11.10.2013 Views

production of selected secondary metabolites in transformed ...

production of selected secondary metabolites in transformed ...

production of selected secondary metabolites in transformed ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PRODUCTION OF SELECTED SECONDARY METABOLITES IN<br />

TRANSFORMED BACTERIAL CELLS<br />

Ing. Jana Hrdličková, 3. ročník DSP<br />

Vedoucí práce: Doc. RNDr. Ivana Márová, Csc.<br />

Vysoké učení technické v Brně, fakulta chemická, ústav chemie potrav<strong>in</strong> a biotechnologií,<br />

Purkyňova 118, 612 00 Brno, e-mail: hrdlickova@fch.vutbr.cz<br />

INTRODUCTION<br />

Polyketides are a large group <strong>of</strong> <strong>secondary</strong> <strong>metabolites</strong> <strong>of</strong> varied structure. They exhibit<br />

many physiological actions on organisms. Some OF them are useful drugs for humans,<br />

<strong>in</strong>clud<strong>in</strong>g antibacterials (e.g. erythromyc<strong>in</strong>, tetracycl<strong>in</strong>e), anticancer agents (e.g. daunomyc<strong>in</strong>),<br />

antifungal agents (e.g. amphoteric<strong>in</strong>), cholesterol-lower<strong>in</strong>g agents (e.g. lovastat<strong>in</strong>),<br />

immunosuppressants (e.g. rapamyc<strong>in</strong>) and veter<strong>in</strong>ary products (e.g. the antiparasitic,<br />

avermect<strong>in</strong>; the feed additive, monens<strong>in</strong>), others can be allergenic, toxic, and <strong>in</strong> some cases<br />

carc<strong>in</strong>ogenic. Genetic eng<strong>in</strong>eer<strong>in</strong>g may lead to new polyketide drugs.<br />

The tetracycl<strong>in</strong>es were the first major group <strong>of</strong> antimicrobial agents for which the term<br />

broad-spectrum was used, they exhibit activity aga<strong>in</strong>st both gram-positive and gram-negative<br />

bacteria. Most natural tetracycl<strong>in</strong>es have a common structure with the β-diketone system <strong>in</strong><br />

r<strong>in</strong>gs B and C. Streptomyces rimosus is used for the <strong>production</strong> <strong>of</strong> natural tetracycl<strong>in</strong>es by<br />

commercial fermentation. In S. rimosus a mixture <strong>of</strong> tetracycl<strong>in</strong>e and oxytetracycl<strong>in</strong>e is<br />

produced, but the 5-hydroxylase enzyme is extremely active, thus, the equilibrum is far <strong>in</strong><br />

favor (>95%) <strong>of</strong> oxytetracycl<strong>in</strong>e <strong>production</strong>. Oxytetracycl<strong>in</strong>e (OTC) is a broad-spectrum<br />

antibiotic produced by S. rimosus. OTC is a member <strong>of</strong> the "polyketide" class <strong>of</strong> <strong>secondary</strong><br />

<strong>metabolites</strong> biosynthesized by condensation <strong>of</strong> coenzyme A derivatives <strong>of</strong> metabolic<br />

precursors. The backbone <strong>of</strong> the antibiotic, consist<strong>in</strong>g <strong>of</strong> 19 carbon atoms, is thought to be<br />

derived from an am<strong>in</strong>ated starter unit (most likely malonamyl-CoA), to which eight acetyl<br />

(malonyl-CoA) extender units are added sequentially.<br />

Streptomyces rimosus has a l<strong>in</strong>ear chromosome <strong>of</strong> about 8 Mb. The chromosome has<br />

<strong>in</strong>verted repeats <strong>of</strong> 550 kb, which are the longest yet reported for a Streptomyces species.The<br />

otc biosynthetic gene cluster is located about 600 kb from one <strong>of</strong> the chromosome ends, just<br />

outside the <strong>in</strong>verted repeat structure.<br />

Carotenoids are naturally occur<strong>in</strong>g membrane-protective antioxidant pigments, that<br />

efficiently scavenge s<strong>in</strong>glet oxygen and peroxyl radicals. Carotenoids are produced <strong>in</strong> higher<br />

plants, algae and phototrophic bacteria as well as <strong>in</strong> non-phototrophic bacteria, yeasts and<br />

fungi. In recent years, there is evidence that accumulat<strong>in</strong>g <strong>of</strong> carotenoids plays an important<br />

role <strong>in</strong> human health by prevent<strong>in</strong>g degenerative diseases. From a commercial po<strong>in</strong>t <strong>of</strong> view,<br />

there is an <strong>in</strong>creas<strong>in</strong>g demand <strong>of</strong> special carotenoids <strong>in</strong> nutrient supplementation, for<br />

pharmaceutical purposes, as food colorants and <strong>in</strong> animal feeds. Biotechnological <strong>production</strong><br />

<strong>of</strong> carotenoids by exploit<strong>in</strong>g the carotenoid genes cloned from different species is <strong>of</strong><br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest.<br />

Lute<strong>in</strong>, lycopene and beta-carotene belong to <strong>in</strong>dustrially important carotenoids, widely<br />

used <strong>in</strong> food and feed <strong>in</strong>dustry as natural pigments, provitam<strong>in</strong>s and food/feed supplements.<br />

Carotenoids act as antioxidants and protect organism from photooxidative damage.<br />

Availability <strong>of</strong> carotenoids for <strong>in</strong>dustrial usage is limited by partial problems associated with<br />

their chemical synthesis as well as with isolation from natural sources. Accord<strong>in</strong>g to this fact,<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 197


<strong>in</strong> last years some ways for over<strong>production</strong> <strong>of</strong> carotenoids <strong>in</strong>clud<strong>in</strong>g modern methods <strong>of</strong><br />

molecular clon<strong>in</strong>g and genetic eng<strong>in</strong>eer<strong>in</strong>g are studied.<br />

Erw<strong>in</strong>ia carotovora is nonphotosynthetic bacterium pathogenic for higher plants. Beside<br />

its agricultural significance, Erw<strong>in</strong>ia stra<strong>in</strong>s are <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest as <strong>in</strong>dustrial microbes<br />

produc<strong>in</strong>g pect<strong>in</strong>olytic, cellulolytic and proteolytic enzymes as well as antileukaemic<br />

asparag<strong>in</strong>ase. Erw<strong>in</strong>ia stra<strong>in</strong>s form carotenoids which cause yellow-orange coloured<br />

phenotype.<br />

METHODS<br />

Bacterial stra<strong>in</strong>s. For <strong>production</strong> <strong>of</strong> oxytetracycl<strong>in</strong>es bacterium Streptomyces rimosus 4018<br />

was used. For <strong>production</strong> <strong>of</strong> carotenoids bacterium Erw<strong>in</strong>ia carotovora CCM 1008 was used.<br />

For transformation DH5α, DH10β and ET 12567 Escherichia coli competent cells were<br />

prepared.<br />

Cultivation. Escherichia coli was cultivated <strong>in</strong> 2TY medium at 37ºC. 2TY medium<br />

conta<strong>in</strong>ed, per litre: tryptone, 16 g; yeast extract, 10 g; NaCl, 5 g .<br />

Plasmids. pHSG298, pGEM-T (for PCR product), pSGset2 (conta<strong>in</strong><strong>in</strong>g Erm, OriC, Apr,<br />

OriT, attP, phi-C31 <strong>in</strong>t), pTS55 (conta<strong>in</strong><strong>in</strong>g Amp, tsr, att, <strong>in</strong>t, repSA) and pIJ 4026<br />

(conta<strong>in</strong><strong>in</strong>g Erm, bla) were used as transformation vectors.<br />

Isolation. Plasmid DNA isolation was performed us<strong>in</strong>g commercial kits (Gen Elute<br />

Plasmid M<strong>in</strong>iprep Kit).<br />

Transformation. Transformation <strong>of</strong> E. coli cells was done us<strong>in</strong>g electroporation by BioRad<br />

GENEPULSER apparatus at follow<strong>in</strong>g conditions: voltage 2500 V, resistance 200 Ω,<br />

capacitance 25 μF.<br />

Electrophoresis. DNA was analysed us<strong>in</strong>g agarose electrophoresis and pulsed field gel<br />

electropohoresis (PFGE).<br />

Analysis <strong>of</strong> carotenoids. Production <strong>of</strong> carotenoids by transformants was analysed<br />

chromatographically. Carotenoids were extracted from E. coli transormant cells by ethanol.<br />

Individua pigments were separated and quantified by RP-HPLC us<strong>in</strong>g a Nucleosil 100 C18<br />

column and methanol (analysis <strong>of</strong> lycopene, lute<strong>in</strong> and carotenes) or mixture<br />

acetonitril:methanol 95:5 (phytoene analysis) as eluent.<br />

RESULTS<br />

Presented work was focused on <strong>production</strong> <strong>of</strong> <strong>selected</strong> <strong>secondary</strong> <strong>metabolites</strong> <strong>in</strong><br />

<strong>transformed</strong> bacterial cells. First, regulation <strong>of</strong> polyketide antibiotik <strong>production</strong> <strong>in</strong> Escherichia<br />

coli cells <strong>transformed</strong> by otc genes from Streptomyces rimosus was studied. Further, isolation<br />

and clon<strong>in</strong>g <strong>of</strong> crt gene cluster from bacteria Erw<strong>in</strong>ia carotovora <strong>in</strong> E.coli DH5α cells was<br />

tested. Most OF experiments were performed <strong>in</strong> co-operation with Biotechnical Faculty,<br />

University <strong>of</strong> Ljubljana (Socrates/Erasmus exchange).<br />

The DNA sequence <strong>of</strong> Streptomyces rimosus was analysed by FramePlot (FramePlot is a<br />

web-based tool for predict<strong>in</strong>g prote<strong>in</strong>-cod<strong>in</strong>g regions <strong>in</strong> bacterial DNA with a high G+C<br />

content, such as Streptomyces). Primer structure was derived from sequence analysis results.<br />

The genes were amplified by PCR. Recommended sizes <strong>of</strong> PCR products were 714 bp and<br />

470 bp. The sequence <strong>of</strong> 714 bp was named CEL and the sequence <strong>of</strong> 470 bp was named<br />

MUT. After purification by Gen Elute PCR Clean-Up Kit the PCR products were ready to be<br />

cloned. CEL and MUT PCR products were ligated <strong>in</strong>to the pGEM-T and <strong>in</strong>troduced <strong>in</strong>to<br />

E. coli competent cells. The cells with CEL or MUT were <strong>selected</strong> on LB agar plates<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 198


conta<strong>in</strong><strong>in</strong>g ampicill<strong>in</strong>, IPTG and x-gal (blue-white test). Plasmids <strong>in</strong>corporated <strong>in</strong>to<br />

transformants were isolated by Gen Elute Plazmid M<strong>in</strong>iprep Kit. To confirm that genes CEL<br />

and MUT were successfully cloned <strong>in</strong>to pGEM, CEL+pGEM and MUT+pGEM were<br />

digested with EcoRI. Electrophoretic separation showed that <strong>in</strong>serts CEL and MUT were<br />

present <strong>in</strong> <strong>transformed</strong> cells. Verification <strong>of</strong> CEL and MUT sequences was done <strong>in</strong> cooperation<br />

with Macrogen Inc. Company (Soul, Korea).<br />

The CEL gene was extracted from pGEM-T us<strong>in</strong>g Nde I. After electrophoretic separation<br />

and extraction from the gel genes were ligated <strong>in</strong>to the pSGset2/Nde I-deP and <strong>in</strong>troduced<br />

<strong>in</strong>to Escherichia coli competent cells. The cells conta<strong>in</strong><strong>in</strong>g CEL+pSGset2/NdeI were <strong>selected</strong><br />

on LB agar plates with apramyc<strong>in</strong>.<br />

The MUT gene was extracted from pGEM-T us<strong>in</strong>g Eco RI and after electrophoretic<br />

separation and extraction from the gel. After ligation <strong>in</strong>to the pIJ 4026/Eco RI-deP<br />

transformation vestors were <strong>in</strong>troduced <strong>in</strong>to ET 12567 Escherichia coli competent cells. The<br />

cells conta<strong>in</strong><strong>in</strong>g MUT+pIJ 4026/Eco RI were <strong>selected</strong> on LB agar plates with<br />

ampicill<strong>in</strong>+chloramphenicol.<br />

We can summarize, that <strong>in</strong> this part <strong>of</strong> work PCR amplification <strong>of</strong> obta<strong>in</strong>able sequence and<br />

clon<strong>in</strong>g and <strong>in</strong>corporation to expression vector was performed. Further, target sequences were<br />

<strong>in</strong>corporated <strong>in</strong>to transformation vectors and recomb<strong>in</strong>ant plasmids were then <strong>in</strong>corporated<br />

<strong>in</strong>to Escherichia coli recipient cells. The presence <strong>of</strong> recomb<strong>in</strong>ant plasmids was verified at the<br />

level <strong>of</strong> genotype and phenotype. Transformation <strong>of</strong> Streptomyces rimosus recipient cells by<br />

recomb<strong>in</strong>ant plasmids will be conduct <strong>in</strong> the future.<br />

In second part <strong>of</strong> this work, regulation <strong>of</strong> carotenoid <strong>production</strong> us<strong>in</strong>g genetic<br />

eng<strong>in</strong>eer<strong>in</strong>g was tested. Several methods <strong>of</strong> isolation and transfer <strong>of</strong> crt genes from bacteria<br />

Erw<strong>in</strong>ia carotovora to recipient stra<strong>in</strong> Escherichia coli DH5α cells were tested and<br />

optimized. Identification <strong>of</strong> carotenoids produced by recomb<strong>in</strong>ant cells was verified by HPLC<br />

analysis.<br />

In <strong>in</strong>dividual Escherichia coli transformants <strong>production</strong> <strong>of</strong> lute<strong>in</strong>, lycopene and βcarotene<br />

was demonstrated. Production <strong>of</strong> carotenoids <strong>in</strong> Escherichia coli cells <strong>transformed</strong><br />

by several recomb<strong>in</strong>ant vectors pHSG298/crt was substantially higher then those found <strong>in</strong><br />

Erw<strong>in</strong>ia carotovora cells. Further, the posibility <strong>of</strong> regulated high-yield carotenoid <strong>production</strong><br />

<strong>in</strong> laboratory fermentor was tested. Production <strong>of</strong> lute<strong>in</strong> <strong>in</strong> Escherichia coli transformants was<br />

about 8x higher then amount <strong>of</strong> lute<strong>in</strong> found <strong>in</strong> Erw<strong>in</strong>ia carotovora cells, which were<br />

cultivated <strong>in</strong> the same conditions.<br />

ACKNOWLEDGEMENTS<br />

I would like to thank Dr. Hrvoje Petkovič and Ms. Urška Lešnik for help and technical<br />

assistance. Both from Biotechnical Faculty, University <strong>of</strong> Ljubljana, Slovenia.<br />

REFERENCES<br />

1. Petkovič H., Thamchaipenet A., Zhou L-H., Hranueli D., Raspor P., Waterman P.G.,<br />

and Hunter I. S.: Disruption <strong>of</strong> an Aromatase/Cyclase from the Oxytetracycl<strong>in</strong>e<br />

Gene Cluster <strong>of</strong> Streptomyces rimosus Results <strong>in</strong> Production <strong>of</strong> Novel Polyketides<br />

with Shorter Cha<strong>in</strong> Lengths. The Journal <strong>of</strong> Biological Chemistry 46, p.32829<br />

-32834, 1999.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 199


2. Pandza K., Pfalzer G., Cullum J. and Hranueli D.: Physical mapp<strong>in</strong>g shows that the<br />

unstable oxytetracycl<strong>in</strong>e gene cluster <strong>of</strong> Streptomyces rimosus lies close to one end<br />

<strong>of</strong> the l<strong>in</strong>ear chromosome. Microbiology, p.1493-1501, 1997.<br />

3. Bentley R.: Polyketides. Encyclopedia <strong>of</strong> life sciences, 2001.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 200


THE SIMPLE METHOD FOR THE RECOGNITION OF REDUCING AND<br />

NONREDUCING NEUTRAL CARBOHYDRATES BY MALDI-TOF MS<br />

Ing. Markéta Laštovičková a,b , 5. DSP<br />

Supervisor: RNDr. Josef Chmelík b<br />

a Faculty <strong>of</strong> Chemistry, Brno University <strong>of</strong> Technology, Purkyňova 118, 612 00 Brno, Czech<br />

Republic; e-mail: lastovickova@iach.cz<br />

b Institute <strong>of</strong> Analytical Chemistry, Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic, 611 42 Brno,<br />

Czech Republic<br />

1. INTRODUCTION<br />

The Matrix-Assisted Laser Desorption/Ionization Time-<strong>of</strong>-Flight mass spectrometry<br />

(MALDI-TOF MS) can provide valuable <strong>in</strong>formation on several aspects <strong>of</strong> carbohydrate<br />

structural analysis, such as the determ<strong>in</strong>ation <strong>of</strong> sequence, branch<strong>in</strong>g, and l<strong>in</strong>kage. For the<br />

analyses <strong>of</strong> neutral oligosaccharides, more frequently the positive-ion MALDI-TOF mode has<br />

been performed. The negative-ion mode has been applied ma<strong>in</strong>ly <strong>in</strong> the analysis <strong>of</strong> charged<br />

carbohydrates that more simply form the deprotonated molecules ([M–H] – ) [1–4].<br />

Inul<strong>in</strong> and maltooligosaccharides (MOSs) are the representatives <strong>of</strong> neutral carbohydrates.<br />

Inul<strong>in</strong> belongs to the fructan group. It is a nonreduc<strong>in</strong>g polysaccharide conta<strong>in</strong><strong>in</strong>g Dfruct<strong>of</strong>uranosyl<br />

units l<strong>in</strong>ked by α–1–2 glycosidic bonds and ended with one glucose unit.<br />

MOSs are the l<strong>in</strong>ear glucose oligomers conta<strong>in</strong><strong>in</strong>g only 1–4 l<strong>in</strong>kages. Glucose syrups are<br />

concentrated, aqueous solutions <strong>of</strong> reduc<strong>in</strong>g, low molecular mass oligosaccharides (conta<strong>in</strong><strong>in</strong>g<br />

1–4 and 1–6 glycosidic bonds) obta<strong>in</strong>ed by hydrolysis <strong>of</strong> starch. These starch hydrolysates<br />

can be trespassed as the cheap sweeteners at the adulteration <strong>of</strong> food, e.g., fruit juices,<br />

therefore they are important for food <strong>in</strong>dustry [5].<br />

This study demonstrates a great potential <strong>of</strong> the negative-ion mode MALDI-TOF MS for<br />

the characterization <strong>of</strong> underivatized neutral oligosaccharides.<br />

2. EXPERIMENTAL<br />

PREPARATION OF NEUTRAL CARBOHYDRATES STANDARD SAMPLES: Inul<strong>in</strong> from<br />

Dahlia tubers Mw 5000 (Fluka, Buchs, Switzerland) and MOSs G4-G10 (Sigma, St. Louis,<br />

MO) were prepared at concentrations <strong>of</strong> 1 mg/mL <strong>in</strong> deionized water.<br />

EXTRACTION OF NEUTRAL CARBOHYDRATES FROM REAL SAMPLES: Red onion and<br />

Jerusalem artichokes were acquired from a private producer from the Czech Republic. A<br />

procedure for the carbohydrate extraction from fresh samples was described previously [4, 6]<br />

Low glucose syrup (LGS) from 80% wheat starch (w/v), obta<strong>in</strong>ed from Amylon Co.<br />

(Havlickuv Brod, Czech Republic), was used at a concentration <strong>of</strong> 4 mg/mL <strong>in</strong> deionized<br />

water.<br />

MALDI-TOF MS: The reflectron negative-ion mode experiments were performed with an<br />

Applied Biosystems 4700 Proteomics Analyzer (Applied Biosystems, Fram<strong>in</strong>gham, MA)<br />

utiliz<strong>in</strong>g a Nd:YAG laser (355 nm). The optimal laser power was <strong>selected</strong> from the relative<br />

scale 0-8800. 2,4,6-trihydroxyacetophenone (THAP; 100 mg/ml acetone) was used as a<br />

matrix.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 201


3. RESULTS AND DISCUSSION<br />

The ma<strong>in</strong> task <strong>of</strong> this study was the application <strong>of</strong> the negative-ion mode MALDI-TOF MS<br />

to the determ<strong>in</strong>ation <strong>of</strong> a structure <strong>of</strong> storage oligosaccharides isolated from plants.<br />

The proper experimental conditions (the most convenient matrix, optimal concentrations <strong>of</strong><br />

samples and matrix, optimal laser power etc.) were determ<strong>in</strong>ed for <strong>in</strong>ul<strong>in</strong> and MOSs standard<br />

samples (the details are not shown). Moreover, these <strong>in</strong>itial experiments showed a potential <strong>of</strong><br />

negative-ion mode MALDI-TOF MS for the differentiation <strong>of</strong> reduc<strong>in</strong>g (MOSs) and<br />

nonreduc<strong>in</strong>g (<strong>in</strong>ul<strong>in</strong>) oligosaccharides, because <strong>of</strong> easy fragmentation <strong>of</strong> reduc<strong>in</strong>g end r<strong>in</strong>g<br />

(the <strong>production</strong> <strong>of</strong> <strong>in</strong>-source fragment ions [M – H – 120] – ; see Figure 1). This <strong>in</strong>-source<br />

fragmentation has already been described for negative-ion mode MALDI-TOF mass spectra<br />

<strong>of</strong> dextrans (the polymer conta<strong>in</strong><strong>in</strong>g the ma<strong>in</strong> cha<strong>in</strong> with 1–6 glycosidic bonds and different<br />

degree <strong>of</strong> branch<strong>in</strong>g) [7]. This <strong>in</strong>formation is very useful for the identification <strong>of</strong> storage<br />

carbohydrates isolated from plants as is shown below.<br />

All real samples (LGS and oligosaccharides isolated from Jerusalem artichoke and red<br />

onion) were analyzed with THAP that was <strong>selected</strong> as the most convenient matrix. While<br />

[M – H] – ions formed the dom<strong>in</strong>ant distribution for oligosaccharides from both vegetables, the<br />

ma<strong>in</strong> distribution <strong>of</strong> LGS was formed by the <strong>in</strong>-source fragment ions [M – H – 120] – (see<br />

Figure 2). LGS showed this fragmentation because <strong>of</strong> its structure that conta<strong>in</strong>s the ma<strong>in</strong><br />

cha<strong>in</strong> formed by 1–4 glycosidic bonds and branches with 1–6 glycosidic bonds and a reduc<strong>in</strong>g<br />

end group. The mass spectra differed <strong>in</strong> the quantity <strong>of</strong> the adducts which was dependent on<br />

the amount <strong>of</strong> ions <strong>in</strong> the samples.<br />

Thus there are some important conclusions on the mass spectrometric behavior <strong>of</strong> the<br />

neutral oligosaccharides. Although the negative-ion mode MALDI-TOF MS is ignored <strong>in</strong><br />

connection with neutral carbohydrates it is possible to determ<strong>in</strong>e the ma<strong>in</strong> characteristics <strong>of</strong><br />

their distribution without any carbohydrate derivatization (see Table 1). In addition, the<br />

negative-ion mode MALDI-TOF mass spectra is able to differentiate reduc<strong>in</strong>g<br />

maltooligosaccharides and nonreduc<strong>in</strong>g fructooligosaccharides extracted from real samples,<br />

because <strong>of</strong> easy fragmentation <strong>of</strong> reduc<strong>in</strong>g end r<strong>in</strong>g, which is not evident <strong>in</strong> the positive-ion<br />

mode MALDI-TOF MS where both types <strong>of</strong> oligosaccharides form the alkali-ion adducts.<br />

REFERENCES<br />

[1] Harvey, D. J. Matrix-assisted laser desorption/ionization mass spectrometry <strong>of</strong><br />

carbohydrates and glycoconjugates. Int. J. Mass Specrom. 2003, 226, 1-35.<br />

[2] Zaia, J. Mass spectrometry <strong>of</strong> oligosaccharides. Mass Spectrom. ReV. 2004, 23, 161-227.<br />

[3] Harvey, D. J. Mass Specrom. Reviews. 2006, 25, 595-662<br />

[4] Štikarovská, M.; Chmelík, J. Analytica Chimica Acta 2004, 520, 47–55<br />

[5] Robyt, J.D. Essentials <strong>of</strong> carbohydrate chemistry, Spr<strong>in</strong>ger, New York, 1998<br />

[6] Laštovičkova,M; Chmelik, J. J. Agric. Food Chem. 2006, 54,5092-5097<br />

[7] Čmelík, R.; Štikarovská, M.; Chmelík, J. J. Mass Spectrom. 2004, 39, 1467-1473.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 202


Figure 1 Negative-ion mode MALDI-TOF mass spectra <strong>of</strong> standard oligosaccharides: <strong>in</strong>ul<strong>in</strong><br />

(A) and MOSs (B) where<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 203


Figure 2 Negative-ion mode MALDI-TOF mass spectra <strong>of</strong> oligosaccharides from the real<br />

samples: Jerusalem artichoke (A); red onion (B); and LGS (C).<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 204


