12.10.2013 Views

Introduction to analysis techniques: BW, Dalitz plots

Introduction to analysis techniques: BW, Dalitz plots

Introduction to analysis techniques: BW, Dalitz plots

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DALITZ PLOT TECHNIQUES II<br />

1<br />

Marco Pappagallo<br />

University of Glasgow<br />

Niccolo’ Cabeo School<br />

22 May 2012


OUTLINE<br />

Ø Part I<br />

Ø A bit of his<strong>to</strong>ry<br />

Ø Kinematic<br />

Ø Dynamic (Breit-Wigner, Barrier fac<strong>to</strong>rs, angular<br />

distribution)<br />

Ø How <strong>to</strong> fit a DP<br />

Ø Part II<br />

Ø Examples of DP <strong>analysis</strong><br />

2


SCALAR MESONS AND D MESON DECAYS<br />

Scalar meson candidates are <strong>to</strong>o<br />

numerous <strong>to</strong> fit in a single qq nonet. Some<br />

of them may be multiquark, glueball,<br />

meson-meson bound state, etc….<br />

Charm meson decays are a powerful <strong>to</strong>ol<br />

for investigating light quark spectroscopy:<br />

• Large coupling <strong>to</strong> scalar mesons<br />

• An initial state well defined J P = 0 -<br />

• Final spectrum not constrained by isospin and<br />

parity conservation<br />

I = 1 I = 1/2 I = 0<br />

f 0 (600)<br />

a 0 (980) κ(800)[?] f 0 (980)<br />

f 0 (1370)<br />

a 0 (1450) K* 0 (1430) f 0 (1500)<br />

f 0 (1710)<br />

3


D +<br />

S àΠ + Π-Π + DALITZ PLOT ANALYSIS<br />

E791<br />

Phys.Rev.Lett.:765,2001<br />

Phys.Lett.B585:200,2004<br />

Phys.Rev.D79:032003,2009<br />

I = 1 I = 1/2 I = 0<br />

f 0 (600)<br />

a 0 (980) κ(800)[?] f 0 (980)<br />

f 0 (1370)<br />

a 0 (1450) K* 0 (1430) f 0 (1500)<br />

f 0 (1710)<br />

4


THE D +<br />

S àΠ + Π-Π + DECAY<br />

D s +<br />

D s +<br />

π +<br />

f 0 , f 2<br />

ρ 0<br />

π +<br />

D s +<br />

D s +<br />

Ø f 0 (980), f 0 (1370), and f 2 (1270) expected<br />

π +<br />

π -<br />

π +<br />

π +<br />

ρ 0<br />

5


D +<br />

S àΠ + Π-Π + DALITZ PLOT<br />

Two identical particles<br />

in the final state<br />

Symmetrized DP<br />

Two points for each<br />

event on DP<br />

Likelihood must be<br />

symmetric as well<br />

6


D +<br />

S àΠ + Π-Π + DALITZ PLOT<br />

f 0 (980)<br />

f 0 (980)<br />

7


D +<br />

S àΠ + Π-Π + DALITZ PLOT<br />

f 2 (1270)<br />

f 2 (1270)<br />

8


D +<br />

S àΠ + Π-Π + DALITZ PLOT<br />

f 0 (1370)<br />

f 0 (1370)<br />

9


D +<br />

S àΠ + Π-Π + DALITZ PLOT<br />

ρ ???<br />

10


THE F 0 (980)<br />

The f 0 (980) has still uncertain parameters and interpretations because is just sitting<br />

at the KK threshold and strongly coupled <strong>to</strong> the KK and ππ final states<br />

Flatte’ Formula<br />

PHSP<br />

11


E791 RESULTS (900 EVTS)<br />

Ø Traditional <strong>Dalitz</strong> plot <strong>analysis</strong><br />

Ø f 0 (980) reference resonance<br />

Ø f 0 (980) and f 0 (1370) masses and widths floated<br />

12


K MATRIX FORMALISM IN Π + Π - S-WAVE<br />

Resonances in the K-matrix formalism appear<br />

as a sum of poles in the K-matrix<br />

K results<br />

Hermitian and<br />

symmetric, i.e. real<br />

and symmetric<br />

13


N RELATIVISTIC BREIT-WIGNER’S<br />

Consider two poles in a single channel:<br />

14


K MATRIX FORMALISM IN Π + Π - S-WAVE<br />

+<br />

+<br />

Pj<br />

0<br />

D<br />

0<br />

D<br />

0<br />

D<br />

π<br />

π<br />

K<br />

K<br />

+ …<br />

+<br />

π<br />

−<br />

π<br />

+<br />

π<br />

−<br />

π<br />

+<br />

π<br />

−<br />

π<br />

[I-iKρ] 1j -1<br />

K-Matrix formalism overcomes the main<br />

limitation of the <strong>BW</strong> model <strong>to</strong> parameterize<br />

