05.10.2013 Views

urokinase and urokinase receptor in the urinary tract

urokinase and urokinase receptor in the urinary tract

urokinase and urokinase receptor in the urinary tract

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UROKINASE AND UROKINASE RECEPTOR IN THE URINARY TRACT OF<br />

THE DOG<br />

A Thesis<br />

Submitted to <strong>the</strong> Graduate Faculty of <strong>the</strong><br />

Louisiana State University <strong>and</strong><br />

Agricultural <strong>and</strong> Mechanical College<br />

<strong>in</strong> partial fulfillment of <strong>the</strong><br />

requirements for <strong>the</strong> degree of<br />

Master of Science<br />

In<br />

The Interdepartmental Program <strong>in</strong><br />

Veter<strong>in</strong>ary Medical Sciences through <strong>the</strong><br />

Department of Veter<strong>in</strong>ary Cl<strong>in</strong>ical Sciences<br />

by<br />

Tr<strong>in</strong>a Racquel Bailey BSc,<br />

Doctor of Veter<strong>in</strong>ary Medic<strong>in</strong>e<br />

Atlantic Veter<strong>in</strong>ary College,<br />

University of Pr<strong>in</strong>ce Edward Isl<strong>and</strong>, 2000<br />

December 2005


To my husb<strong>and</strong> John, who has been <strong>the</strong>re to help me through it all.<br />

To my son Ewan, who makes everyth<strong>in</strong>g worthwhile.<br />

To my family <strong>and</strong> family <strong>in</strong> law for all <strong>the</strong>ir love, help <strong>and</strong> support.<br />

To Dude, Bailey, Sarah, Scamp, Ellie, Abby, <strong>and</strong> all <strong>the</strong> o<strong>the</strong>r wonderful animals<br />

who have been <strong>the</strong>re for me to love <strong>and</strong> have allowed me to learn.<br />

ii


Acknowledgements<br />

I would like to acknowledge Dr Inder Seghal for help<strong>in</strong>g me get started,<br />

work though <strong>the</strong> middle <strong>and</strong> f<strong>in</strong>ish <strong>the</strong> research for my masters program. Thank-<br />

you for all you time, support, <strong>and</strong> expertise. I could not have achieved this<br />

without your help.<br />

Thank-you to Dr Ramanj Lahiri for your will<strong>in</strong>gness to help a struggl<strong>in</strong>g<br />

veter<strong>in</strong>ary researcher. I am very grateful for all his advice, suggestions <strong>and</strong><br />

support.<br />

Thank-you to Dr Daniel Paulsen for his expert <strong>in</strong>terpretation of my<br />

immunohistochemistry slides <strong>and</strong> all <strong>the</strong> hours it took to read <strong>the</strong>m. I appreciate<br />

all of his time <strong>and</strong> help.<br />

Thank-you to Kyle Waite for his help <strong>and</strong> suggestions <strong>in</strong> f<strong>in</strong>ish<strong>in</strong>g <strong>the</strong> last<br />

stages of this project. His Western Blots are <strong>the</strong> best!<br />

Thank-you to Julie Millard for her help <strong>and</strong> expertise <strong>in</strong> creat<strong>in</strong>g <strong>the</strong><br />

beautiful slides for immunohistochemistry.<br />

Thank-you to Tammy Kessler for her help <strong>in</strong> <strong>the</strong> <strong>in</strong>fancy of this project.<br />

She isolated uPA <strong>in</strong> <strong>the</strong> first samples I collected <strong>and</strong> set <strong>the</strong> stage for everyth<strong>in</strong>g<br />

else. She has been a wealth of <strong>in</strong>formation <strong>and</strong> has always been will<strong>in</strong>g to help<br />

someone she has never even met.<br />

Thank-you to Dr Giselle Hosgood, Dr Loretta Bubenik <strong>and</strong> Dr Glenn<br />

Pettifer, <strong>the</strong> members of my masters committee.<br />

Thank-you to <strong>the</strong> Louisiana State University School of Veter<strong>in</strong>ary Medic<strong>in</strong>e<br />