Table 1 Evaluation <strong>of</strong> negative-ion MALDI-TOF mass spectra <strong>of</strong> LGS and oligosaccharides<br />

isolated from red onion and Jerusalem artichoke; where the range between the shortest and<br />

highest detected oligomers = the range <strong>of</strong> the degree <strong>of</strong> polymerization (DP), the total<br />

number <strong>of</strong> detected oligomers = np, number-average molecular mass = Mn, weight-average<br />

molecular mass = Mw and polydispersity = δ.<br />

Jerusalem<br />

artichoke<br />

Red onion LGS<br />

np 17 6 19<br />

DP 6–22 6–11 7–25<br />

Mn 1805 1392 1763<br />

Mw 1962 1426 1966<br />

δ 1.09 1.02 1.11<br />

Peak types<br />

[M–H] –<br />

[M+K–2H] –<br />

[M–H] –<br />

[M+K-2H] –<br />

[M–H–120] –<br />

[M+Na–2H–120] –<br />

[M+K–2H–120] –<br />

[M+HSO4] –<br />

The most abundant peak<br />

Mr 1313.06 1313.06 1193.31<br />

Intensity 471.2 mV 371.8 mV 534.5 mV<br />

DP 8 8 8<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 205


MINIATURE METALLIC DEVICE FOR COLLECTION OF HYDRIDE<br />

FORMING ELEMENTS<br />

Pavel Krejčí 1,2<br />

Bohumil Dočekal 2<br />

1 Department <strong>of</strong> Environmental Chemistry and Technology, Faculty <strong>of</strong> Chemistry,<br />

Brno University <strong>of</strong> Technology, Purkyňova 118, CZ-61200 Brno, Czech Republic,<br />

e-mail:krejci-p@fch.vutbr.cz<br />

2 Institute <strong>of</strong> Analytical Chemistry, Czech Academy <strong>of</strong> Sciences, Veveří 97, CZ-60200 Brno,<br />

Czech Republic, e-mail: docekal@iach.cz<br />

INTRODUCTION<br />

Collection <strong>of</strong> hydride form<strong>in</strong>g elements (As, Bi, Ge, In, Pb, Sb, Se, Sn and Te) has become<br />

a simple and useful tool for pre-concentration and separation purposes <strong>in</strong> the trace and<br />

ultratrace analysis by atomic spectrometric methods [1,2]. It is typically performed "<strong>in</strong> situ"<br />

us<strong>in</strong>g conventional graphite (GF) or tungsten (WETA) heated atomizers with subsequent<br />

analyte detection by electrothermal atomic absorption spectrometry (ETAAS) method [1].<br />

Nevertheless, the trapp<strong>in</strong>g technique can also be applied <strong>in</strong> other spectrometry methods<br />

(atomic emission spectrometry, atomic fluorescence spectrometry and mass spectrometry).<br />

For this purpose, conventional electrothermal atomizers are modified and/or special, mostly<br />

laboratory made devices are designed [2-5].<br />

Capability <strong>of</strong> trapp<strong>in</strong>g <strong>of</strong> hydrides on a prototype <strong>of</strong> a m<strong>in</strong>iature electrothermal<br />

vaporization (ETV) device was studied employ<strong>in</strong>g antimony, arsenic, bismuth and selenium<br />

hydrides as volatile species <strong>of</strong> analytes. This device is based on a strip <strong>of</strong> the molybdenum<br />

foil (which is typically used <strong>in</strong> <strong>production</strong> <strong>of</strong> "halogen" bulbs) and comb<strong>in</strong>ed with m<strong>in</strong>iature<br />

hydrogen diffusion flame for specific analyte detection <strong>in</strong> atomic absorption spectrometry.<br />

Influence <strong>of</strong> trapp<strong>in</strong>g temperature, modification <strong>of</strong> the molybdenum surface with noble metals<br />

– Ir, Pt and Rh, distance between the orifice <strong>of</strong> the <strong>in</strong>jection capillary and the strip and<br />

composition <strong>of</strong> the gaseous phase (argon-hydrogen-oxygen) was studied <strong>in</strong> order to clarify the<br />

general hydride trapp<strong>in</strong>g mechanism.<br />

EXPERIMENTAL<br />

A Perk<strong>in</strong>–Elmer (Norwalk, USA) model 3110 atomic absorption spectrometer equipped<br />

with a deuterium background correction system was employed <strong>in</strong> this study. The Photron<br />

Super Lamps® (Photron, Victoria, Australia) <strong>of</strong> antimony, bismuth, arsenic and selenium<br />

were used as a specific radiation sources.<br />

The device for electrothermal <strong>in</strong>duced collection <strong>of</strong> hydrides and their subsequent<br />

electrothermal release was based on a piece <strong>of</strong> the molybdenum foil (Metallwerk Plansee,<br />

Reutte, Austria), 85 µm thick, 2.15 mm wide and 56 mm long. It was bent to form a U–<br />

pr<strong>of</strong>ile. Both ends <strong>of</strong> the strip were pressed between boron nitride cyl<strong>in</strong>drical body (6 mm <strong>in</strong><br />

diameter) and two brass contacts. A part <strong>of</strong> the bent strip (9 mm) rema<strong>in</strong>ed free. Boron nitride<br />

electric <strong>in</strong>sulation and the brass contacts ma<strong>in</strong>ta<strong>in</strong>ed also an efficient cool<strong>in</strong>g <strong>of</strong> the strip<br />

provid<strong>in</strong>g reproducible temperature sett<strong>in</strong>g <strong>in</strong> series <strong>of</strong> experiments. In this arrangement,<br />

maximum power <strong>of</strong> about 130 W was supplied at the highest temperature applicable<br />

(2600°C).<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 206


Fig. 1: Scheme <strong>of</strong> the hydride generation aparature coupled with the heated molybdenum-foil<br />

trap system and simple hydrogen diffusion flame atomic absorption system.<br />

The implementation <strong>of</strong> the electrothermal trapp<strong>in</strong>g/vaporisation (ETV) device <strong>in</strong> the<br />

<strong>in</strong>strumental arrangement is shown <strong>in</strong> Fig. 1. Only a very simple atomiser based on<br />

a m<strong>in</strong>iature hydrogen diffusion flame was used for atomic absorption spectrometry detection<br />

<strong>in</strong> trapp<strong>in</strong>g experiments. The flame was supported by the gas mixture <strong>of</strong> hydrogen and argon<br />

at a flow rate <strong>of</strong> 215 ml m<strong>in</strong> -1 and 800 ml m<strong>in</strong> -1 , respectively. The <strong>in</strong>jection capillary, made <strong>of</strong><br />

a wide bore quartz GC–capillary (8 cm × 0.53 mm id), was <strong>in</strong>serted through the narrow hole,<br />

drilled <strong>in</strong> the axis <strong>of</strong> the boron nitride body. The tip <strong>of</strong> the capillary was precisely positioned<br />

by means <strong>of</strong> an adjust<strong>in</strong>g screw made <strong>of</strong> PEEK. A laboratory made pulse-width modulation<br />

power supply was used for heat<strong>in</strong>g the molybdenum strip. It was based on a high power<br />

MOS-FET transistor and a car battery (12 V, 60 Ah). The power supply was controlled by<br />

a PC by us<strong>in</strong>g s<strong>of</strong>tware created <strong>in</strong> Visual Basic ver.3. In trapp<strong>in</strong>g experiments, the actual<br />

temperature <strong>of</strong> the heated central part <strong>of</strong> the molybdenum strip was simultaneously measured<br />

by pyrometers.<br />

A laboratory made flow <strong>in</strong>jection hydride generation system is depicted also <strong>in</strong> Fig. 1. The<br />

peristaltic pump (model 72624–71, Ismatec, Switzerland) was fitted with Tygon tubes. The<br />

generation system was based on 3-channel peristaltic pump, PTFE-reaction loop and gasliquid<br />

separator with a forced outlet for liquid phase and with a PTFE-filter <strong>in</strong> an outlet for<br />

gaseous phase. The flow rates were 1.1, 3.6 and 5.0 ml m<strong>in</strong> -1 for 0.5% m/v NaBH4 solution,<br />

sample solution <strong>in</strong> 1 mol l -1 HCl and waste solution, respectively. The sample channel was<br />

equipped with a Knauer (Berl<strong>in</strong>, Germany) 6–port <strong>in</strong>jection valve made <strong>of</strong> PEEK with<br />

a 100 μl sampl<strong>in</strong>g loop for perform<strong>in</strong>g flow <strong>in</strong>jection <strong>of</strong> the sample solution. Argon was<br />

<strong>in</strong>troduced <strong>in</strong> two channels, upstream <strong>of</strong> the reaction loop as reaction gas and <strong>in</strong>to the gas–<br />

liquid separator as stripp<strong>in</strong>g gas at a flow rate <strong>of</strong> 55 ml m<strong>in</strong> -1 and 10 ml m<strong>in</strong> -1 , respectively.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 207


The gaseous hydrides were directed towards the center <strong>of</strong> the bent part <strong>of</strong> the molybdenum<br />

foil via a wide bore quartz GC–capillary. See Ref. [5] for more details.<br />

RESULTS<br />

The <strong>in</strong>fluence <strong>of</strong> the molybdenum foil temperature and concentration <strong>of</strong> hydrogen <strong>in</strong> the<br />

gaseous phase on trapp<strong>in</strong>g behavior <strong>of</strong> bismuth and antimony were <strong>in</strong>vestigated for a bare<br />

molybdenum surface and argon-hydrogen atmosphere <strong>of</strong> the flame support<strong>in</strong>g gas mixture.<br />

Maximum trapp<strong>in</strong>g efficiencies were found for antimony and bismuth <strong>in</strong> the temperature<br />

ranges <strong>of</strong> 650-750 °C and 500-600 °C, respectively. These optimum temperatures are<br />

approximately 300-500 °C lower than those found for arsenic and selenium (1100-1200°C).<br />

Capability <strong>of</strong> trapp<strong>in</strong>g antimony and bismuth hydrides on a modified surface <strong>of</strong> the<br />

molybdenum trap was also <strong>in</strong>vestigated. Rhodium, plat<strong>in</strong>um and iridium were chosen as<br />

permanent modifiers and were <strong>in</strong>troduced stepwise on the surface <strong>in</strong> amounts <strong>of</strong> 10, 30, 100<br />

and 200 μg. Significant depletion <strong>of</strong> signals <strong>of</strong> collected antimony and bismuth was observed<br />

when the amount <strong>of</strong> any modifier used exceeded 30 μg. Evidently, all modifiers <strong>in</strong>hibit the<br />

<strong>in</strong>teraction <strong>of</strong> both analytes with active sites on the molybdenum surface. In contrary, these<br />

modifiers do not significantly affect trapp<strong>in</strong>g <strong>of</strong> arsenic and selenium on the molybdenum<br />

surface. The maximum trapp<strong>in</strong>g efficiency <strong>of</strong> arsenic and selenium was <strong>in</strong>dependent <strong>of</strong> the<br />

modifier amount applied <strong>in</strong> the range from 0 to 200 μg. Their signal pr<strong>of</strong>iles were higher,<br />

more reproducible and symmetrical when <strong>in</strong>creas<strong>in</strong>g modifier amount.<br />

The overall efficiency <strong>of</strong> generation <strong>of</strong> hydrides and their transport <strong>in</strong>to the trapp<strong>in</strong>g<br />

chamber is <strong>in</strong>dependent on the <strong>in</strong>jection gas flow rate between the m<strong>in</strong>imum and the<br />

maximum achievable rates <strong>of</strong> 40 ml m<strong>in</strong> -1 and 260 ml m<strong>in</strong> -1 , respectively. Maximum trapp<strong>in</strong>g<br />

efficiency was reached at a flow rate close to 70 ml m<strong>in</strong> -1 , and at a distance <strong>of</strong> 2 mm between<br />

the tip <strong>of</strong> the <strong>in</strong>troduction capillary and the foil surface. Obviously, aerodynamic conditions<br />

prevail<strong>in</strong>g near the capillary orifice and the molybdenum foil dur<strong>in</strong>g the trapp<strong>in</strong>g step play the<br />

same role <strong>in</strong> trapp<strong>in</strong>g <strong>of</strong> all analytes studied.<br />

Vaporization experiments showed that antimony, arsenic and selenium are strongly bonded<br />

to the molybdenum surface. Collected antimony is completely released at temperatures above<br />

2200 °C and arsenic and selenium at temperatures above 2400 °C. To the contrary, bismuth<br />

exhibits a different behavior. A relative low temperature <strong>of</strong> 1200 °C is sufficient for complete<br />

vaporization <strong>of</strong> trapped Bi. The heat<strong>in</strong>g vaporization pulse should be very short to prevent<br />

losses <strong>of</strong> analyte on the <strong>in</strong>ner quartz wall <strong>of</strong> the trap chamber and to perform an efficient<br />

transport <strong>of</strong> the analyte <strong>in</strong>to the diffusion flame. In the present experimental arrangement, the<br />

optimum heat<strong>in</strong>g pulse <strong>in</strong> duration <strong>of</strong> 0.4 s was found.<br />

ACKNOWLEDGEMENT<br />

This work was supported by The Grant Agency <strong>of</strong> the Czech Republic (Project<br />

No. 203/06/1441) and by M<strong>in</strong>istry <strong>of</strong> Education, Youth and Sports <strong>of</strong> the CZ<br />

(FRVS 1054/2006).<br />

REFERENCES<br />

[1] J. Ded<strong>in</strong>a, D. L. Tsalev: Hydride Generation Atomic Absorption Spectrometry,<br />

Wiley & Sons, Inc., Chichester (1995).<br />

[2] H. Matusiewicz and R. E. Sturgeon, Spectrochim. Acta, Part B, 51 (1996) 377-397.<br />

[3] F. Barbosa Jr., S. Simiao de Souza, F.J. Krug, J. Anal. At. Spectrom., 17 (2002) 382-388.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 208


[4] H. Matusiewicz, M. Kopras, J. Anal. At. Spectrom., 18 (2003) 1415-1425.<br />

[5] P. Krejci, B. Docekal, Z. Hrusovska, Spectrochim. Acta, Part B, 61 (2006) 444-449.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 209


INFLUENCE OF POLYUNSATURATED FATTY ACIDS INTAKE<br />

ON LIPID METABOLISM IN PATIENTS WITH HYPERLIPIDAEMIA<br />

Simona Macuchová<br />

Mentor: Doc. RNDr. Ivana Márová, CSc.<br />

Brno University <strong>of</strong> Technology, Faculty <strong>of</strong> Chemistry, Department <strong>of</strong> Food Technology<br />

and Biotechnology, Purkyňova 118, 612 00, Brno, email: macuchova@fch.vutbr.cz<br />

INTRODUCION<br />

Cardiovascular diseases are the ma<strong>in</strong> cause <strong>of</strong> mortality <strong>in</strong> most <strong>of</strong> <strong>in</strong>dustrialized countries.<br />

Risk factors <strong>in</strong>clude smok<strong>in</strong>g, diabetes, obesity, high level <strong>of</strong> blood cholesterol, a diet high <strong>in</strong><br />

fats, and hav<strong>in</strong>g a personal or family history <strong>of</strong> heart disease. Cerebrovascular disease,<br />

peripheral vascular disease, high blood pressure, and kidney disease <strong>in</strong>volv<strong>in</strong>g dialysis are<br />

disorders that may also be associated with atherosclerosis (1).<br />

Atherosclerosis is characterized by deposition <strong>of</strong> cholesterol rich plaques <strong>in</strong> the<br />

endothelium. This observation stimulated research on the metabolism <strong>of</strong> cholesterol and<br />

revealed that cholesterol is transported <strong>in</strong> esterified form to cells by the low density<br />

lipoprote<strong>in</strong> (LDL). LDL is recognized by an endothelial cell receptor and <strong>in</strong>troduced <strong>in</strong>to the<br />

cell by endocytosis. There the esters are cleaved. The result<strong>in</strong>g free cholesterol is transferred<br />

to the cell walls. The process is strictly regulated. In atherosclerotic patients LDL is altered by<br />

oxidation. This altered LDL is taken up <strong>in</strong> unlimited amounts by macrophages. Dead<br />

macrophages filled with cholesterol esters are f<strong>in</strong>ally deposited <strong>in</strong> arteries (1).<br />

The fact that LDL is rendered toxic by oxidation raises the question which constituents <strong>of</strong><br />

LDL are prone to undergo oxidation. LDL consists <strong>of</strong> a core <strong>of</strong> cholesterol esters which is<br />

surrounded by a phospholipid membrane <strong>in</strong> which the prote<strong>in</strong> is <strong>in</strong>bedded. The latter is<br />

required to recognize the LDL cell receptor.<br />

Polyunsaturated fatty acids (PUFAs) esterified to cholesterol or present as phospholipids<br />

represent the most oxygen sensitive compounds <strong>of</strong> all these LDL constituents.<br />

Dietary polyunsaturated fatty acids (PUFA) have effects on diverse physiological<br />

processes impact<strong>in</strong>g normal health and chronic diseases, such as the regulation <strong>of</strong> plasma lipid<br />

levels, cardiovascular and immune function, <strong>in</strong>sul<strong>in</strong> action, and neural development and<br />

visual function (1).<br />

Ingestion <strong>of</strong> PUFA would lead to their distribution to virtually every cell <strong>in</strong> the body with<br />

effects on membrane composition and function, eicosanoid synthesis, and signal<strong>in</strong>g as well as<br />

the regulation <strong>of</strong> gene expression.<br />

Cell specific lipid metabolism, as well as the expression <strong>of</strong> fatty acid-regulated<br />

transcription factors likely play an important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g how cells respond to changes<br />

<strong>in</strong> PUFA composition.<br />

Chemically, PUFA belong to the class <strong>of</strong> simple lipids, as are fatty acids with two or more<br />

double bonds <strong>in</strong> cis position. There are two ma<strong>in</strong> families <strong>of</strong> PUFA: n-3 and n-6. These fatty<br />

acids family are not convertible and have very different biochemical roles.<br />

Dietary n-3 PUFA have several beneficial properties:<br />

- act favorably on blood characteristics by reduc<strong>in</strong>g platelet aggregation and blood<br />

viscosity;<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 210


- are hypotriglyceridemic;<br />

- exhibit antithrombotic and fibr<strong>in</strong>olytic activities;<br />

- exhibit anti<strong>in</strong>flammatory action;<br />

- reduce ischemia/reperfusion-<strong>in</strong>duced cellular damage. This effect is apparently due to the<br />

<strong>in</strong>corporation <strong>of</strong> eicosapentaenoic acid <strong>in</strong> membrane phospholipids.<br />

L<strong>in</strong>oleic acid (n-6) (LA) and alfa-l<strong>in</strong>olenic acid (n-3) (LNA) are two <strong>of</strong> the ma<strong>in</strong><br />

representative compounds, known as dietary essential fatty acids (EFA) because they prevent<br />

deficiency symptoms and cannot be synthesized by humans (1).<br />

Reduction <strong>of</strong> blood lipids and <strong>in</strong>hibition <strong>of</strong> LDL oxidation are the ma<strong>in</strong> therapeutic<br />

approaches to the treatment <strong>of</strong> atherosclerosis. Antioxidant agents, alone or <strong>in</strong> comb<strong>in</strong>ation<br />

with hypolipidaemic drugs are considered useful for this treatment. Food supplements<br />

conta<strong>in</strong><strong>in</strong>g such substances can serve as additional therapeutical agents (1).<br />

CLINICAL EXPERIMENT<br />

The aim <strong>of</strong> this work was to contribute to current knowledge <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> an<br />

antioxidant supplement type on metabolic and antioxidant status <strong>in</strong> a group <strong>of</strong> hyperlipidemic<br />

patients. Influence <strong>of</strong> complex food supplement conta<strong>in</strong><strong>in</strong>g tocopherol as antioxidant<br />

component and polyunsaturatd fatty acids as hypolipidaemic component on antioxidant status<br />

and parameters <strong>of</strong> lipid metabolism <strong>in</strong> 30 patients with hyperlipidaemia was studied. Food<br />

supplement (180 mg <strong>of</strong> eicosapentaneic acid EPA, 120 mg <strong>of</strong> docosahexaneic acid DHA, 1.12<br />

mg <strong>of</strong> vitam<strong>in</strong> E <strong>in</strong> 1 tbl.) was taken for 3 months, two tbl. daily; blood samples <strong>of</strong> each<br />

subject were taken <strong>in</strong> regular <strong>in</strong>tervals.<br />

METHODS<br />

Determ<strong>in</strong>ation <strong>of</strong> antioxidant activity<br />

Total antioxidant status was determ<strong>in</strong>ed us<strong>in</strong>g ABTS method (Randox Laboratories, USA).<br />

Serum AGE (Advanced Glycation End Products) were analysed fluorimetrically at<br />

350 nm/440 nm. Total amount <strong>of</strong> serum oxidation products „AOPP“ (Advanced Oxidation<br />

Prote<strong>in</strong> Products) was analysed spectrophotometrically accord<strong>in</strong>g to Witko-Sarsat et al. 1998<br />

(2), <strong>in</strong> Kalousová et al. 2001 modification (3).<br />

Biochemical parameters<br />

A set <strong>of</strong> biochemical parameters characteriz<strong>in</strong>g lipid metabolism was measured<br />

at Department <strong>of</strong> Cl<strong>in</strong>ical Biochemistry <strong>in</strong> the Kyjov Regional Hospital. Levels <strong>of</strong> total<br />

cholesterol, triacylglycerols, HDL and LDL – cholesterol, apolipoprote<strong>in</strong>e A and B, urea,<br />

creat<strong>in</strong><strong>in</strong>e, uric acid, alan<strong>in</strong>am<strong>in</strong>otransferase, aspartatam<strong>in</strong>otransferase, album<strong>in</strong> and glycated<br />

haemoglob<strong>in</strong> were determ<strong>in</strong>ed us<strong>in</strong>g automatically system HITACHI 717.<br />

HPLC analysis<br />

As parameters <strong>of</strong> antioxidant status levels <strong>of</strong> serum carotenoids, α-tocopherol and ret<strong>in</strong>ol<br />

were measured us<strong>in</strong>g HPLC method. Separation <strong>of</strong> carotenoids, ret<strong>in</strong>ol and α-tocopherol was<br />

carried out us<strong>in</strong>g the Biospher column C18 (4,6 mm × 150 mm, particulation size 7 μm),<br />

methanol as the mobile phase and flow rate 1.1 ml.m<strong>in</strong> -1 . Content <strong>of</strong> trans-all-ret<strong>in</strong>ol was<br />

detected at 325 nm, α-tocopherol at 289 nm and carotenoids at 450 nm.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 211


Determ<strong>in</strong>ation <strong>of</strong> fatty acids<br />

A simplified method for analysis <strong>of</strong> fatty acids <strong>in</strong> human serum was used accord<strong>in</strong>g to<br />

Kang at al. 2005 (4). Fatty acids were methylated us<strong>in</strong>g BF3/methanol reagent and extracted<br />

to hexane phase. Fatty acids methyl esters were measured us<strong>in</strong>g GC-FID method. In each<br />

sample 30 different fatty acids were detected us<strong>in</strong>g external standards.<br />

RESULTS<br />

After 3-month <strong>in</strong>take OF PUFA/tocopherol supplemet a significant decrease <strong>of</strong> serum<br />

cholesterol, LDL-cholesterol (10-15%) and ma<strong>in</strong>ly triglycerides (about 35%) <strong>in</strong><br />

hyperlipidaemic patients was observed. No similar changes <strong>in</strong> controls was shown. While the<br />

decrease <strong>of</strong> cholesterol as well as LDL-cholesterol levels was caused predom<strong>in</strong>antly by<br />

tocopherol effect, TAG levels could be <strong>in</strong>fluenced by comb<strong>in</strong>ed effect <strong>of</strong> PUFA and<br />

tocopherol. Further, PUFA/tocopherol <strong>in</strong>take led to a significant <strong>in</strong>crease <strong>of</strong> tocopherol levels<br />

and TAS and, thus, to correspond<strong>in</strong>g decrease <strong>of</strong> serum AGEs and AOPPs.<br />

The pr<strong>of</strong>iles <strong>of</strong> serum fatty acids (FA) shown also some changes after supplementation. A<br />

significant decrease <strong>of</strong> saturated FA (myristic, palmitic, stearic acid) was observed <strong>in</strong> all<br />

groups. Different changes <strong>of</strong> unsaturated FA were observed <strong>in</strong> hyperlipidaemics when<br />

compared with controls. A significant <strong>in</strong>crease <strong>of</strong> PUFA mixture, EPA and DHA was found<br />

<strong>in</strong> controls, while no changes <strong>of</strong> PUFA, EPA and moderate changes <strong>of</strong> DHA were observed<br />

<strong>in</strong> hyperlipidaemics.<br />

The ma<strong>in</strong> problem with any epidemiological study is that correlation does not imply<br />

causation. There are many other factors, that could be responsible for biological effect.<br />

Additional problems are connected with group composition as well as with biomarker<br />

selection (1). Moreover, <strong>in</strong> Czech population basal levels <strong>of</strong> antioxidants were chang<strong>in</strong>g <strong>in</strong><br />

the course <strong>of</strong> time.<br />

Despite these problems, our results <strong>in</strong>dicated, that <strong>in</strong>take <strong>of</strong> food supplement conta<strong>in</strong><strong>in</strong>g<br />

PUFA and tocopherol can positively <strong>in</strong>fluence lipid metabolism and antioxidant status <strong>in</strong><br />

patients with hyperlipidaemia. Very important is composition <strong>of</strong> vitam<strong>in</strong> preparative; many<br />

commercial PUFA are extensively oxidized and, thus, isoprostan formation can occur.<br />

Acknowledgements: This work was supported by project FRVS 3150/G1/2006 the Czech<br />

M<strong>in</strong>istry <strong>of</strong> Education, Youth and Sport.<br />

References:<br />

1. Halliwell B., Gutterdige J.M.C.: Free Radicals <strong>in</strong> Biology and Medic<strong>in</strong>e. 3rd Edition,<br />

Oxford University Press, 1999<br />

2. Witko-Sarsat et al.: Advanced Oxidation Prote<strong>in</strong> Products as Novel Mediators <strong>of</strong><br />

Inflammation and Monocyte Activation <strong>in</strong> Chronic Renal Failure. The Journal <strong>of</strong><br />

Immunology 2524-2532, 1998<br />

3. Kalousová M. et al.: Advanced Glycation End-Products and Advanced Oxidation<br />

Prote<strong>in</strong> Products <strong>in</strong> Patients with Diabetes Mellitus. Physiol. Res. 51: 597-604, 2002<br />