large and overlapping S-wave ππ resonances.<br />

A<br />

D<br />

( s<br />

12<br />

, s<br />

13<br />

)<br />

=<br />

D 0 →K 0 π + π - amplitude<br />

<br />

F1<br />

π S−wave<br />

Provided by scattering experiment<br />

Initial production vec<strong>to</strong>r<br />

∑<br />

iδr<br />

+ are<br />

Ar<br />

( s12,<br />

s13)<br />

r <br />

<br />

π P,<br />

D−waves<br />

Kπ<br />

S,<br />

P,<br />

D−waves<br />

P<br />

∑<br />

R<br />

c<br />

[ -iKρ]<br />

F1 = I 1j Pj<br />

j<br />

I.J.R. Aitchison, Nucl. Phys. A189, 417 (1972)<br />

15<br />

a<br />

b<br />

-1


K MATRIX FORMALISM IN Π + Π - S-WAVE<br />

5 channels: 1=ππ 2=KK 3=multi-meson 4= ηη 5= ηη´<br />

V.V. Anisovich, A.V Sarantsev Eur. Phys. Jour. A16, 229 (2003)<br />

Global fit <strong>to</strong> the available data<br />

5 poles<br />

16


FOCUS RESULTS (1470 EVTS)<br />

17


MODEL INDEPENDENT PARTIAL WAVE ANALYSIS<br />

A<br />

D<br />

( s<br />

12<br />

, s<br />

13<br />

)<br />

=<br />

F<br />

1<br />

ππ S−wave<br />

∑<br />

iδr<br />

+ are<br />

Ar<br />

( s12,<br />

s13)<br />

r <br />

<br />

ππ P,<br />

D−waves<br />

ππ S-wave interpolation<br />

Ø N = 30 endpoints<br />

Ø Relaxed Cubic Spline<br />

• Piecewise cubic curve between two<br />

consecutive points<br />

• First and second derivatives are continuous<br />

• Second derivative is zero at each<br />

endpoint(Relaxed condition)<br />

Ø Adaptive binning: same number of π + π -<br />

combinations between two points<br />

18


MODEL INDEPENDENT PARTIAL WAVE ANALYSIS<br />

Spline DEMO:<br />

http://www.math.ucla.edu/~baker/java/hoefer/Spline.htm<br />

Why not S(m) = Re(c(m))+ i Im(c(m)) ?<br />

Pros<br />

• No periodicity in phase<br />

Cons<br />

• Physics is connected <strong>to</strong> module and phase<br />

• Non linear transformation (issue for the error)<br />

Used for<br />

guidelines and<br />

systematics<br />

19


BABAR RESULTS (13K EVTS)<br />

Results of an unbinned maximum likelihood fit<br />

Reference Mode<br />

Model Independent<br />

Partial Wave Analysis<br />

Sum of <strong>BW</strong>’s<br />

K-matrix Formalism<br />

• S-wave is the main contribution<br />

• Large f 2 (1270) contribution<br />

• Small ρ’s fit fractions<br />

20


Π + Π - S-WAVE<br />

• The S wave shows in both amplitude and phase the expected behavior for the f 0 (980)<br />

