06.10.2013 Views

Signature of phonon drag thermopower in periodically modulated ...

Signature of phonon drag thermopower in periodically modulated ...

Signature of phonon drag thermopower in periodically modulated ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ALAIN NOGARET PHYSICAL REVIEW B 66, 125302 2002<br />

dence <strong>of</strong> the <strong>thermopower</strong> is calculated and results are discussed<br />

<strong>in</strong> the third section.<br />

II. ISOTROPIC ELECTRON PHONON SCATTERING<br />

The temperature gradient is applied along the potential<br />

modulation taken as V(y)V 0 cos(qy) where q2/a. This<br />

was experimentally realised by gat<strong>in</strong>g a 2DEG with 200-nmwide<br />

metal f<strong>in</strong>ger gates with a periodicity a500 nm. The<br />

electron density <strong>in</strong> the 2DEG was 2.410 15 m 2 and the<br />

mobility 930 000 cm 2 V 1 s 1 . The modulation had a piezoelectric<br />

orig<strong>in</strong>, 19 and its amplitude, calculated from the width<br />

<strong>of</strong> the positive magnetoresistance, was found to be V 0<br />

1 mV. The <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong> S yy and the Nernst-<br />

Ett<strong>in</strong>gshausen coefficient S yx are obta<strong>in</strong>ed by measur<strong>in</strong>g the<br />

voltage drop parallel and perpendicular to the temperature<br />

gradient. The electron-<strong>phonon</strong> scatter<strong>in</strong>g rate responsible for<br />

<strong>phonon</strong> <strong>drag</strong> is given by 11<br />

f k<br />

<br />

t<br />

ph<br />

f k 0<br />

k <br />

m*s <br />

<br />

ep v k<br />

“T<br />

, 1<br />

T<br />

where f k 0 /k is the derivative <strong>of</strong> the Fermi-Dirac function,<br />

m*0.067m 0 is the electron effective mass, s is the <strong>phonon</strong><br />

velocity <strong>of</strong> the acoustic mode , is the <strong>phonon</strong> mean<br />

free path, and v k is the velocity <strong>of</strong> an electron <strong>in</strong> state k. At<br />

4 K, the 2DEG is highly degenerate hence f k 0 /k may be<br />

replaced by ( k F) <strong>in</strong> Eq. 1. An electron on the<br />

Fermi surface travell<strong>in</strong>g with velocity v(y) along the direction<br />

u 1(cos ,s<strong>in</strong> ) will be subject to a <strong>phonon</strong> <strong>drag</strong> W 0 ,<br />

W 0 ,y 0<br />

<br />

dkk 2e<br />

4 2<br />

f<br />

t ph<br />

y<br />

2<br />

0S 0<br />

u<br />

D<br />

1•“T,<br />

0<br />

2<br />

where 0n se 2 /m* is the Drude conductivity, D 0<br />

1/2 F 2 and<br />

S 0 <br />

m*s <br />

<br />

e epT<br />

is the isotropic <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong>, F is the<br />

Fermi velocity <strong>of</strong> the un<strong>modulated</strong> 2DEG and e is the<br />

electron charge. The thermoelectric current is j<br />

a 2 0<br />

0(dy/a)0 d f (y,)u1 where f 0 is the charge distribution<br />

function solution <strong>of</strong> Boltzmann equation:<br />

Lf 0 yu 1•“ rycos c <br />

<br />

1 2 d<br />

1<br />

0<br />

2 f 0 y,W 0 y,. 3<br />

ceB/m* is the cyclotron frequency. Equation 3 is<br />

mathematically identical to that govern<strong>in</strong>g the resistivity<br />

problem previously solved by Beenakker; 2 therefore, only<br />

key steps <strong>of</strong> the calculation will need to be recalled here. A<br />

function F 0 (y,) is <strong>in</strong>troduced as<br />

2 f 0 y, y 0<br />

S<br />

D<br />

0u11“T 0<br />

F 0 y, 1S 0 cT xT y, 4<br />

which has to satisfy<br />

LF 0 eEy/ F<br />

where E(y)dV(y)/dy is the periodic electric field. n 0<br />

is the unperturbed conductivity tensor <strong>of</strong> order n (n1,2...)<br />

which has components xx yy n and xy yx<br />

n c n where n 0 /1(n c) 2 . It will also be useful<br />

to <strong>in</strong>troduce the vector u ncos(n),s<strong>in</strong>(n). The current<br />

<strong>in</strong>tegrals are simplified by observ<strong>in</strong>g that the only non<br />

vanish<strong>in</strong>g contributions arise from the terms <strong>in</strong> cos and<br />

s<strong>in</strong> <strong>in</strong> the Fourier expansion <strong>of</strong> F 0 . Insert<strong>in</strong>g this expansion<br />

<strong>in</strong>to Eq. 5 gives the Fourier coefficients <strong>of</strong> cos and s<strong>in</strong> ,<br />

and one obta<strong>in</strong>s<br />

5<br />

a dy 2 d 0 a 0 2 yF0 y,u 1K c,1. 6<br />

The ratio eV 0 / F is small (0.12) and, to first order<br />

<strong>in</strong> , Eq. 5 has an exact solution whose oscillatory dependence<br />

is given by Bessel functions <strong>of</strong> complex order, 20,21<br />

K<br />

125302-2<br />

D 0<br />

1 c 2 0<br />

2<br />

4<br />

ql 2<br />

1 c 2<br />

a dy<br />

a 0<br />

eEy<br />

F<br />

2<br />

0 y,<br />

2 d<br />

F<br />

J i/c qR cJ i/c qR c<br />

s<strong>in</strong>h/ c<br />

/ c J i/ c qR cJ i/c qR c<br />

7<br />

where Rcm* F /eB. Comb<strong>in</strong><strong>in</strong>g Eqs. 4 and 6 one f<strong>in</strong>ds<br />

the thermoelectric current to be: jS01“T, where<br />

1 1 1K c 2 1K c<br />

1K c 1K 8<br />

is the Drude conductivity tensor modified by the oscillatory<br />

contribution from the grat<strong>in</strong>g. The thermoelectric tensor is<br />

identified as L 1S 0 1 and, recall<strong>in</strong>g the condition 1E<br />

L 1“T0, the <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong> follows as S 1<br />

1 1 L1S 01.<br />

This result demonstrates that the periodic modulation has<br />

no effect on the <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong>. The lack <strong>of</strong> oscillatory<br />

dependence suggests that some <strong>in</strong>gredient may be<br />

miss<strong>in</strong>g <strong>in</strong> the <strong>in</strong>itial assumptions. For <strong>in</strong>stance, the formation<br />

<strong>of</strong> Brillou<strong>in</strong> m<strong>in</strong>izones due to the periodicity <strong>of</strong> the superlattice<br />

potential is assumed to have no effect on the scatter<strong>in</strong>g<br />

rate. The fold<strong>in</strong>g <strong>of</strong> energy dispersion curves fractures<br />

the Fermi surface <strong>in</strong>to a complex pattern <strong>of</strong> arcs <strong>of</strong> circle<br />

exhibit<strong>in</strong>g tw<strong>of</strong>old symmetry as shown <strong>in</strong> Fig. 1. Such an<br />

anisotropy will be passed onto the electron-<strong>phonon</strong> <strong>in</strong>teraction<br />

s<strong>in</strong>ce it depends strongly on the density <strong>of</strong> available<br />

states on the Fermi surface. In particular, the scatter<strong>in</strong>g rate<br />

<strong>in</strong>creases dramatically for transitions between opposite edges<br />

<strong>of</strong> the Fermi surface where the density <strong>of</strong> states is divergent<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!