11.10.2013 Views

production of selected secondary metabolites in transformed ...

production of selected secondary metabolites in transformed ...

production of selected secondary metabolites in transformed ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Us<strong>in</strong>g low-molecular mass pI markers <strong>in</strong> proteomic sta<strong>in</strong><strong>in</strong>g-free method<br />

for study <strong>of</strong> posttranslationally modified prote<strong>in</strong>s<br />

Karel Mazanec 1,2 , Karel Šlais 2 and Josef Chmelík 2<br />

1 Institute <strong>of</strong> Material Chemistry, Faculty <strong>of</strong> Chemistry, Brno University <strong>of</strong> Technology,<br />

Purkyňova 118, 612 00 Brno, Czech Republic, e-mail: mazanec@iach.cz<br />

2 Institute <strong>of</strong> Analytical Chemistry, Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic, Veveří 97,<br />

602 00 Brno, Czech Republic<br />

INTRODUCTION<br />

At present the knowledge <strong>of</strong> proteome plays very important role <strong>in</strong> the study <strong>of</strong> liv<strong>in</strong>g<br />

processes. Special attention <strong>in</strong> our lab is paid to the <strong>in</strong>vestigation <strong>of</strong> the proteome <strong>of</strong> barely<br />

gra<strong>in</strong>s. The aim is to contribute to understand<strong>in</strong>g <strong>of</strong> malt<strong>in</strong>g processes and to selection <strong>of</strong><br />

malt<strong>in</strong>g barley cultivars. Prote<strong>in</strong>s are the major functional molecules <strong>of</strong> life made <strong>of</strong> am<strong>in</strong>o<br />

acids arranged <strong>in</strong> a l<strong>in</strong>ear cha<strong>in</strong> l<strong>in</strong>ked together by peptide bonds. The residues <strong>in</strong> a prote<strong>in</strong> are<br />

<strong>of</strong>ten chemically altered <strong>in</strong> a process known as post-transcriptional modification (PTM):<br />

either before the prote<strong>in</strong> can function <strong>in</strong> the cell, or as part <strong>of</strong> control mechanisms. The<br />

identification <strong>of</strong> the PTM is experimentally difficult.<br />

Due to the fact that many samples, ma<strong>in</strong>ly <strong>of</strong> biological orig<strong>in</strong>, are complex mixtures <strong>of</strong><br />

prote<strong>in</strong>s with a wide range <strong>of</strong> molecular masses, salts and other compounds, prote<strong>in</strong>s should<br />

be separated and purified prior to their identification by mass spectrometry. Traditionally,<br />

most proteomics researches are based upon two-dimensional gel electrophoresis <strong>in</strong>volv<strong>in</strong>g<br />

isoelectric focus<strong>in</strong>g (IEF) as one dimension. Separated compounds are focused <strong>in</strong>to very<br />

sharp bends accord<strong>in</strong>g to their pI values dur<strong>in</strong>g IEF. They are twice or more concentrated <strong>in</strong><br />

this zones. However, ampholytes present <strong>in</strong> gel and creat<strong>in</strong>g pH gradient dur<strong>in</strong>g IEF<br />

complicate the visualiz<strong>in</strong>g the separated prote<strong>in</strong>s by sta<strong>in</strong><strong>in</strong>g and make this method<br />

impracticable for common proteomic utilization.<br />

The aim <strong>of</strong> this work was to develop and optimize the novel sta<strong>in</strong><strong>in</strong>g-free proteomic<br />

procedure for separation <strong>of</strong> <strong>in</strong>tact prote<strong>in</strong>s by gel IEF <strong>in</strong> presence <strong>of</strong> low-molecular mass pI<br />

markers and subsequent determ<strong>in</strong>ation <strong>of</strong> molecular masses <strong>of</strong> separated compounds <strong>in</strong> the<br />

gels by MALDI-TOF/TOF MS. The <strong>selected</strong> set <strong>of</strong> pI markers <strong>in</strong>cludes both colored and<br />

colorless compounds with known low-molecular mass. Thus, the identification <strong>of</strong> both pI<br />

marker and prote<strong>in</strong>s <strong>in</strong> the same excised piece <strong>of</strong> gel by MS technique is expected to give<br />

reliable <strong>in</strong>formation about the correct pI values <strong>of</strong> analyzed prote<strong>in</strong>s even <strong>in</strong> complex samples.<br />

MATERIALS AND METHODS<br />

pI markers – The substituted phenols (I - Mw 314.08, pI 3.9, yellow color; II - Mw 359.10,<br />

pI 4.3, orange; III - Mw 272.06, pI 5.3, yellow; IV - Mw 252.12, pI 5.7, colorless; V - Mw<br />

285.09, pI 6.4, yellow; VI - Mw 315.10, pI 7.0, yellow; VII - Mw 337.17, pI 7.5, yellow; VIII<br />

– Mw 265.14, pI 7.9, yellow; IX - Mw 363.23, pI 8.4, yellow; X - Mw 267.16, pI 8.9, yellow;<br />

XI - Mw 352.20, pI 9.0, colorless; XII - Mw 333.21, pI 10.1, yellow) used as pI markers were<br />

prepared by the procedure described by Šlais and Friedl 1 at the Institute <strong>of</strong> Analytical<br />

Chemistry (Brno, Czech Republic). The pI values were determ<strong>in</strong>ed by potentiometric<br />

titration. The chemical structures <strong>of</strong> pI markers are shown <strong>in</strong> Fig. 1.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 254

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!