07.10.2013 Views

Power Conversion - SmartData

Power Conversion - SmartData

Power Conversion - SmartData

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Application Note<br />

AN-SMPS-1683X – 1<br />

<strong>Power</strong> <strong>Conversion</strong><br />

Version 1.2 , May 2000<br />

CoolSET <br />

TDA16831 ... 34 for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Authors: Harald Zöllinger<br />

Rainer Kling<br />

Published by Infineon Technologies AG<br />

http://www.infineon.com<br />

N ever stop thinking


Contents:<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

CIRCUIT DESCRIPTION............................................................................................ 2<br />

OPERATING PRINCIPLES ........................................................................................ 2<br />

SMPS CALCULATION SOFTWARE FLYCAL .......................................................... 2<br />

CIRCUIT DIAGRAM: .................................................................................................. 4<br />

DESIGN PROCEDURE<br />

DEFINE INPUT PARAMETERS:....................................................................................... 5<br />

INPUT DIODE BRIDGE (BR1):....................................................................................... 5<br />

DETERMINE INPUT CAPACITOR (C3):............................................................................ 5<br />

TRANSFORMER DESIGN (TR1): ................................................................................... 7<br />

WINDING DESIGN: ...................................................................................................... 8<br />

OUTPUT RECTIFIER (D1):.......................................................................................... 10<br />

OUTPUT CAPACITORS (C5 & C9): ............................................................................. 10<br />

OUTPUT FILTER (L3 & C9): ...................................................................................... 11<br />

VCC – SUPPLY:....................................................................................................... 11<br />

CALCULATION OF SNUBBER NETWORK:...................................................................... 12<br />

CALCULATION OF LOSSES: ........................................................................................ 13<br />

VOLTAGE REGULATION LOOP: ................................................................................... 15<br />

REGULATION LOOP:.................................................................................................. 16<br />

TRANSFER CHARACTERISTICS OF REGULATION LOOP ELEMENTS: ................................ 16<br />

TRANSFORMER CONSTRUCTION ................................................................................ 21<br />

LAYOUT RECOMMENDATION:.............................................................................. 22<br />

OUTPUT POWER TABLE........................................................................................ 23<br />

SUMMARY OF USED NOMENCLATURE ............................................................... 24<br />

PARAMETERS........................................................................................................... 24<br />

REFERENCES ......................................................................................................... 26<br />

Page 1 of 28 AN-SMPS-1683X – 1<br />

V1.2


Circuit Description<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

The TDA 16831 ... 34 is a current mode pulse width modulator with an integrated CoolMOS<br />

Transistor. It meets the need for minimum external control circuitry for a flyback application.<br />

Current mode control means that the current (IPRI) through the CoolMOS Transistor and flyback<br />

transformer is compared with a feedback signal derived from the output voltage (VOUT) of the flyback<br />

application. The result of that comparision determines the on time (tON) of the CoolMOS Transistor.<br />

To minimize external circuitry the current sense circuitry is integrated within the CoolSET controller.<br />

The oscillator resistor and capacitor which determine the switching frequency are also integrated,<br />

reducing the external connections. Special efforts have been made to compensate temperature<br />

dependancy of clock frequency and to minimize the number of the passive components.<br />

Operating Principles<br />

The TDA 16831 ... 34 is designed for a current mode flyback configuration in discontinous current<br />

mode.<br />

The control circuit has a fixed frequency and the duty cycle (D) of integrated CoolMOS Transistor is<br />

controlled to maintain a constant output voltage (VOUT).<br />

The diagram below (Fig. 1) shows the input voltage (VDC IN) and the primary (IPRI) and secondary (ISEC)<br />

transformer current.<br />

When the CoolMOS Transistor is turned on, the start of all windings on the transformer will go positive.<br />

The rectifier diode (D1) on the secondary side will be reverse-biased and will not conduct. Therefore<br />

no current will flow in the secondary while the CoolMOS Transistor is turned on. During this phase,<br />

energy is being stored in the primary winding inductance and the transformer may be treated as a<br />

simple series inductor. The diagram shows (Fig. 1) that there will be a linear increase of primary<br />

current (IPRI) while the primary CoolMOS Transistor is on.<br />

When the CoolMOS Transistor is turned off, the voltage will reverse on all windings (flyback action)<br />

until clamped by the secondary side widing through the secondary rectifier diode. Now the secondary<br />

rectifier diode (D1) will conduct, and the magnetizing energy in the core will now transfer to the<br />

secondary side during the reset interval.<br />

This current will decrease from it’s peak value to zero, as shown in the diagram (ISEC). In this period<br />

the complete stored energy in the primary inductance will be transferred to the secondary side<br />

(neglecting losses), before the next store cycle starts. The secondary voltage (VSEC) is “reflected” back<br />

(VR) through the transformer turns ratio to the primary winding and added to the input voltage<br />

(VDC IN + VR). Additional transient voltage may appear on the primary winding due to energy stored in<br />

uncoupled “leakage” inductance in the primary winding which isn’t clamped by the secondary side<br />

winding. If the flyback current does not reach zero before the next “on” – Cycle the converter is<br />

operating in continous current mode. When this system reverts to the continous operation, the transfer<br />

function is changed to a two pole system with low output impedance and additional design rules<br />

become important.<br />

SMPS Calculation Software FLYCAL<br />

FLYCAL is an EXCEL spread sheet with all needed Equations for calculating your SMPS easier.<br />

FLYCAL corresponds with the calculating example in this application note, starting at page 5. You only<br />

have to put in the main parameters of your application in FLYCAL and to follow<br />

(like the calculating example in this application note) step by step. FLYCAL contents all used<br />

equations from the example with the same consecutive numbering.<br />

Page 2 of 28 AN-SMPS-1683X – 1<br />

V1.2


Voltage<br />

Current<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Voltage and Current waveforms in discontinous mode operation:<br />

VDC IN min + VR<br />

VDC IN min<br />

IPEAK<br />

IPEAK<br />

Fig. 1<br />

Duty Cycle: D = 0,5 Duty Cycle: D < 0,5<br />

VDC IN = VDC IN min VDC IN > VDC IN min<br />

ISEC<br />

IPRI<br />

0 T<br />

tON<br />

Light load<br />

tOFF<br />

Full load<br />

Duty Cycle:<br />

t<br />

D =<br />

T<br />

VIN + VR<br />

ON<br />

VDC IN<br />

IPEAK IPRI<br />

IPEAK<br />

Page 3 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

0<br />

ISEC<br />

tON tOFF T


Circuit Diagram:<br />

Fig. 2<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Page 4 of 28 AN-SMPS-1683X – 1<br />

V1.2


TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Design Procedure for fixed frequency Flyback Converter with<br />