• Activity in the region f 0 (1370) and f 0 (1500) resonances<br />

• The S wave is small in the f 0 (600) region<br />

21


COMPARISON Π + Π - S-WAVE’S<br />

BABAR BABAR<br />

22


PHASE OF Π + Π - S-WAVE<br />

Watson Theorem<br />

Ø ππ phase should be the<br />

same up <strong>to</strong> the elastic limit<br />

Ø BUT the interaction<br />

between c and P<br />

introduces overall phase<br />

P<br />

R<br />

c<br />

a<br />

b<br />

23


D +<br />

S àK + K-Π + DALITZ PLOT ANALYSIS<br />

E687<br />

Phys.Rev.D83:052001,2011<br />

Phys.Rev.D79:072008,2009<br />

Phys.Lett.B351:591,1995<br />

I = 1 I = 1/2 I = 0<br />

f 0 (600)<br />

a 0 (980) κ(800)[?] f 0 (980)<br />

f 0 (1370)<br />

a 0 (1450) K* 0 (1430) f 0 (1500)<br />

f 0 (1710)<br />

24


THE D + àK + K- S Π + DECAY<br />

D s +<br />

D s +<br />

π +<br />

f 0 , f 2<br />

D s +<br />

K +<br />

K -<br />

π +<br />

K *0<br />

K +<br />

25


THE F 0 (980) AND A 0 (980)<br />

f 0 (980) à KK/ππ<br />

Flatte’ Formula<br />

PHSP<br />

a 0 (980) à KK/ηπ<br />

26


D + àK + K- + Π SAMPLE<br />

S<br />

Inclusive D s sample obtained with a likelihood<br />

selection using vertex separation and p*<br />

4σ<br />

Events used <strong>to</strong> obtain Bkg shape:<br />

(-10σ, -6σ) and (6σ, 10σ)<br />

101k events<br />

• No D wave in K + K -<br />

φ (1020)<br />

• No K - π + structure but a small K* 0 (1430)(~2%)<br />

Partial Wave Analysis<br />

f 0 (1700)<br />

K * (892) 0<br />

27


MOMENTS<br />

Let N be the number of events for a given mass interval:<br />

Using the orthogonality condition, the coefficients in<br />

the expansion are obtained from<br />

θ n is the value of theta for the n-th event<br />

28


PARTIAL WAVE ANALYSIS<br />

S.U. Chung, Phys. Rev. D56, 7299(1997):<br />

0 0 1 0 3 0 5 0 ⎛⎛3 2 1⎞⎞<br />

I( θ)<br />

= ∑ YLYL= Y0+ Y1cosθ+<br />

Y2 ⎜⎜ cosθ−<br />

π π<br />

⎟⎟<br />

L<br />

4π<br />

4 4 ⎝⎝ 2 2⎠⎠<br />

Hp: Lmax<br />

=<br />

M( θ)<br />

= ∑ ALYL = S + P cos θ<br />

L<br />

π π<br />

0<br />

1 1 3<br />

4 4<br />

2 1 3<br />

I( θ ) = M(<br />

θ)<br />

= S+ Pcos θ<br />

4π 4π<br />

⎧⎧ 0 2 2<br />

4π<br />

Y0<br />

= S + P<br />

⎪⎪<br />

⎪⎪<br />

0<br />

⎨⎨ 4π Y1<br />

= 2 S P cosφ<br />

⎪⎪<br />

0 2 2<br />

⎪⎪⎩⎩<br />

4π Y2<br />

= P<br />

5<br />

2<br />

SP<br />

29


PARTIAL WAVE ANALYIS AT K + K -<br />

Events weighted by the spherical harmonic Y 0 ℓ (cos θ KK )(ℓ=0,1,2)<br />

π +<br />

Ds +<br />

θKK<br />

• Background subtracted<br />

• Efficiency corrected<br />

• Phase space corrected<br />

Phenomenological description<br />

of the S wave <strong>to</strong> be used in the<br />

DP <strong>analysis</strong><br />

Solid line is the result of a<br />

binned fit (Breit-Wigner 30 for the<br />

P wave and a “Breit-Wigner<br />

like” function for the S wave)