4. Kang J.X., Wang J.: A simplified method for analysis <strong>of</strong> polyunsaturated fatty acids.<br />

BMC Biochemistry 6:5, 2005<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 212


HYDROPHOBIZED SODIUM HYALURONATE IN AQUEOUS<br />

SOLUTION - A FLUORESCENCE STUDY<br />

Ing. Filip Mravec, 3 rd year PGS<br />

Supervisor: doc. Ing. Miloslav Pekař, CSc.<br />

Brno University <strong>of</strong> Technology, Faculty <strong>of</strong> Chemistry, Institute <strong>of</strong> Physical and Applied<br />

Chemistry, Purkyňova 118, 612 00 Brno, e-mail: mravec@fch.vutbr.cz<br />

INTRODUCTION<br />

Polysaccharides and their derivatives have become as major components for the<br />

development <strong>of</strong> biocompatible and biodegradable materials with many areas <strong>of</strong> <strong>in</strong>terests (e.g.<br />

tissue eng<strong>in</strong>eer<strong>in</strong>g, drug delivery). Chemical modification, which no affected<br />

biodegradability, can lead to the expansions <strong>of</strong> medic<strong>in</strong>e and eng<strong>in</strong>eer<strong>in</strong>g applications.<br />

Hyaluronan is major component <strong>of</strong> pericellular and extracellurar matrices. It is a l<strong>in</strong>ear<br />

polymer <strong>of</strong> the disaccharide D-glucuronic acid-1-β-3-N-acetylglukosam<strong>in</strong>e (Figure 1a). It<br />

plays important role <strong>in</strong> stabiliz<strong>in</strong>g the extracellular matrix <strong>in</strong> many tissues by b<strong>in</strong>d<strong>in</strong>g to<br />

specific prote<strong>in</strong>s called hyaladher<strong>in</strong>es. The ma<strong>in</strong> hyaluronan fraction is localized <strong>in</strong> sk<strong>in</strong><br />

tissue.<br />

The prepar<strong>in</strong>g <strong>of</strong> the hyaluronan derivatives are generally based on the esterifcation on the<br />

D-glucuronic subunit. Our derivatives were modified on the second carbon on the glucuronic<br />

subunit (Figure 1b). Because carboxylic groups are still free, we obta<strong>in</strong>ed the amphiphilic<br />

polyelectrolyte - hydrophobized hyaluronan (hHA). From its structure we predict <strong>in</strong> aqueous<br />

solution modified hyaluronan will aggregate to form micelle-like structures with non-polar<br />

core. This aggregation behavior can be study by non-polar fluorescence probes solubilized to<br />

H<br />

H<br />

O<br />

O<br />

HO<br />

a<br />

O<br />

O<br />

HO<br />

b<br />

O<br />

O -<br />

O -<br />

O<br />

OH<br />

O<br />

Na +<br />

Na +<br />

O<br />

NH<br />

R<br />

HO<br />

O<br />

HO<br />

O<br />

C<br />

H 3<br />

C<br />

H 3<br />

Figure 1 Structure <strong>of</strong> the native hyaluronan (a) and its hydrophobized derivative (b),<br />

R = C10.<br />

this core.<br />

Pyrene, benzo[d,e,f]fenanthrene is the even and alternat<strong>in</strong>g hydrocarbon (Figure 2a). The<br />

“Pyrene I1:I3 ratio method” is widely used method to determ<strong>in</strong>e the critical aggregation<br />

concentration (cac) for a lot <strong>of</strong> surfactant-based systems. Its unique response to the<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 213<br />

OH<br />

OH<br />

O<br />

NH<br />

O<br />

O<br />

NH<br />

O<br />

n<br />

n<br />

OH<br />

OH


microenvironment polarity is well known and described (Aguiar 2003). We evaluated<br />

experimental data us<strong>in</strong>g non-l<strong>in</strong>ear fitt<strong>in</strong>g with Boltzman’s curve with four parameters –<br />

maximum (a), m<strong>in</strong>imum (b), <strong>in</strong>flex po<strong>in</strong>t (x0), and width <strong>of</strong> the gradient (Δx) (Equation 1).<br />

We voted and subsequently confirmed the “x-coord<strong>in</strong>ate” <strong>of</strong> the <strong>in</strong>flex po<strong>in</strong>t as the cac value.<br />

For the confirmation we used the perylene’s fluorescence measurements.<br />

a − b<br />

y = + b<br />

1)<br />

( 0<br />

x − x )<br />

Δx<br />

1+<br />

e<br />

Perylene, dibenz[de,kl]anthracene, is also the even and alternat<strong>in</strong>g hydrocarbon (Figure<br />

2b). The perylene’s measurements are quite simple for evaluation. The fluorescence <strong>in</strong>tensity<br />

<strong>of</strong> the perylene rise with the number <strong>of</strong> non-polar doma<strong>in</strong>s <strong>in</strong> the hHA’s solution. Earlier than<br />

doma<strong>in</strong>s are presented <strong>in</strong> solution no fluorescence is observed. When doma<strong>in</strong>s are formed we<br />

observe sharp <strong>in</strong>creas<strong>in</strong>g <strong>of</strong> the fluorescence. These two trends can be fitted by the l<strong>in</strong>ear<br />

curves and the x-coord<strong>in</strong>ate from their po<strong>in</strong>t <strong>of</strong> <strong>in</strong>tersection def<strong>in</strong>es the cac value directly.<br />

a) b)<br />

Figure 2 Fluorescence probes - a) pyrene b) perylene<br />

MATERIALS AND METHOD<br />

The hyaluronan and its derivatives were obta<strong>in</strong>ed from CPN Ltd. (Dolní Dobrouč, Czech<br />

Republic). Hyaluronans were <strong>in</strong> these molecular weights: 97, 560, and 1630 kg·mol -1 .<br />

Derivatives were <strong>in</strong> molecular weights 134, 183, 360, and 1470 kg·mol -1 , respectively, and<br />

theirs substitution degrees were <strong>in</strong> range from 10 to 70 %. The substitution degree is def<strong>in</strong>ed<br />

as the ratio <strong>of</strong> the number <strong>of</strong> the monomer with and without the alkyl cha<strong>in</strong> per polymer<br />

cha<strong>in</strong>, and it was determ<strong>in</strong>ed from 1 H NMR spectra. All molecular weights were determ<strong>in</strong>ed<br />

by SEC-MALLS (Mlčochová, 2006). Pyrene and perylene were obta<strong>in</strong>ed both from Fluka<br />

GmbH. Acetone p.a. was obta<strong>in</strong>ed from Lachema Ltd.<br />

The samples were dissolved <strong>in</strong> doubly distilled water to the concentration 2 g l -1 . This<br />

stock solution was stabilized by addition sodium azide (NaN3) <strong>in</strong> f<strong>in</strong>al concentration 10 -3 M.<br />

Sample nomenclature. The samples are named <strong>in</strong> correspondence to their characteristics. The<br />

first come alkyl-type abbreviation, next are basic molecular weight (before derivatization),<br />

and after the solidus the substitution degree. For example D 134/10 means C10-derivate with<br />

the molecular weight 134 kg·mol -1 and the substitution degree 10 %.<br />

Fluorescence Method. The acetone stock solutions <strong>of</strong> the pyrene and perylene were prepared.<br />

Probes stock solution was <strong>in</strong>troduced <strong>in</strong>to a flask and acetone was evaporated. The stock<br />

solution <strong>of</strong> hHA was <strong>in</strong>troduced <strong>in</strong>to a flask with evaporat<strong>in</strong>g probe, it was diluted to the<br />

desirable concentration, and the result<strong>in</strong>g solution was sonificated dur<strong>in</strong>g 4 hours and stored<br />

dur<strong>in</strong>g next 20 hours. The fluorescence emission spectra were monitored with a lum<strong>in</strong>iscence<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 214


spectrophotometer (AMINCO-Bowman, Series 2) at 293.15 ± 0.1 K. The excitation and<br />

emission slit widths were set to 4 nm, where for pyrene and perylene the excitation<br />

wavelength was 335 nm and 408 nm, respectively.<br />

By the pyrene way, the ratio <strong>of</strong> the fluorescence <strong>in</strong>tensity at 373 nm (I1) and at 383 nm (I3)<br />

was plotted aga<strong>in</strong>st the logarithm <strong>of</strong> the concentration. These data was fitted by sigmoid curve<br />

with the nonl<strong>in</strong>ear curve fitt<strong>in</strong>g with Orig<strong>in</strong> 75. From non-l<strong>in</strong>ear fitt<strong>in</strong>g we obta<strong>in</strong> two possible<br />

cac po<strong>in</strong>ts - directly cac1-po<strong>in</strong>t as the <strong>in</strong>flex po<strong>in</strong>t. Second one, cac2-po<strong>in</strong>t, is def<strong>in</strong>ed as<br />

cac2 = x0 + 2Δx<br />

. 2)<br />

Perylene’s data evaluation was based on fit <strong>of</strong> two l<strong>in</strong>ear trends. From equations related to<br />

these l<strong>in</strong>ear curves was evaluated “x-coord<strong>in</strong>ate”, cacPe, <strong>of</strong> the po<strong>in</strong>t <strong>of</strong> <strong>in</strong>tersection.<br />

Fluorescence (a.u.)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Fluorescence (a.u.)<br />

RESULTS AND DISCUSSION<br />

It is useful to use only one probe for the CAC determ<strong>in</strong>ation. Pyrene’s data conta<strong>in</strong> not<br />

only <strong>in</strong>formation about aggregation but even polarity <strong>in</strong>formation. Because pyrene is partially<br />

water soluble, it is necessary to know exactly which cac-po<strong>in</strong>t is the right.<br />

F <strong>in</strong>t. norm.<br />

250 300 350 400 450 500<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

I3<br />

a) Emission 0.8 b)<br />

Excitation<br />

0.6<br />

I1<br />

wavelength (nm)<br />

1<br />

0.4<br />

0.2<br />

0<br />

Excitation<br />

Emission<br />

320 370 420 470 520 570<br />

wavelength (nm)<br />

Figure 3 Spectral properties <strong>of</strong> the pyrene (a) and the perylene (b)<br />

Perylene<br />

Pyrene<br />

R 2 = 0.9702<br />

R 2 = 0.9998<br />

0.0<br />

0.8<br />

-3 -2 -1 0 1<br />

Log C<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

I 1 /I 3<br />

Figure 4 The plot <strong>of</strong> the normalized <strong>in</strong>tegral fluorescence and the I1/I3 vs. the Log C. The<br />

perylenes data are separate and fit with the l<strong>in</strong>ear curves. The pyrenes data are fit by sigmoid<br />

curve with marked cac1 (×). The po<strong>in</strong>t <strong>of</strong> <strong>in</strong>tersection (↑) from perylenes dependence(x-coord<strong>in</strong>ate<br />

- 0.747) is identical with the pyrenes cac1 po<strong>in</strong>t (x-coord<strong>in</strong>ate - 0.750).<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 215


Table 1 Sum <strong>of</strong> the cac values for all samples<br />

sample SD cac<br />

- % x10 6 mol·l -1<br />

D 44<br />

D 134<br />

D 183<br />

D 360<br />

D 1470<br />

In Figure 4 there are typical<br />

dependencies <strong>of</strong> the pyrene and perylene<br />

<strong>in</strong> hydrophobized hyaluronan solution.<br />

Pyrene ratio shows typical decreas<strong>in</strong>g Stype<br />

curve. Perylene, on the other hand,<br />

shows two l<strong>in</strong>e system. For pyrene it was<br />

used equations 1) and 2) to solve<br />

parameter cac1 and cac2, respectively.<br />

Perylene’s data, cacPe was solved by<br />

comb<strong>in</strong>ation <strong>of</strong> two l<strong>in</strong>ear equations as<br />

po<strong>in</strong>t <strong>of</strong> <strong>in</strong>tersection. F<strong>in</strong>al values (<strong>in</strong><br />

g·l -1 ) are: cac1 = 0.179, cacPe = 0.178,<br />

cac2 = 0.758. So it was established the<br />

best value for the cac determ<strong>in</strong>ation is<br />

cac1 po<strong>in</strong>t, realized as the <strong>in</strong>flex po<strong>in</strong>t x0.<br />

The cac values are show<strong>in</strong>g two<br />

trends. First, the cac values are<br />

decreas<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g SD (except for<br />

samples D 1470). Second, the cac values<br />

are decreas<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g M. These trends are obvious <strong>in</strong> Figure 5 and summarized <strong>in</strong><br />

Table 1. The greatest decreas<strong>in</strong>g <strong>of</strong> the cac values show D 44 samples. It is possible to relate<br />

this behavior to the fact that D 44 samples have the shortest cha<strong>in</strong>s and new types <strong>of</strong><br />

<strong>in</strong>teractions can be found<strong>in</strong>g. On the other hand, heavy weighted cha<strong>in</strong>s show stable behavior<br />

aga<strong>in</strong>st the SD changes. These results can be expla<strong>in</strong>ed if we accept that next addition <strong>of</strong> the<br />

alkyls to the cha<strong>in</strong> only fortify cha<strong>in</strong>-cha<strong>in</strong> <strong>in</strong>teraction. And <strong>in</strong> fact, it does not lead to the<br />

formation <strong>of</strong> new hydrophobic cores.<br />

cac (10 -6 mol l -1 )<br />

100.00<br />

10.00<br />

1.00<br />

0.10<br />

0.01<br />

10<br />

30<br />

50<br />

10<br />

30<br />

50<br />

70<br />

10<br />

30<br />

50<br />

10<br />

30<br />

50<br />

30<br />

50<br />

70<br />

12.27<br />

1.02<br />

0.06<br />

4.35<br />

1.21<br />

0.76<br />

0.20<br />

0.99<br />

0.73<br />

0.47<br />

0.51<br />

0.19<br />

0.18<br />

0.15<br />

0.06<br />

0.10<br />

D 44 D 134<br />

D 183 D 360<br />

D 1,470<br />

0 20 40 60 80<br />

SD (%)<br />

Figure 5 The dependences <strong>of</strong> the cac values on the SD. Except for D 1470 all samples<br />

show the decreas<strong>in</strong>g tendencies with <strong>in</strong>creas<strong>in</strong>g M and SD.<br />

CONCLUSION<br />

Fluorescence determ<strong>in</strong>ation <strong>of</strong> cac for the novel hyaluronate derivatives was presented. It<br />

was showed cac1 as the best po<strong>in</strong>t for determ<strong>in</strong>ation <strong>of</strong> the critical aggregation concentration.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 216


Hyaluronate derivatives showed with <strong>in</strong>creas<strong>in</strong>g SD decreas<strong>in</strong>g tendency <strong>of</strong> the cac through<br />

the light weighted cha<strong>in</strong>s, and stable value for heavy weighted ones.<br />

REFERENCES<br />

Aguiar J. et al.: J. Colloid Interface Sci 2003, 258, 116-122<br />

Angelescu D., Vasilescu M.: J. Colloid Interface Sci 2001, 244, 139-144<br />

Dong, D. C.; W<strong>in</strong>nik, F.: Can. J. Chem. 1984, 62, 2560-2564<br />

Mlčochová P. et al.: Biopolymers 2006, 82, 74-79<br />

Mol<strong>in</strong>a-Bolívar J.A. et al.: J. Phys. Chem. B 2004, 108, 12813-12820<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 217


CHARACTERIZATION AND DEGRADATION BEHAVIOUR OF<br />

TRIBLOCK COPOLYMER<br />

Ing. Ludmila Nová<br />

Supervisor: Pr<strong>of</strong>. RNDr. Milada Vávrová, CSc.<br />

Consultant: Ing. Lucy Vojtová, PhD.<br />

Institute <strong>of</strong> Chemistry and Technology <strong>of</strong> Environmental Protection, Faculty <strong>of</strong> Chemistry,<br />

Brno University <strong>of</strong> Technology, Purkyňova 118, 612 00 Brno<br />

E-mail:nova@fch.vutbr.cz<br />

ABSTRACT<br />

This work is focused on the study<strong>in</strong>g <strong>of</strong> the thermoreversible behaviors <strong>of</strong> two copolymers,<br />

PLGA-PEG-PLGA and the same but modified with itaconic acid (ITA-PLGA-PEG-<br />

PLGA-ITA). The critical gel concentrations (CGC) and the critical gel temperatures (CGT)<br />

were determ<strong>in</strong>ed. As for PLGA-PEG-PLGA the CGC and CGT equal to 19,2 w% and 34,5<br />

°C, respectively, was observed. Second polymer <strong>of</strong> ITA-PLGA-PEG-PLGA <strong>in</strong>dicated the<br />

shift <strong>of</strong> the sol-gel transition curve down to the lower values <strong>of</strong> both CGC (15,3 w%) and<br />

CGT (25 °C). The degradation behaviors <strong>of</strong> PLGA-PEG-PLGA <strong>in</strong> a phosphate buffer (pH<br />

7.4) at 37 °C were <strong>in</strong>vestigated. A significant decrease <strong>in</strong> the molecular weight and <strong>in</strong>crease <strong>in</strong><br />

the polydispersity with<strong>in</strong> 10 days (until the samples have dissolved) was observed.<br />

INTRODUCTION<br />

Poly(lactic acid) and poly(glycolic acid) have been under extensive study s<strong>in</strong>ce they were<br />

<strong>in</strong>troduced as biodegradable polymers hav<strong>in</strong>g hydrolytically unstable backbones. Therefore,<br />

these biopolymers can be used for a certa<strong>in</strong> type <strong>of</strong> biomedical application such as <strong>in</strong>jectable<br />

polymer drug delivery systems, tissue implants or resorbable bone adhesives. The prevail<strong>in</strong>g<br />

mechanism for the biopolymer degradation is a simple random chemical hydrolysis [1]. The<br />

most common explanation for this heterogeneous degradation process comes from the<br />

absorption <strong>of</strong> water, followed by a hydrolytic cleavage <strong>of</strong> ester bonds, which generates cha<strong>in</strong><br />

fragments with the acidic groups (Fig. 1). This process is characterized by a decrease <strong>in</strong><br />

molecular weight, an <strong>in</strong>crease <strong>in</strong> polydispersity (PD = Mw/Mn) and polymer mass loss<br />

accompanied by an <strong>in</strong>crease <strong>in</strong> low molecular cha<strong>in</strong> compound concentration <strong>in</strong> the<br />

surround<strong>in</strong>g medium [2 – 7].<br />

H<br />

CH 3<br />

O<br />

O<br />

CH 3<br />

O<br />

O<br />

x<br />

O<br />

poly(lactic-co-glycolic acid)<br />

O<br />

O<br />

y<br />

OH<br />

CH<br />

H 3<br />

OH<br />

HO<br />

O<br />

lactic acid<br />

Fig. 1: Scheme <strong>of</strong> the PLGA degradation.<br />

+<br />

2x 2y<br />

H<br />

HO<br />

H<br />

O<br />

OH<br />

glycolic acid<br />

The <strong>in</strong>jectable biodegradable thermosensitive ABA triblock copolymers consist<strong>in</strong>g <strong>of</strong><br />

hydrophobic biodegradable copolymer <strong>of</strong> poly(lactic acid-co-glycolic acid) (PLGA) and<br />

hydrophilic poly(ethylene glycol) (PEG) act<strong>in</strong>g as A and B block, respectively, were<br />

synthesized via r<strong>in</strong>g-open<strong>in</strong>g polymerization method <strong>in</strong> a bulk at 155 °C. The ABA<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 218


copolymers were additionally functionalized by itaconic acid (ITA), which can be ga<strong>in</strong>ed<br />

from renewable resources by pyrolysis <strong>of</strong> citric acid or by fermentation <strong>of</strong> polysaccharides.<br />

ITA br<strong>in</strong>gs reactive double bonds and functional carboxylic acid groups to the end <strong>of</strong><br />

copolymer result<strong>in</strong>g <strong>in</strong> preparation <strong>of</strong> biodegradable ITA/PLGA-PEG-PLGA/ITA<br />

macromonomer. Successful end-capp<strong>in</strong>g <strong>of</strong> ITA to PLGA-PEG-PLGA copolymer was proved<br />

by 1H NMR and FT-IR analysis followed by characterization with GPC method. The above<br />

mentioned thermosensitive polymers are soluble <strong>in</strong> water form<strong>in</strong>g free-flow<strong>in</strong>g solution that<br />

spontaneously gels as the temperature <strong>in</strong>creases generat<strong>in</strong>g a water-<strong>in</strong>soluble physical<br />

hydroge. The sol-gel transition behaviors were studied by the test tube <strong>in</strong>vert<strong>in</strong>g method. The<br />

tests <strong>of</strong> degradation behaviors <strong>of</strong> PLGA-PEG-PLGA copolymer were carried out <strong>in</strong> vitro <strong>in</strong><br />

the phosphate buffer medium at 37 °C.<br />

EXPERIMENTAL WORK<br />

Materials<br />

The triblock copolymers <strong>of</strong> PLGA-PEG-PLGA and ITA- PLGA-PEG-PLGA-ITA were<br />

synthesized at our faculty by Dr. Lucy Vojtová.<br />

Tetrahydr<strong>of</strong>urane for GPC analyses (THF for HPLC, gradient grade, Merck, Germany),<br />

was used as received. Polystyrene standards (Mp= 316 500 – 162) were purchased from<br />

Polymer Laboratories, Germany. Milli-Q water, phosphoric acid (p.a., 85 %, Czech Republic<br />

and potassium phosphate dibasic (p.a., for HPLC, Fluka, USA) were used for the polymer<br />

degradation studies.<br />

Method<br />

The molecular weight and the molecular weight distribution <strong>of</strong> the copolymers were<br />

determ<strong>in</strong>ed by GPC method us<strong>in</strong>g Agilent Technologies 1100 Series <strong>in</strong>strument equipped<br />

with a refractive <strong>in</strong>dex detector, PLgel Mixed C column <strong>of</strong> 300 x 7.5 mm with particle size 5<br />

μm, degasser, pump, auto sampler and fraction collector. Tetrahydr<strong>of</strong>urane was used as the<br />

mobile phase at a flow rate equal to 1 ml.m<strong>in</strong> -1 . The average molecular weight was calculated<br />

us<strong>in</strong>g a series <strong>of</strong> polystyrene standards (Mp = 316 500 – 162). Samples <strong>of</strong> triblock copolymers<br />

were prepared <strong>in</strong> the concentration <strong>of</strong> 0.5 mg/ml <strong>in</strong> tetrahydr<strong>of</strong>urane for HPLC.<br />

The sol-gel transition was determ<strong>in</strong>ed by the test tube <strong>in</strong>vert<strong>in</strong>g method. 4 ml vials<br />

conta<strong>in</strong><strong>in</strong>g 1 ml <strong>of</strong> the triblock copolymer were heated from 10 to 60 °C <strong>in</strong> a water bath. The<br />

transition temperatures were determ<strong>in</strong>ed by a flow (sol) – no flow (gel) criterion when the vial<br />

was <strong>in</strong>verted with a temperature <strong>in</strong>crement <strong>of</strong> 1 °C per step.<br />

The degradation behavior study was performed us<strong>in</strong>g 0.3 ml <strong>of</strong> 23 w% polymer aqueous<br />

solutions. The 1.8 ml vials with polymer solutions were put <strong>in</strong>to an <strong>in</strong>cubator at 37 °C (the<br />

temperature <strong>of</strong> a human body) to formed the hydrogels. Consequently, 0,5 ml <strong>of</strong> the<br />

phosphate buffer (pH 7.4, 37 °C) was added to the vials and the samples were placed <strong>in</strong>to the<br />

<strong>in</strong>cubator for 10 days with a view to degrade dur<strong>in</strong>g this time. At regular <strong>in</strong>tervals, the<br />

samples were withdrawn from <strong>of</strong> the <strong>in</strong>cubator, lyophilized and analyzed.<br />

RESULTS AND DISCUSSION<br />

The sol-gel transition diagrams <strong>of</strong> the triblock copolymers (PLGA-PEG-PLGA, ITA-<br />

PLGA-PEG-PLGA-ITA) were created on the base <strong>of</strong> the test tube <strong>in</strong>vert<strong>in</strong>g method (Fig. 2).<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 219


Temperature (°C)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

PLGA/PEG/PLGA<br />

ITA-PLGA/PEG/PLGA-ITA<br />

white viscous<br />

suspension<br />

suspension<br />

white gel<br />

white viscous cloudy gel<br />

cloudy viscous<br />

cloudy viscous<br />

amber sol<br />

amber sol<br />

15<br />

0 5 10 15 20 25<br />

Concentration (w% )<br />

white gel<br />

amber viscous<br />

cloudy gel<br />

amber viscous<br />

amber gel<br />

amber gel<br />

Fig. 2: The sol-gel transition phase diagram <strong>of</strong> the triblock copolymers PLGA-PEG-PLGA<br />

and ITA-PLGA-PEG-PLGA-ITA<br />

The diagram demonstrates three basic areas - sol, gel and suspension (precipitate). The<br />

phase diagram <strong>of</strong> PLGA-PEG-PLGA shows the critical gel concentration (CGC) <strong>of</strong> 19.2 w%<br />

and the critical gelation temperature (CGT) <strong>of</strong> 34.5 °C. For the next study, the solution <strong>of</strong> 23<br />

%wt was used because <strong>of</strong> form<strong>in</strong>g the amber hydrogel at around 37°C. As for the copolymer<br />

modified by ITA, CGC and CGT were determ<strong>in</strong>ed to be 15.3 w% and 25.0 °C, respectively.<br />

The values were shifted below the curves <strong>of</strong> the polymer without the itaconic acid which<br />

po<strong>in</strong>ted that the presence <strong>of</strong> hydrophilic –COOH groups causes better <strong>in</strong>teraction between the<br />

polymer and water molecules. Therefore, CGC and CGT were observed to be lower than<br />

those <strong>of</strong> the copolymer without ITA.<br />

The change from sol to gel, which occurred by <strong>in</strong>creas<strong>in</strong>g the temperature, was not sharp.<br />