VCS CORP Funds for f<strong>in</strong>ancial support.<br />

iii


Table of Contents<br />

Dedication………………………….…………………………………………………….ii<br />

Acknowledgments………………………………………………………………....……iii<br />

List of Tables..………………………………………………………………………….viii<br />

List of Figures …………………………………………………………………….…….ix<br />

List of Abbreviations……………………………………………………………………xii<br />

Abs<strong>tract</strong>…..……………………………………………………………………………..xiii<br />

Chapter 1 Introduction……………………………………………………….…………1<br />

1.1 Ur<strong>in</strong>ary Tract Surgery <strong>in</strong> Animals………..……………………….………...…1<br />

1.2 Factors Contribut<strong>in</strong>g to Post-Operative Ur<strong>in</strong>ary Tract Hemorrhage……….1<br />

1.3 The Role of <strong>the</strong> Fibr<strong>in</strong>olytic System <strong>in</strong> Ur<strong>in</strong>ary Tract Surgery……………...1<br />

1.4 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Ur<strong>in</strong>ary Tract…………………...1<br />

1.5 Cl<strong>in</strong>ical Significance <strong>in</strong> Dogs…………………………………...…………...…2<br />

1.6 Investigational Objectives…………………………………………...…………3<br />

1.7References……………………………………………………………………….3<br />

Chapter 2 Literature Review…………………………………………………………...5<br />

2.1 Introduction………………………………………………………………….5<br />

2.2 Hemostasis………………………………………….………………………5<br />

2.2.1 Vascular Constriction…………………………………………….5<br />

2.2.2 Platelet Plug Formation………………………………………….5<br />

2.2.3 Blood Coagulation <strong>and</strong> Fibr<strong>in</strong> Plug Formation………………...7<br />

2.2.4 Clot Lysis…………………………………………………………..7<br />

2.3 The Coagulation System…………………………………………..………7<br />

2.3.1 The Extr<strong>in</strong>sic Pathway……………………………………………8<br />

2.3.2 The Intr<strong>in</strong>sic Pathway…………………………………………..10<br />

2.3.3 The Common Pathway…………………………...…………….10<br />

2.4 The Fibr<strong>in</strong>olytic System...............................................................…....11<br />

2.5 Tissue Plasm<strong>in</strong>ogen Activator...................................................…......13<br />

2.6 Urok<strong>in</strong>ase………………………………………………………………......15<br />

2.7 Urok<strong>in</strong>ase Receptor...................................................................…......17<br />

2.8 Plasm<strong>in</strong>ogen <strong>and</strong> Plasm<strong>in</strong>………..………………………………………19<br />

2.9 Endogenous Inhibitors of Fibr<strong>in</strong>olysis……………………..…….………21<br />

2.9.1 Inhibitors of Plasm<strong>in</strong>ogen <strong>and</strong> Plasm<strong>in</strong>………….……………22<br />

2.9.2 Inhibitors of Plasm<strong>in</strong>ogen Activators………………….……....23<br />

2.10 Fibr<strong>in</strong>olysis <strong>and</strong> <strong>the</strong> Dog……………………………………………......24<br />

2.11 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Kidney……………………25<br />

2.12 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Ureter…………………….26<br />

2.13 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Bladder…………..………27<br />

2.14 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Prostate…………….……27<br />

iv


2.15 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Testicle…………….…….29<br />

2.16 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Urethra……………......…29<br />

2.17 Urok<strong>in</strong>ase <strong>and</strong> Ur<strong>in</strong>e……………………………………………….……29<br />

2.18 Cl<strong>in</strong>ical Importance of <strong>the</strong> Fibr<strong>in</strong>olytic System……………….….……30<br />

2.18.1 Coagulopathies <strong>and</strong> Hypercoagulation…………….………..30<br />

2.18.2 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Vascular<br />

System……………………………………………………………...…..32<br />

2.18.3 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> Wound Heal<strong>in</strong>g……33<br />

2.19 Summary………………………………………………………………….33<br />

2.20 References…………………………………………………………….....34<br />

Chapter 3 Hypo<strong>the</strong>sis <strong>and</strong> Objectives……………………………………………….45<br />

3.1 Overall Goals…………………………………………………...………….45<br />

3.2 Hypo<strong>the</strong>sis <strong>and</strong> Specific Objectives……………………………….…....45<br />

3.2.1 Hypo<strong>the</strong>sis………………………………………………….…....45<br />

3.2.2 Specific Objectives………………………………………..…….46<br />

Chapter 4 Sample Selection <strong>and</strong> Preparation…………………….………………..47<br />