MODEL INDEPENDENT EXTRACTION OF P-WAVE<br />

[I.E. Φ(1020)] AND S-WAVE[I.E. F 0 (980)] RATIOS<br />

S-P interference<br />

integrates <strong>to</strong> zero<br />

Phase space fac<strong>to</strong>r<br />

31


D + àK + K- S Π + RESULTS<br />

Reference Mode<br />

Results of an unbinned maximum likelihood fit<br />

BaBar CLEO<br />

Ø K*(892) 0 and f 0 (1370) masses and widths are<br />

floated parameters<br />

Ø f 0 (980) parameterized by the effective<br />

parameterization extracted by the PWA<br />

Ø χ2 computed by an adaptive binning algorithm<br />

• Decay dominated by vec<strong>to</strong>r<br />

intermediated resonances<br />

Ø K*(892) 0 and f0 (1370) masses and widths are<br />

floated parameters<br />

Ø f 0 (980) parameterized by a Flatte formula<br />

• Contribution from K* 1 (1410),<br />

K 2 (1430), κ(800), f 0 (1500),<br />

f 2 (1270), f 2 ’(1525) consistent<br />

with zero<br />

K*(892) 0 width<br />

5 MeV lower<br />

than PDG08<br />

32


K + K - MOMENTS<br />

Each event was weighted by the spherical<br />

harmonic Y0 ℓ (cos θKK ) (ℓ=1,2,3)<br />

f 0 (980)/φ (1020)<br />

interference<br />

π +<br />

D s +<br />

θKK<br />

33


K - Π + MOMENTS<br />

Each event was weighted by the spherical<br />

harmonic and Y0 ℓ (cos θKπ ) (ℓ=1,2,3) K<br />

D +<br />

s +<br />

Small S-P<br />

interference ⇒<br />

No κ(800) ?<br />

θ Kπ<br />

34


Π + Π - AND K + K - S-WAVE COMPARISON<br />

Remarks:<br />

• Agreement between K + K - S wave and π + π - S waves<br />

despite the interferences with the other scalar mesons<br />

(especially in the π + π - system)<br />

• Agreement between the KK S waves extracted by D 0<br />

and D s decays. Are f 0 (980) and a 0 (980) 4-quark states?*<br />

*L. Maiani, A. D. Polosa, and V. Riquer, Phys. Lett.B651, 129 (2007)<br />

K<br />

35<br />

+ K- and π + π- S waves extracted by a Model<br />

Independent way. Opportunity <strong>to</strong> obtain new<br />

information about f0 (980)!


D + àK - Π + Π + DALITZ PLOT ANALYSIS<br />

Phys.Rev.D73:032004,2005 E791<br />

Phys.Rev.D78:052001,2008<br />

I = 1 I = 1/2 I = 0<br />

f 0 (600)<br />

a 0 (980) κ(800)[?] f 0 (980)<br />

f 0 (1370)<br />

a 0 (1450) K* 0 (1430) f 0 (1500)<br />

f 0 (1710)<br />

36


D + àK - Π + Π + DALITZ PLOT<br />

K * (892) 0<br />

140k events<br />

K * (892) 0<br />

E791<br />

S wave<br />

interfering with<br />

K * (892) 0<br />

37


SCALAR MESON K(800) AND D + àK - Π + Π +<br />

Reference Mode<br />

Breit-Wigner<br />

E791 CLEO-c<br />

No. Events 15090(Purity=94%) 140793(Purity=99%)<br />

Isobar MIPWA Isobar Isobar MIPWA<br />

Fit Fraction(%) Fit Fraction(%)<br />

K*(892) 0 π + 12.6±1.6 11.9±0.2±2.6 11.2±0.2±2.0 5.15±0.24 4.94±0.23<br />

K*1(1680) 0 π + 2.1±0.4 1.2±0.6±1.2 1.28±0.04±0.28 0.238±0.024 0.098±0.059<br />

K*2(1430) 0 π + 0.5±0.1 0.2±0.1±0.1 0.38±0.02±0.03 0.124±0.011 0.102±0.020<br />

NR 16.1±5.3 ------- 8.9±0.3±1.4 38.0±1.9 -------<br />

κ(800)π + 45.6±10.7 ------- 33.2±0.4±2.4 8.5±0.5 -------<br />

K* 0 (1430) 0 π + 12.2±1.3 ------- 10.4±0.6±0.5 7.53±0.65 6.65±0.31<br />

K - π + S-wave ------- 78.6±1.4±1.8 ------- ------- 41.9±1.9<br />

I=2 π + π + S wave ------- ------- ------- 13.4±2.3 15.5±2.8<br />

χ 2 /ν 1.08 1.00 1.36 1.10 1.03<br />

E791:“At the statistical level of this experiment,<br />

differences between the MIPWA and the isobar model<br />

result are not found <strong>to</strong> be significant, and both provide<br />

good descriptions of the data”<br />

CLEO-c: “The addition of the I=2 ππ S wave <strong>to</strong><br />

either the isobar model or the model-independent<br />

38<br />

partial wave approach is the key piece that gives<br />

good agreement with data in both cases”


