11.10.2013 Views

2. ENVIRONMENTAL ChEMISTRy & TEChNOLOGy 2.1. Lectures

2. ENVIRONMENTAL ChEMISTRy & TEChNOLOGy 2.1. Lectures

2. ENVIRONMENTAL ChEMISTRy & TEChNOLOGy 2.1. Lectures

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chem. Listy, 102, s265–s1311 (2008) Environmental Chemistry & Technology<br />

then Se (VI) go out from reversed phase column to the ICP-<br />

MS. At 8.3 minutes we switch on the chiral column again<br />

going out D-Selenomethionine and L-Selenomethionine.<br />

At this moment, MeHg and inorganic mercury are still<br />

inside the reversed phase column and to get their separation,<br />

at 13.3 minutes we disconnect the chiral column again and<br />

the mobile phase B is pumped. With this change we get the<br />

elution of MeHg and inorganic mercury.<br />

Results<br />

Fig. 1. illustrates the chromatograms obtained with the<br />

method proposed and the Table II show the species detected,<br />

their retention times, detection limits and linear range. The<br />

detection limits vary between 0.3 and 9.7 ng depending<br />

of the species. The Relative Standard Deviation (% RSD) for<br />

the retention time is below 1 % for all species and for peak<br />

area is below 19 % for all species.<br />

Fig. 1. Chromatogram obtained by the proposed method for<br />

77 Se, 82 Se and 202 hg isotopes<br />

Conclusions<br />

This work reports for the first time an analytical methodology<br />

for the chromatographic separation of mercury and<br />

selenium species including chiral ones.<br />

The methodology proposed for the simultaneous speciation<br />

allows a deeper insight into the interaction between Se<br />

and Hg-species which is a key question due to the beneficious<br />

effect of Se-species into Hg toxicity.<br />

s436<br />

Table II<br />

Retention times, detection limits and linear range of the<br />

species<br />

Retention Detection Linear<br />

Peak Species time limit range<br />

[s] [ng] [ppb]<br />

1 Se-cystamine 16<strong>2.</strong>2 6.24 6<strong>2.</strong>4–1,000<br />

2 Se-cystine 189.2 4.03 40.2–500<br />

3<br />

Se-methylselenocysteine<br />

243.3 7.78 77.8–1,000<br />

4 Se (IV) 279.3 7.26 7<strong>2.</strong>6–1,000<br />

5 Se (VI) 420.8 6.63 66.3–1,000<br />

6 Se-L-methionine 717.3 9.67 96.7–1,000<br />

7 Se-D-methionine 75<strong>2.</strong>4 4.78 47.8–1,000<br />

8 Peak due to mobile phase change<br />

9 Methylmercury 1,265.1 4.40 44.0–10,000<br />

10 Inorganic mercury 1,344.4 0.30 3–10,000<br />

The developed methodology allows high sample throughput<br />

and low sample consumption that is highly important<br />

for the application to food and biological samples.<br />

This method don’t has memory effect in the system.<br />

REFEREnCES<br />

1. Devi M., Fingerman M.: B Environ. Contam. Tox. 55,<br />

746 (1995).<br />

<strong>2.</strong> Drevnick P. E., Roberts A. P., Otter, R. R., Hammerschmidt<br />

C. R., Klaper, R., Oris, T.: Comp. Biochem.<br />

Phys. C 147, 331 (2008).<br />

3. Zahir F., Rizwi S. J., Haq S. K., Khan R. H.: Environ. Toxicol.<br />

Phar. 20, 351 (2005).<br />

4. Whanger P. D.: J. nutr. 119, 1236 (1989).<br />

5. Weber D. n., Connaughton V. P., Dellinger J. A., Klemer<br />

D., Udvadia A., Carvan III M. J.: Physiol. Behav. 93,<br />

250 (2008).<br />

6. Dos Santos A. P. M., Mateus M. L., Carvalho C. M. L.,<br />

Batoréu M. C. C.: Toxicol. Lett. 169, 121 (2007).<br />

7. Wen-Xiong W., Wong R. S. K., Wang J., Yu-fong Y.:<br />

Aquat. Toxicol. 68, 39 (2004).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!