4.1 Sample Populations…………………………………………….…………47<br />

4.1.1 Sample Population for Ur<strong>in</strong>e Collection………………..……..47<br />

4.1.2 Sample Population for Ur<strong>in</strong>ary Tract Tissue Collection….….47<br />

4.2 Sampl<strong>in</strong>g Technique………………………………………………………48<br />

4.2.1 Ur<strong>in</strong>e Collection………………………………………………....48<br />

4.2.2 Ur<strong>in</strong>ary Tract Tissue Collection.............................................48<br />

4.3 Sample Preparation……………………………………………………….49<br />

4.3.1 Ur<strong>in</strong>e Preparation………………………………...……………..49<br />

4.3.2 Tissue Preparation for Morphologic Study…………..……….50<br />

4.4 References…………………………………………………………………51<br />

Chapter 5 ELISA <strong>and</strong> Activity Assays for Urok<strong>in</strong>ase <strong>in</strong> Ur<strong>in</strong>e…………………….52<br />

5.1 ELISA Assay Introduction……………………………………………...…52<br />

5.2. ELISA for Urok<strong>in</strong>ase Quantification <strong>in</strong> Ur<strong>in</strong>e………………………......53<br />

5.2.1 Samples……………………………………………………...…..53<br />

5.2.2 Antibodies Purified Enzymes <strong>and</strong> Buffers……......................54<br />

5.2.3 ELISA Technique………………………………………………..55<br />

5.2.4 Problems…………………………………………………….......56<br />

5.3 Activity Assays Introduction………………………………………………57<br />

5.3.1 Chromogenic Assays………………………………………...…57<br />

5.3.2 Fluorogenic Assays……………………………………………..58<br />

5.4 Fluorogenic Activity Assay for Urok<strong>in</strong>ase Quantification <strong>in</strong> Ur<strong>in</strong>e…....58<br />

5.4.1 Samples………………………………………………………….59<br />

5.4.2 Substrates <strong>and</strong> Buffers…………………………...…………….59<br />

5.4.3 Fluorogenic Assay Technique……………………...………....59<br />

5.5 Statistical Analysis…………………………………………………….…..61<br />

5.6 Results……………………………………………………………………...62<br />

5.7 Discussion……………………………………………………………........62<br />

5.8 References………………………………………………………...……....72<br />

v


Chapter 6 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor Identification with SDS-PAGE,<br />

Western Blot <strong>and</strong> Immunoprecipitation…………………………………………..….75<br />

6.1 Introduction…………………………………………………………...……75<br />

6.2 SDS PAGE…………………………………………………………………75<br />

6.3 Western Blot…………………………………………………………...…..77<br />

6.4 SDS PAGE <strong>and</strong> Western Blot for Urok<strong>in</strong>ase…………………..............79<br />

6.4.1 Samples……………………………………………………...…..79<br />

6.4.2 Antibodies, Purified Enzymes <strong>and</strong> Buffers…………….…..…80<br />

6.4.3 SDS PAGE Procedure……………………………………..…..82<br />

6.4.4 Western Blot Procedure………………………………………..82<br />

6.4.5 Problems………………………………………………….…......83<br />

6.5 Immunoprecipitation………………………………………………………84<br />

6.5.1 Samples………………………………………….………………86<br />

6.5.2 Immunoprecipitation Procedure……………………………….86<br />

6.6 Results………………………………………………………………...……87<br />

6.6.1 Urok<strong>in</strong>ase without Immunoprecipitation…………………...….87<br />

6.6.2 Urok<strong>in</strong>ase Receptor without Immunoprecipitation……...…...88<br />

6.6.3 Urok<strong>in</strong>ase with Immunoprecipitation……………………...…..89<br />

6.6.4 Urok<strong>in</strong>ase Receptor with Immunoprecipitation………………91<br />

6.7 Discussion……………………………………………………………........91<br />

6.8 References………………………………………………………...…...….93<br />

Chapter 7 Localization of Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor Us<strong>in</strong>g<br />