TDA16831 ... 34 operating in discontinuous current mode.<br />

Define input Parameters:<br />

Procedure Example<br />

Minimal AC input voltage: VAC min<br />

Maximal AC input voltage: VAC max<br />

Line frequency: fAC<br />

Max. Output power: POUT max<br />

Min. Output power: POUT min<br />

Output voltage: VOUT<br />

Output ripple voltage: VOUT Ripple<br />

Reflection voltage: VR<br />

Estimated efficiency: η<br />

DC ripple voltage: VDC IN Ripple<br />

Auxiliary Voltage: VAux<br />

Optocoupler Gain: GC<br />

Used CoolSET<br />

There are no special requirements imposed on the<br />

input rectifier and storage capacitor in the flyback<br />

converter. The components will be selected to meet<br />

the power rating and hold-up requirements.<br />

Maximum input power:<br />

POUT<br />

max<br />

P IN MAX = (Eq 1)<br />

η<br />

Input Diode Bridge (BR1):<br />

P<br />

IN MAX<br />

I PRMS =<br />

(Eq 2)<br />

VAC<br />

min ⋅ cosϕ<br />

V DC max PK = VAC<br />

max ⋅ 2<br />

(Eq 3)<br />

Determine Input Capacitor (C3):<br />

Minimum peak input voltage at ”no load” condition<br />

V DC min PK = VAC<br />

min ⋅ 2<br />

(Eq 4)<br />

85V<br />

270V<br />

50Hz<br />

40W<br />

1W<br />

12V<br />

0,05V<br />

100V<br />

0,8<br />

20V<br />

12V<br />

1<br />

TDA16834 for 40W @ 25°C<br />

PIN MAX<br />

I PRMS<br />

VDC max PK<br />

VDC min PK<br />

40W<br />

= = 50W<br />

0,<br />

8<br />

50W<br />

= = 0,<br />

98<br />

85V<br />

⋅0,<br />

6<br />

= 270V<br />

⋅<br />

=<br />

85V<br />

⋅<br />

Page 5 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

A<br />

2 = 382V<br />

2 = 120V


V = V min −V<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

DC min DC PK Ripple<br />

(Eq 5)<br />

Calculating discharging time at each half line cycle:<br />

V<br />

arcsin<br />

V<br />

= 5ms<br />

⋅ 1+<br />

90<br />

<br />

<br />

DC min<br />

DC min PK<br />

T D<br />

(Eq 6)<br />

Required energy at discharging time of C3:<br />

W P ⋅T<br />

IN<br />

= (Eq 7)<br />

IN MAX<br />

D<br />

Calculating input capacitor value CIN:<br />

C<br />

IN<br />

V<br />

2 ⋅W<br />

= (Eq 8)<br />

2<br />

DC min PK<br />

IN<br />

2<br />

VDC<br />

min<br />

−<br />

Alternative a rule of thumb on choosing CIN:<br />

Input voltage CIN<br />

115V 2µF/W<br />

230V 1µF/W<br />

85V ...270V 2 ...3µF/W....................<br />

Postcalculation of input Capacitore:<br />

Select a capacitor out of Epcos Databook<br />

of Aluminium Electrolytic Capacitors.<br />

The following types are preferred:<br />

For 85°C Applications:<br />

Series B43303-........ 2000h lifetime<br />

B43501-........ 10000h lifetime<br />

For 105°C Applications:<br />

Series B43504-........ 3000h lifetime<br />

B43505-........ 5000h lifetime<br />

V<br />

DC<br />

=<br />

V<br />

2<br />

DC min PK<br />

2 ⋅W<br />

−<br />

C<br />

min (Eq 9)<br />

IN<br />

IN<br />

<br />

we choose a ripple voltage of 20V<br />

VDC min<br />

T D<br />

W IN<br />

= 120V<br />

− 20V<br />

= 100V<br />

100V<br />

<br />

arcsin<br />

= 5 ms • 1+<br />

120V<br />

= 8,<br />

1ms<br />

90<br />

<br />

<br />

= 50 W ⋅8,<br />

1ms<br />

= 0,<br />

41Ws<br />

2⋅<br />

0,<br />

41Ws<br />

CIN =<br />

= 185µ<br />

F<br />

2<br />

2<br />

14400V<br />

−10000V<br />

µ F<br />

50 W ⋅3<br />

= 150µ<br />

F<br />

W<br />

We choose 180µF 400V (based on Eq 8)<br />

VDC min<br />

=<br />

2 0,<br />

41Ws<br />

14400V 99,<br />

2V<br />

180 F<br />

2 ⋅<br />

− =<br />

µ<br />

Page 6 of 28 AN-SMPS-1683X – 1<br />

V1.2


Transformer Design (TR1):<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Calculation of peak current on primary inductance:<br />

I<br />

2 ⋅ PIN<br />

V ⋅ D<br />

LPK =<br />

MAX<br />

(Eq 10)<br />

DC min max<br />

Dmax<br />

= I ⋅<br />

(Eq 11)<br />

3<br />

I LRMS LPK<br />

Calculating of primary inductance within limit of<br />

maximum Duty-Cycle :<br />

L<br />

P<br />

=<br />

D<br />

max<br />

I<br />

⋅V<br />

LPK<br />

DC min<br />

⋅ f<br />

Select core type and inductance factor (AL) from<br />

Epcos ferrite Databook or CD-ROM<br />

Passive Components.<br />

(Eq 12)<br />

Fix maximum flux density:<br />

Bmax ≈ 0,2T ...0,3T for ferrite cores depending on core<br />

material.<br />

We choose 0,2T for material N27<br />

The primary turns can be calculated as:<br />

L<br />

P<br />

N P = (Eq 13)<br />

AL<br />

Number of secondary turns can be calculated as:<br />

( V + V )<br />

N P ⋅ OUT FDIODE<br />

Ns = (Eq 14)<br />

V<br />

R<br />

Dmax = 0,5 (see datasheet TDA16834)<br />

I LPK<br />

I LRMS<br />

L P<br />

2 ⋅ 50W<br />

= = 2,<br />

02<br />

99,<br />

2V<br />

⋅ 0,<br />

5<br />

Page 7 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

A<br />

0,<br />

5<br />

= 2 , 02A<br />

⋅ = 0,<br />

83<br />

3<br />

0,<br />

5 ⋅99,<br />

2V<br />

=<br />

= 246µ<br />

H<br />

3<br />

2,<br />

02A<br />

⋅100*<br />

10 Hz<br />

Selected core: E 32/16/9<br />

Material = N27<br />

AL = 244 nH<br />

s = 0,5 mm<br />

Ae = 83 mm 2<br />

AN = 108,5 mm 2<br />

lN = 64,4 mm<br />

weight ≈ 30g<br />

PV = 190mW/g (200mT, 100kHz, 100°C)<br />

N P<br />

=<br />

246µ<br />

H<br />

244nH<br />

=<br />

31,<br />

75<br />

we choose Np = 32 turns<br />

32 ⋅<br />

Ns =<br />

( 12V<br />

+ 0,<br />

7V<br />

)<br />

100V<br />

we choose NS = 4 turns<br />

=<br />

A<br />

turns<br />

4,<br />

06


TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Number of auxiliary turns can be calculated as:<br />