At the temperature much lower than the critical gel temperature; unimers, <strong>in</strong>dividual micelles,<br />

and grouped micelles coexisted <strong>in</strong> the sol state (Fig. 2 amber sol). The unimer fraction<br />

decreased with the temperature <strong>in</strong>creas<strong>in</strong>g (Fig. 2 amber viscous). At the same time, the<br />

grouped micelle size grew rapidly result<strong>in</strong>g <strong>in</strong> sol-gel transition (Fig. 2 amber gel). The<br />

aggregation and pack<strong>in</strong>g <strong>in</strong>teractions between micelles <strong>in</strong>creased to form denser gel with the<br />

rais<strong>in</strong>g temperature (Fig. 2 cloudy viscous state, cloudy gel). When the temperature was<br />

further raised, the hydrophobic cha<strong>in</strong>s <strong>in</strong> the micelle core shrank tightly. Also, the hydrophilic<br />

PEG block underwent dehydration and the second gel-sol transition arisen (Fig. 2 white<br />

viscous state, white gel, suspension). The over shrunk micelle groups precipitated <strong>in</strong> water<br />

and the solution separated <strong>in</strong>to two phases <strong>of</strong> water and precipitated polymer (Fig. 2<br />

precipitation) [8].<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 220


Each micelle has a hydrophobic core and a hydrophilic shell, and can move relatively<br />

freely without any bridg<strong>in</strong>g connection between the micelles. Sol-gel transition occurs when<br />

the total volume <strong>of</strong> micelles fraction is larger than the maximum pack<strong>in</strong>g fraction volume [8].<br />

The degradation behavior <strong>of</strong> PLGA-PEG-PLGA was <strong>in</strong>vestigated. Four samples <strong>of</strong> the<br />

copolymer <strong>in</strong> 0.7 ml <strong>of</strong> the phosphate buffer (pH 7.4) were placed <strong>in</strong>to the <strong>in</strong>cubator at 37 °C<br />

(the normal temperature <strong>of</strong> a human body). The samples were taken out and lyophilized after<br />

3, 5, 7 and 10 days. The rest <strong>of</strong> the copolymer was analyzed by GPC. The decrease <strong>in</strong> the<br />

molecular weight dur<strong>in</strong>g these periods can be seen <strong>in</strong> Fig. 2. After 3, 5 and 7 days two phases<br />

<strong>in</strong> the vials can be observed, the copolymer gel and the buffer. The total dissolv<strong>in</strong>g <strong>of</strong> the<br />

copolymer occurred after 10 days when the measured molecular weight (Mn) was found to be<br />

4170 (Tab. 1).<br />

Tab. 1: The change <strong>of</strong> the molecular weight and the polydispersity dur<strong>in</strong>g the degradation<br />

<strong>in</strong> the phosphatic buffer (pH 7.4, 37 °C)<br />

Time (day) Molecular weight Polydispersity<br />

0 6010 1.21<br />

3 5840 1.23<br />

5 5220 1.31<br />

7 4770 1.33<br />

10 4170 1.35<br />

The change <strong>of</strong> polydispersity (D) was related to the change <strong>of</strong> Mn. Mn decreased while D<br />

<strong>in</strong>creased with the grow<strong>in</strong>g number <strong>of</strong> the shorter copolymer cha<strong>in</strong>s.<br />

Molecular weight<br />

6500<br />

6000<br />

5500<br />

5000<br />

4500<br />

4000<br />

3500<br />

0 2 4 6 8 10 12<br />

Time (day)<br />

Fig. 3: The change <strong>of</strong> the molecular weight (Mn)● and the polydispersity (D)∆ after 0, 3,<br />

5, 7, and 10 days.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 221<br />

1,36<br />

1,34<br />

1,32<br />

1,30<br />

1,28<br />

1,26<br />

1,24<br />

1,22<br />

1,20<br />

Polydispersity


CONCLUSION<br />

The copolymers <strong>of</strong> PLGA-PEG-PLGA and ITA-PLGA-PEG-PLGA-ITA were synthesized<br />

and characterized by GPC and the test tube <strong>in</strong>vert<strong>in</strong>g method. The presence <strong>of</strong> the itaconic<br />

acid <strong>in</strong> the polymer cha<strong>in</strong> caused the decrease <strong>in</strong> both CGC and CGT.<br />

The degradation <strong>of</strong> PLGA-PEG-PLGA was attended by the decreas<strong>in</strong>g <strong>of</strong> molecular<br />

weight dur<strong>in</strong>g ten days until the gel has dissolved. The number <strong>of</strong> the low molecular weight<br />

cha<strong>in</strong>s <strong>in</strong>creased with time caus<strong>in</strong>g the <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> polydispersity <strong>of</strong> the polymer.<br />

Acknowledgement<br />

I would like to thank Dr. Lucy Vojtová for the copolymers preparation and expert advice.<br />

This work was supported by the M<strong>in</strong>istry <strong>of</strong> Education <strong>of</strong> the Czech Republic under the<br />

research project MSM 0021630501.<br />

REFERENCES<br />

[1] A. Göpferich, Biomaterials 1996, 17, 103 – 114.<br />

[2] P. Giunchedi, B. Conti, S. Scalia, U. Conte: J. Contr. Rel. 1998, 56, 53 – 62.<br />

[3] S. Li,: Biomed. Mater. Res. 1999, 48, 342 – 353.<br />

[4] I. Grizzi, H. Garreau, S. Li, M. Vert: Biomaterials 1995, 16, 305 – 311.<br />

[5] B. Marcato, G. Paganetto, G. Ferrara, G. Cecch<strong>in</strong>: J. Chromatogr. B. 1996, 682, 147 –<br />

156.<br />

[6] T. G. Park: J. Contr. Rel. 1994, 30, 161 – 173.<br />

[7] G. Schliecker, C. Schmidth, S. Fuchs, T. Kissel: Biomaterials 2003, 24, 3835 – 3844.<br />

[8] M. S. Shim, H. T. Lee, W. S. Shim, I. Park, H. Lee, T. Chang, S. W. Kim, D. S. Lee:<br />

J. Biom .Mat. Res. 2002, 61, 188 - 196<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 222


STUDY OF THE COPPER(II) IONS NON–STATIONARY DIFFUSION<br />

IN HUMIC GEL<br />

Ing. Petr Sedláček, 1 st year <strong>of</strong> study<br />

Supervisor: doc. Ing. Mart<strong>in</strong>a Klučáková, PhD.<br />

Brno University <strong>of</strong> Technology, Faculty <strong>of</strong> Chemistry, Institute <strong>of</strong> Physical and Applied<br />

Chemistry, Purkyňova 118, 612 00 Brno, e–mail: sedlacek@fch.vutbr.cz<br />

INTRODUCTION<br />

Severe reduction <strong>of</strong> use <strong>of</strong> solid fossil fuels <strong>in</strong> the power–produc<strong>in</strong>g <strong>in</strong>dustry has markedly<br />

encouraged the <strong>in</strong>vestment to alternative applications <strong>of</strong> these materials. Humic acids (HA),<br />

which are one <strong>of</strong> their key components, are because <strong>of</strong> their rich natural sources, simple<br />

isolation methods and pr<strong>of</strong>itable chemical ad physical behavior predeterm<strong>in</strong>ed for the wide–<br />

spread use <strong>in</strong> different <strong>in</strong>dustrial and agricultural branches. Although the <strong>in</strong>tensive study <strong>of</strong><br />

this material lasts for several decades the knowledge level (ma<strong>in</strong>ly concern<strong>in</strong>g the structure <strong>of</strong><br />

HA) is still quite low (it is <strong>of</strong>ten compared with the knowledge <strong>of</strong> prote<strong>in</strong>s fifty years ago).<br />

Application <strong>of</strong> HA <strong>in</strong> a form <strong>of</strong> humic gel (see [1]) is quite new and unexplored field <strong>of</strong><br />

their study. The gel form <strong>of</strong> HA is easy to prepare, suitable for the exploration <strong>of</strong> transport<br />

phenomena and ma<strong>in</strong>ly simulates the natural conditions; HA are usually found <strong>in</strong> the highly<br />

humid environment (water sediments, peat etc.) and thus <strong>in</strong> the swollen form.<br />

One <strong>of</strong> most famous and promis<strong>in</strong>g HA properties is the ability to b<strong>in</strong>d metal ions. They<br />

can form stable complexes among others with heavy metals, which <strong>in</strong>fluences their toxicity <strong>in</strong><br />

environment and this fact encourages potential applications <strong>of</strong> humic substances ma<strong>in</strong>ly <strong>in</strong><br />

environmental <strong>in</strong>dustry, <strong>in</strong> the <strong>production</strong> <strong>of</strong> fertilizers and <strong>in</strong> pharmacy. Most important<br />

b<strong>in</strong>d<strong>in</strong>g sites <strong>in</strong> HA molecule are carboxylic and phenolic groups and aromatic cycles.<br />

Besides the lower mobility <strong>of</strong> metal ions <strong>in</strong> humic gels compar<strong>in</strong>g water solution, the<br />

diffusion <strong>in</strong> gels are <strong>in</strong>fluenced also by the retention or immobilization <strong>of</strong> the ions, both<br />

caused by chemical reaction between metals and HA. The result is that mathematical<br />

apparatus used <strong>in</strong> the description <strong>of</strong> diffusion phenomena is very complicated.<br />

Copper(II) ion is well–known for its high aff<strong>in</strong>ity to humic substances [2]. Besides this the<br />

HA–Cu(II) b<strong>in</strong>d<strong>in</strong>g is among the highest strengths. Therefore and also because <strong>of</strong> easy<br />

quantification <strong>of</strong> copper content by means <strong>of</strong><br />

spectroscopy, the copper(II) ions has been chosen<br />

as model metal ions for this work.<br />

The ma<strong>in</strong> aim <strong>of</strong> this research was the study <strong>of</strong><br />

copper(II) ions diffusion from solutions with<br />

different Cu 2+ concentration <strong>in</strong>to humic gel across<br />

the phase <strong>in</strong>terface and the diffusion <strong>in</strong> the gel<br />

itself. Other experiment <strong>in</strong>terested <strong>in</strong> the <strong>in</strong>fluence<br />

<strong>of</strong> other properties <strong>of</strong> the copper(II) source<br />

solution, namely the type <strong>of</strong> anion <strong>of</strong> copper salt,<br />

solution pH and ionic strength.<br />

EXPERIMENTAL PART<br />

HA were obta<strong>in</strong>ed from South-Moravia lignite by means <strong>of</strong> the alkal<strong>in</strong>e extraction (see<br />

[2]). Humic gel was prepared by the technique optimized <strong>in</strong> [3]: HA were diluted <strong>in</strong> 0.5 M<br />

NaOH <strong>in</strong> the 8 g HA <strong>in</strong> 1 dm 3 Fig. 1 Humic gel sample<br />

NaOH ratio. This sodium humate solution was acidified by<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 223


concentrated HCl to pH ~ 1 and leaved <strong>in</strong><br />

refrigerator overnight. After the centrifugation (10<br />

m<strong>in</strong>., 4000 rpm, cool<strong>in</strong>g for 15 °C) the<br />

supernatant was poured out and the gel was<br />

washed three times by deionized water. Each<br />

wash<strong>in</strong>g was followed by centrifugation, the last<br />

one took 30 m<strong>in</strong>utes. F<strong>in</strong>ally the gel was<br />

deposited <strong>in</strong> dessicator with water to stabilize its<br />

humidity. The picture <strong>of</strong> prepared gel sample is<br />

shown on the Fig. 1.<br />

The HA sample was characterized by means <strong>of</strong><br />

table 1 Elementary analysis results<br />

content <strong>in</strong> dried<br />

element ash-free HA<br />

[atomic %]<br />

H 42,12<br />

C 41,16<br />

O 15,64<br />

N 0,91<br />

S 0,17<br />

the elementary analysis (Microanalyser Flash 1112, Carlo Erba), ash content analysis (sample<br />

conta<strong>in</strong>ed 6.8 weight % <strong>of</strong> water and 28.5 weight % <strong>of</strong> ash), and UV–VIS and FT–IR spectral<br />

analysis (Hitachi U 3300 and Nicolet impact 400 respectively). From the exact results <strong>of</strong> these<br />

analyses, which are listed elsewhere ([4]), it is clear, that used HA were <strong>of</strong> high degree <strong>of</strong><br />

humification. The humic gel sample was analyzed for its solid matter content<br />

(14.5 weight %), total gel acidity was determ<strong>in</strong>ed by potentiometric titration (gel conta<strong>in</strong>ed<br />

8.12 mmol acid equivalents per 1 g <strong>of</strong> HA). The FT–IR spectroscopy analysis <strong>of</strong> dried gel<br />

sample results <strong>in</strong> fact that no chemical structure changes occur while gelation <strong>of</strong> HA.<br />

Diffusion experiment was divided <strong>in</strong>to several parts; <strong>in</strong> the first one the pre-determ<strong>in</strong>ed<br />

(see [3]) value <strong>of</strong> the diffusion coefficient <strong>of</strong> copper(II) ions <strong>in</strong> humic gel was verified by the<br />

stationary diffusion from the saturated copper(II) chloride solution. In detail, experimental<br />

procedure is listed <strong>in</strong> [4].<br />

In all rema<strong>in</strong><strong>in</strong>g parts the non-stationary diffusion was studied. All experiments took place<br />

<strong>in</strong> apparatus presented on Fig. 2. Humic gel was packed <strong>in</strong>to plastic tube as 5 cm long<br />

cyl<strong>in</strong>der and 2 ml <strong>of</strong> both copper ions solution and deionized water were filled <strong>in</strong>to side<br />

conta<strong>in</strong>ers. First <strong>of</strong> all diffusion dependency on Cu(II) <strong>in</strong>itial concentration <strong>in</strong> solution was<br />

monitored by chang<strong>in</strong>g the <strong>in</strong>itial concentration <strong>of</strong> CuCl2 solution placed <strong>in</strong> the apparatus<br />

conta<strong>in</strong>er, while the duration <strong>of</strong> experiment was ma<strong>in</strong>ta<strong>in</strong>ed at 24 hours. After the end <strong>of</strong> the<br />

experiment, each gel sample was sliced and each slice was separately extracted by 1 mol.dm –3<br />

HCl. By the UV–VIS quantification <strong>of</strong> Cu(II) content <strong>in</strong> each extract, the concentration<br />

pr<strong>of</strong>ile <strong>of</strong> the gel cyl<strong>in</strong>der and the total diffusion flux across the solution–gel <strong>in</strong>terface were<br />

determ<strong>in</strong>ed.<br />

Next part deals with the <strong>in</strong>fluence <strong>of</strong> time duration <strong>of</strong> diffusion experiment. The 1 day,<br />

3 days and 5 days periods have been chosen. The experiment was repeated for three Cu(II)<br />

<strong>in</strong>itial concentration values: 0.1 mol.dm –3 , 0.3 mol.dm –3 and 0.6 mol.dm –3 . Follow<strong>in</strong>g<br />

experimental technique was adopted from previous experiment without changes.<br />

In the last part, the <strong>in</strong>fluence <strong>of</strong> other copper(II) solution properties has been <strong>in</strong>vestigated.<br />

The <strong>in</strong>fluence <strong>of</strong> the type <strong>of</strong> copper(II) salt anion was studied by us<strong>in</strong>g CuCl2, Cu(NO3)2,<br />

Cu(II)<br />

plugged solution<br />

conta<strong>in</strong>ers<br />

HUMIC GEL<br />

plastic tube<br />

H2O<br />

Fig. 2 Scheme <strong>of</strong> the aparatus used <strong>in</strong> all<br />

diffusion eperiments<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 224


CuSO4, Cu(ClO4)2 and Cu2P2O7 <strong>of</strong> the same Cu 2+ concentration (0.1 mol.dm –3 ) as a stock<br />

solution for diffusion experiments <strong>of</strong> the same time duration (24 hours). F<strong>in</strong>ally, the solution<br />

pH – dependency and solution ionic strength dependency <strong>of</strong> the diffusion process was<br />

checked by dilut<strong>in</strong>g CuCl2 salt us<strong>in</strong>g the differently concentrated hydrochloric acid and<br />

sodium chloride, respectively. For all <strong>of</strong> these experiments the same Cu 2+ concentration<br />

(0.1 mol.dm –3 ) as well as the time duration (24 hours) was used and the same experimental<br />

technique (see above) was adopted.<br />

RESULTS AND DISCUSSION<br />

The value <strong>of</strong> calculated effective diffusion coefficient <strong>of</strong> copper(II) ions <strong>in</strong> humic gel was<br />

7.96×10 -10 m 2 .s –1 . This value is <strong>in</strong> good agreement with the one pre–determ<strong>in</strong>ed by another<br />

experimental method (see [3]) and was used for all follow<strong>in</strong>g calculations. As can be seen on<br />

Fig. 3 and Fig. 4, total diffusion flux <strong>of</strong> Cu 2+ through solution–gel phase <strong>in</strong>terface l<strong>in</strong>early<br />

<strong>in</strong>creases with the <strong>in</strong>itial concentration <strong>of</strong> copper(II) <strong>in</strong> solution and with the square root <strong>of</strong><br />

time duration <strong>of</strong> diffusion experiment. The later dependency is however much more<br />

complicated; the nonzero <strong>in</strong>tercept <strong>of</strong> the regression l<strong>in</strong>e <strong>in</strong>dicates that the l<strong>in</strong>earity is just<br />

illusory and <strong>in</strong> fact the dependency is curved. Klučáková et al. <strong>in</strong> [5] stated the equation for<br />

the total diffusion flux across the solution–gel <strong>in</strong>terface:<br />

ε c D τ<br />

0<br />

g<br />

m = (1)<br />

1+<br />

ε D / π<br />

g D<br />

<strong>in</strong> which m stands for the total diffusion flux, c0 is <strong>in</strong>itial concentration <strong>of</strong> the ion <strong>in</strong> solution,<br />

τ is the time duration <strong>of</strong> the diffusion, ε is ratio <strong>of</strong> ion concentration <strong>in</strong> the gel and <strong>in</strong> the<br />

solution <strong>in</strong> f<strong>in</strong>al equilibrium (at the “end <strong>of</strong> diffusion”), Dg and D is diffusion coefficient <strong>of</strong><br />

cupric ions <strong>in</strong> humic gel and <strong>in</strong> solution, respectively. Follow<strong>in</strong>g this equation the value <strong>of</strong> ε<br />

was calculated from total diffusion flux correspond<strong>in</strong>g to c0 and τ values. It was found that for<br />

the same duration <strong>of</strong> diffusion experiment this value is constant for different <strong>in</strong>itial<br />

concentrations <strong>of</strong> the solution but it varies for different duration <strong>of</strong> experiment (Fig. 5). This<br />

fact could be expla<strong>in</strong>ed by the apparatus construction (small solution volumes – gel weight<br />

ratio) or by the time–consum<strong>in</strong>g formation <strong>of</strong> some stable structural or chemical complexes<br />

between gel and ions. This affects the mobility <strong>of</strong> ions (retention <strong>of</strong> ions can lead up to their<br />

immobilization <strong>in</strong> gel) and their equilibrium <strong>in</strong> gel and solution. This fact could expla<strong>in</strong><br />

mentioned deformation <strong>of</strong> total flux time dependency as well.<br />

The knowledge <strong>of</strong> the ε value allows<br />

the calculation <strong>of</strong> theoretical<br />

y = 6.454E-03x<br />

concentration pr<strong>of</strong>iles <strong>of</strong> the copper (II)<br />

R<br />

ions <strong>in</strong> the humic gel (used<br />

mathematical apparatus is presented <strong>in</strong><br />

detail <strong>in</strong> reference [5]) for <strong>in</strong>dividual<br />

experiment conditions (<strong>in</strong>itial<br />

concentration, time duration). The<br />

example on Fig. 6 shows very good<br />

agreement between calculated and<br />

measured concentration pr<strong>of</strong>iles.<br />

2 50<br />

40<br />

= 1.000E+00<br />

30<br />

20<br />

10<br />

0<br />

0 2000 4000 6000 8000<br />

total flux [mol.m -2 ]<br />

c0 [mol.m -3 ]<br />

Fig. 3 The total diffusion flux dependency on<br />

the <strong>in</strong>itial concentration <strong>of</strong> Cu 2+ <strong>in</strong> the<br />

solution (diffusion duration 24 hours)<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 225


ε<br />

total flux [mol.m -2 ]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y = 0.0099x<br />

R 2 = 0.9997<br />

y = 0.0066x<br />

R 2 = 0.9983<br />

y = 0.0084x<br />

R 2 = 0.9985<br />

0<br />

0 200 400 600 800<br />

c0 [mol.m -3 ]<br />

1 day<br />

3 days<br />

5 days<br />

The results <strong>of</strong> the part which deals with the <strong>in</strong>fluence <strong>of</strong> another copper(II) solution<br />

properties shows dramatically smaller effect <strong>of</strong> the type <strong>of</strong> anion <strong>in</strong> the copper(II) salt and<br />

solution ionic strength and pH compared with <strong>in</strong>itial copper(II) concentration and time<br />

duration <strong>of</strong> diffusion. On Fig. 7, it can be seen that for all anions with unit valence (CuCl2,<br />

Cu(NO3)2 a Cu(ClO4)2) the total diffusion flux is similar even if for example anion size differs<br />

markedly. On the other hand, anions with higher valence (CuSO4 and Cu2P2O7) show<br />

<strong>in</strong>considerable decrease <strong>of</strong> total diffusion flux. The pH and ionic strength measurement<br />

excluded these properties as causer <strong>of</strong> this<br />

decrease, so it can be supposed that this shift<br />

can be expla<strong>in</strong>ed as a consequence <strong>of</strong> higher<br />

charge <strong>of</strong> multivalent anions.<br />

Total diffusion flux is also affected by the<br />

copper solution pH. Fig. 8 shows that with<br />

higher acidity <strong>of</strong> the solution total diffusion<br />

flux decreases. This could be expla<strong>in</strong>ed for<br />

example by well–known decrease <strong>of</strong> HA<br />

sorption ability <strong>in</strong> acid media (see [2]) or by<br />

the change <strong>of</strong> solution–gel equilibrium.<br />

Higher acidity affects salt hydrolysis and<br />

thus actual ion concentration <strong>in</strong> solution.<br />

total flux [mol.m -2 ]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y = 5.517E-03x + 2.250E+00<br />

R 2 = 9.950E-01<br />

y = 2.449E-03x + 1.343E+00<br />

R 2 = 9.994E-01<br />

y = 1.095E-03x + 3.265E-01<br />

R 2 = 9.999E-01<br />

0<br />

200 300 400 500 600 700<br />

t 1/2 [s 1/2 ]<br />

Fig. 4 The total diffusion flux dependencies on the <strong>in</strong>itial concentration <strong>of</strong> Cu 2+ and on the<br />

duration <strong>of</strong> the experiment<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 1 2 3 4 5 6<br />

τ [days]<br />

Fig. 5 The time shift <strong>of</strong> ε<br />

copper(II) ions concentration<br />

[mol/dm 3 gel]<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

experimental results<br />

(0.3 M; 3 days)<br />

calculated<br />

concentration pr<strong>of</strong>ile<br />

(0.3 M; 3 days)<br />

0.1M<br />

0.3M<br />

0.6M<br />

0 10 20 30 40 50<br />

distance from the <strong>in</strong>terface [mm]<br />

Fig. 6 Concentration pr<strong>of</strong>iles <strong>of</strong> Cu 2+<br />

<strong>in</strong> humic gel<br />

total flux [mol.m –2 ]<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

CuCl2<br />

0.614 0.620 0.608<br />

Cu(NO3)2<br />

Cu(ClO4)2<br />

CuSO4<br />

0.476<br />

Cu2P2O7<br />

Fig. 7 Total diffusion flux for different<br />

copper(II) salts<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 226<br />

0.355


total flux [mol.m –2 ]<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

0.4<br />

0 1 2 3 4 5<br />

pH<br />

total flux [mol.m –2 ]<br />

0.4<br />

0 1 2 3 4 5 6<br />

F<strong>in</strong>ally the total diffusion flux showed complex dependency on the ionic strength <strong>of</strong><br />

copper(II) solution. For small NaCl additions, the decrease <strong>of</strong> total flux comes with the<br />

<strong>in</strong>crease <strong>of</strong> ionic strength, on the contrary substantial <strong>in</strong>crease appeares <strong>in</strong> higher NaCl<br />

concentration range. Former decrease can be caused by decrease <strong>of</strong> HA sorption ability,<br />

competitive diffusion <strong>of</strong> Na + ions or by affect<strong>in</strong>g Cu 2+ solvation. The later <strong>in</strong>crease is not very<br />

clear. It can be supposed that <strong>in</strong> the solution with high ionic strength bigger Cu 2+ clusters are<br />

solvated and easily took out from the solution.<br />

CONCLUSIONS<br />

This paper deals with the study <strong>of</strong> copper(II) ions non–stationary diffusion <strong>in</strong> humic gel.<br />

Ma<strong>in</strong> aim was to determ<strong>in</strong>ate the <strong>in</strong>fluence <strong>of</strong> <strong>in</strong>dividual copper(II) solution properties on the<br />

total diffusion flux across the solution–gel <strong>in</strong>terface.<br />

It was proved that copper(II) ions diffusion across the phase <strong>in</strong>terface is affected ma<strong>in</strong>ly by<br />

the <strong>in</strong>itial concentration <strong>of</strong> copper <strong>in</strong> the solution and by the time duration <strong>of</strong> the diffusion.<br />

The <strong>in</strong>fluence <strong>of</strong> other solution properties, such as its pH or ionic strength as well as the type<br />

<strong>of</strong> copper(II) salt anion is far less important however show <strong>in</strong>terest<strong>in</strong>g dependencies.<br />