K - Π + S-WAVE<br />

Dashed curves = ±1σ of S wave<br />

parameters in the isobar model<br />

E791<br />

K* 0 (1430)<br />

phase motion<br />

Low Kπ enhancement removed<br />

by including I=2 ππ S-wave<br />

Flat distribution if<br />

K* 0 (1430) removed<br />

39


TEST OF WATSON’S THEOREM<br />

S wave<br />

P wave<br />

D wave<br />

E791<br />

Solid curves = ±1σ of S wave<br />

parameters in MIPWA<br />

S, P, D Kπ wave<br />

(I=1/2) from LASS<br />

(K - p → K - π + n)<br />

40


I = 1 I = 1/2 I = 0<br />

f 0 (600)<br />

a 0 (980) κ(800)[?] f 0 (980)<br />

f 0 (1370)<br />

a 0 (1450) K* 0 (1430) f 0 (1500)<br />

D 0 àK + K - Π 0 DALITZ PLOT ANALYSIS<br />

Phys.Rev.D76:011102,2007<br />

Phys.Rev.D74:031108(R),2006<br />

f 0 (1710)<br />

41


D 0 àK + K - Π 0 DALITZ PLOT<br />

φ (1020)<br />

K*(982) -<br />

11.2k events<br />

Motivation<br />

• Nature of Kπ S wave below 1.4 GeV<br />

• Is there a charged κ(800) + state?<br />

• Nature of f 0 (980)/a 0 (980): KK wave<br />

K*(982) +<br />

42


FIT RESULTS OF D 0 àK + K - Π 0<br />

Breit-Wigner<br />

Reference Mode<br />

LASS<br />

parameterization<br />

CLEO-c BaBar<br />

No. Events 735 11200<br />

Decay Mode Fit Fraction(%) Fit Fraction(%)<br />

f 0 (980)π 0 ------- ------- 6.7±1.4±1.2 10.5±1.1±1.2<br />

[a 0 (980)π 0 ] ------- ------- [6.0±1.8±1.2] [11.0±1.5±1.2]<br />

φ(1020)π 0 14.9±1.6 16.1±1.9 19.3±0.6±0.4 19.4±0.6±0.5<br />

f' 2 (1525)π 0 ------- ------- 0.08±0.04±0.05 -------<br />

κ(800) + K - ------- 12.6±5.<br />

8<br />

------- -------<br />

K + π 0 S wave ------- ------- 16.3±3.4±2.1 71.1±3.7±1.9<br />

K*(892) + K - 46.1±3.1 48.1±4.<br />

5<br />

45.2±0.8±0.6 44.4±0.8±0.6<br />

K*(1410) + K - ------- ------- 3.7±1.1±1.1 -------<br />

κ(800) - K + ------- 11.1±4.7 ------- -------<br />

K - π 0 S wave ------- ------- 2.7±1.4±0.8 3.9±0.9±1.0<br />

K*(892) - K + 12.3±2.2 12.9±2.<br />

6<br />

16.0±0.8±0.6 15.9±0.7±0.6<br />

K*(1410) - K + ------- ------- 4.8±1.8±1.2 -------<br />

NR 36.0±3.7 ------- ------- -------<br />

CLEO: “ A m b i g u i t y<br />

between a NR and a<br />

Breit-Wigner kappa”<br />

BaBar:<br />

• Lass amplitude is<br />

favoured. E791 amplitude<br />

used for systematics<br />

• Ambiguity between a<br />

large K + π 0 S wave and<br />

K*(1410), f’ 2 (1525)<br />

• No higher f 0 states<br />

• No charged kappa<br />

43


PARTIAL WAVE ANALYSIS IN K + K -<br />

44


D 0 àΠ + Π - Π 0 DALITZ PLOT ANALYSIS<br />

Phys.Rev.Lett.99,251801,2007<br />

45


ρ(770)<br />

+<br />

D 0 àΠ + Π - Π 0 DALITZ PLOT<br />

ρ(770)<br />

-<br />

Six-fold symmetry<br />

45k events<br />

ρ(770)<br />

0<br />

Although states of isospin zero, one, and two are<br />

possible in principle, the <strong>Dalitz</strong> plot shows strong<br />

depopulation along each of its symmetry axes,<br />

characteristic of a final state with isospin zero<br />

Zemach, Phys.Rev.133(1964), B1201<br />

• No natural explanation in the<br />

usual fac<strong>to</strong>rization picture<br />

• Unknown broad state coupling<br />

strongly <strong>to</strong> 3 pions?<br />

46<br />

*M. Gaspero et al., Phys. Rev.D78, 014015 (2008)<br />

*B. Bhattacharya et al., Phys.rev.D81, 096008 (2010)