N<br />

N<br />

⋅<br />

( V + V )<br />

P Aux FDIODE<br />

Aux = (Eq 15)<br />

VR<br />

Postcalculation of primary inductance, primary peak<br />

current, max. flux density and gap:<br />

P<br />

2<br />

P<br />

L = N ⋅ A<br />

I<br />

LPK<br />

V<br />

=<br />

l<br />

DC min<br />

P<br />

⋅ D<br />

Lp ⋅ f<br />

e<br />

max<br />

(Eq 16)<br />

(Eq 17)<br />

LP<br />

⋅ I LPK<br />

Bmax<br />

=<br />

(Eq 18)<br />

N ⋅ A<br />

4⋅π ⋅10<br />

s =<br />

L<br />

−7 2<br />

⋅ N P<br />

P<br />

⋅ A<br />

Winding Design:<br />

(see also page 21<br />

Transformer Construction)<br />

e<br />

(Eq 19)<br />

The primary winding of 32 turns has to be split into<br />

16+16 turns in order to get best coupling between<br />

primary and secondary winding.<br />

The effective bobbin width and winding cross section<br />

can be calculated:<br />

BW e<br />

A<br />

Ne<br />

= BW − 2 ⋅ M<br />

(Eq 20)<br />

AN<br />

⋅ BWe<br />

= (Eq 21)<br />

BW<br />

Calculate copper section for primary and secondary<br />

winding:<br />

The winding cross section AN has to be splitted into<br />

the number of windings.<br />

Primary winding 0,5<br />

Secondary winding 0,45<br />

Auxiliary winding 0,05<br />

N Aux<br />

32 ⋅<br />

=<br />

( 12V<br />

+ 0,<br />

7V<br />

)<br />

100V<br />

we choose NAux = 4 turns<br />

L P<br />

I LPK<br />

=<br />

32 2<br />

4,<br />

06<br />

Page 8 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

=<br />

⋅ 244nH<br />

= 250µ<br />

H<br />

99,<br />

2V<br />

⋅ 0,<br />

5<br />

=<br />

250µ<br />

H ⋅100*<br />

10<br />

3<br />

Hz<br />

250µ<br />

H ⋅1,<br />

98A<br />

Bmax =<br />

= 186mT<br />

2<br />

32 ⋅83mm<br />

= 1,<br />

98A<br />

−7<br />

2<br />

2<br />

4 ⋅π<br />

⋅10<br />

⋅ 32 ⋅83mm<br />

s =<br />

= 0,<br />

43mm<br />

250µ<br />

H<br />

From bobbin datasheet E32/16/9: BW = 20,1mm<br />

Margin determined: M = 4mm<br />

BW e<br />

=<br />

20 , 1mm<br />

− 2⋅<br />

4mm<br />

= 12,<br />

1mm


Copper space factor fCu :0,2 ....0,4<br />

A<br />

P<br />

⋅ AN<br />

=<br />

N<br />

5 , 0<br />

⋅ f<br />

P<br />

Cu<br />

⋅ BW<br />

⋅ BW<br />

( 1,<br />

8277 − ( 2 ( d ) ) )<br />

e<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

(Eq 22)<br />

AWG = 9, 97 ⋅ ⋅log<br />

(Eq 23)<br />

A<br />

A<br />

s<br />

aux<br />

⋅ A<br />

=<br />

N<br />

45 , 0<br />

N<br />

s<br />

⋅ A<br />

=<br />

N<br />

05 , 0<br />

⋅ f<br />

Cu<br />

⋅ BW<br />

N<br />

aux<br />

⋅ f<br />

⋅ BW<br />

Cu<br />

⋅ BW<br />

e<br />

⋅ BW<br />

e<br />

(Eq 24)<br />

(Eq 25)<br />

With the effective bobbin width we check the number<br />

of turns per layer:<br />

BWe<br />

N P = (Eq 26)<br />

d<br />

P<br />

We calculate the available area for each winding:<br />

Used for calculation: fCu =0,3<br />

A P<br />

A s<br />

A aux<br />

=<br />

=<br />

0,<br />

5<br />

⋅<br />

2<br />

108,<br />

5mm<br />

⋅<br />

32 ⋅ 20,<br />

1<br />

12,<br />

1<br />

= 0,<br />

31mm<br />

Page 9 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

0<br />

, 3<br />

diameter dp ≈ 0,64mm 22 AWG<br />

0,<br />

45<br />

Primary:<br />

N P<br />

⋅<br />

2<br />

108,<br />

5mm<br />

4 ⋅ 20,<br />

1<br />

⋅<br />

⋅<br />

0,<br />

3<br />

⋅<br />

12,<br />

1<br />

2<br />

= 2,<br />

20mm<br />

diameter ds 2 x 0,8mm 2 x 20 AWG<br />

2<br />

0,<br />

05⋅108,<br />

5mm<br />

⋅0,<br />

3⋅12,<br />

1<br />

2<br />

=<br />

= 0,<br />

24mm<br />

4⋅<br />

20,<br />

1<br />

diameter da ≈ 0,64mm 22 AWG<br />

12,<br />

1mm<br />

= = 17 turns per layer<br />

0,<br />

64mm<br />

Secondary:<br />

2 layer needed<br />

12,<br />

1mm<br />

N S = = 4 turns per layer<br />

2⋅<br />

0,<br />

8mm<br />

Auxiliary:<br />

Can be neglected !<br />

2


Output Rectifier (D1):<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

The output rectifier diodes in flyback converters are<br />

subject to a large PEAK and RMS current stress. The<br />

values depend on the load, leakage inductance,<br />

operating mode and output capacitor ESR.<br />

Calculation of the maximum reverse voltage:<br />

<br />

+ <br />

V<br />

<br />

N<br />

⋅<br />

N<br />

VRDiode = VOUT<br />

DC max PK<br />

S<br />

P<br />

(Eq 27)<br />

Calculation of the maximum current on secondary<br />

side:<br />

N<br />

I ⋅<br />

P<br />

SPK = I LPK<br />

(Eq 28)<br />

N S<br />

= I ⋅ 1 ⋅ D<br />

3 max<br />

(Eq 29)<br />

I SRMS SPK<br />

Output Capacitors (C5 & C9):<br />

Output capacitors are highly stressed in flyback<br />

converters. Normally the capacitor will be selected for<br />

3 major parameters: capacitance value, low ESR<br />

and ripple current rating.<br />

Max. voltage overshoot: ∆VOUT<br />

Number of clock periods: nCP<br />

C<br />

OUT<br />

=<br />

I<br />

∆V<br />

OUT<br />

⋅<br />

⋅ f<br />

OUT max n CP<br />

Select a capacitor out of Epcos Databook<br />

of Aluminium Electrolytic Capacitors.<br />

The following types are preferred:<br />

For 85°C Applications:<br />

Series B41826-........ 2000h lifetime<br />

For 105°C Applications:<br />

Series B41856-........ 2000h lifetime<br />

<br />

(Eq 30)<br />

V RDiode<br />

I SPK<br />

I SRMS<br />

4 <br />

= 12 V + 382V<br />

⋅ = 59,<br />

8V<br />

32<br />

32<br />

= 1 , 98A<br />

⋅ = 15,<br />

8A<br />

4<br />

= 15 , 8A<br />

⋅ 1 ⋅ 0,<br />

5 = 6,<br />

5<br />

3<br />

To calculate the output capacitor, it is necessary to fix<br />

the maximum voltage overshoot in case of switching<br />

off @ maximum load condition.<br />

After switching off the load, the regulation loop needs<br />

about 5...10 periods of internal clock to reduce the<br />

duty cycle.<br />

∆<br />

V OUT<br />

nCP = 5<br />

C OUT<br />

= 0,<br />

5V<br />

3,<br />

33A<br />

⋅ 5<br />

=<br />

= 333µ<br />

F<br />

3<br />

0,<br />

5V<br />

⋅100<br />

* 10 Hz<br />

We select 470µF 25V (based on Eq 30):<br />

B41826-A5477-M<br />

ESR ≈ Zmax = 0,06Ω @ 100kHz<br />

IacR = 2,2A<br />

ISRMS = 6,6A (Eq 29) you need 3 capacitor<br />

Page 10 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

A


Output Filter (L3 & C9):<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

The output filter consists of one capacitor (C9) and<br />

one inductor (L3) in a L-C filter topology.<br />

Zero frequency of output capacitor (C9) and<br />

associated ESR:<br />

f<br />

ZCOUT<br />

1<br />

=<br />

2 ⋅π<br />

⋅ R<br />

ESR<br />

⋅ C<br />

OUT<br />

(Eq 31)<br />

Calculating the needed inductance (L3) for substitute<br />

the zero of the 3 output capacitors:<br />

L<br />

OUT<br />

R<br />

=<br />

2 ⋅π<br />

⋅ f<br />

VCC – Supply:<br />

ESR<br />

ZCOUT<br />

⋅ n<br />

pCOUT<br />

Start-up Resistor (R6 & R7):<br />

ICCLmax = max. Quiescent Current (Control IC)<br />

ILoadC = VCC-Capacitor Load-Current (C4)<br />

CVCC = Value of VCC-Capacitor (C4)<br />

R<br />

Start<br />

=<br />

I<br />

V<br />

CCL max<br />

DC min<br />

Start up Time tStart:<br />

t<br />

C<br />

⋅V<br />

+ I<br />

LoadC<br />

(Eq 32)<br />

(Eq 33)<br />

VCC CCH<br />

Start = (Eq 34)<br />

I LoadC<br />

Internal Zener Diode:<br />

Depending on the transformer construction and load<br />

condition the auxiliary supply voltage varies within an<br />

operating range. If VCC exceeds VZ (16V), the<br />

internal zener diode conducts. In this case we have<br />

