11.10.2013 Views

production of selected secondary metabolites in transformed ...

production of selected secondary metabolites in transformed ...

production of selected secondary metabolites in transformed ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ε<br />

total flux [mol.m -2 ]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y = 0.0099x<br />

R 2 = 0.9997<br />

y = 0.0066x<br />

R 2 = 0.9983<br />

y = 0.0084x<br />

R 2 = 0.9985<br />

0<br />

0 200 400 600 800<br />

c0 [mol.m -3 ]<br />

1 day<br />

3 days<br />

5 days<br />

The results <strong>of</strong> the part which deals with the <strong>in</strong>fluence <strong>of</strong> another copper(II) solution<br />

properties shows dramatically smaller effect <strong>of</strong> the type <strong>of</strong> anion <strong>in</strong> the copper(II) salt and<br />

solution ionic strength and pH compared with <strong>in</strong>itial copper(II) concentration and time<br />

duration <strong>of</strong> diffusion. On Fig. 7, it can be seen that for all anions with unit valence (CuCl2,<br />

Cu(NO3)2 a Cu(ClO4)2) the total diffusion flux is similar even if for example anion size differs<br />

markedly. On the other hand, anions with higher valence (CuSO4 and Cu2P2O7) show<br />

<strong>in</strong>considerable decrease <strong>of</strong> total diffusion flux. The pH and ionic strength measurement<br />

excluded these properties as causer <strong>of</strong> this<br />

decrease, so it can be supposed that this shift<br />

can be expla<strong>in</strong>ed as a consequence <strong>of</strong> higher<br />

charge <strong>of</strong> multivalent anions.<br />

Total diffusion flux is also affected by the<br />

copper solution pH. Fig. 8 shows that with<br />

higher acidity <strong>of</strong> the solution total diffusion<br />

flux decreases. This could be expla<strong>in</strong>ed for<br />

example by well–known decrease <strong>of</strong> HA<br />

sorption ability <strong>in</strong> acid media (see [2]) or by<br />

the change <strong>of</strong> solution–gel equilibrium.<br />

Higher acidity affects salt hydrolysis and<br />

thus actual ion concentration <strong>in</strong> solution.<br />

total flux [mol.m -2 ]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y = 5.517E-03x + 2.250E+00<br />

R 2 = 9.950E-01<br />

y = 2.449E-03x + 1.343E+00<br />

R 2 = 9.994E-01<br />

y = 1.095E-03x + 3.265E-01<br />

R 2 = 9.999E-01<br />

0<br />

200 300 400 500 600 700<br />

t 1/2 [s 1/2 ]<br />

Fig. 4 The total diffusion flux dependencies on the <strong>in</strong>itial concentration <strong>of</strong> Cu 2+ and on the<br />

duration <strong>of</strong> the experiment<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 1 2 3 4 5 6<br />

τ [days]<br />

Fig. 5 The time shift <strong>of</strong> ε<br />

copper(II) ions concentration<br />

[mol/dm 3 gel]<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

experimental results<br />

(0.3 M; 3 days)<br />

calculated<br />

concentration pr<strong>of</strong>ile<br />

(0.3 M; 3 days)<br />

0.1M<br />

0.3M<br />

0.6M<br />

0 10 20 30 40 50<br />

distance from the <strong>in</strong>terface [mm]<br />

Fig. 6 Concentration pr<strong>of</strong>iles <strong>of</strong> Cu 2+<br />

<strong>in</strong> humic gel<br />

total flux [mol.m –2 ]<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

CuCl2<br />

0.614 0.620 0.608<br />

Cu(NO3)2<br />

Cu(ClO4)2<br />

CuSO4<br />

0.476<br />

Cu2P2O7<br />

Fig. 7 Total diffusion flux for different<br />

copper(II) salts<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 226<br />

0.355

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!