Although the applied apparatus was very simple and could be improved for follow<strong>in</strong>g<br />

experiments (the higher solution volumes should be used) experimental data are fitted well by<br />

the theoretical calculations, so it can be said that this method presented itself suitable for the<br />

wide spectrum <strong>of</strong> diffusion experiments us<strong>in</strong>g humic gel as a very usefull natural–like model.<br />

REFERENCES<br />

[1] Klučáková, M.: Hum<strong>in</strong>ový gel jako model pro studium transportu těžkých kovů<br />

v přírodních systémech. CHEMagazín 2004, Vol. 14, No. 3, p. 8–9. ISSN 1210–7409<br />

[2] Klučáková, M., Kaláb, M., Pekař, M., Lapčík, L.: Study <strong>of</strong> Structure and properties <strong>of</strong><br />

Humic and Fulvic Acids. II. Study <strong>of</strong> Adsorption <strong>of</strong> Cu + ions to Humic Acids Extracted<br />

from Lignite, J.Polym.Mater 19 (3) 2002<br />

[3] Malenovská, M.: Studium difúzních procesů v hum<strong>in</strong>ových gelech. 55 stran. Diplomová<br />

práce na VUT, FCH Brno 2005. Vedoucí diplomové práce Ing. Mart<strong>in</strong>a Klučáková<br />

PhD.<br />

[4] Sedláček, P..: Difúze kovových iontů v hum<strong>in</strong>ových gelech. 70 stran. Diplomová práce<br />

na VUT, FCH Brno 2006. Vedoucí diplomové práce Doc. Ing. Mart<strong>in</strong>a Klučáková PhD.<br />

[5] Klučáková, M., Pekař, M.: Diffusion <strong>of</strong> Metal Cations <strong>in</strong> Humic Gels. In Humic<br />

Substances: Nature´s most Versatile Materials (E. Ghabbour, G. Davies Eds.), Francis<br />

& Taylor, New York, 2004, p. 263–74<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

ionic strength [mol.dm –3 ]<br />

Fig. 8 Total diffusion flux dependency on solution pH (left) and ionic strength (right)<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 227


LIVING RADICAL POLYMERIZATIONS INITIATED WITH<br />

SILSESQUIOXANES<br />

Author: Ing. Ondřej Smrtka – 3 rd year <strong>of</strong> DSP<br />

Supervisor: Pr<strong>of</strong>. RNDr. Josef Jančář, CSc.<br />

Brno University <strong>of</strong> Technology, Faculty <strong>of</strong> Chemistry, Institute <strong>of</strong> Material Chemistry<br />

Purkyňova 118, 612 00 Brno, Czech Republic; email: smrtka@fch.vutbr.cz<br />

INTRODUCTION<br />

It has been discovered that small variations <strong>in</strong> molecular structure at the nano-meter scale<br />

level allow substantial changes <strong>in</strong> macroscopic behavior <strong>of</strong> nanostructured systems.<br />

Nanocomposites with polymeric matrix belong among the most <strong>in</strong>tensively <strong>in</strong>vestigated<br />

materials s<strong>in</strong>ce they promise extensive <strong>in</strong>dustrial and biomedical applications.<br />

The polyhedral oligomeric silsesquixanes (POSS) can be <strong>in</strong>cluded <strong>in</strong>to the large group <strong>of</strong><br />

nano-particles used for nanocomposite preparation. POSS, due to their well-def<strong>in</strong>ed structure,<br />

are considered to simulate the surface <strong>of</strong> silica nano-particles as the smallest possible silica<br />

particle. Nanocomposites conta<strong>in</strong><strong>in</strong>g POSS nanoparticles are considered extremely <strong>in</strong>terest<strong>in</strong>g<br />

class <strong>of</strong> nanostructure organic-<strong>in</strong>organic materials.<br />

Polyhedral oligomeric silsesquioxans are compounds <strong>of</strong> general formula (RSiO1.5)x, where<br />

x is an even number higher than 4, mostly be<strong>in</strong>g 8. R is any <strong>of</strong> large number <strong>of</strong> organic<br />

groups, or e.g. hydrogen or halogen atom.<br />

R<br />

R<br />

O<br />

Si<br />

O<br />

R<br />

Si<br />

O<br />

O<br />

Si<br />

O<br />

R<br />

Si<br />

O<br />

Fig. 1: Polyhedral oligomeric silsesquioxan (POSS)<br />

POSS are prepared preferentially by hydrolytic condensation <strong>of</strong> trifunctional silanes [1].<br />

Organic groups are carried <strong>in</strong>to the molecule either directly dur<strong>in</strong>g the synthesis (as the fourth<br />

non-reactive group <strong>of</strong> the silane precursor), or by a transformation <strong>of</strong> exist<strong>in</strong>g groups [2].<br />

Mon<strong>of</strong>unctional POSS are synthesized from <strong>in</strong>completely condensed molecules <strong>of</strong><br />

silsesquioxane by condensation <strong>of</strong> another silane with appropriate functional group [3].<br />

POSS particles can be <strong>in</strong>corporated to the polymeric materials directly by blend<strong>in</strong>g with<br />

polymer as the additive, or as the component <strong>of</strong> polymeric cha<strong>in</strong>. The POSS conta<strong>in</strong><strong>in</strong>g<br />

macromolecules can be synthesized us<strong>in</strong>g monomers with POSS pendant groups, or<br />

afterwards, by graft<strong>in</strong>g to the polymer us<strong>in</strong>g various condensation or addition reactions (e.g.<br />

hydrosilylation). Another way how to connect POSS with the polymer cha<strong>in</strong> is to use it as the<br />

<strong>in</strong>itiator for ATRP.<br />

ATRP (Atom Transfer Radical Polymerization) has been developed <strong>in</strong> 1995 by<br />

Matyjaszewski [4]. It is based on rapid atta<strong>in</strong>ment <strong>of</strong> dynamic equilibrium between low<br />

amount <strong>of</strong> grow<strong>in</strong>g free radicals and much higher amount <strong>of</strong> dormant species. Because the<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 228<br />

O<br />

Si<br />

O<br />

O<br />

Si<br />

R<br />

R<br />

O<br />

O<br />

Si<br />

Si<br />

O<br />

R<br />

R


number <strong>of</strong> free radicals is very low, the term<strong>in</strong>ation is reduced and the polymerization proves<br />

liv<strong>in</strong>g character.<br />

P –X + Cu –Y/2L ⎯⎯→ P + M + X–Cu –Y/2L<br />

I kakt<br />

•<br />

II<br />

n ←⎯ ⎯ k<br />

n<br />

deakt<br />

Pn + Pm<br />

Fig. 2: Scheme <strong>of</strong> ATRP<br />

The dormant species are mostly alkylhalides, from which the halogen atom is transferred to<br />

catalyst (copper halide + organic ligand); the specie then becomes a radical, efficient to<br />

propagate radical polymerization. The oxidation state <strong>of</strong> copper <strong>in</strong>creases by one with<br />

admitt<strong>in</strong>g the halogen; with the transfer back to the polymer the orig<strong>in</strong>al oxidation state is<br />

retrieved. Other transition-metal salts can be used as the ATRP catalyst, with the requirement<br />

to the metal center to have at least two readily accessible oxidation states separated by one<br />

electron.<br />

A variety <strong>of</strong> monomers have been successfully polymerized us<strong>in</strong>g ATRP, typical<br />

monomers <strong>in</strong>clude styrenes, methacrylates, acrylamides and acrylonitrile.<br />

In ATRP, alkylhalides are typically used as the <strong>in</strong>itiator. A variety <strong>of</strong> transition-metal<br />

complexes have been studied as ATRP catalyst, but copper catalysts are superior <strong>in</strong> ATRP <strong>in</strong><br />

terms <strong>of</strong> versatility and cost. Presence <strong>of</strong> organic ligand is necessary for dissolution <strong>of</strong> copper<br />

salt <strong>in</strong> reaction mixture. Above all, the nitrogen-based ligands are used (e.g. bipyrid<strong>in</strong>e,<br />

PMDETA, HMTETA).<br />

Initiation <strong>of</strong> ATRP with the POSS-based <strong>in</strong>itiator has not been <strong>in</strong>timately described so far,<br />

only some notes were published [5, 6]; however <strong>in</strong>itiation <strong>of</strong> ATRP with polysiloxane-based<br />

<strong>in</strong>itiators has been described [7, 8] much more and due to the silimilar structures the depicted<br />

techniques might be used also for POSS-based <strong>in</strong>itiators.<br />

EXPERIMENTAL<br />

Materials used<br />

Styrene was distilled from calcium hydride prior to use. Tetrahydr<strong>of</strong>urane was distilled<br />

from purple sodium/benzophenon solution. Copper (I) bromide was stirred <strong>in</strong> glacial acetic<br />

acid overnight, decanted, then washed with absolute ethanol and diethyl ether and vacuum<br />

dried at 60°C. Ethyl-α-bromo-isobutyrate (EBIB), p-dimethoxybenzene (DMB), POSShydride,<br />

allyl-bromoisobutyrate, pentamethyldiethylene triam<strong>in</strong>e (PMDETA), and Karstedt<br />

catalyst were used as received.<br />

Synthesis <strong>of</strong> POSS-Br<br />

POSS-Br was synthesized us<strong>in</strong>g hydrosilylation reaction. 1.37 g (1.44 mmol) <strong>of</strong> POSS-H,<br />

16 ml dried THF, 0,24 ml (1.44 mmol) allyl-α-bromoisobutyrate and 55μL <strong>of</strong> Karstedt<br />

catalyst solution <strong>in</strong> xylene (3 wt.%, 3,64 μmol) were placed <strong>in</strong>to a 50 mL two-neck roundbottom<br />

flask under nitrogen blanket and stirred. The flask was fit with rubber septum and a<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 229<br />

kp<br />

k´t<br />

P • m<br />

kt<br />

Pn+m


eflux condenser equipped with bubble flask filled with silicon oil. Then 55μL <strong>of</strong> Karstedt<br />

catalyst solution <strong>in</strong> xylene (3 wt.%, 3,64 μmol) was <strong>in</strong>jected to the reaction flask and the<br />

mixture was heated <strong>in</strong> 80 °C oil bath under reflux for 24 hours. THF was evaporated and the<br />

product POSS-Br was vacuum dried.<br />

R<br />

R<br />

R<br />

Si<br />

O<br />

O<br />

Si O<br />

O Si<br />

O<br />

R<br />

Si<br />

O<br />

O<br />

R<br />

O<br />

Si<br />

Si O<br />

O Si<br />

O<br />

O<br />

Si<br />

R<br />

H<br />

C<br />

H 3<br />

R<br />

+<br />

C<br />

H 2<br />

RH3<br />

= C<br />

O<br />

O<br />

CH 3<br />

Br<br />

CH 3<br />

Karstedtův Karstedt's katalyzátor catalysator catalyst<br />

THF, reflux<br />

24 hours<br />

Fig. 3: Synthesis <strong>of</strong> POSS-Br <strong>in</strong>itiator<br />

Polymerizations<br />

Polymerization 1:<br />

A typical polymerization is as follows: 31 mg CuBr was placed <strong>in</strong>to a 50 mL double-neck<br />

flask; the flask was evacuated and filled with nitrogen. Under a nitrogen blanket 5 mL <strong>of</strong><br />

styrene, 40 μL <strong>of</strong> PMDETA and 4.6 g <strong>of</strong> p-dimethoxybenzene was added. The mixture was<br />

stirred until a homogenous solution formed and was placed <strong>in</strong>to a 120°C oil bath under<br />

nitrogen. After heat<strong>in</strong>g to the reaction temperature 0,48 g <strong>of</strong> POSS-Br (<strong>in</strong>itiator) was added.<br />

The solution turned dark green as the reaction began. Periodically, small amounts <strong>of</strong> reaction<br />

mixture were removed for k<strong>in</strong>etic and molecular weight analysis (conversion was<br />

determ<strong>in</strong>ated by weight analysis, molecular weight <strong>of</strong> polymers was determ<strong>in</strong>ed us<strong>in</strong>g gel<br />

permeation chromatography). Molar ratios: Styrene:POSS-Br:CuBr:PMDETA -<br />

100:1:0.5:0.5.<br />

Polymerization 2:<br />

This polymerization is similar to the polymerization 1, except the POSS-Br <strong>in</strong>itiator is<br />

replaced with 65 μL <strong>of</strong> ethyl-α-bromo-isobutyrate, which was <strong>in</strong>jected to the hot mixture via<br />

rubber septum. Molar ratios: Styrene:EBIB:CuBr:PMDETA - 100:1:0.5:0.5.<br />

RESULTS<br />

Reason for us<strong>in</strong>g POSS as an <strong>in</strong>itiator <strong>of</strong> ATRP is to get a polystyrene macromolecule with<br />

one bulky POSS group at one <strong>of</strong> the cha<strong>in</strong> ends; the <strong>in</strong>itiator <strong>of</strong> ATRP rema<strong>in</strong>s the <strong>in</strong>separable<br />

part <strong>of</strong> the macromolecule.<br />

Molecular weight plots prove liv<strong>in</strong>g character <strong>of</strong> polymerizations; molecular weight grows<br />

l<strong>in</strong>early with conversion, with conversion grow<strong>in</strong>g to almost 100%. L<strong>in</strong>ear dependence <strong>of</strong><br />

conversion on time <strong>in</strong> semi logarithmic coord<strong>in</strong>ates (Fig. 5) shows the first-order k<strong>in</strong>etic with<br />

respect to monomer.<br />

From the molecular weight plot <strong>of</strong> polymerization 1 (Fig. 6) it is obvious, that <strong>in</strong>itiation<br />

efficiency is low and only about one half <strong>of</strong> the POSS <strong>in</strong>itiator molecules is used for<br />

<strong>in</strong>itiation; this causes the molecular weight to be twice as high as is should be accord<strong>in</strong>g to the<br />

theoretical value determ<strong>in</strong>ed from molar ratio monomer:<strong>in</strong>itiator. In contrast, polymerization<br />

2 <strong>in</strong>itiated with low molecular weight <strong>in</strong>itiator EBIB behaves <strong>in</strong> accordance with theory<br />

(Fig. 7).<br />

R<br />

R<br />

O<br />

Si<br />

O<br />

R<br />

Si<br />

O<br />

O<br />

Si<br />

O<br />

R<br />

Si<br />

O<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 230<br />

O<br />

Si<br />

O<br />

O<br />

Si<br />

R<br />

R<br />

O<br />

O<br />

Si<br />

Si<br />

O<br />

R<br />

O<br />

O<br />

CH 3<br />

Br<br />

CH 3


Differences can be caused by several reasons; no one <strong>of</strong> these reasons was studied <strong>in</strong> this<br />

work <strong>in</strong> detail, so the follow<strong>in</strong>g ideas must be taken as a speculations.<br />

One factor could be different solubility <strong>of</strong> catalyst system due to the presence <strong>of</strong> different<br />

<strong>in</strong>itiator <strong>in</strong> reaction mixture; it is also important to rule out the possibility <strong>of</strong> conventional free<br />

radical polymerization tak<strong>in</strong>g place to form polystyrene homopolymer, although the catalyst<br />

system should <strong>in</strong>hibit this reaction; part <strong>of</strong> POSS based <strong>in</strong>itiator molecules could be<br />

deactivated with some side reaction, or there is just a steric block for approach <strong>of</strong> molecules<br />

<strong>of</strong> catalyst or monomer to the bulky POSS molecule; these ideas must be taken <strong>in</strong>to<br />

consideration <strong>in</strong> subsequent work on this project.<br />

Convers ion [%]<br />

ln([M]0/[M]t)<br />

M<br />

100<br />

2<br />

1<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 200 400 600 800 1000<br />

t [m<strong>in</strong>]<br />

Fig. 4: K<strong>in</strong>etic plots<br />

0<br />

0 100 200 300 400 500<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

t [m<strong>in</strong>]<br />

Fig. 5: Semilogarithmic k<strong>in</strong>etic plots<br />

0<br />

1.00<br />

0 20 40 60 80 100<br />

Co nve rs io n [%]<br />

1.70<br />

1.60<br />

1.50<br />

1.40<br />

1.30<br />

1.20<br />

1.10<br />

D<br />

Polymerization 1<br />

Polymerization 2<br />

Polymerization 1<br />

Polymerization 2<br />

M(th e o r.)<br />

Fig. 6: Molecular weight plot for polymerization 1<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 231<br />

M<br />

D


CONCLUSION<br />

M<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

0 20 40 60 80 100<br />

Conve rs ion [%]<br />

1.3<br />

1.25<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

D<br />

M(theor.)<br />

Fig. 7: Molecular weight plot for polymerization 2<br />

ATRP has been employed to produce polystyrene macromolecules conta<strong>in</strong><strong>in</strong>g polyhedral<br />

oligomeric silsesquioxanes (POSS). Polymerizations <strong>in</strong>itiated with POSS prove slower<br />

growth <strong>of</strong> polymers than polymerizations <strong>in</strong>itiated with low-molecular <strong>in</strong>itiators, and also<br />

lower <strong>in</strong>itiation efficiency, which causes the molecular weight to be much higher than<br />

expected. Further work is underway to optimize the conditions <strong>of</strong> the polymerizations with<br />

respect to the efficiency <strong>of</strong> <strong>in</strong>itiation, polydispersity <strong>of</strong> polymer and polymerization rate.<br />

REFERENCE<br />

[1] Agaskar P.A., Inorg. Chem., 30 (1991), p. 2707-2708<br />

[2] Zhang C., La<strong>in</strong>e R.M., J. Organomet. Chem., 521 (1996), p. 199-201<br />

[3] Lichtenhan J.D. et al., Mat. Res. Soc.Symp. Proc., 435 (1996), p. 3-11<br />

[4] Wang J.S., Matyjaszewski K., J. Am. Chem. Soc., 117 (1995), p. 5614-5615<br />

[5] Pyun J. et al., J. Am. Chem. Soc. 123 (2001), p. 9445-9446<br />

[6] Matyjaszewski K. et al., ACS Symp. Ser. 729 (2000), p. 270-283<br />

[7] Brown D.A., Price G.J., Polymer 42 (2001), p. 4767-4771<br />

[8] Miller P.J., Matyjaszewski K., Macromolecules 32 (1999), p. 8760-8767<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 232<br />

M<br />

D


MEASUREMENT OF THERMOPHYSICAL PROPERTIES OF PMMA<br />

BY PULSE TRANSIENT METHOD<br />

Ing. Pavla Štefková<br />

Supervisor: Pr<strong>of</strong>. Ing. Oldřich Zmeškal, CSc.<br />

Institute <strong>of</strong> Physical and Applied Chemistry, Faculty <strong>of</strong> Chemistry, Brno University <strong>of</strong><br />

Technology, Purkynova 118, 612 00 Brno, Czech Republic, email: stefkova@fch.vutbr.cz<br />

INTRODUCTION<br />

Polymethyl methacrylate (PMMA) is the synthetic polymer <strong>of</strong> methyl methacrylate. This<br />

thermoplastic and transparent plastic was developed <strong>in</strong> 1928 <strong>in</strong> various laboratories and was<br />

brought to market <strong>in</strong> 1933 by the German Company Rohm and Haas. This material is used as<br />

the standard reference material for thermal conductivity measurements <strong>in</strong> metrology.<br />

Chemical analysis and materials test<strong>in</strong>g are becom<strong>in</strong>g ever more important as science,<br />

trade and society are gett<strong>in</strong>g more complex worldwide. The number and significance <strong>of</strong><br />

decisions based on the results <strong>of</strong> chemical analysis and materials’ test<strong>in</strong>g is ever <strong>in</strong>creas<strong>in</strong>g <strong>in</strong><br />

all spheres <strong>of</strong> life. For this purpose results <strong>of</strong> analysis and test<strong>in</strong>g have to be reliable and<br />

comparable as well as acceptable worldwide. The use <strong>of</strong> certified reference materials is an<br />

efficient and proper tool to achieve these goals [1].<br />

Measurement <strong>of</strong> the thermophysical properties <strong>of</strong> PMMA shows that some effects<br />

<strong>in</strong>fluenc<strong>in</strong>g the measurement process have to be known when one want to use it as laboratory<br />

reference or standard reference material (SRM). This material should be used for validation <strong>of</strong><br />

apparatuses upon well-known experimental conditions, to obta<strong>in</strong> reliable data [2].<br />

The pulse transient method allows <strong>in</strong>vestigat<strong>in</strong>g the thermal diffusivity, specific heat and<br />

thermal conductivity with<strong>in</strong> s<strong>in</strong>gle measurement. The pr<strong>in</strong>ciple <strong>of</strong> this method and the<br />

arrangement <strong>of</strong> the measured sample are shown <strong>in</strong> Figure 1. The heat pulse is generated by<br />

the pass<strong>in</strong>g <strong>of</strong> the electrical current through the plane electrical resistor made <strong>of</strong> metallic foil.<br />

A sensor measures the time development <strong>of</strong> the temperature field (temperature response) <strong>in</strong> a<br />

po<strong>in</strong>t <strong>of</strong> the tested body. Then the temperature is characterized by a function [3]<br />

⎟ 2<br />

Q S ⎛ h ⎞<br />

ΔT =<br />

⋅ exp ⎜<br />

⎜−<br />

. (1)<br />

( E−<br />

D)<br />

/ 2<br />

cp<br />

ρ ( 4π<br />

at<br />

) ⎝ 4a<br />

t ⎠<br />

The thermophysical parameters are calculated from the characteristic parameters <strong>of</strong> the<br />

temperature response (time and the maximum <strong>of</strong> temperature response to the heat pulse).<br />

The thermal diffusivity is given by<br />

2<br />

h<br />

a =<br />

2tmax f a<br />

the specific heat by<br />

2<br />

h<br />

=<br />

2(<br />

E − D)<br />

tmax<br />

, (2)<br />

Q<br />

cp = ⋅<br />

ρ ΔTmaxh<br />

and thermal conductivity by<br />

f c<br />

=<br />

2π exp( 1)<br />

Q<br />

E−<br />

D<br />

ρ ΔTmaxh<br />

( E −D<br />

) / 2<br />

⎛ E − D ⎞<br />

⋅ ⎜<br />

2 exp( 1)<br />

⎟<br />

⎝ π ⎠<br />

(3)<br />

Q<br />

λ = cp ρ a =<br />

E−<br />

D−2<br />

2(<br />

E − D)<br />

ΔTmaxt<br />

maxh<br />

( E −D<br />

) / 2<br />

⎛ E − D ⎞<br />

⎜<br />

2 exp( 1)<br />

⎟ .<br />

⎝ π ⎠<br />

(4)<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 233


It is possible to def<strong>in</strong>ite the coefficient fa (fractal dimension D respectively) for every po<strong>in</strong>t <strong>of</strong><br />

the experimental dependence<br />

2ln(<br />

ΔTmax<br />

ΔT<br />

)<br />

f a = E − D =<br />

. (5)<br />

ln( t t ) + ( t t −1)<br />

t t<br />

specimen<br />

tm t m<br />

Figure 1 The pr<strong>in</strong>ciple <strong>of</strong> measurement <strong>of</strong> thermophysical parameters by the pulse transient<br />

method.<br />

max<br />

planar source thermocouple<br />

current current pulse pulseplanar<br />

source<br />

h<br />

thermocouple<br />

I I<br />

t t0 o<br />

I II III<br />

max<br />

T<br />

temperature response response<br />

EXPERIMENT AND RESULTS<br />

For measur<strong>in</strong>g <strong>of</strong> the responses to the pulse heat the Thermophysical Transient Tester 1.02<br />

was used. It was developed at the Institute <strong>of</strong> Physics, Slovak Academy <strong>of</strong> Science. The<br />

specimen <strong>of</strong> 30 mm <strong>in</strong> diameter and 6 mm thick was used for the pulse transient method. Its<br />

density is ρ = 1184 kg m –3 . Thermophysical properties <strong>of</strong> material were measured <strong>in</strong> air.<br />

1. Comparison between experimental and recommended data <strong>of</strong> the thermophysical<br />

parameters <strong>of</strong> PMMA measured at 25 °C<br />

The pulse width <strong>of</strong> 4 – 40 s, the heat power <strong>of</strong> 0.18 up to 3.03 W was used and adequate<br />

the pulse heat energy <strong>of</strong> 3000 – 42000 J m –2 was obta<strong>in</strong>ed. The typical heat energy <strong>of</strong> pulse<br />

was about 13000 J m –2 that is low enough to avoid temperature damage <strong>of</strong> this material. The<br />

temperature response ΔTmax <strong>in</strong> the range <strong>of</strong> 0.1 up to 1.4 °C was obta<strong>in</strong>ed. Analysis <strong>of</strong> these<br />

sets <strong>of</strong> data was carried out to f<strong>in</strong>d optimal experimental conditions.<br />

ΔT (°C)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

T m<br />

0 150 300 450 600 750<br />

t (s)<br />

15065 J m<br />

20197<br />

23753<br />

28706<br />

40081<br />

-2<br />

J m -2<br />

J m -2<br />

J m -2<br />

J m -2<br />

Figure 2 Temperature responses <strong>of</strong> PMMA measured by the PTM for different heat powers<br />

and various pulse widths; see Table 1.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 234<br />

ΔTm


The typical time responses <strong>of</strong> temperature for the rectangle (Dirac) pulse <strong>of</strong> different <strong>in</strong>put<br />

power <strong>of</strong> heat with various pulse widths are presented <strong>in</strong> Figure 2. The heat power and width<br />

<strong>of</strong> pulse were changed for f<strong>in</strong>d the optimal measurement conditions and subsequently<br />

determ<strong>in</strong>e the reliable data <strong>of</strong> thermal diffusivity, specific heat and thermal conductivity <strong>of</strong><br />

studied material. These results are summarized <strong>in</strong> Table 1.<br />