to observe the internal power dissipation limits or<br />

use an external zener diode on VCC pin.<br />

f ZCOUT<br />

L OUT<br />

1<br />

=<br />

= 5,<br />

6kHz<br />

2⋅π<br />

⋅0,<br />

06Ω<br />

⋅ 470µ<br />

F<br />

0,<br />

06Ω<br />

=<br />

= 0,<br />

57µ<br />

H<br />

2 ⋅π<br />

⋅ 5,<br />

6kHz<br />

⋅3<br />

ICCLmax = 80µA<br />

ILoadC = 40µA<br />

CVCC = 22µF<br />

R Start<br />

99,<br />

2V<br />

= = 827kΩ<br />

( 80 + 40)<br />

µ A<br />

R6 = R7 =1/2 RStart = 413,5kΩ<br />

Choose 2 with value: 410kΩ<br />

t Sstart<br />

22µ<br />

F ⋅12V<br />

=<br />

= 6,<br />

6s<br />

40µ<br />

A<br />

Note:<br />

Before the IC can be plugged into the application<br />

board, the VCC capacitor has always to be<br />

discharged!<br />

Page 11 of 28 AN-SMPS-1683X – 1<br />

V1.2


Calculation of Snubber Network:<br />

(R10/C12/D3)<br />

V = V −V<br />

max −V<br />

Snub<br />

BR)<br />

DSS<br />

DC<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

R<br />

( (Eq 35)<br />

For calculating the snubber network it is neccesary to<br />

know the leakage inductance. Most common way is<br />

to have the value of the leakage inductance (LLK) in<br />

percent of the primary inductance (Lp). If it is known<br />

that the transformer construction is very consistent,<br />

measuring the primary leakage inductance by<br />

shorting the secondary windings will give an exact<br />

number, assuming the availability of a good LCR<br />

analyser.<br />

L LK<br />

C<br />

R<br />

Snub<br />

Snub<br />

= Lp ⋅ x%<br />

=<br />

I<br />

2<br />

LPK<br />

⋅ L<br />

LK<br />

( VR<br />

+ VSsnub<br />

) ⋅VSnub<br />

( V + V )<br />

2<br />

Ssnub R −V<br />

R<br />

= 2<br />

0,<br />

5 ⋅ L ⋅ I ⋅ f<br />

LK<br />

2<br />

LPK<br />

(Eq 36)<br />

(Eq 37)<br />

V Snub<br />

= 650 V − 382V<br />

−100V<br />

= 168V<br />

In our example we choose 5% of primary inductance<br />

for leakage inductance.<br />

L LK<br />

C Ssnub<br />

R Snub<br />

= 250 µ H ⋅5%<br />

= 12,<br />

5µ<br />

H<br />

=<br />

( 1,<br />

98A)<br />

( 100V<br />

+ 168V<br />

)<br />

⋅12,<br />

5µ<br />

H<br />

= 1,<br />

1nF<br />

⋅168V<br />

Page 12 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

2<br />

( 168V<br />

+ 100V<br />

)<br />

2<br />

≈ 1,2nF<br />

2<br />

−100V<br />

= = 25,<br />

3kΩ<br />

2<br />

3<br />

0,<br />

5⋅12,<br />

5µ<br />

H ⋅ ( 1,<br />

98A)<br />

⋅100*<br />

10 Hz<br />

≈25kΩ


Calculation of Losses:<br />

Input diode bridge (BR1):<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

P DIN = I PRMS ⋅VF<br />

⋅ 2<br />

(Eq 38)<br />

Calculation of copper resistance RCu:<br />

R<br />

l<br />

⋅ N<br />

⋅ p<br />

N P 100<br />

PCu = (Eq 39)<br />

AP<br />

Calculating of copper loss (TR1):<br />

2<br />

PCu = I LPK ⋅ DMAX<br />

⋅ 1 ⋅ R<br />

3<br />

Output rectifier diode (D1):<br />

Cu<br />

1 − Dmax<br />

PDDIODE = I SPK ⋅ ⋅V<br />

3<br />

COOLMOS TRANSISTOR:<br />

TDA16834<br />

Calculated @ VDCmin = 99V<br />

CO ≈ 50pF (CO = COSS + CExtern)<br />

RDSON = 1,6Ω (@ 150°C)<br />

Switching losses:<br />

2<br />

PSON = ⋅C<br />

O ⋅V<br />

2<br />

DC<br />

min<br />

⋅ f<br />

FDIODE<br />

(Eq 40)<br />

(Eq 41)<br />

1 (Eq 42)<br />

( VDC<br />

+ VR<br />

) ⋅ I LPK ⋅ f tr<br />

1 (Eq 43)<br />

PSOFF = ⋅ min<br />

⋅<br />

6<br />

Conduction losses:<br />

2<br />

P 1<br />

D ⋅ RDSON<br />

⋅ I LPK ⋅ Dmax<br />

= (Eq 44)<br />

3<br />

P DIN<br />

= 0 , 98A<br />

⋅1V<br />

⋅ 2 = 1,<br />

96W<br />

Copper resistivity p100 @ 100°C = 0,0172Ωmm 2 /m<br />

R PCu<br />

R SCu<br />

P PCu<br />

P SCu<br />

2<br />

0,<br />

0644m<br />

⋅32<br />

⋅17,<br />

2mΩmm<br />

/ m<br />

= = 114,<br />

3mΩ<br />

2<br />

0,<br />

31mm<br />

2<br />

0,<br />

0644m<br />

⋅ 4 ⋅17,<br />

2mΩmm<br />

/ m<br />

= = 2,<br />

01mΩ<br />

2<br />

2,<br />

20mm<br />

2<br />

= ( 1,<br />

98A)<br />

⋅ 0,<br />

5⋅<br />

1 ⋅114,<br />

3mΩ<br />

= 74,<br />

7mW<br />

3<br />

2<br />

= ( 15,<br />

8A)<br />

⋅ 0,<br />

5 ⋅ 1 ⋅ 2,<br />

01mΩ<br />

= 84,<br />

1mW<br />

3<br />

P Cu<br />

P DDIODE<br />

= 74,<br />

7mW<br />

+ 84,<br />

1mW<br />

= 158,<br />

8mW<br />

1−<br />

0,<br />

5<br />

= 15 , 8A<br />

⋅ ⋅ 0,<br />

7V<br />

= 4,<br />

52W<br />

3<br />

(see also TDA 16831 ... 34 Data Sheet)<br />

P SON<br />

P SOFF<br />

P D<br />

=<br />

=<br />

1<br />

2<br />

⋅ 50 pF ⋅99V<br />

Page 13 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

2<br />

3<br />

⋅100<br />

* 10 Hz = 24,<br />

5mW<br />

( 99V<br />

+ 100V<br />

) ⋅ 2,<br />

02A<br />

⋅100kHz<br />

⋅30ns<br />

197mW<br />

= 1 ⋅<br />

=<br />

6<br />

1<br />

3<br />

2<br />

⋅1,<br />

6Ω<br />

⋅ ( 1,<br />

98A)<br />

⋅ 0,<br />

5 = 1,<br />

05W


Summary of Losses:<br />

P P + P + P<br />

Losses<br />

SON<br />

SOFF<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

= (Eq 44a)<br />

Thermal Calculation:<br />

K<br />

Table of typical thermal Resistance [ ]:<br />

W<br />

Heatsink DIP8 SO14<br />

No 90 112<br />

3 cm² 64 92<br />

6 cm² 56 78<br />

dT P * R<br />

Losses<br />

th<br />

D<br />

= (Eq 44b)<br />

Tj dT + Ta<br />

= (Eq 44c)<br />

P Losses<br />

= 25 , 4mW<br />

+ 197mW<br />

+ 1005mW<br />

= 1,<br />

27W<br />

K<br />

dT = 1 , 27W<br />

* 56 = 71,<br />

2K<br />

W<br />

Tj = 71,<br />

2K<br />

+ 50°<br />

C = 121°<br />

C<br />

Page 14 of 28 AN-SMPS-1683X – 1<br />

V1.2


Voltage Regulation Loop:<br />

Reference: TL431 (IC2)<br />

VREF =2,5V<br />

IKAmin=1mA<br />

Optocoupler: SFH617-3 (IC1)<br />

Gc = 1 ...2 ≡ CTR 100% ...200%<br />

VFD = 1,2V<br />

IFmax =10mA (maximum current limit)<br />

Primary side:<br />

Feedback voltage:<br />

Values from TDA16831...34 datasheet<br />

VRef int = 5.5V typ.<br />

VFBmax = 4,8V<br />

RFB = 3,7k typ.<br />

I<br />

I<br />

FB<br />

V<br />

R<br />

Re f int<br />

FB<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

max = (Eq 45)<br />

FB min<br />

V<br />

Re f int<br />

−V<br />

R<br />

FB<br />

FB max<br />

= (Eq 46)<br />

Secondary side:<br />

1<br />

VOUT<br />

<br />

= R <br />

2 −1<br />

VREF<br />

R (Eq 47)<br />

the value of R2 can be fixed at 4,7k<br />

R<br />

R<br />

( V − ( V + V ) )<br />

OUT FD REF<br />

3 ≥ (Eq 48)<br />

I F max<br />

4<br />

V<br />

FD<br />

<br />

+ R<br />

<br />

I<br />

3<br />

KA min<br />

I<br />

⋅<br />

Gc<br />

FB min<br />

<br />

≤ (Eq 49)<br />

Fig. 3<br />

Fig. 4<br />

I FB max<br />

I FB min<br />

5,5V<br />

3,7k<br />

VFB<br />

R3<br />

TL431<br />

5,<br />

5V<br />

= = 1,<br />

5mA<br />

3,<br />

7kΩ<br />

5,<br />

5V<br />

− 4,<br />

8V<br />

=<br />

= 0,<br />

19mA<br />

3,<br />

7kΩ<br />

12V<br />

<br />

R1 = 4,<br />

7k<br />

⋅<br />

−1<br />

= 17,<br />

86k<br />

2,<br />

5V<br />

( 12V<br />

− ( 1,<br />

2V<br />

+ 2,<br />

5V<br />

) )<br />

R3 = 0,<br />

83k<br />

10mA<br />

≥ ≈ 910R<br />

0,<br />

2mA<br />

<br />

1,<br />

2V<br />

+ 910R<br />

⋅<br />

1<br />

R4 = 1,<br />

4k<br />

1mA<br />

≤ ≈ 1,2k<br />

Page 15 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

FB<br />

R4<br />

R5<br />

C2<br />

C1<br />

R1<br />

R2<br />

Vout


Regulation Loop:<br />

Fig. 5<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Transfer Characteristics of Regulation Loop Elements:<br />