I = 1 I = 1/2 I = 0<br />

f 0 (600)<br />

a 0 (980) κ(800) f 0 (980)<br />

f 0 (1370)<br />

a 0 (1450) K* 0 (1430) f 0 (1500)<br />

D + àΠ + Π - Π + DALITZ PLOT ANALYSIS<br />

Phys.Rev.D76:012001,2007<br />

Phys.Lett.B585:200,2004<br />

Phys.Rev.Lett.:765,2001 E791<br />

f 0 (1710)<br />

47


D + àΠ + Π - Π + DALITZ PLOT<br />

K 0 s ve<strong>to</strong><br />

No visible structures:<br />

Ø Decay dominated by S wave<br />

Ø 50% of events are background<br />

48


FIT RESULTS OF D + àΠ + Π - Π +<br />

E791 FOCUS CLEO-c<br />

No. Events ≈1170 ≈1500 ≈2600(Purity=55%)<br />

Model Isobar K-Matrix Isobar Schechter Achasov<br />

f 0 (600)π + 46.3±9.0±2.1 ------- 41.8±2.9 ------- -------<br />

f 0 (980)π + 6.2±1.3±0.4 ------- 4.1±0.9 ------- -------<br />

Low S wave ------- ------- “45.9±3.0” 43.4±11.8 75±7<br />

f 0 (1370)π + 2.3±1.5±0.8 ------- 2.6±1.9 2.6±1.7 3.2±0.7<br />

f 0 (1500)π + ------- ------- 3.4±1.3 4.3±2.4 4.0±0.8<br />

NR 7.8±6.0±2.7 ------- ------- ------- -------<br />

S wave π + ------- 56.0±3.2±2.1 ------- ------- -------<br />

ρ(770) 0 π + 33.6±3.2±2.2 30.8±3.1±2.3 20.0±2.5 19.6±7.4 18.4±4.0<br />

ρ(1450) 0 π + 0.7±0.7±0.3 ------- ------- ------- -------<br />

f 2 (1270)π + 19.4±2.5±0.4 11.7±1.9±0.2 18.2±2.7 18.4±7.4 23.2±5.0<br />

I=2 π + π + S wave ------- ------- ------- ------- 16.6±3.2<br />

49


Π + Π - S-WAVE<br />

Dotted curves = ±1σ of<br />

S wave parameters in<br />

the isobar model<br />

“The S wave shapes are quite<br />

similar up <strong>to</strong> the interplay<br />

with other resonances, and<br />

with the data set we have in<br />

hand we are not sensitive <strong>to</strong><br />

the details of the S wave<br />

parametrization.”<br />

Magnitude Phase<br />

With a 10x statistics, a<br />

MIPWA could distinguish<br />

between different models<br />

50


SEARCH FOR CP VIOLATION IN D + àK + K - Π +<br />

Phys.Rev.D84:112008,2011<br />

51


MIRANDA PROCEDURE<br />

Model-independent<br />

search for CP violation<br />

No CP violation<br />

Number of particles Number of anti-particles<br />

CP violation<br />

52


SEARCH FOR CP VIOLATION<br />

Luminosity = 35 pb -1<br />

N. Evts = 350k<br />

No CP violation so far…..but data<br />

collected in 2011 ~ 1fb -1 and more in 2012<br />

53


FROM D TO B MESONS<br />

D 0 àK - π + π 0 B 0 àK - π + π 0<br />

Same model?<br />

B <strong>Dalitz</strong> plot features:<br />

54<br />

Ø Large NR component<br />

Ø Large (destructive) interferences as well<br />

Ø Total fit fraction ~ 300%


CONCLUSION<br />

World effort <strong>to</strong>wards understanding the 3-body decay<br />

International cooperation “Les Nabis”<br />

Experimentalists:<br />

Ø Improve selection of signals<br />

Ø Understand efficiency and background<br />

Ø Binning <strong>analysis</strong> (Miranda procedure and many others)<br />

Ø Make fitter faster (DP with several million of events are<br />

already on tape)<br />

Ø Improve minimization<br />

Ø Parallel computation<br />

Ø Graphics Processing Unit (GPU)<br />

Theorists:<br />

Ø Rescattering effects<br />

Ø 3-body unitary<br />

Ø Model independent <strong>analysis</strong><br />

55


CONCLUSION(2)<br />

<strong>Dalitz</strong> <strong>plots</strong> play a fundamental role in<strong>to</strong> the front line<br />

of flavour physics.<br />

High statistical data are available and allow <strong>to</strong> explore:<br />

Ø Angles of The Unitary Triangle<br />

Ø Physics beyond the SM by the search of CP violation<br />

Ø Light meson spectroscopy<br />

Ø Discovery of new states<br />

56

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!