Table 1 Thermophysical parameters <strong>of</strong> PMMA measured <strong>in</strong> optimum exp. conditions.<br />

Q/S (J m –2 ) P (W) ΔTmax (°C) tmax (s) a (m 2 s –1 ) cp (J kg –1 K –1 ) λ (W m –1 K –1 )<br />

13 069 0.58 0.307 144 0.113 1425.0 0.190<br />

17 325 0.67 0.398 146 0.110 1457.1 0.190<br />

17 267 0.67 0.397 148 0.109 1456.9 0.188<br />

19 789 0.76 0.460 144 0.112 1440.5 0.190<br />

17 990 0.92 0.424 148 0.113 1420.0 0.190<br />

20 197 1.21 0.477 141 0.120 1419.1 0.202<br />

23 753 1.75 0.563 139 0.124 1414.1 0.207<br />

28 706 2.88 0.680 141 0.123 1415.2 0.207<br />

40 081 2.88 0.955 148 0.115 1405.6 0.192<br />

(0.115 ± 0.005) (1428.2 ± 17.8) (0.195 ± 0.007)<br />

The thermophysical parameters were calculated from the parameters <strong>of</strong> the temperature<br />

response to the heat pulse. Typical temperature <strong>in</strong>creases for reliable data were between<br />

0.3 °C and 1.0 °C that were equivalent to the heat powers <strong>of</strong> 0.58 W up to 2.88 W and to the<br />

heat energies <strong>of</strong> 13000 J m –2 up to 40000 J m –2 .<br />

The pulse transient method gives data with<strong>in</strong> the experimental error less than 4.35 % for<br />

thermal diffusivity, less than 1.25 % for specific heat and 3.59 % for thermal conductivity.<br />

Average values a = 0.115 m 2 s –1 , cp = 1428.2 J kg –1 K –1 and λ = 0.195 W m –1 K –1 are <strong>in</strong><br />

reasonable co<strong>in</strong>cidence with the recommended values, see Table 2.<br />

Table 2 Recommended values <strong>of</strong> thermophysical parameters <strong>of</strong> PMMA at 25 °C [4].<br />

D (–)<br />

ρ (kg m –3 ) a (m 2 s –1 ) cp (J kg –1 K –1 ) λ (W m –1 K –1 )<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

1188 0.112 1450.0 0.193<br />

0 50 100 150 200 250<br />

t (s)<br />

15065 J m<br />

20197<br />

23753<br />

28706<br />

40081<br />

-2<br />

J m -2<br />

J m -2<br />

J m -2<br />

J m -2<br />

Figure 3 Fractal dimension <strong>of</strong> the heat distribution <strong>in</strong> the specimen determ<strong>in</strong>ed from<br />

<strong>in</strong>creased part <strong>of</strong> characteristics.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 235


The coefficient fa (fractal dimension D respectively) <strong>of</strong> the fractal heat source for every<br />

po<strong>in</strong>t <strong>of</strong> the experimental dependence was calculated us<strong>in</strong>g the Eq. (5).<br />

The fractal heat source characterizes the distribution <strong>of</strong> the temperature <strong>in</strong> the specimen <strong>in</strong><br />

specific time. The character <strong>of</strong> these dependences differs for different thicknesses <strong>of</strong> measured<br />

sample. Dependencies <strong>of</strong> the fractal dimension on the time are plotted <strong>in</strong> Figure 3.<br />

Generally we can say that all measured results were started from the value <strong>of</strong> the fractal<br />

dimension D ≈ 3 and then they were saturated at the some constant value <strong>of</strong> the fractal<br />

dimension. This value <strong>of</strong> the fractal dimension depends on the losses dur<strong>in</strong>g the transport <strong>of</strong><br />

heat throw the sample.<br />

2. Study <strong>of</strong> thermophysical parameters <strong>of</strong> PMMA at 25 °C and 30 °C<br />

The measurements were carried out with the sample temperature stabilized at 25 °C and<br />

30 °C <strong>in</strong> atmosphere <strong>of</strong> air and <strong>in</strong> the same experimental conditions. The temperature<br />

response occurred <strong>in</strong> the range <strong>of</strong> 0.1 up to 1.4 °C. Experimental data was obta<strong>in</strong>ed for the<br />

pulse width <strong>of</strong> 4 – 40 s and the pulse heat energy <strong>of</strong> 6000 up to 36000 J m –2 .<br />

a (mm 2 s -1 )<br />

c p (J kg -1 K -1 )<br />

λ (W m -1 K -1 )<br />

0.17<br />

0.16<br />

0.14<br />

0.13<br />

0.11<br />

15705000<br />

11000 17000 23000 29000<br />

1510<br />

1450<br />

1390<br />

1330<br />

0.28<br />

0.26<br />

0.24<br />

0.22<br />

0.20<br />

5000 11000 17000 23000 29000<br />

5000 11000 17000 23000 29000<br />

Q /S (J m -2 )<br />

25 °C<br />

30 °C<br />

Figure 4 Thermophysical parameters <strong>of</strong> PMMA measured at 25 °C and 30 °C.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 236


Figure 4 illustrates the typical dependencies <strong>of</strong> the thermophysical parameters <strong>of</strong> PMMA<br />

on the heat energy for the heat power 1.75 W. This figure shows that thermal diffusivity <strong>of</strong><br />

PMMA slightly decreases with the <strong>in</strong>creas<strong>in</strong>g temperature as well as thermal conductivity. On<br />

the contrary, the specific heat <strong>in</strong>creases with the <strong>in</strong>creas<strong>in</strong>g temperature <strong>of</strong> measured sample.<br />

CONCLUSIONS<br />

This paper presents the results <strong>of</strong> the measurements <strong>in</strong> optimal experimental conditions and<br />

<strong>of</strong> the study <strong>of</strong> the dependency <strong>of</strong> the thermophysical parameters on the temperature <strong>of</strong><br />

studied specimen that were obta<strong>in</strong>ed on PMMA. The measurements were made <strong>in</strong> air. To<br />

<strong>in</strong>terpret the outcomes, the simplified heat conductivity model is used [3]. Results show the<br />

image <strong>of</strong> heat distribution <strong>in</strong> the specimen, <strong>in</strong> various time <strong>in</strong>tervals after the heat supply from<br />

the source.<br />

The analysis <strong>of</strong> experimental data measured by the pulse transient method for various heat<br />

power and pulse width <strong>of</strong> measurement was performed on polymethyl methacrylate (perspex).<br />

The optimization <strong>of</strong> the procedure <strong>of</strong> conditions meter<strong>in</strong>g was used to f<strong>in</strong>d the optimal range<br />

<strong>of</strong> measur<strong>in</strong>g process at 25 °C where data stability <strong>in</strong>terval exists, e.g. the values <strong>of</strong><br />

thermophysical parameters are reliable. The value <strong>of</strong> thermal diffusivity calculated from the<br />

data stability <strong>in</strong>terval was determ<strong>in</strong>ed as 0.115 m 2 s –1 , 1428.2 J kg –1 K –1 for the specific heat<br />

and the value <strong>of</strong> thermal conductivity was calculated as 0.195 W m –1 K –1 and they are close to<br />

the recommended values; see Table 2. The pulse transient method gives data with<strong>in</strong> the<br />

experimental error less than 4.35 % for thermal diffusivity, less than 1.20 % for specific heat<br />

and 3.59 % for thermal conductivity. These evaluations could be used for more accurate<br />

determ<strong>in</strong>ation <strong>of</strong> the thermal parameters <strong>of</strong> studied (homogeneous and heterogeneous)<br />

matters.<br />

Data measured on PMMA clearly show difference <strong>of</strong> thermophysical parameters measured<br />

<strong>in</strong> different temperatures for the same specimen and experimental conditions. Thermal<br />

diffusivity <strong>of</strong> PMMA slightly decreases with the <strong>in</strong>creas<strong>in</strong>g temperature as well as thermal<br />

conductivity. On the contrary, the specific heat <strong>in</strong>creases with the <strong>in</strong>creas<strong>in</strong>g temperature.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by the Grant Agency <strong>of</strong> the Czech Republic, contract No.<br />

2239/2006/G1.<br />

REFERENCES<br />

[1] Steiger T., Pradel R.: Update on COMAR – the Internet Database for Certified<br />

Reference Materials. Journal <strong>of</strong> Metrology Society <strong>of</strong> India. Vol. 19. No. 4. 2004.<br />

p. 203-207.<br />

[2] Boháč V., Kubičár L.: Investigation <strong>of</strong> Surface Effects on PMMA by Pulse<br />

Transient Method. In Thermophysics 2001, Meet<strong>in</strong>g <strong>of</strong> the Thermophysical<br />

Society, Work<strong>in</strong>g Group <strong>of</strong> the Slovak Physical Society. Račkova dol<strong>in</strong>a. October<br />

23, 2001. p. 21-27. ISBN 80-8050-491-1.<br />

[3] Stefkova, P., Zmeskal, O., Capousek, R. Study <strong>of</strong> Thermal Field <strong>in</strong> Composite<br />

Materials. In Complexus Mundi. WS. London, World Scientific. 2006. p. 217 –<br />

224. ISBN 981-256-666-X.<br />

[4] Vohlídal J., Julák A., Štulík K.: Chemické a analytické tabulky. Grada Publish<strong>in</strong>g<br />

1999; 1. vydání; Praha 1999; 652 s. ISBN 80-7169-855-5.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 237


THE ANALYSIS OF GAMMA LINOLENIC ACID IN EVENING<br />

PRIMROSE OIL<br />

Hana Štoudková, 2.ročník DSP<br />

Školitel: doc. Ing. Miroslav Fišera, CSc.<br />

Vysoké učení technické v Brně, Fakulta chemická, Ústav potrav<strong>in</strong>ářské chemie<br />

a biotechnologie, Purkyňova 118, 61200 Brno, email: stoudkova@fch.vutbr.cz<br />

INTRODUCTION<br />

Even<strong>in</strong>g primrose oil (Oenothera biennis L.) is rich source <strong>of</strong> ω-6 series <strong>of</strong> polyunsaturated<br />

fatty acids. One <strong>of</strong> these fatty acids is gamma l<strong>in</strong>olenic acid – GLA (cis-6,cis-9,cis-12octadecatrienoic<br />

acid). The content <strong>of</strong> GLA is the s<strong>in</strong>gle most important parameter to be<br />

determ<strong>in</strong>ed [1,2].<br />

The oil content <strong>of</strong> even<strong>in</strong>g primrose seeds varies with such factors as the age <strong>of</strong> the seed,<br />

cultivar and growth conditions, and typically varies between 18 and 25 %. The oil consists <strong>of</strong><br />

about 98 % triacylglycerols, with small amounts <strong>of</strong> other lipids (free acids, diacylglycerols,<br />

phospholipides) and about 1–2% unsaponifiable matter, <strong>of</strong> which sterols and tocopherols are<br />

<strong>of</strong> some importace [1].<br />

Even<strong>in</strong>g primrose oil is used <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g amount <strong>in</strong> nutritional and pharmaceutical<br />

preparations. Essential fatty acids are vital components <strong>of</strong> all membrane structures <strong>in</strong> the body<br />

and there are also <strong>in</strong>volved <strong>in</strong> the <strong>production</strong> <strong>of</strong> prostagland<strong>in</strong>s, which regulate the immune<br />

system. A prostagland<strong>in</strong> deficiency can cause sk<strong>in</strong> rashes, hair loss, lowered immunity [3,4].<br />

One <strong>of</strong> the most important unsaturated fatty acids <strong>in</strong>volved <strong>in</strong> beneficial prostagland<strong>in</strong><br />

<strong>production</strong> is gamma l<strong>in</strong>olenic acid.<br />

Gamma l<strong>in</strong>olenic acid and even<strong>in</strong>g primrose oil have been the focus <strong>of</strong> many medical<br />

studies. Some <strong>of</strong> these studies claim that even<strong>in</strong>g primrose oil supplementation boost natural<br />

immunity, help lower cholesterol levels, reduce blood pressure, can help ease premenstrual<br />

syndrome, eczema, diabetes, osteoporosis [3,4].<br />

MATERIALS AND METHODS<br />

Samples<br />

A total <strong>of</strong> eight even<strong>in</strong>g primrose oils were tested. Samples were obta<strong>in</strong>ed from Aromatica,<br />

v.o.s. and the other producers. Common lipophilic compounds with stabilized properties were<br />

chosen as antioxidants: coenzyme Q10, β-carotene, vitam<strong>in</strong> E and Origanox - extract <strong>of</strong><br />

Origanum Vulgare conta<strong>in</strong><strong>in</strong>g flavonoids. Various ways <strong>of</strong> storage were chosen for<br />

assessment <strong>of</strong> stability <strong>of</strong> oils. Maximum time <strong>of</strong> storage was 183 days from open<strong>in</strong>g the vial<br />

with sample.<br />

Methanol esterification method<br />

The fat sample (1,0 g) was saponified with 15 ml methanolic solution <strong>of</strong> potassium<br />

hydroxide (c = 0,5 mol⋅dm -3 ) for 30 m<strong>in</strong>utes <strong>in</strong> distill<strong>in</strong>g flask with condenser and was<br />

esterified after neutralization by sulphuric acid on methyl orange for 30 m<strong>in</strong>utes aga<strong>in</strong>.<br />

After cool<strong>in</strong>g methyl esters were shaken with 10 ml <strong>of</strong> heptane three times. The extract<br />

was dried by anhydrous sodium sulphate and filtered to a 50 ml volumetric flask aga<strong>in</strong>. Both<br />

heptane portions were r<strong>in</strong>sed with 20 ml <strong>of</strong> water twice. The extract was dried by anhydrous<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 238


sodium sulphate and filtered to a 50 ml volumetric flask and filled up to the mark with<br />

heptane [5].<br />

GC analysis<br />

The GC method – gas chromatography was used for identification <strong>of</strong> the fatty acids. So<br />

prepared heptane methyl esters solutions were <strong>in</strong>jected to gas chromatograph us<strong>in</strong>g<br />

autosampler. The compounds were identified accord<strong>in</strong>g to available standards.<br />

GC conditions: gas chromatograph TRACE GC (ThermoQuest Italia S. p. A., I) equipped<br />

with flame ionization detector, split/splitless <strong>in</strong>jector and capillary column SPTM 2560<br />

(100 m × 0,25 mm × 0,2 μm) with the temperature programme 60 °C held for 2 m<strong>in</strong>, ramp<br />

10 °C⋅m<strong>in</strong> -1 up to 220 °C, held for 20 m<strong>in</strong>. The <strong>in</strong>jector temperature was 250 °C and the<br />

detector temperature was 220 °C. The flow rate <strong>of</strong> the carrier gas N2 was 1,2 ml⋅m<strong>in</strong> -1 .<br />

RESULTS AND DISCUSSION<br />

Gamma l<strong>in</strong>olenic acid (GLA) is found naturally to vary<strong>in</strong>g extents <strong>in</strong> the fatty acid fraction<br />

<strong>of</strong> some plant seed oils. The content <strong>of</strong> GLA is the one <strong>of</strong> the most important parameter for<br />

tested even<strong>in</strong>g primrose oils. It is comprised <strong>of</strong> 18 carbon atoms and three double bonds.<br />

Double bonds can be cause <strong>of</strong> the reduce GLA and it leads to changes GLA dur<strong>in</strong>g time <strong>of</strong><br />

storage and used antioxidants.<br />

Virg<strong>in</strong> even<strong>in</strong>g primrose oils<br />

Virg<strong>in</strong> even<strong>in</strong>g primrose oils samples (Arnaud, Gustav Heess) were stored at 4 °C dur<strong>in</strong>g<br />

time <strong>of</strong> storage. Even<strong>in</strong>g primrose oil Arnaud was also stored under laboratory conditions.<br />

The percentage numbers GLA are shown <strong>in</strong> producer´s certificates (Arnaud – m<strong>in</strong>imal 9 %,<br />

Gustav Heess - <strong>in</strong> range from 8 to 12 % GLA). The GLA amount changed significantly<br />

dur<strong>in</strong>g storage. In the case <strong>of</strong> virg<strong>in</strong> even<strong>in</strong>g primrose oil Arnaud the measure values GLA<br />

were lower for up to 1 %. In the case even<strong>in</strong>g primrose oil sample Gustav Heess the content<br />

<strong>of</strong> GLA was about 8 % and it´s <strong>in</strong> the certificate range.<br />

No-stabilized sample <strong>of</strong> even<strong>in</strong>g primrose oil which was held on laboratory conditions<br />

recorded a considerable loss GLA (decrease <strong>of</strong> the GLA content – 2,9 %).<br />

Commercially produced oil samples<br />

Samples <strong>of</strong> even<strong>in</strong>g primrose oils with antioxidants (vitam<strong>in</strong> E, vitam<strong>in</strong> E and coenzyme<br />

Q10, vitam<strong>in</strong> E and β-carotene) obta<strong>in</strong>ed from Aromatica, v.o.s. The GLA content decreased<br />

dur<strong>in</strong>g time <strong>of</strong> storage slightly. The loss GLA was observed <strong>in</strong>dependently <strong>of</strong> added k<strong>in</strong>d,<br />

comb<strong>in</strong>ation or amount antioxidants.<br />

Dependent the content <strong>of</strong> GLA on time <strong>of</strong> storage three samples commercially produced<br />

even<strong>in</strong>g primrose oils with the addition <strong>of</strong> antioxidants is shown <strong>in</strong> Fig. 1. In the case even<strong>in</strong>g<br />

primrose oil with coenzyme Q10 a vitam<strong>in</strong> E a decrease was 0,6 % GLA, the sample with<br />

β-carotene and vitam<strong>in</strong> E 1,3 % GLA and <strong>in</strong> the case even<strong>in</strong>g primrose oil with vitam<strong>in</strong> E a<br />

loss was 1,0 % GLA. The decrease GLA related to the total content <strong>of</strong> fatty acids.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 239


GLA (%)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

coenzyme Q10 + vitam<strong>in</strong> E β-carotene + vitam<strong>in</strong> E vitam<strong>in</strong> E<br />

1 23 52 91 106 147 183<br />

time (days)<br />

Fig. 1: Variation over time <strong>of</strong> storage <strong>in</strong> gamma l<strong>in</strong>olenic acid content <strong>of</strong> commercially<br />

produced even<strong>in</strong>g primrose oils with antioxidants<br />

Laboratory prepared samples<br />

Two samples (even<strong>in</strong>g primrose oil with Origanox TM and even<strong>in</strong>g primrose with mixture<br />

antioxidants coenzyme Q10, β-carotene and vitam<strong>in</strong> E) were laboratory prepared. In the case<br />

both <strong>of</strong> samples the GLA content changed slightly over time <strong>of</strong> storage (Fig. 2).<br />

GLA (%)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

coenzyme Q10 + β-carotene + vitam<strong>in</strong> E Origanox<br />

1 30 51 84 125 161 183<br />

time (days)<br />

Fig. 2: Variation over time <strong>of</strong> storage <strong>in</strong> gamma l<strong>in</strong>olenic acid content <strong>of</strong> laboratory<br />

prepared even<strong>in</strong>g primrose oils with antioxidants<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 240


Compare all tested even<strong>in</strong>g primrose oils<br />

The GLA content was similar for the all tested even<strong>in</strong>g primrose oils and range <strong>of</strong> GLA<br />

was from 5 to 11 % <strong>of</strong> total fatty acids. The content <strong>of</strong> GLA decreased gradually dur<strong>in</strong>g time<br />

<strong>of</strong> storage. Compare <strong>of</strong> the GLA content <strong>in</strong> various tested even<strong>in</strong>g primrose oils at first and<br />

last (183) day <strong>of</strong> storage is shown <strong>in</strong> Table 1.<br />

Maximum level GLA recorded virg<strong>in</strong> even<strong>in</strong>g primrose oil Arnaud <strong>in</strong> 147 day <strong>of</strong> storage<br />

(10,40 ± 0,17 %). M<strong>in</strong>imal amount GLA was found <strong>in</strong> the sample even<strong>in</strong>g primrose oil at 183<br />

day <strong>of</strong> storage, which was stored under laboratory conditions (5,65 ± 0,06 %). Even<strong>in</strong>g<br />

primrose oil with antioxidant Origanox changed m<strong>in</strong>imally. Whereas, most losses recorded<br />

no-stabilized even<strong>in</strong>g primrose oil which was hold on laboratory conditions.<br />

Table 1: The content <strong>of</strong> GLA <strong>in</strong> even<strong>in</strong>g primrose oils (first and last day <strong>of</strong> storage)<br />

Time <strong>of</strong> storage [days]<br />

Even<strong>in</strong>g primrose oils<br />

1 183<br />

GLA [%] sr [%] GLA [%] sr [%]<br />

+ Q10 + vitam<strong>in</strong> E 8,00 ± 0,10 1,27 7,39 ± 0,03 0,38<br />

+ β-carotene + vitam<strong>in</strong> E 8,47 ± 0,09 1,07 7,24 ± 0,10 1,39<br />

+ vitam<strong>in</strong> E 8,77 ± 0,00 0,01 7,75 ± 0,04 0,53<br />

+ Q10 + β-carotene + vitam<strong>in</strong> E 7,26 ± 0,18 2,44 7,00 ± 0,06 0,86<br />

+ Origanox 8,84 ± 0,04 0,43 8,72 ± 0,18 2,07<br />

virg<strong>in</strong>, Arnaud 8,50 ± 0,14 1,63 8,01 ± 0,13 1,66<br />

virg<strong>in</strong>, Gustav Heess 8,06 ± 0,05 0,68 7,63 ± 0,02 0,26<br />

virg<strong>in</strong>, laboratory conditions 8,55 ± 0,00 0,04 5,65 ± 0,06 1,01<br />

CONCLUSION<br />

Primrose is a pure natural vegetable oil processed from the seeds <strong>of</strong> the even<strong>in</strong>g primrose<br />

plant. Even<strong>in</strong>g primrose oil is higher <strong>in</strong> total essential fatty acids than any other vegetable oil.<br />

The oil conta<strong>in</strong>s 74 % l<strong>in</strong>olenic acid (LA) and 8-10 % gamma l<strong>in</strong>olenic acid (GLA).<br />

The purpose <strong>of</strong> this work was to f<strong>in</strong>d out and compare the <strong>in</strong>fluences <strong>of</strong> used antioxidants<br />

and time <strong>of</strong> storage <strong>in</strong> respect <strong>of</strong> the content <strong>of</strong> fatty acids <strong>in</strong> even<strong>in</strong>g primrose oil. Results <strong>of</strong><br />

gas chromatography were statistically compared to determ<strong>in</strong>e the relationship between the<br />

stability <strong>of</strong> oils and the type <strong>of</strong> the antioxidant or the way <strong>of</strong> storage.<br />

A total <strong>of</strong> eight even<strong>in</strong>g primrose oils (virg<strong>in</strong> or with addition <strong>of</strong> antioxidants - coenzyme<br />

Q10, β-carotene, vitam<strong>in</strong> E and Origanox) were considered.<br />

Various ways <strong>of</strong> storage were chosen for assessment <strong>of</strong> stability <strong>of</strong> oils. Methanol<br />

esterification method us<strong>in</strong>g potassium hydroxide catalysis was applied to oil for prepar<strong>in</strong>g<br />

fatty acids methyl esters. Gas chromatography (GC) was applied for the determ<strong>in</strong>ation <strong>of</strong> fatty<br />

acids content (especially gamma l<strong>in</strong>olenic acid - GLA). The compounds were identified by<br />

their retention times relative to authentic standards<br />

Gamma l<strong>in</strong>olenic acid was present most <strong>of</strong>ten <strong>in</strong> concentration 7 – 9 % <strong>of</strong> total fatty acids<br />

<strong>in</strong> the samples <strong>of</strong> even<strong>in</strong>g primrose oils. The content <strong>of</strong> GLA decreased gradually depend<strong>in</strong>g<br />

on <strong>in</strong>creas<strong>in</strong>g time <strong>of</strong> storage. Even<strong>in</strong>g primrose oil, which was stored under laboratory<br />

conditions, showed the greatest losses GLA. Whereas, sample even<strong>in</strong>g primrose oil<br />

conta<strong>in</strong><strong>in</strong>g Origanox had m<strong>in</strong>imal changes. It was observed great dissimilarity GLA dur<strong>in</strong>g<br />

another way <strong>of</strong> storage <strong>of</strong> oils with addition antioxidants. Virg<strong>in</strong> even<strong>in</strong>g primrose oils have<br />

comparable levels <strong>of</strong> GLA.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 241


Addition <strong>of</strong> antioxidants, their amounts or comb<strong>in</strong>ation have no <strong>in</strong>fluence on changes <strong>in</strong><br />

oils dur<strong>in</strong>g the storage. However, the way <strong>of</strong> storage can <strong>in</strong>fluence on the content <strong>of</strong> GLA.<br />

REFERENCES<br />

[1] Christie, W.W.: The analysis <strong>of</strong> even<strong>in</strong>g primrose oil. Industrial Crops and Products,<br />

1999, vol. 10, pp. 73-83. ISSN 0926-6690.<br />

[2] Court, W. A., Hendel, J.G., Pocs, R.: Determ<strong>in</strong>ation <strong>of</strong> fatty acids and oil content <strong>of</strong><br />

even<strong>in</strong>g primrose (Oenothera biennis L.). Food Reearch International, 1993, vol. 26,<br />

pp. 181-186. ISSN 0963-9969.<br />

[3] Fan,Y.-Y., Chapk<strong>in</strong>, R.S.: Importance <strong>of</strong> dietary γ-l<strong>in</strong>olenic acid <strong>in</strong> human health and<br />

nutrition. Recent Advantages <strong>in</strong> Nutritional Science, 1998, vol. 128, pp.1411-1414.<br />

ISSN 0022-3166.<br />

[4] Horrob<strong>in</strong>, D. F.: Nutritional and medical importance <strong>of</strong> gamma-l<strong>in</strong>olenic acid. Progress In<br />