K<br />

G<br />

⋅ 3k7<br />

C<br />

FB = Feedback<br />

R3<br />

R2<br />

V<br />

K VD = =<br />

R1<br />

+ R2<br />

V<br />

F<br />

F<br />

PWR<br />

LC<br />

VIN<br />

1<br />

( p)<br />

=<br />

Z<br />

( p)<br />

PWM<br />

⋅<br />

REF<br />

OUT<br />

<br />

<br />

LP<br />

⋅ f ⋅η<br />

RL<br />

⋅ <br />

2 ⋅ RL<br />

R<br />

<br />

1<br />

+ p ⋅ <br />

2<br />

ZPWM = Transimpedance ∆VFB/∆ID<br />

1 + p ⋅ R<br />

FPWR(p)<br />

KFB<br />

⋅ C<br />

( 1 + p ⋅ R ⋅ C )<br />

L<br />

ESR<br />

+ R<br />

ESR<br />

<br />

⋅<br />

5<br />

C<br />

5<br />

<br />

<br />

<br />

Voltage Divider<br />

Page 16 of 28 AN-SMPS-1683X – 1<br />

V1.2<br />

<br />

<strong>Power</strong> stage<br />

ESR 9<br />

= Output filter<br />

2<br />

1 + p ⋅ RESR<br />

⋅ C9<br />

+ p ⋅ L ⋅ C9<br />

( C1+<br />

C2)<br />

FLC(p)<br />

Fr(p)<br />

1+<br />

p ⋅ R5⋅<br />

Fr(<br />

p)<br />

= Regulator<br />

R1⋅<br />

R2<br />

p ⋅ ⋅C1⋅<br />

( 1+<br />

p ⋅ R5⋅<br />

C2)<br />

R1+<br />

R2<br />

KVD<br />

_<br />

+<br />

Vout<br />

Vref


TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Zero’s and Poles of the transfer characteristics:<br />

Poles of powerstage @ min. and max. load:<br />

2<br />

12<br />

= = = 3,<br />

6Ω<br />

40<br />

2<br />

VOUT<br />

V<br />

12<br />

RLH<br />

= = = 144Ω<br />

P W<br />

1<br />

2<br />

VOUT<br />

V<br />

RLL<br />

P W<br />

f<br />

f<br />

OH<br />

OL<br />

=<br />

π ⋅<br />

=<br />

π ⋅<br />

OUT max<br />

1<br />

R ⋅ C5<br />

LH<br />

1<br />

R ⋅ C5<br />

LL<br />

f OH<br />

f OL<br />

2<br />

OUT min<br />

1<br />

=<br />

=<br />

π ⋅ 3,<br />

6Ω<br />

⋅1410µ<br />

F<br />

62,<br />

7<br />

Hz<br />

1<br />

=<br />

= 1,<br />

57Hz<br />

π ⋅144Ω<br />

⋅1410µ<br />

F<br />

The gain (Gc) of the optocoupler stage KFB and the voltage divider KVD we use as a constant.<br />

K<br />

G<br />

⋅ 3k7<br />

C<br />

FB = KFB = 6,6 GFB = 16,4db<br />

R3<br />

R2<br />

V<br />

K VD = =<br />

R1<br />

+ R2<br />

V<br />

REF<br />

OUT<br />

KVD = 0,208 GVD = -13,6db<br />

With adjustment of the transfer characteristics of the regulator we want to have equal gain within the<br />

operating range and to compensate the pole fo of the powerstage FPWR(ω).<br />

Because of the compensation of the output capacitors zero (see page 11 Eq31, Eq32) we neglect this zero<br />

and the LC-Filter pole.<br />

So the transfer characteristics of the power stage is reduced to a single pole response.<br />

In order to calculate the gain of the open loop we have to select the crossover frequency.<br />

We calculate the gain of the <strong>Power</strong>-Stage with max. output power at the selected crossover frequency<br />

fg = 3kHz:<br />

ZPWM of TDA16834 =1,3 V/A<br />

PWM<br />

( t )<br />

ON<br />

= Z<br />

PWM<br />

⋅<br />

t<br />

<br />

⋅ t<br />

<br />

<br />

+ 0,<br />

6 ⋅ − e<br />

<br />

1<br />

ON<br />

−tON<br />

T1<br />

ON − T1<br />

+ T1⋅<br />

e<br />

1<br />

−tON<br />

T 2<br />

Z (formula according data sheet p. 12)<br />

<br />

Page 17 of 28 AN-SMPS-1683X – 1<br />

V1.2


TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

with this formula we calculate ZPWM @ max. duty cycle:<br />

Z<br />

PWM<br />

( t )<br />

ON<br />

V 1 <br />

= 1,<br />

3 ⋅ ⋅ 4,<br />

7µ<br />

s − 850ns<br />

+ 850ns<br />

⋅ e<br />

A 4,<br />

7µ<br />

s <br />

Gain @ crossover frequency:<br />

F<br />

PWR<br />

F PWR<br />

1<br />

( fg)<br />

=<br />

Z<br />

( 3kHz)<br />

=<br />

PWM<br />

1<br />

1,<br />

7<br />

⋅<br />

⋅<br />

R<br />

GPWR(3kHz) = -22,7db<br />

Transfer characteristics:<br />

Fig. 6<br />

L<br />

<br />

<br />

⋅ L <br />

p ⋅ f ⋅η<br />

⋅ <br />

2 <br />

<br />

<br />

<br />

1<br />

fg <br />

1 + <br />

<br />

<br />

<br />

fo<br />

<br />

<br />

3,<br />

6R<br />

⋅ 250µ<br />

H ⋅100kHz<br />

⋅ 0,<br />

8 <br />

⋅ <br />

2<br />

<br />

<br />

<br />

<br />

Gain<br />

[db]<br />

50<br />

G<br />

PWR<br />

( ω )<br />

Gr( ω )<br />

G FB<br />

G MOD<br />

0<br />

50<br />

50<br />

0<br />

GVD<br />

Gr(ω)<br />

2<br />

<br />

<br />

+ 0,<br />

6 ⋅ 1<br />

− e<br />

<br />

− 4,<br />

7µ<br />

s<br />

−4,<br />

7µ<br />

s<br />

850ns<br />

200ns<br />

1<br />

3000 <br />

1+<br />

<br />

62,<br />

7<br />

1 10 100 1 10 3<br />

50<br />

1 ω( ) i<br />

2. π<br />

2<br />

<br />

=<br />

1 10 4<br />

0,<br />

073<br />

GFB<br />

GPWR(ω)<br />

1 10 5<br />

110 . 5<br />

V<br />

= 1,<br />

7<br />

A<br />

Page 18 of 28 AN-SMPS-1683X – 1<br />

V1.2


TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

At the crossover frequency (fg) we calculate for the open loop gain:<br />

Gol(ω) = Gs (ω) + Gr (ω) = 0.<br />

With the equations of the transfer characteristics we calculate the gain of the regulation loop @ fg.<br />

The gain of the regulation loop we calculate:<br />

Gs = GFB + GPWR + GVD = 16,4db – 22,7db – 13,6db<br />

Gs = -19,9db<br />

We calculate the separate components of the regulator:<br />

Gs (ω) + Gr (ω) = 0 Gr = 0 – (-19,9db) = 19,9db<br />

( C1+<br />

C2)<br />

)<br />

1+<br />

p ⋅ R5⋅<br />

Fr(<br />

p)<br />

=<br />

R1⋅<br />

R2<br />

p ⋅ ⋅C1⋅<br />

( 1+<br />

p ⋅ R5⋅<br />

C2)<br />

R1+<br />

R2<br />

( R1<br />

+ R2)<br />

R5⋅<br />

Gr = 20⋅<br />

log<br />

R1⋅<br />

R2<br />

1<br />

fp =<br />

2⋅π<br />

⋅ R5⋅<br />

C2<br />

20,<br />

9<br />

R5<br />

= 10<br />

Gr<br />

20<br />

20 R5 10 ⋅3,<br />

72k<br />

= 41,<br />

7k<br />

R1⋅<br />

R2<br />

⋅<br />

R1+<br />

R2<br />

= ≈ 43k<br />

1<br />

C2<br />

=<br />

2⋅π<br />

⋅ R5⋅<br />

2⋅<br />

fg<br />

1<br />

C2 =<br />

= 617 pF<br />

2⋅π<br />

⋅ 43k<br />

⋅6kHz<br />

≈ 680pF<br />

fp = 2*fg<br />

In order to have enough phase margin @ low load condition we select the zero frequency of compensation<br />

