophobic domains increases immuno reactivity in 208 ββ-CN CN<br />

dimer<br />

The France-Egypt Year Of Science And Technology, 2010


Our INRA team<br />

Isabelle Bronnec Aynur Akhmadova – PhD student<br />

JJean-Marc M Ch Chobert b t Sh Shady d El GGaish i h – PhD student t d t<br />

Yvan Choiset Tatyana Konnova – PhD student<br />

Michèle Dalgalarrondo Asghar Taheri Kafrani – PhD student<br />

Hanitra Rabesona Iuliya Schutskaya – PhD student<br />

Thomas Haertlé Reza Yousefi – post doctoral<br />

Collaborations<br />

Prof Dr V.I. Muronetz, Faculty of Bioengineering, Lomonosov University,<br />

Moscow, Russia<br />

Prof Dr Yu. D. Zuev, Institute of Biochemistry and Biophysics, RAS,<br />

Kazan, Russia.<br />

Prof Dr A. A. Moosavi-Movahedi, Institute of Biochemistry and Biophysics,<br />

Tehran University, IR Iran.<br />

The France-Egypt Year Of Science And Technology, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!