Lipid Research, 1992, vol. 31, pp. 163-194. ISSN 0163-7827.<br />

[5] ČSN EN ISO 5509: Animal and vegetable fats and oils – prepar<strong>in</strong>g <strong>of</strong> methyl esters <strong>of</strong><br />

fatty acids, 2000.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 242


IMPROVED FLUORIMETRIC DETERMINATION OF Al, Ga AND In<br />

BY MICELLE ENHANCED 8-HYDROXYQUINOLINE -5-SULPHONIC<br />

ACID COMPLEX<br />

Šimon Vojta, 3. ročník DSP<br />

Pr<strong>of</strong>.RNDr.Lumír Sommer, DrSc.<br />

Faculty <strong>of</strong> Chemistry, Brno University <strong>of</strong> Technology, Institute <strong>of</strong> Chemistry and Technology<br />

<strong>of</strong> Environmental Protection, Purkyňova 118, 61200 Brno, e-mail: vojta@fch.vutbr.cz<br />

INTRODUCTION<br />

The enhancement (sensitization) <strong>of</strong> fluorescent reactions <strong>of</strong> metal ions with chelat<strong>in</strong>g dyes<br />

by the presence <strong>of</strong> surfactants provides an <strong>in</strong>expensive alternative to fluorimetric methods,<br />

when determ<strong>in</strong>ation <strong>of</strong> lower concentrations <strong>of</strong> elements is required.<br />

The complexes formed <strong>in</strong> micellar media are <strong>of</strong>ten characterized by high molar<br />

absorptivities, high stability over a wide pH range, and usually by large bathochromic shift<br />

caused by addition <strong>of</strong> surfactants to the b<strong>in</strong>ary complex formed <strong>in</strong> water. Moreover, some<br />

fluorescent b<strong>in</strong>ary chelates may dramatically <strong>in</strong>crease their quantum yield <strong>in</strong> micellar media,<br />

provid<strong>in</strong>g exceptionally sensitive fluorimetric methods.<br />

The 8-hydroxyqu<strong>in</strong>ol<strong>in</strong>e-5-sulphonic acid (QSA) should provide surfactant-sensitized<br />

reactions with Al(III), Ga(III) and In(III), because it is strong acid readily yield<strong>in</strong>g<br />

a negatively charged group (sulphonate) to <strong>in</strong>teract with the positive head <strong>of</strong> cationic<br />

surfactants.<br />

The importance <strong>of</strong> monitor<strong>in</strong>g alum<strong>in</strong>ium concentrations <strong>in</strong> the blood <strong>of</strong> patients<br />

undergo<strong>in</strong>g haemodialysis has been realised because <strong>of</strong> the suspicion that alum<strong>in</strong>ium<br />

<strong>in</strong>toxication is responsible for encephalopathy, oesteopathy and Alzheimer's disease.<br />

In this work, the <strong>in</strong>fluence <strong>of</strong> various surfactants on the reaction <strong>of</strong> QSA with Al, Ga and<br />

In is studied <strong>in</strong> details. Improved method <strong>of</strong> determ<strong>in</strong>ation <strong>of</strong> Al, Ga, In by QSA <strong>in</strong> presence<br />

<strong>of</strong> cationic surfactant Zephyram<strong>in</strong>e is brought and optimized.<br />

EXPERIMENTAL<br />

REAGENTS<br />

Alum<strong>in</strong>ium standard, conta<strong>in</strong><strong>in</strong>g 1,000±0,002 g l -1 <strong>of</strong> Alum<strong>in</strong>ium <strong>in</strong> 5% HCl, purchased<br />

from Analytica, LTD. Prague<br />

Gallium standard, conta<strong>in</strong><strong>in</strong>g 1,000±0,002 g l -1 <strong>of</strong> Gallium <strong>in</strong> 10% HCl, purchased from<br />

Analytica, LTD. Prague<br />

Indium standard, conta<strong>in</strong><strong>in</strong>g 1,000±0,002 g l -1 <strong>of</strong> Indium <strong>in</strong> 10% HCl, purchased from<br />

Analytica, LTD. Prague<br />

8-hydroxyqu<strong>in</strong>ol<strong>in</strong>e-5-sulphonic acid – Sigma-Aldrich Co.<br />

Benzyldimethyltetradecylammonium chloride (Zephyram<strong>in</strong>e ® ) – Sigma-Aldrich Co.<br />

1-ethoxykarbonylpentadecyltrimethylammonium bromide (Septonex ® )–Sigma-Aldrich Co.<br />

Dodecylbenzyldimethylammonium bromide (Ajat<strong>in</strong> ® ) – Sigma-Aldrich Co.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 243


Didodecyldimethylammonium bromide – Sigma-Aldrich Co.<br />

Polyoxyethylene(23) lauryl ether (Brij 35) – Sigma-Aldrich Co.<br />

Hexadecyltrimethylammonium chloride – Sigma-Aldrich Co.<br />

4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) – Calbiochem Co.<br />

APPARATUS<br />

A s<strong>in</strong>gle beam spectr<strong>of</strong>luorimeter Am<strong>in</strong>co Bowman ® , series 2 with a xenon lamp work<strong>in</strong>g<br />

<strong>in</strong> a cont<strong>in</strong>uous regime, 4 nm slits and constant photomultiplier voltage was used for the<br />

measurements.<br />

RESULTS<br />

The 8-hydroxyqu<strong>in</strong>ol<strong>in</strong>e-5-sulphonic acid forms with Al, Ga and In fluorescent complex with<br />

emission maxima at 495 nm (Al), 503 nm (Ga) and 505 nm (In). Excitation maxima for Al is<br />

360 nm, 365 nm for Ga and 367 nm for In. There is no fluorescence observed for isolated<br />

QSA. Excitation and emission spectra <strong>of</strong> Al-QSA <strong>in</strong> dependence on concentration <strong>of</strong> Al and<br />

reaction blank without Al are shown <strong>in</strong> Fig.1.<br />

The formation <strong>of</strong> fluorescent complex is <strong>in</strong>stantaneous and fluorescence is stable at least for<br />

twelve hours (Fig.3). Fluorescence <strong>in</strong>tensity grows from In to Al and strongly depends on pH<br />

(Fig.2).<br />

F i<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

1a<br />

2a<br />

3a<br />

4a<br />

5a<br />

6a<br />

6b<br />

0<br />

270 320 370 420 470 520 570 620<br />

Fig.1.: Excitation(a) and Emission(b) spectra <strong>of</strong> Alum<strong>in</strong>ium(III) <strong>in</strong> the presence <strong>of</strong> 7,4.10 -5<br />

mol.dm -3 QSA <strong>in</strong> dependence on concentration <strong>of</strong> Al(III).<br />

1-1,6μg.cm -3 ,2-0,8μg.cm -3 , 3-0,4μg.cm -3 ,4- 0,2 μg.cm -3 ,5-0,05 μg.cm -3 ,6–0μg.cm -3<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 244<br />

λ (nm)<br />

1b<br />

2b<br />

3b<br />

4b<br />

5b


Al<br />

F i<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

1 2 3 4 5 6 7 8 9 10<br />

Fig.2.: Fluorescence <strong>in</strong>tensity dependence on pH for each complex<br />

pH<br />

The fluorescence <strong>in</strong>tensity can be significantly <strong>in</strong>creased <strong>in</strong> the presence <strong>of</strong> cationic<br />

surfactant and small bathochromic shift <strong>in</strong> excitation spectra is also observed. The<br />

fluorescence is <strong>in</strong>creased <strong>in</strong> one hour (Fig.3) and after it reaches maximum, it’s stable at least<br />

10 hours. The best positive effect was found for Zephyram<strong>in</strong>e (Fig.4.). No positive effect was<br />

observed for anionic and nonionic surfactants.<br />

20<br />

Ga<br />

In<br />

18<br />

a b<br />

Fig.3.: Comparison <strong>of</strong> emission spectra time trace for Al-QSA complex without surfactant (a)<br />

and <strong>in</strong> presence <strong>of</strong> cationic surfactant Zephyram<strong>in</strong>e (b)<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 245<br />

Al<br />

In<br />

Ga<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2


F i<br />

90<br />

70<br />

50<br />

30<br />

10<br />

-10<br />

-30<br />

Zephyram<strong>in</strong><br />

Septonex Ajat<strong>in</strong><br />

DDAB<br />

Triton<br />

SDS<br />

-50<br />

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016<br />

Fig.4.: Surfactants <strong>in</strong>fluence on Ga-HQS complex at pH 3. Septonex, Zephyram<strong>in</strong>e, Ajat<strong>in</strong>,<br />

SDS – mol.dm -3 , CTAC (Hexadecyl trimethyl ammonium chloride)– c/4 (mol.dm -3 ),<br />

DDAB (Didodecyldimethyl ammonium bromide) – c/5 (mol.dm -3 ), Triton X-100 –<br />

c/4.10 -5 (ppm), Brij – c/15 (mol.dm -3 ).<br />

Critical micellar concentrations are highlighted by the fulfilled marks.<br />

The nature <strong>of</strong> the complex strongly depends on the pH. The molar ratio <strong>of</strong> Me to QSA <strong>in</strong><br />

the b<strong>in</strong>ary complex determ<strong>in</strong>ed by the cont<strong>in</strong>uum variations method is 1:1 <strong>in</strong> acidic range and<br />

1:3 <strong>in</strong> alkalic range (Fig.5). In the presence <strong>of</strong> cationic surfactant Zephyram<strong>in</strong>e, the molar<br />

ratio <strong>of</strong> ternary complex was found to be always 1:3 (Fig.5).<br />

F i<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

x L<br />

1<br />

2<br />

3<br />

c<br />

80<br />

60<br />

40<br />

20<br />

CTAC<br />

Brij<br />

a 100<br />

b<br />

F i<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

Fig.5.: (a) Cont<strong>in</strong>uum variations <strong>of</strong> Al-HQS complex at pH 4. 1-c0= 1,1.10 -4 M, 2- c0= 5,6.10 -5 M,<br />

3-5,6.10 -5 M, 0,0012M Zephyram<strong>in</strong>e<br />

(b) Cont<strong>in</strong>uum variations <strong>of</strong> In-HQS complex. 1-c0= 3,5.10 -5 M, pH8, 2- c0= 1,8.10 -5 M,<br />

pH8, 3-1,8.10 -5 M, 0,0012M Zephyram<strong>in</strong>e, pH8, 4- c0= 1,8.10 -5 M, pH4<br />

F<strong>in</strong>ally, the improved method with enhanced sensitivity by the presence <strong>of</strong> cationic<br />

surfactant Zephyram<strong>in</strong>e was optimized with concentration <strong>of</strong> Zephyram<strong>in</strong>e 0,0012M and five<br />

times excess <strong>of</strong> QSA to highest molar concentration <strong>of</strong> Me. Optimal pH is 4 for Al, 3 for Ga<br />

and 8 for In.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 246<br />

x L<br />

1<br />

4<br />

2<br />

3


F i<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Data<br />

UCL<br />

LCL<br />

A<br />

B<br />

Calibration Plot<br />

y = 51,982x + 0,9186<br />

R 2 = 0,9991<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

c Al (μg.cm -3 )<br />

Fig.6.: Calibration plot for Al <strong>in</strong> the presence <strong>of</strong> 1,4.10 -4 M QSA and 0,012M Zephyram<strong>in</strong>e,<br />

pH4<br />

F i<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Data<br />

UCL<br />

LCL<br />

A<br />

B<br />

Calibration Plot<br />

y = 78,46x + 1,1235<br />

R 2 = 0,9992<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

c Ga (μg.cm -3 )<br />

F i<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Data<br />

UCL<br />

LCL<br />

A<br />

B<br />

Calibration Plot<br />

y = 185,06x + 10,75<br />

R 2 = 0,9995<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

Fig.7.: Calibration plots for Ga (In) <strong>in</strong> the presence <strong>of</strong> 5,75.10 -4 M (resp.3,5.10 -4 ) QSA and<br />

0,012M Zephyram<strong>in</strong>e, pH3 (resp. 8)<br />

Tab.1.: Comparison <strong>of</strong> calibration parameters for each complex. U is photomultiplyer voltage<br />

and detection limits were calculated accord<strong>in</strong>g to Graham 4<br />

a<br />

c In (μg.cm -3 )<br />

Al-HQS Ga-HQS In-HQS<br />

Concentration range (μg.cm -3 ) 0,004-1<br />

U(V) 610 700 680<br />

α<br />

X D (μg.cm -3 ) 7,476E-05 0,0149 6,720E-05<br />

blank<br />

X (μg.cm -3 ) 0,0304 0,0349 0,0333<br />

β<br />

D<br />

−3<br />

( g ⋅ cm )<br />

X b μ<br />

x + 3s<br />

blank<br />

6, a 0,00015 0,00022 0,0042<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 247


CONCLUSIONS<br />

Cationic surfactants sensitize the reaction <strong>of</strong> Al, Ga and In with 8-hydroxyqu<strong>in</strong>ol<strong>in</strong>e-5sulphonic<br />

acid. The effect <strong>of</strong> various surfactants was studied <strong>in</strong> details. The best results were<br />

obta<strong>in</strong>ed for Zephyram<strong>in</strong>e and Septonex. The nature <strong>of</strong> the complex was <strong>in</strong>vestigated by the<br />

cont<strong>in</strong>uum variations method. Improved method for determ<strong>in</strong>ation <strong>of</strong> Al, Ga and In <strong>in</strong><br />

aqueous solutions was optimized and calibration plots were constructed.<br />

REFERENCES<br />

1. Vercruysse A.: Hazardous Metals <strong>in</strong> Human Toxicology, Part B, Elsevier Amsterdam<br />

1984<br />

2. Garcia Alonzo J. I., Diaz Garcia M. E., Sanz Medel A.: Talanta. 31, 361 (1984)<br />

3. H<strong>in</strong>ze W. L., S<strong>in</strong>gh H. N.: Trends <strong>in</strong> Analytical Chemistry. 3, 193 (1984)<br />

4. Graham R. C.: Data Analysis for the Chemical Sciences. A Guide to Statistical<br />

Techniques. VCH Publishers, New York 1993<br />

5. ČSN ISO 8466-1: 1993, 15. Praha, 1993.<br />

6. Anonyme: Anal.Chem. 52, 2245 (1980)<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 248


PHYSICAL-CHEMICAL ASPECTS OF PAINT FILMS DEGRADATION<br />

Ing. Lucie Wolfová<br />

Supervisor: pr<strong>of</strong>. RNDr. Zdeněk Friedl, CSc.<br />

Brno University <strong>of</strong> Technology, Purkyňova 118, Brno 612 00, e-mail:wolfova@fch.vutbr.cz<br />

INTRODUCTION:<br />

My dissertation thesis deals with the physical-chemical aspects <strong>of</strong> pa<strong>in</strong>t film degradation.<br />

This work is focused on the study and exam<strong>in</strong>ation <strong>of</strong> physical-chemical aspects <strong>of</strong> pa<strong>in</strong>t film<br />

degradation by <strong>selected</strong> solvents. Ma<strong>in</strong>ly it is considered to the determ<strong>in</strong>ation <strong>of</strong> solubility<br />

parameters <strong>of</strong> used polymers δ2 and the exam<strong>in</strong>ation <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> especially polymer<br />

structure to the value <strong>of</strong> this δ2. The ma<strong>in</strong> goal <strong>of</strong> this study is to verify the coat<strong>in</strong>g solubility<br />

theory based on the knowledge <strong>of</strong> their solubility parameters <strong>in</strong> practise and its application for<br />

coat<strong>in</strong>gs. The other goals <strong>in</strong>clude the projection and formulation some new solvent’s mixture<br />

and additives <strong>in</strong>tended for remov<strong>in</strong>g pa<strong>in</strong>t films and graffiti. Such formulation need to be well<br />

perform<strong>in</strong>g and ecological acceptable at the same time, which is the precondition for their<br />

wide application <strong>in</strong> practise.<br />

THEORETICAL BACKGROUND:<br />

Chemical degradation <strong>of</strong> pa<strong>in</strong>t films could be def<strong>in</strong>ed as the physical and chemical<br />

<strong>in</strong>teractions between film-form<strong>in</strong>g components <strong>of</strong> the pa<strong>in</strong>t and chemical surround<strong>in</strong>gs.<br />

Dur<strong>in</strong>g the chemical degradation <strong>of</strong> polymer a disruption <strong>of</strong> cha<strong>in</strong>s and reticulation, a change<br />

<strong>of</strong> chemical structure <strong>of</strong> cha<strong>in</strong>s, a change <strong>of</strong> side groups or comb<strong>in</strong>ation <strong>of</strong> all these<br />

phenomena take place. This leads to changes <strong>in</strong> pa<strong>in</strong>t qualities and coats lose their visual<br />

appearance and orig<strong>in</strong>al qualities upon the exposure to organic solvents.<br />

From the thermodynamic po<strong>in</strong>t <strong>of</strong> view, a solubility <strong>of</strong> polymer and a degree <strong>of</strong> solvent<br />

aff<strong>in</strong>ity to polymer is given by the Gibb´s energy change, which is determ<strong>in</strong>ed by the<br />

<strong>in</strong>teraction between solvent molecules and macromolecular cha<strong>in</strong> elements. ΔGmix = ΔHmix -<br />

TΔSmix < 0.<br />

The more negative is value <strong>of</strong> ΔGmix the better is solubility <strong>of</strong> polymer <strong>in</strong> solvent. Then the<br />

dissolv<strong>in</strong>g <strong>of</strong> polymers is ma<strong>in</strong>ly a question <strong>of</strong> value ΔHmix because dur<strong>in</strong>g swell<strong>in</strong>g or<br />

dissolv<strong>in</strong>g always <strong>in</strong>crease system’s disorderl<strong>in</strong>ess. Accord<strong>in</strong>g to thermodynamic conditions<br />

than is necessary that ΔHmix


Then, the solubility parameter can be estimated from general equations:<br />

ΔHmix = Vs(δ1 – δ2) * φ1 φ2 .<br />

- This is one <strong>of</strong> the simple expressions <strong>of</strong> solubility parameter deduced for nonpolar<br />

systems. In practise, we have solvents and solutions with different polar forces such as<br />

dispersion, polar and hydrogen ones. Therefore the cohesive energy Ecoh is divided <strong>in</strong>to three<br />

parts, correspond<strong>in</strong>g to three types <strong>of</strong> <strong>in</strong>teraction forces Ecoh = Ed + Ep + Eh (contribution <strong>of</strong><br />

dispersion forces Ed, polar forces Ep and hydrogen-bond<strong>in</strong>g Eh). Then every substance could<br />

be characterized accord<strong>in</strong>g to free contributions <strong>of</strong> total solubility parameter<br />

2 2 2<br />

δtotal.= σ + σ + σ .<br />

disp.<br />

polar.<br />

hydrogen.<br />

By this is predicted that if δ1 = δ2 the ethalpy <strong>of</strong> mix<strong>in</strong>g is ΔHmix = 0 and ΔGmix = ΔHmix -<br />

TΔSmix < 0 and this is <strong>in</strong> accorrdance with the general rule for thermodynamic view <strong>of</strong><br />

solubility and mix<strong>in</strong>g. Then, the smaller is the difference <strong>of</strong> value δ <strong>of</strong> solvent and polymer,<br />

the better is possibility <strong>of</strong> its dissolv<strong>in</strong>g. The polymers should be mostly soluble <strong>in</strong> that<br />

solvents, which their < δ > correspond to the middle <strong>of</strong> the <strong>in</strong>terval <strong>of</strong> polymer solubility or<br />

approximately ± 2 units.<br />

AIM OF STUDY:<br />

The aim <strong>of</strong> conducted research is the evaluation <strong>of</strong> <strong>in</strong>fluence <strong>of</strong> several aspects – especially<br />

structure <strong>of</strong> samples – on the chemical resistance <strong>of</strong> PUR coat<strong>in</strong>gs and the value <strong>of</strong> their<br />

solubility parametr δ2. As far as these aspects are concerned, these <strong>in</strong>clude especially the type<br />

<strong>of</strong> used monomers (<strong>in</strong> case <strong>of</strong> PUR polymers for example like type and funcionality <strong>of</strong> used<br />

alcohols, acids and isocyanates, type <strong>of</strong> bonds, etc.), the weight, size and type <strong>of</strong> film form<strong>in</strong>g<br />

polymer and the type <strong>of</strong> <strong>in</strong>teractions between <strong>in</strong>dividual cha<strong>in</strong> parts.<br />

METHOLOGY:<br />

The solubility parameter δ2 <strong>of</strong> polymer could be determ<strong>in</strong>ed accord<strong>in</strong>g to its <strong>in</strong>teraction<br />

with solvents <strong>of</strong> known solubility parameter δ1. For example, the solubility parameter <strong>of</strong> a<br />

l<strong>in</strong>ear polymer can be determ<strong>in</strong>ed from its limit<strong>in</strong>g viscosity number and <strong>of</strong> a cross-l<strong>in</strong>ked<br />

one accord<strong>in</strong>g to the degree <strong>of</strong> swell<strong>in</strong>g, both <strong>of</strong> these values be<strong>in</strong>g the function <strong>of</strong> solubility<br />

parameter <strong>of</strong> used solvent δ1. In case <strong>of</strong> best solvent, is the value <strong>of</strong> [η] or Q <strong>of</strong> polymer the<br />

heights and solubility parameter <strong>of</strong> this solvent δ1 correspondents with solubility parameter <strong>of</strong><br />

polymer δ2<br />

As far as measur<strong>in</strong>g <strong>of</strong> viscosity is concenred, the samples were dissolved <strong>in</strong> <strong>selected</strong><br />

group <strong>of</strong> solvents whose solubility parameters δ1 varied from 18 to 24 (30). Then their<br />

dynamic viscosity η were masured. It was done us<strong>in</strong>g capillar or Ubelohde viscosimeter.<br />

η sp<br />

Subsequently, specific viscosity ηspec and the limit<strong>in</strong>g viscosity number [η] = lim were<br />

c→0<br />

c<br />

calculated.<br />

The degree <strong>of</strong> sample’s swell<strong>in</strong>g Q = (m-m0/m0)*1/ςsolv was calculated by weight<strong>in</strong>g<br />

samples after soak<strong>in</strong>g <strong>in</strong> chosen solvents for 5 days.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 250


F<strong>in</strong>ally, the solubility parameter <strong>of</strong> sample δ2 was determ<strong>in</strong>ed as a function <strong>of</strong> [η] or Q and<br />

compared with values <strong>of</strong> these δ2 obta<strong>in</strong>ed by calculation from sample’s structures. The<br />

calculation <strong>of</strong> δ2 from sample’s structures is possible from the contibutions <strong>of</strong> dispersion Ed,<br />

polar Ep and hydrogen-bond<strong>in</strong>g Eh forces <strong>of</strong> the polymer.<br />

RESULTS AND DISCUSSION:<br />

The exact sample composition can not be published at the moment because <strong>of</strong> their<br />

<strong>in</strong>tended patent protection. Therefore, the samples are named by the manufacturer code.<br />

The result <strong>of</strong> <strong>in</strong>fluence <strong>of</strong> different structure <strong>of</strong> PUR samples to the value <strong>of</strong> their<br />

solubility parameter δ2 (10 -3 J 1/2 m -3/2 ):<br />

- Differences <strong>in</strong> sample structures were especially polymer’s molecular weight and size <strong>of</strong><br />

cha<strong>in</strong>, type and functionality <strong>of</strong> used alcohols, acids and isocyanates.<br />

Limit<strong>in</strong>g viscosity number <strong>of</strong><br />

samples [η] (m 3 /kg)<br />

Solubility parametrs <strong>of</strong> PUR samples δ2 determ<strong>in</strong>ed accord<strong>in</strong>g to<br />

0,09<br />

limit<strong>in</strong>g viscosity number [η]<br />

U14EG2000<br />

0,08<br />

Diexter G214<br />

C36EG34<br />

0,07<br />

Priplast 3192<br />

0,06<br />

0,05<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0,00<br />

19,0 19,5 20,0 20,5 21,0 21,5 22,0 22,5 23,0 23,5 24,0 24,5 25,0 25,5 26,0<br />

Solubility parametr <strong>of</strong> solvent δ 1(10 -3 J 1/2 m -3/2 )<br />

U14EG56<br />

U14BD2000<br />

Accord<strong>in</strong>g to the theory, the solubility parameter δ2 value corresponds to the po<strong>in</strong>t where<br />

the plot <strong>of</strong> [η] as a function <strong>of</strong> δ1 has its maximum.<br />

Determ<strong>in</strong>ation <strong>of</strong> solubility parameter δ2 as the function <strong>of</strong> limit<strong>in</strong>g viscosity number<br />

and by calculation from structure:<br />

Solvents:<br />

Solubility<br />

parameter<br />

δ1<br />

Limit<strong>in</strong>g viscosity number <strong>of</strong> tested samples [η] (m 3 /kg)<br />

U14EG2000 Diexter C36EG34 Priplast U14EG56 U14BD2000<br />

Dichloromethane 19,8 0,0076 0,0173 0,0094 0,0071 - 0,0266<br />

1,4-dioxane 20,5 0,0135 0,0117 0,0093 0,0048 0,0515 0,0540<br />

Acetyl acetone 22,1 0,0180 0,0087 0,0199 0,0068 0,0856 0,0570<br />

N,Ndimethylacetamide 22,7 0,0618 0,0337 0,0677 0,0243 0,0638 0,0580<br />

N methylpyrrolidone 22,9 0,0150 0,0425 0,0193 0,0163 0,0686 0,0514<br />

N,Ndimethylformamide 24,7 0,0400 0,0144 0,0000 0,0185 - 0,0413<br />

Solubility parameter δ2(10 -3 J 1/2 m -3/2 )<br />

Determ<strong>in</strong>ed from measur<strong>in</strong>g 22,7 22,9 22,7 22,7 22,1 22,7<br />