network at the middle between min. and max. load pole of power stage.<br />

f<br />

om<br />

oh<br />

fol<br />

0,<br />

5 log<br />

foh<br />

10 ⋅<br />

62,<br />

7<br />

= f ⋅<br />

= 62,<br />

7Hz<br />

⋅10<br />

= 9,<br />

92Hz<br />

1<br />

fz =<br />

2⋅π<br />

⋅ R5⋅<br />

( C1+<br />

C2)<br />

f om<br />

1,<br />

57<br />

0,<br />

5⋅log<br />

1<br />

C1 =<br />

− C2<br />

2⋅π<br />

⋅ R5⋅<br />

fom<br />

1<br />

C1 =<br />

− 680 pF = 384nF<br />

2⋅π<br />

⋅ 43k<br />

⋅9,<br />

92Hz<br />

≈ 390nF<br />

Page 19 of 28 AN-SMPS-1683X – 1<br />

V1.2


Open Loop Gain<br />

Fig. 7<br />

Open Loop Phase<br />

Fig. 8<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

70<br />

Gr( ω )<br />

Gs( ω )<br />

G( ω )<br />

0<br />

10<br />

φr( ω )<br />

φs( ω )<br />

φ( ω )<br />

0<br />

180<br />

60<br />

50<br />

0<br />

50<br />

10<br />

28<br />

66<br />

104<br />

142<br />

1 10 100 1 10 3<br />

1 ω( ) i<br />

2. π<br />

1 10 100 1 10 3<br />

180<br />

1 ω( ) i<br />

2. π<br />

1 10 4<br />

1 10 4<br />

1 10 5<br />

110 . 5<br />

1 10 5<br />

110 . 5<br />

Page 20 of 28 AN-SMPS-1683X – 1<br />

V1.2


Transformer Construction<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

The winding topology has a considerable influence on the performance and relaibility of the<br />

transformer.<br />

To reduce leakage inductance and proximity to acceptable limits, the use of a sandwich construction is<br />

recommended.<br />

In order to meet international safety requirements a transformer for Off - Line power supply must have<br />

adequate insulation between primary and secondary winding.<br />

This can be achived by using a margin wound construction or using triple insulated wire for the<br />

secondary winding.<br />

The creepage distance for universal input voltage range is typically 8mm. This sets a minimum margin<br />

width as a half of the creepage distance to 4mm. Additional the neccesary insulation between primary<br />

and secondary winding is provided using three layers of basic insulation tape.<br />

Example of winding topology for margin wound transformers:<br />

Fig. 9<br />

Example of winding topology with triple insulated wire for secondary winding:<br />

Fig. 10<br />

Triple Insulated<br />

Wire<br />

BW* : value from bobbin datasheet<br />

Creepage<br />

distance<br />

Triple insulation<br />

BW*<br />

BWe<br />

margin margin<br />

BW*<br />

Primary<br />

second half<br />

Secondary<br />

Auxiliary<br />

Primary<br />

first half<br />

Primary<br />

second half<br />

Secondary<br />

Auxiliary<br />

Primary<br />

first half<br />

Page 21 of 28 AN-SMPS-1683X – 1<br />

V1.2


Layout Recommendation:<br />

Fig. 11<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

In order to avoid crosstalk between <strong>Power</strong>- and Signal-Path on the board we have to use care<br />

regarding the track layout when designing the PCB.<br />

The <strong>Power</strong>-Path (see Fig. 11) has to be as short as possible and separated from the VCC-Path and<br />

the Feedback-Path. All GND-Paths have to be connected together at pin 8 (star ground) (1 and 14 at<br />

G-type) of TDA16831...34.<br />

Page 22 of 28 AN-SMPS-1683X – 1<br />

V1.2


Output <strong>Power</strong> Table<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Output <strong>Power</strong> @<br />

VIN = 190 – 270V<br />

Package Heatsink Heatsink Heatsink<br />

No 3 cm² 6 cm²<br />

Output <strong>Power</strong> @<br />

VIN = 85 – 270V<br />

Heatsink Heatsink Heatsink<br />

No 3 cm² 6 cm²<br />

Device<br />

TDA<br />

16831 DIP8 *17W *17W *17W *12W *12W *12W<br />

16832 DIP8 24W 30W 32W 15W 18W 20W<br />

16833 DIP8 **36W 49W 55W 26W 31W 34W<br />

16834 DIP8 **34W 52W 60W 34W 42W 45W<br />

16831G SO14 *17W *17W *17W *12W *12W *12W<br />

16832G SO14 **21W 24W 26W 13W 15W 16W<br />

16833G SO14 **23W 25W 28W 23W 25W 28W<br />

Output <strong>Power</strong> Table Notes:<br />

This output power table was created with the equations of this application note (see „Calculation of<br />

Losses“ on page 13 / 14), it shows the maximum practical continuous power @ Ta = 50 °C and<br />

Tj = 125 °C with the recommended heatsink.<br />

The conduction losses are calculated with the typical RDSON @ Tj = 125°C (see Data Sheet TDA 1683x<br />

page 13). The OFF switching losses are calculated with a typical fall time of tf = 50 ns (see Data Sheet<br />

TDA 1683x page 13), the ON switching losses with the effective capacitance (+ estimated external<br />

capacitances) of the used device (see also Data Sheet TDA 1683x page 13).<br />

*The current limitation regulates the output power (see Data Sheet TDA 1683x page 13)<br />

** The power losses are spitted in switching losses (CoolMOS) and conduction losses. It´s depending<br />

on VDCin witch part on losses having more impact of the power losses (Chart: Select your device).<br />

Chart: Select your Device (Tj @ 125°C, Ta @ 50°C, Vreflection @ 100V )<br />

<strong>Power</strong> Losses [W]<br />

1,60<br />

1,40<br />

1,20<br />

1,00<br />

0,80<br />

0,60<br />

0,40<br />

0,20<br />

<strong>Power</strong> Losses of all Devices @ typical Pout<br />

Small – Range<br />

0,00<br />

90 115 140 165 190 215 240 265 290 315 340 365<br />

Input Voltage - Vdcin [V]<br />

TDA16834@35W TDA16833_G@35W TDA16831_32_G@15W TDA16822@15W<br />

Page 23 of 28 AN-SMPS-1683X – 1<br />

V1.2


TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Summary of used Nomenclature<br />

Parameters<br />

Bmax<br />

Magnetic Inductance<br />

BW Bobbin Width<br />

BWe Effective Bobbin Width<br />

CIN<br />

Capacitance of Bulk Capacitor<br />

CO<br />

Output Capacitance<br />

COSS<br />

Output Capacitance of CoolMOS<br />

CExtern<br />

Output Capacitance of external Components<br />

CSnub<br />

Capacitance of Snubber – Capacitor<br />

CVCC<br />

Capacitance of VCC – Capacitor<br />

D Duty Cycle<br />

Dmax<br />

Maximum Duty Cycle<br />

f Operating Frequency of CoolSET (f = 100kHz)<br />

fAC<br />

fg<br />

fCu<br />

fOH<br />

fOm<br />

fOL<br />

fZCOUT<br />

GC<br />

Line Frequency (Germany FAC = 50Hz)<br />

Crossover Frequency<br />

Copper Space Factor (0,2 ... 0,4)<br />

Frequency Open Loop (High)<br />

Frequency Open Loop (middle)<br />

Frequency Open Loop (Low)<br />

Zero Frequency of output Capacitor<br />

Optocoupler Gain<br />

ICCLmax Maximum quiescent Current of CoolSET (Control IC)<br />

IFBmax<br />

Maximum Feedback Current<br />

IFBmin<br />

Minimum Feedback Current<br />

IFmax<br />

Maximum Current (Optocoupler)<br />

IKAmin<br />

Minimum Current (TL431)<br />

ILoadC<br />

VCC – Capacitor Load – Current<br />

ILPK<br />

Peak Current through the primary Inductance<br />

ILRMS<br />

Root Mean Square Current through the primary Inductance<br />

IPRMS<br />

Root Mean Square Current through the Bridge Rectifier<br />

IPRI<br />

Primary Current @ time t<br />

ISEC<br />

Secondary Current @ time t<br />

ISPK<br />

Peak Current through the secondary Inductance<br />

ISRMS<br />

Root Mean Square Current through the secondary Inductance<br />

LOUT<br />

Inductance output Filter<br />

LP<br />

Primary Inductance<br />

LLK<br />

Leakage Inductance<br />

M Margin (of Transformer)<br />

nCP<br />

Number of Clock Periods<br />

npCOUT<br />

Number of parallel output Capacitors<br />

NP<br />

Number of primary Turns<br />

NS<br />

Number of secondary Turns<br />

NAux<br />

Number of auxiliary Turns<br />

PCu<br />

<strong>Power</strong> losses of Copper Resistor<br />

PD<br />

Conduction losses<br />

PDIN<br />

<strong>Power</strong> losses input Diode<br />

PDDIODE<br />

<strong>Power</strong> losses rectifier Diode (secondary side)<br />

PIN MAX<br />

Maximum Input <strong>Power</strong><br />

POUT max<br />

Maximum Output <strong>Power</strong><br />

POUT min<br />

Minimum Output <strong>Power</strong><br />

PPCu<br />

<strong>Power</strong> losses of Copper Resistor (primary Inductance)<br />

PSCu<br />

<strong>Power</strong> losses of Copper Resistor (secondary Inductance)<br />

PSOFF Switching losses of CoolMOS Transistor (Off – Operation)<br />

PSON Switching losses of CoolMOS Transistor (On – Operation)<br />

Page 24 of 28 AN-SMPS-1683X – 1<br />

V1.2


TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

RCu<br />

Copper Resistor (Transformer)<br />

RDSON Resistance of switching CoolMOS Transistor (On – Operation)<br />

RL<br />

Load - Resistance<br />

RLH<br />

Maximum Load<br />

RLL<br />

Minimum Load (defined by Designer)<br />

RFB Internal Feedback Resistor (CoolSET )<br />

RPCu<br />

Copper Resistor of primary Inductance<br />

RSCu<br />

Copper Resistor of secondary Inductance<br />

RSnub<br />

Snubber Resistor<br />

Start up Resistor<br />

RStart<br />

1 1<br />

T µ<br />

3<br />

f 100*<br />

10 sec<br />

T Time of one Period = =<br />

= 10 s<br />

TD<br />

Discharging Time of Input Capacitor C3<br />

tON On Time (CoolMOS )<br />

tOFF Off Time (CoolMOS )<br />

tr<br />

Rising Time (Voltage)<br />

tStart<br />

Start up Time<br />

VAC min<br />

Minimal AC Input Voltage<br />

VAC max<br />

Maximal AC Input Voltage<br />

VAux<br />

Auxiliary Voltage<br />

V(BR)DSS<br />

Drain Source Breakdown Voltage<br />

VCCH Turn On Threshold for CoolSET @ Vcc - Pin<br />

VDC IN<br />

DC Input Voltage<br />

VDC IN max Maximum DC Input Voltage<br />

VDC IN min Minimum DC Input Voltage<br />

VDC max PK Maximum DC Input Voltage Peak<br />

VDC min PK Minimum DC Input Voltage Peak<br />

VDC min<br />

Minimum DC Input Voltage @ maximum load<br />

VDDIODE<br />

Reverse Voltage rectifier Diode (secondary side)<br />

VFBmax Maximum Feedback Voltage (CoolSET )<br />

VFDIODE<br />

Output Diode Forward Voltage<br />

VFD<br />

Forward Diode Voltage (Optocoupler)<br />

VOUT<br />

Output Voltage (secondary Side)<br />

VOUT Ripple Output Ripple Voltage (secondary Side)<br />

VR<br />

Reflected Voltage (from secondary side to primary side)<br />

VRDiode<br />

Reverse Voltage Diode<br />

VRefint Internal Reference Voltage (CoolSET )<br />

VREF<br />

Reference Voltage TL431<br />

VRipple<br />

DC Ripple Voltage (on primary Side)<br />

VSEC<br />

Voltage on Sekondary Inductor<br />

VSnub<br />

Maximum Voltage overshoot @ snubber<br />

WIN<br />

Discharging Energie Input Capacitor<br />

Transimpedanz<br />

ZPWM<br />

Page 25 of 28 AN-SMPS-1683X – 1<br />

V1.2


References<br />

TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

[1] Keith Billings,<br />

Switch Mode <strong>Power</strong> Supply Handbook<br />

[2] Ralph E. Tarter,<br />

Solid-State <strong>Power</strong> <strong>Conversion</strong> Handbook<br />

[3] R. D. Middlebrook and Slobodan Cuk,<br />

Advances in Switched-Mode <strong>Power</strong> <strong>Conversion</strong><br />

[4] Herfurth Michael,<br />

Ansteuerschaltungen für getaktete Stromversorgungen mit Erstellung eines<br />

linearisierten Signalflußplans zur Dimensionierung der Regelung<br />

[5] Herfurth Michael,<br />

Topologie, Übertragungsverhalten und Dimensionierung häufig eingesetzter<br />

Regelverstärker<br />

[6] Infineon Technologies,<br />

Datasheet TDA16831 ... 34 Off – Line SMPS Controller with 600V CoolMOS<br />

Transistor on Board,<br />

Revision History<br />

Application Note AN-SMPS-1683X-1<br />

Actual Release: V1.2 Date:11.05.2000 Previous Release: V1.1<br />

Page of<br />

actual<br />

Rel.<br />

Page of<br />

prev. Rel.<br />

28 21 Formatting<br />

Subjects changed since last release<br />

Page 26 of 28 AN-SMPS-1683X – 1<br />

V1.2


TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

For questions on technology, delivery and prices please contact the Infineon<br />

Technologies Offices in Germany or the Infineon Technologies Companies and<br />

Representatives worldwide: see the address list on the last page or our webpage at<br />

http://www.infineon.com<br />

CoolMOS and CoolSET are trademarks of Infineon Technologies AG.<br />

Edition 2000--05--11<br />

Published by Infineon Technologies AG,<br />

St.-Martin-Strasse 53,<br />

D-81541 München<br />

© Infineon Technologies AG 2000.<br />

All Rights Reserved.<br />

Attention please!<br />

The information herein is given to describe certain components and shall not be considered as warranted characteristics.<br />

Terms of delivery and rights to technical change reserved.<br />

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts<br />

stated herein.<br />

Infineon Technologies is an approved CECC manufacturer.<br />

Information<br />

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in<br />

Germany or our Infineon Technologies Representatives worldwide (see address list).<br />