Determ<strong>in</strong>ed from structure 21,37 23,87 21,31 21,78 20,92 21,25<br />

Accord<strong>in</strong>g to the obta<strong>in</strong>ed results and the theory, we can predict that the total solubility<br />

parameters δ2 <strong>of</strong> our tested PUR samples are about 22,7×10 -3 J 1/2 m -3/2 and <strong>in</strong> case <strong>of</strong> U14EG56<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 251


22,1×10 -3 J 1/2 m -3/2 . However, if we calculate the value δ2 from the structure, we obta<strong>in</strong><br />

approximately similar values <strong>of</strong> δ2 <strong>in</strong> a range <strong>of</strong> 20,9 to 23,9×10 -3 J 1/2 m -3/2 . The biggest<br />

differences are <strong>in</strong> case <strong>of</strong> Diexter G214 and U14EG56 where the biggest differences between<br />

their structures are also.<br />

Accord<strong>in</strong>g to these results, it should be possible to dissolve these samples <strong>in</strong> solvents with<br />

total solubility parameter value <strong>of</strong> δ1 about 20 to 24 units.- And <strong>in</strong> most cases, experimental<br />

results comply with theory and samples could be dissolved <strong>in</strong> solvents with value <strong>of</strong> δ1≈δ2 ± 2.<br />

Solubility <strong>of</strong> PUR sample U14EG56 <strong>in</strong> various type <strong>of</strong> solvent:<br />

solubility U14EG56<br />

solubility U14EG56<br />

Solvent: p. δ1 δ2 ≈ 22,1 Solvent:<br />

p. δ1 δ2 ≈ 22,1<br />

Toluene 18,2 * N,N dimethylacetamide 22,7 +<br />

Ethylmethylketone 19 + N methylpyrrolidone 22,9 +<br />

Dichloromethane 19,8 + Isopropanol 23,6 -<br />

Acetone 20 * N,N dimethylformamide 24,7 +<br />

1,4-Dioxane 20,5 + Ethanol 26 -<br />

Acetyl acetone 22,1 + Butyrolactone 27 -<br />

Ethylene glycol 30 -<br />

In the case, when sample is not soluble <strong>in</strong> right one solvent accord<strong>in</strong>g to the theory, it can<br />

be <strong>in</strong>terpreted by different chemical nature <strong>of</strong> used solvents and it relates to different value <strong>of</strong><br />

<strong>in</strong>dividual components <strong>of</strong> their total solubility parameter.<br />

The result <strong>of</strong> study <strong>of</strong> <strong>in</strong>fluence <strong>of</strong> different values <strong>of</strong> rigid segment fraction and crossl<strong>in</strong>ked<br />

fraction content <strong>of</strong> sample U14BD2000 to its solubility parameter, accord<strong>in</strong>g its<br />

parameter <strong>of</strong> swell<strong>in</strong>g:<br />

Dur<strong>in</strong>g the study <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> rigid segment content and cross-l<strong>in</strong>ked fraction<br />

content to the solubility parameter, it was observed that the more rigit segment fraction and/or<br />

cross-l<strong>in</strong>ked fraction is present, the more resistent the sample was. All these changes should<br />

be connected with a changes <strong>of</strong> sample solubility parametr and should be observable<br />

experimentally.<br />

Study <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> different percentage distribution <strong>of</strong> rigid segment fraction <strong>in</strong><br />

case <strong>of</strong> sample U14BD2000:<br />

Parameter <strong>of</strong> swell<strong>in</strong>g Q<br />

(Type A with the less quantity, type D with the most quantity <strong>of</strong> rigid segment content)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Influence <strong>of</strong> different quantity <strong>of</strong> rigid segment to the<br />

solubility parametr <strong>of</strong> U14BD2000 (accord<strong>in</strong>g its<br />

parameter <strong>of</strong> swell<strong>in</strong>g)<br />

type A<br />

type B<br />

type C<br />

type D<br />

0<br />

19,0 20,0 21,0 22,0 23,0 24,0 25,0<br />

Solubility parameter <strong>of</strong> solvent δ1 (10-3J1/2m -3/2 )<br />

Type <strong>of</strong><br />

sample:<br />

δ2 - from<br />

measur<strong>in</strong>g<br />

δ2 - from the<br />

structure<br />

A 19,8 20,11<br />

B 20,5 20,72<br />

C 22,9 21,34<br />

D 22,9 21,96<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 252


Study <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> different percentage distribution <strong>of</strong> cross-l<strong>in</strong>ked fraction <strong>in</strong><br />

sample U14BD2000:<br />

(Type AA with the less quantity, type DD with the most quantity <strong>of</strong> cross-l<strong>in</strong>ked fraction<br />

content)<br />

Parameter <strong>of</strong> swell<strong>in</strong>g Q<br />

14,00<br />

12,00<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

Influence <strong>of</strong> different quantity <strong>of</strong> cross-l<strong>in</strong>ked to the<br />

solubility parametr <strong>of</strong> U14BD2000 (accord<strong>in</strong>g its<br />

parameter <strong>of</strong> swell<strong>in</strong>g)<br />

type AA<br />

type BB<br />

type CC<br />

type DD<br />

0,00<br />

18,0 19,0 20,0 21,0 22,0 23,0 24,0 25,0<br />

Solubility parameter <strong>of</strong> sample δ1 (10-3J1/2m -3/2 )<br />

Obta<strong>in</strong>ed results show that <strong>in</strong> the case <strong>of</strong> the <strong>in</strong>creas<strong>in</strong>g quantity <strong>of</strong> rigid segment the<br />

solubility parameter δ2 is chang<strong>in</strong>g and mov<strong>in</strong>g to higher values. In the case <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g <strong>of</strong><br />

cross-l<strong>in</strong>ked fraction, the value <strong>of</strong> δ2 is more or less stable and similar and changes only<br />

parameter <strong>of</strong> swell<strong>in</strong>g. – Both <strong>of</strong> these agree with the theory.<br />

CONCLUSION:<br />

Type <strong>of</strong><br />

sample:<br />

δ2 - from measur<strong>in</strong>g<br />

AA 19,8<br />

BB 20,5<br />

CC 20,5<br />

DD 20,5<br />

Accord<strong>in</strong>g to the obta<strong>in</strong>ed data, experimental results comply with the theory about possible<br />

evaluation <strong>of</strong> coat<strong>in</strong>g’s solubility on the base <strong>of</strong> knowledge their solubility parameters and<br />

also structures <strong>in</strong> most cases.<br />

In next experimental part <strong>of</strong> my dissertation work I would like to improved, extend and<br />

apply this theory and <strong>in</strong>formation to the area <strong>of</strong> dissolv<strong>in</strong>g and remov<strong>in</strong>g especially water<br />

based coats and modify all <strong>of</strong> this for use <strong>in</strong> practice.<br />

Acknoledgments:<br />

I would like to thank to C. B. Coreia and Pr<strong>of</strong>. J. C. Bordado, Instituto Superior Technico,<br />

Lisboa for their help and support dur<strong>in</strong>g this research.<br />

LINKS:<br />

1. Barton A. F. M., Handbook <strong>of</strong> solubility parameters and other cohesion parameters,<br />

London 1991<br />

2. Van Krevelen D. W., H<strong>of</strong>tyzer P. J., Properties <strong>of</strong> polymers – their estimation and<br />

correlation with chemical structure, Amsterdam 1976<br />

3. Bicerano J., Prediction <strong>of</strong> polymer properties (second edition), New York, 1996<br />

4. Munk P., Am<strong>in</strong>abhavi T.M., Macromolecular science (second edition), New York, 2002<br />

5. Mleziva J., Šňupárek J., Polymery-výroba, struktura, vlastnosti a použití, Praha, 2002<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 253


Us<strong>in</strong>g low-molecular mass pI markers <strong>in</strong> proteomic sta<strong>in</strong><strong>in</strong>g-free method<br />

for study <strong>of</strong> posttranslationally modified prote<strong>in</strong>s<br />

Karel Mazanec 1,2 , Karel Šlais 2 and Josef Chmelík 2<br />

1 Institute <strong>of</strong> Material Chemistry, Faculty <strong>of</strong> Chemistry, Brno University <strong>of</strong> Technology,<br />

Purkyňova 118, 612 00 Brno, Czech Republic, e-mail: mazanec@iach.cz<br />

2 Institute <strong>of</strong> Analytical Chemistry, Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic, Veveří 97,<br />

602 00 Brno, Czech Republic<br />

INTRODUCTION<br />

At present the knowledge <strong>of</strong> proteome plays very important role <strong>in</strong> the study <strong>of</strong> liv<strong>in</strong>g<br />

processes. Special attention <strong>in</strong> our lab is paid to the <strong>in</strong>vestigation <strong>of</strong> the proteome <strong>of</strong> barely<br />

gra<strong>in</strong>s. The aim is to contribute to understand<strong>in</strong>g <strong>of</strong> malt<strong>in</strong>g processes and to selection <strong>of</strong><br />

malt<strong>in</strong>g barley cultivars. Prote<strong>in</strong>s are the major functional molecules <strong>of</strong> life made <strong>of</strong> am<strong>in</strong>o<br />

acids arranged <strong>in</strong> a l<strong>in</strong>ear cha<strong>in</strong> l<strong>in</strong>ked together by peptide bonds. The residues <strong>in</strong> a prote<strong>in</strong> are<br />

<strong>of</strong>ten chemically altered <strong>in</strong> a process known as post-transcriptional modification (PTM):<br />

either before the prote<strong>in</strong> can function <strong>in</strong> the cell, or as part <strong>of</strong> control mechanisms. The<br />

identification <strong>of</strong> the PTM is experimentally difficult.<br />

Due to the fact that many samples, ma<strong>in</strong>ly <strong>of</strong> biological orig<strong>in</strong>, are complex mixtures <strong>of</strong><br />

prote<strong>in</strong>s with a wide range <strong>of</strong> molecular masses, salts and other compounds, prote<strong>in</strong>s should<br />

be separated and purified prior to their identification by mass spectrometry. Traditionally,<br />

most proteomics researches are based upon two-dimensional gel electrophoresis <strong>in</strong>volv<strong>in</strong>g<br />

isoelectric focus<strong>in</strong>g (IEF) as one dimension. Separated compounds are focused <strong>in</strong>to very<br />

sharp bends accord<strong>in</strong>g to their pI values dur<strong>in</strong>g IEF. They are twice or more concentrated <strong>in</strong><br />

this zones. However, ampholytes present <strong>in</strong> gel and creat<strong>in</strong>g pH gradient dur<strong>in</strong>g IEF<br />

complicate the visualiz<strong>in</strong>g the separated prote<strong>in</strong>s by sta<strong>in</strong><strong>in</strong>g and make this method<br />

impracticable for common proteomic utilization.<br />

The aim <strong>of</strong> this work was to develop and optimize the novel sta<strong>in</strong><strong>in</strong>g-free proteomic<br />

procedure for separation <strong>of</strong> <strong>in</strong>tact prote<strong>in</strong>s by gel IEF <strong>in</strong> presence <strong>of</strong> low-molecular mass pI<br />

markers and subsequent determ<strong>in</strong>ation <strong>of</strong> molecular masses <strong>of</strong> separated compounds <strong>in</strong> the<br />

gels by MALDI-TOF/TOF MS. The <strong>selected</strong> set <strong>of</strong> pI markers <strong>in</strong>cludes both colored and<br />

colorless compounds with known low-molecular mass. Thus, the identification <strong>of</strong> both pI<br />

marker and prote<strong>in</strong>s <strong>in</strong> the same excised piece <strong>of</strong> gel by MS technique is expected to give<br />

reliable <strong>in</strong>formation about the correct pI values <strong>of</strong> analyzed prote<strong>in</strong>s even <strong>in</strong> complex samples.<br />

MATERIALS AND METHODS<br />

pI markers – The substituted phenols (I - Mw 314.08, pI 3.9, yellow color; II - Mw 359.10,<br />

pI 4.3, orange; III - Mw 272.06, pI 5.3, yellow; IV - Mw 252.12, pI 5.7, colorless; V - Mw<br />

285.09, pI 6.4, yellow; VI - Mw 315.10, pI 7.0, yellow; VII - Mw 337.17, pI 7.5, yellow; VIII<br />

– Mw 265.14, pI 7.9, yellow; IX - Mw 363.23, pI 8.4, yellow; X - Mw 267.16, pI 8.9, yellow;<br />

XI - Mw 352.20, pI 9.0, colorless; XII - Mw 333.21, pI 10.1, yellow) used as pI markers were<br />

prepared by the procedure described by Šlais and Friedl 1 at the Institute <strong>of</strong> Analytical<br />

Chemistry (Brno, Czech Republic). The pI values were determ<strong>in</strong>ed by potentiometric<br />

titration. The chemical structures <strong>of</strong> pI markers are shown <strong>in</strong> Fig. 1.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 254


Fig.1: Chemical structures <strong>of</strong> pI markers used <strong>in</strong> this work.<br />

Polyacrylamide gels and IEF - The prote<strong>in</strong> samples (2 mg/ml) were mixed with pI markers<br />

(10 mg/ml each) and the 4 μl <strong>of</strong> the mixtures were loaded onto the polyacrylamide gel (16%).<br />

The carrier BioLyte 3/10 ampholyte (f<strong>in</strong>al concentration 2%) (Bio-Rad, CA, USA) were<br />

added prior to gel polymerization. Separation was performed with constant electric power <strong>of</strong><br />

0.6 W for 2 h supplied by VNZ 22 power supply (CSAV Development Workshop, Czech<br />

Republic) us<strong>in</strong>g a model 111 M<strong>in</strong>i IEF Cell (Bio-Rad, CA, USA). After focus<strong>in</strong>g completion<br />

the gels were gently removed from electrodes and scanned.<br />

Ladders <strong>of</strong> color pI markers simplify the orientation <strong>in</strong> the gel even when the separated<br />

prote<strong>in</strong>s cannot be seen. Thus, the bands with prote<strong>in</strong>s were excised accord<strong>in</strong>g to positions <strong>of</strong><br />

pI markers. The excised gel pieces were then transferred to 0.5 ml tubes. The pI markers were<br />

then eluted from gel by 30 μl water/ethanol 1:1 (v/v) for 15 m<strong>in</strong>.<br />

Prote<strong>in</strong> digestion and identification - Excised gel pieces after the extraction <strong>of</strong> the pI markers<br />

were washed twice with water/acetonitrile 1:1 (v/v) for 15 m<strong>in</strong>. Then prote<strong>in</strong>s were identified<br />

accord<strong>in</strong>g to standard proteomic protocol utiliz<strong>in</strong>g <strong>in</strong>-gel digestion <strong>of</strong> reduced and alkylated<br />

prote<strong>in</strong>s with tryps<strong>in</strong>. 2<br />

For comparison, the other IEF focused gels were sta<strong>in</strong>ed with Coomassie Brilliant Blue R<br />

250. Due to the carrier 3/10 ampholytes used for creat<strong>in</strong>g <strong>of</strong> pH gradient <strong>in</strong> gels precipitated<br />

the Coomassie dye dur<strong>in</strong>g sta<strong>in</strong><strong>in</strong>g caus<strong>in</strong>g strong blue haze on the background, the wash<strong>in</strong>g<br />

step (10% TCA <strong>in</strong> water/methanol (10/3 v/v); 12-14 h) had to be <strong>in</strong>serted prior to own<br />

sta<strong>in</strong><strong>in</strong>g procedure.<br />

Mass spectrometry - MS measurements were carried with 4700 Proteomics Analyzer<br />

(Applied Biosystems, USA) MALDI TOF/TOF mass spectrometer (equipped with Nd/YAG<br />

laser; 355 nm). Argon was used as a collision gas. A solution <strong>of</strong> s<strong>in</strong>ap<strong>in</strong>ic acid (SA) (20<br />

mg/ml <strong>in</strong> acetonitrile/water (3/2 v/v)) was used as matrix for markers. Alpha-cyano-4hydroxyc<strong>in</strong>namic<br />

acid (CHCA) (both Sigma-Aldrich, Germany) was used as matrix for<br />

peptides <strong>in</strong> concentration <strong>of</strong> 10 mg/ml acetonitrile/water (3/2 v/v).<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 255


RESULTS<br />

More than forty pI markers <strong>of</strong> different types <strong>of</strong> structures were studied by MALDI(LDI)-<br />

TOF MS. Twelve <strong>selected</strong> suitable pI markers are used and more closely characterized <strong>in</strong> this<br />

work.<br />

At analysis <strong>of</strong> low-molecular mass pI markers, several features were observed that help to<br />

their identification. In the positive ion mode mass spectra <strong>of</strong> nitro-substituted pI markers the<br />

characteristic peaks at -16 and -32 Da caused by loss <strong>of</strong> oxygen atoms dur<strong>in</strong>g the process <strong>of</strong><br />

ionization (also rem<strong>in</strong>ded by Strohalm et al. 3 ) can be seen (Fig. 2, spectrum a, c). A<br />

characteristic double-peak pattern is obta<strong>in</strong>ed for markers conta<strong>in</strong><strong>in</strong>g a chlor<strong>in</strong>e atom (Fig. 2,<br />

spectrum b, c). These groups <strong>of</strong> peaks are very helpful for identification <strong>of</strong> pI markers<br />

especially <strong>in</strong> complex mixtures where one peak may be hidden with a cluster or by another<br />

well-ionizable substance.<br />

Fig.2: The positive ion mass spectra <strong>of</strong> the pI markers XII (a); II (b) and I (c) obta<strong>in</strong>ed after<br />

extraction from the IEF gel. A characteristic peak patterns are clearly seen.<br />

Isoelectric focus<strong>in</strong>g and gel treatment - The 3/10 carrier ampholytes were used to create pH<br />

gradient <strong>in</strong> this work. At 50-mm distance <strong>of</strong> electrodes it means that the slope <strong>of</strong> the gradient<br />

is 0.14 pH/mm. The color pI markers enable the orientation <strong>in</strong> gels and supervision <strong>of</strong> the IEF<br />

process. Each abnormality <strong>in</strong> pH gradient can be immediately and very easily recognized.<br />

Moreover, the gels can be cut up accord<strong>in</strong>g to the position <strong>of</strong> the visible markers. The IEF<br />

gels were immediately after focus<strong>in</strong>g scanned (Fig. 3A) and the bands with focused pI<br />

markers were excised. For comparison, another IEF gel was sta<strong>in</strong>ed with Coomassie Brilliant<br />

Blue R 250. The focused prote<strong>in</strong>s visualized by Coomassie sta<strong>in</strong><strong>in</strong>g are shown <strong>in</strong> Fig. 3B,C.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 256


Identification <strong>of</strong> pI markers - First, the pI markers were extracted from each excised gel<br />

piece and identified from extracts by MALDI-TOF/TOF MS. The experiments confirmed that<br />

pI markers are easily and unambiguously identifiable <strong>in</strong> extracts from excised gel pieces after<br />

IEF.<br />

Fig.3: IEF gel <strong>of</strong> pI markers and prote<strong>in</strong>s scanned immediately after focus<strong>in</strong>g (A); standards<br />

(B) and beta-amylase extract (C) after Coomassie sta<strong>in</strong><strong>in</strong>g. The positions <strong>of</strong> electrodes are<br />

marked with E. Letters at right show positions where the prote<strong>in</strong>s were identified (see Tab. 1).<br />

Identification <strong>of</strong> prote<strong>in</strong>s - First experiment was provided with standard prote<strong>in</strong>s (cytochrome<br />

c, myoglob<strong>in</strong> and album<strong>in</strong>). After extraction <strong>of</strong> pI markers from particular gel pieces, the<br />

prote<strong>in</strong>s <strong>in</strong> the same gel pieces were treated by enzyme digestion and identified by MS. These<br />

prote<strong>in</strong>s were identified <strong>in</strong> positions accord<strong>in</strong>g to their real pI values and validated our<br />

approach.<br />

Then, the extract from barley malt was used as a model mixture <strong>of</strong> glycated prote<strong>in</strong>s. The<br />

separated prote<strong>in</strong> mixture after the referential Coomassie sta<strong>in</strong><strong>in</strong>g is shown <strong>in</strong> Fig. 3C. Table 1<br />

shows the prote<strong>in</strong>s identified <strong>in</strong> the gel pieces from which the pI markers were extracted and<br />

identified. N<strong>in</strong>e prote<strong>in</strong>s were identified <strong>in</strong> eight excised gel pieces <strong>of</strong> twelve ones excised<br />

accord<strong>in</strong>g to the locations <strong>of</strong> the pI markers used. Some prote<strong>in</strong>s were found <strong>in</strong> two different<br />

gel pieces. Dur<strong>in</strong>g malt<strong>in</strong>g process the barley prote<strong>in</strong>s are gradually cleaved and modified.<br />

This is the reason why some prote<strong>in</strong>s may be found <strong>in</strong> several gel pieces with different pI<br />

values. The differences observed for some other prote<strong>in</strong>s might be caused either by<br />

posttranslational modifications or by discrepancies between experimental and theoretically<br />

calculated pI values. For more detailed studies, the gels can be excised <strong>in</strong>to a higher number<br />

<strong>of</strong> narrower pieces and the pI values <strong>of</strong> prote<strong>in</strong>s identified between the locations <strong>of</strong> pI markers<br />

can be <strong>in</strong>terpolated or a higher number <strong>of</strong> pI markers can be used. The identifications <strong>of</strong> the<br />

prote<strong>in</strong>s were confirmed from the sta<strong>in</strong>ed gel by the same proteomic protocol.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 257


Gel<br />

pos. Name<br />

Prote<strong>in</strong><br />

Number<br />

pI marker<br />

Theor.<br />

pI<br />

No. pI<br />

a Prote<strong>in</strong> Z (Z4) (Major endosperm album<strong>in</strong>) P06293 5.70 II 4.3<br />

b Beta-amylase P16098 5.58 III 5.3<br />

Glucan endo-1,3-beta-glucosidase GV Q02438 6.92<br />

c Prote<strong>in</strong> Z (Z4) (Major endosperm album<strong>in</strong>) P06293 5.70 IV 5.7<br />

d Granule-bound starch synthase 1 P09842 7.06 VI 7.0<br />

Alpha-amylase/subtilis<strong>in</strong> <strong>in</strong>hibitor precursor P07596 7.78<br />

e Glucan endo-1,3-beta-glucosidase GV Q02438 6.92 VII 7.5<br />

f Lichenase II precursor P12257 9.0 IX 8.4<br />

Elongation factor 1-alpha Q40034 9.15<br />

g 26 kDa endochit<strong>in</strong>ase 2 precursor P23951 8.83 XI 9.0<br />

Histone H3 (Fragment) P06353 9.73<br />

h 26 kDa endochit<strong>in</strong>ase 2 precursor P11955 8.54 XII 10.1<br />

Elongation factor 1-alpha Q40034 9.15<br />

Tab.1: The list <strong>of</strong> prote<strong>in</strong>s identified directly <strong>in</strong> the same gel piece as the pI marker. Standard<br />

prote<strong>in</strong>s are bolded.<br />

CONCLUSIONS<br />

The method is based on separation <strong>of</strong> <strong>in</strong>tact prote<strong>in</strong>s by gel IEF along with low-molecular<br />

mass pI markers and subsequent sequential determ<strong>in</strong>ation <strong>of</strong> molecular masses <strong>of</strong> separated<br />

compounds by MALDI-TOF/TOF MS. The identification <strong>of</strong> both pI markers and prote<strong>in</strong>s <strong>in</strong><br />

the same gel piece give reliable <strong>in</strong>formation about the correct pI values <strong>of</strong> particular identified<br />

prote<strong>in</strong>s <strong>in</strong> complex samples. Moreover, it allows omitt<strong>in</strong>g prote<strong>in</strong> sta<strong>in</strong><strong>in</strong>g and desta<strong>in</strong><strong>in</strong>g<br />

procedure, because the Coomassie procedure is <strong>in</strong> the case <strong>of</strong> IEF gels complicated by<br />

presence <strong>of</strong> ampholytes caus<strong>in</strong>g dark background. The suggested procedure shortens roughly<br />

by half the time <strong>of</strong> analysis. The choice <strong>of</strong> appropriate ampholytes allows to modify the pH<br />

gradient and to study only the certa<strong>in</strong> area <strong>of</strong> the pH scale.<br />

There are only twelve ma<strong>in</strong>ly colored pI markers shown <strong>in</strong> this work. Nevertheless, the<br />

number <strong>of</strong> pI markers used may be much higher. The color <strong>of</strong> pI markers is not relevant for<br />

MS determ<strong>in</strong>ation. Focused pI markers may cover whole pH range and from gels narrow<br />

pieces can be cut out, which will allow more precise determ<strong>in</strong>ation <strong>of</strong> identified prote<strong>in</strong>s.<br />

Utilization <strong>of</strong> low-molecular mass pI markers with IEF gels was chosen as a first example <strong>of</strong><br />

their applicability because the gel process can be easily observed visually. There is a good<br />

chance to use this approach also <strong>in</strong> other IEF techniques (e.g. <strong>in</strong> capillaries or on chips).<br />

REFERENCES<br />

[1] Šlais K, Friedl Z. Low-molecular-mass pI markers for isoelectric focus<strong>in</strong>g. Journal <strong>of</strong><br />

Chromatography A 1994; 661: 249.<br />

[2] Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequenc<strong>in</strong>g <strong>of</strong> prote<strong>in</strong>s<br />

from silver sta<strong>in</strong>ed polyacrylamide gels. Analytical Chemistry 1996; 68: 850.<br />

[3] Strohalm M, Santrucek J, Hynek R, Kodicek M. Analysis <strong>of</strong> tryptophan surface<br />

accessibility <strong>in</strong> prote<strong>in</strong>s by MALDI-TOF mass spectrometry; Biochemical and<br />

Biophysical Research Communications 2004; 323: 1134.<br />

Sborník soutěže Studentské tvůrčí č<strong>in</strong>nosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 258

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!