Warnings<br />

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your<br />

nearest Infineon Technologies Office.<br />

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon<br />

Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the<br />

safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support<br />

and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be<br />

endangered.<br />

Page 27 of 28 AN-SMPS-1683X – 1<br />

V1.2


TDA1683X for OFF – Line Switch Mode <strong>Power</strong> Supplies<br />

Infineon Technologies AG sales offices worldwide –<br />

partly represented by Siemens AG<br />

A<br />

Siemens AG Österreich<br />

Erdberger Lände 26<br />

A-1031 Wien<br />

T (+43)1-17 07-3 56 11<br />

Fax (+43)1-17 07-5 59 73<br />

AUS<br />

Siemens Ltd.<br />

885 Mountain Highway<br />

Bayswater,Victoria 3153<br />

T (+61)3-97 21 21 11<br />

Fax (+61)3-97 21 72 75<br />

B<br />

Siemens Electronic Components<br />

Benelux<br />

Charleroisesteenweg 116/<br />

Chaussée de Charleroi 116<br />

B-1060 Brussel/Bruxelles<br />

T (+32)2-5 36 69 05<br />

Fax (+32)2-5 36 28 57<br />

Email:components@siemens.nl<br />

BR<br />

Siemens Ltda.<br />

Semiconductores<br />

Avenida Mutinga,3800-Pirituba<br />

05110-901 São Paulo-SP<br />

T (+55)11-39 08 25 64<br />

Fax (+55)11-39 08 27 28<br />

CDN<br />

Infineon Technologies Corporation<br />

320 March Road,Suite 604<br />

Canada,Ontario K2K 2E2<br />

T (+1)6 13-5 91 63 86<br />

Fax (+1)6 13-5 91 63 89<br />

CH<br />

Siemens Schweiz AG<br />

Bauelemente<br />

Freilagerstrasse 40<br />

CH-8047 Zürich<br />

T (+41)1-4 953065<br />

Fax (+41)1-4 955050<br />

D<br />

Infineon Technologies AG<br />

Völklinger Str.2<br />

D-40219 Düsseldorf<br />

T (+49)2 11-3 99 29 30<br />

Fax (+49)2 11-3 99 14 81<br />

Infineon Technologies AG<br />

Werner-von-Siemens-Platz 1<br />

D-30880 Laatzen (Hannover)<br />

T (+49)5 11-8 77 22 22<br />

Fax (+49)5 11-8 77 15 20<br />

Infineon Technologies AG<br />

Von-der-Tann-Straße 30<br />

D-90439 Nürnberg<br />

T (+49)9 11-6 54 76 99<br />

Fax (+49)9 11-6 54 76 24<br />

Infineon Technologies AG<br />

Weissacher Straße 11<br />

D-70499 Stuttgart<br />

T (+49)7 11-1 37 33 14<br />

Fax (+49)7 11-1 37 24 48<br />

D<br />

Infineon Technologies AG<br />

Halbleiter Distribution<br />

Richard-Strauss-Straße 76<br />

D-81679 München<br />

T (+49)89-92 21 40 86<br />

Fax (+49)89-92 21 20 71<br />

DK<br />

Siemens A/S<br />

Borupvang 3<br />

DK-2750 Ballerup<br />

T (+45)44 77-44 77<br />

Fax (+45)44 77-40 17<br />

E<br />

Siemens S.A.<br />

Dpto.Componentes<br />

Ronda de Europa,5<br />

E-28760 Tres Cantos-Madrid<br />

T (+34)91-5 14 71 51<br />

Fax (+34)91-5 14 70 13<br />

F<br />

Infineon Technologies France,<br />

39/47,Bd.Ornano<br />

F-93527 Saint-Denis CEDEX2<br />

T (+33)1-49 22 31 00<br />

Fax (+33)1-49 22 28 01<br />

FIN<br />

Siemens Components<br />

Scandinavia<br />

P.O .Bo x 6 0<br />

FIN-02601 Espoo (Helsinki)<br />

T (+3 58)10-5 11 51 51<br />

Fax (+3 58)10-5 11 24 95<br />

Email:<br />

scs@components.siemens.se<br />

GB<br />

Infineon Technologies<br />

Siemens House<br />

Oldbury<br />

GB-Bracknell,Berkshire<br />

RG12 8FZ<br />

T (+44)13 44-39 66 18<br />

Fax (+44)13 44-39 66 32<br />

H<br />

Simacomp Kft.<br />

Lajos u.103<br />

H-1036 Budapest<br />

T (+36)1-4 57 16 90<br />

Fax (+36)1-4 57 16 92<br />

HK<br />

Infineon Technologies<br />

Hong Kong Ltd.<br />

Suite 302,Level 3,<br />

Festival Walk,<br />

80 Tat Chee Avenue,<br />

Yam Yat Tsuen,<br />

Kowloon Tong<br />

Hong Kong<br />

T (+8 52)28 32 05 00<br />

Fax (+8 52)28 27 97 62<br />

I<br />

Siemens S..A.<br />

Semiconductor Sales<br />

Via Piero e Alberto Pirelli,10<br />

I-20126 Milano<br />

T (+39)02-66 76 -1<br />

Fax (+39)02-66 76 43 95<br />

IND<br />

Siemens Ltd.<br />

Components Division<br />

No.84 Keonics Electronic City<br />

Hosur Road<br />

Bangalore 561 229<br />

T (+91)80-8 52 11 22<br />

Fax (+91)80-8 52 11 80<br />

Siemens Ltd.<br />

CMP Div,5th Floor<br />

4A Ring Road,IP Estate<br />

New Delhi 110 002<br />

T (+91)11-3 31 99 12<br />

Fax (+91)11-3 31 96 04<br />

Siemens Ltd.<br />

CMP Div,4th Floor<br />

130,Pandurang Budhkar Marg,<br />

Worli<br />

Mumbai 400 018<br />

T (+91)22-4 96 21 99<br />

Fax (+91)22-4 96 22 01<br />

IRL<br />

Siemens Ltd.<br />

Electronic Components Division<br />

8,Raglan Road<br />

IRL-Dublin 4<br />

T (+3 53)1-2 16 23 42<br />

Fax (+3 53)1-2 16 23 49<br />

IL<br />

Nisko Ltd.<br />

2A,Habarzel St.<br />

P.O.Box 58151<br />

61580 Tel Aviv –Isreal<br />

T (+9 72)3 -7 65 73 00<br />

Fax (+9 72)3 -7 65 73 33<br />

J<br />

Siemens Components K.K.<br />

Talanawa Park Tower 12F &17F<br />

3-20-14,Higashi-Gotanda,<br />

Shinagawa-ku<br />

Tokyo<br />

T (+81)3-54 49 64 11<br />

Fax (+81)3 -54 49 64 01<br />

MAL<br />

Infineon Technologies AG<br />

Sdn Bhd<br />

Bayan Lepas Free Industrial Zone1<br />

11900 Penang<br />

T (+60)4 -6 44 99 75<br />

Fax (+60)4 -6 41 48 72<br />

N<br />

Siemens Components<br />

Scandinavia<br />

Østre Aker vei 24<br />

Postboks 10,Veitvet<br />

N-0518 Oslo<br />

T (+47)22-63 30 00<br />

Fax (+47)22-68 49 13<br />

Email:<br />

scs@components.siemens.se<br />

NL<br />

Siemens Electronic Components<br />

Benelux<br />

Postbus 16068<br />

NL-2500 BB Den Haag<br />

T (+31)70-3 33 20 65<br />

Fax (+31)70-3 33 28 15<br />

Email:components@siemens.nl<br />

NZ<br />

Siemens Auckland<br />

300 Great South Road<br />

Greenland<br />

Auckland<br />

T (+64)9-5 20 30 33<br />

Fax (+64)9-5 20 15 56<br />

P<br />

Siemens S.A.<br />

an Componentes Electronicos<br />

R.Irmaos Siemens,1<br />

Alfragide<br />

P-2720-093 Amadora<br />

T (+351)1-4 17 85 90<br />

Fax (+351)1-4 17 80 83<br />

PK<br />

Siemens Pakistan Engineering<br />

Co.Ltd.<br />

PO Box 1129,Islamabad 44000<br />

23 West Jinnah Ave<br />

Islamabad<br />

T (+92)51-21 22 00<br />

Fax (+92)51-21 16 10<br />

PL<br />

Siemens SP.z.o.o.<br />

ul.Zupnicza 11<br />

PL-03-821 Warszawa<br />

T (+48)22-8 70 91 50<br />

Fax (+48)22-8 70 91 59<br />

ROK<br />

Siemens Ltd.<br />

Asia Tower,10th Floor<br />

726 Yeoksam-dong,Kang-nam Ku<br />

CPO Box 3001<br />

Seoul 135-080<br />

T (+82)2-5 27 77 00<br />

Fax (+82)2-5 27 77 79<br />

RUS<br />

INTECH electronics<br />

ul.Smolnaya,24/1203<br />

RUS-125 445 Moskva<br />

T (+7)0 95 -4 51 97 37<br />

Fax (+7)0 95 -4 51 86 08<br />

S<br />

Siemens Components Scandinavia<br />

Österögatan 1,Box 46<br />

S-164 93 Kista<br />

T (+46)8-7 03 35 00<br />

Fax (+46)8-7 03 35 01<br />

Email:<br />

scs@components.siemens.se<br />

RC<br />

Infineon Technologies<br />

Asia Pacific Pte.Ltd.<br />

Taiwan Branch<br />

10F,No.136 Nan King East Road<br />

Section 23,Taipei<br />

T (+8 86)2-27 73 66 06<br />

Fax (+8 86)2-27 71 20 76<br />

SGP<br />

Infineon Technologies Asia<br />

Pacific,Pte.Ltd.<br />

168 Kallang Way<br />

Singapore 349 253<br />

T (+65)8 40 06 10<br />

Fax (+65)7 42 62 39<br />

USA<br />

Infineon Technologies Corporation<br />

1730 North First Street<br />

San Jose,CA 95112<br />

T (+1)4 08-5 01 60 00<br />

Fax (+1)4 08-5 01 24 24<br />

Siemens Components,Inc.<br />

Optoelectronics Division<br />

19000 Homestead Road<br />

Cupertino,CA 95014<br />

T (+1)4 08-2 57 79 10<br />

Fax (+1)4 08-7 25 34 39<br />

Siemens Components,Inc.<br />

Special Products Division<br />

186 Wood Avenue South<br />

Iselin,NJ 08830-2770<br />

T (+1)7 32-9 06 43 00<br />

Fax (+1)7 32-6 32 28 30<br />

VRC<br />

Infineon Technologies<br />

Hong Kong Ltd.<br />

Beijing Office<br />

Room 2106,Building A<br />

Vantone New World Plaza<br />

No.2 Fu Cheng Men Wai Da Jie<br />

Jie<br />

100037 Beijing<br />

T (+86)10 -68 57 90 -06,-07<br />

Fax (+86)10 -68 57 90 08<br />

Infineon Technologies<br />

Hong Kong Ltd.<br />

Chengdu Office<br />

Room14J1,Jinyang Mansion<br />

58 Tidu Street<br />

Chengdu,<br />

Sichuan Province 610 016<br />

T (+86)28-6 61 54 46 /79 51<br />

Fax (+86)28 -6 61 01 59<br />

Infineon Technologies<br />

Hong Kong Ltd.<br />

Shanghai Office<br />

Room1101,Lucky Target Square<br />

No.500 Chengdu Road North<br />

Shanghai 200003<br />

T (+86)21-63 6126 18 /19<br />

Fax (+86)21-63 61 11 67<br />

Infineon Technologies<br />

Hong Kong Ltd.<br />

Shenzhen Office<br />

Room 1502,Block A<br />

Tian An International Building<br />

Renim South Road<br />

Shenzhen 518 005<br />

T (+86)7 55 -2 28 91 04<br />

Fax (+86)7 55-2 28 02 17<br />

ZA<br />

Siemens Ltd.<br />

Components Division<br />

P.O.B.3438<br />

Halfway House 1685<br />

T (+27)11-6 52 -27 02<br />

Fax (+27)11-6 52 20 42<br />

Page 28 of 28 AN-SMPS-1683X – 1<br />

V1.2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!