Immunohistochemistry…………………………………………………………...……95<br />

7.1 Immunohistochemistry Introduction…………………………………..…95<br />

7.2 Immunohistochemistry for Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor<br />

Detection…………………………………………………………………….….99<br />

7.2.1 Samples……………………………………………………...…..99<br />

7.2.2 Antibodies…………………………………………………….….99<br />

7.2.3 Immunohistochemistry Technique for Urok<strong>in</strong>ase<br />

Detection………………………………………………………………100<br />

7.2.4 Immunohistochemistry Technique for Urok<strong>in</strong>ase Receptor<br />

Detection…………………………………………………………..….101<br />

7.3 Problems………………………………………………………………….101<br />

7.4 Results………………………………………………………………….…102<br />

7.4.1 Urok<strong>in</strong>ase <strong>and</strong> Kidney………………………………………...103<br />

7.4.2 Urok<strong>in</strong>ase Receptor <strong>and</strong> Kidney………………………….….104<br />

7.4.3 Urok<strong>in</strong>ase <strong>and</strong> Ureter………………………………………….105<br />

7.4.4 Urok<strong>in</strong>ase Receptor <strong>and</strong> Ureter………………………..…….105<br />

7.4.5 Urok<strong>in</strong>ase <strong>and</strong> Ur<strong>in</strong>ary Bladder………………………………107<br />

7.4.6 Urok<strong>in</strong>ase Receptor <strong>and</strong> Ur<strong>in</strong>ary Bladder………………..…107<br />

7.4.7 Urok<strong>in</strong>ase <strong>and</strong> Prostate……………………………………….107<br />

7.4.8 Urok<strong>in</strong>ase Receptor <strong>and</strong> Prostate……………………..…….110<br />

7.4.9 Urok<strong>in</strong>ase <strong>and</strong> Testicle……………………………………..…111<br />

7.4.10 Urok<strong>in</strong>ase Receptor <strong>and</strong> Testicle…………………………..111<br />

7.4.11 Urok<strong>in</strong>ase <strong>and</strong> Urethra…………………………………..…..111<br />

vi


7.4.12 Urok<strong>in</strong>ase Receptor <strong>and</strong> Urethra…………………...………113<br />

7.5 Discussion…………………………………………………………..……115<br />

7.6 References…………………………………………………………….....121<br />

Chapter 8 Conclusions…………………….…………………………………...……124<br />

Appendix: Raw Data…………………………………………………………………126<br />

Vita…………………………………………………………………………………….142<br />

vii


List of Tables<br />

Table 2.1 Coagulation Factors…………………………………………………………8<br />

Table 2.2 Components of <strong>the</strong> Fibr<strong>in</strong>olytic System…………………………….……12<br />

Table 2.3 Pathophysiologic factors that regulate fibr<strong>in</strong>olysis /<br />

thrombolysis……………………………………………………………….…...………31<br />

Table 5.1 St<strong>and</strong>ard deviation, coefficients of variation, median <strong>and</strong> quartiles for<br />

volume <strong>and</strong> creat<strong>in</strong><strong>in</strong>e corrected ELISA results …………………………………...63<br />

Table 5.2 St<strong>and</strong>ard deviation, coefficients of variation, median <strong>and</strong> quartiles for<br />

volume corrected ELISA results………………………….………………………..…64<br />

Table 5.3 St<strong>and</strong>ard deviation, coefficients of variation, median <strong>and</strong> quartiles for<br />

volume corrected fluorescent assay results…………….…………………..………65<br />

Table 5.4 St<strong>and</strong>ard deviation, coefficients of variation, median <strong>and</strong> quartiles for<br />

volume <strong>and</strong> creat<strong>in</strong><strong>in</strong>e corrected fluorescent assay<br />

results…………………………………………………………………….…................65<br />

viii


List of Figures<br />

Figure 2.1 Coagulation Pathway………………………………………………………9<br />

Figure 2.2 Fibr<strong>in</strong>olytic Cascade…………………………………………..................14<br />

Figure 2.3 Urok<strong>in</strong>ase <strong>and</strong> its cleavage products……………………….................16<br />

Figure 2.4 Schematic representation of <strong>the</strong> relationship between uPA <strong>and</strong><br />

uPAR………………………………………………………………………………........18<br />

Figure 2.5 Plasm<strong>in</strong>ogen <strong>and</strong> Plasm<strong>in</strong>…………………………………..………...…21<br />

Figure 5.1 Direct s<strong>and</strong>wich ELISA for can<strong>in</strong>e uPA………………………….……..56<br />

Figure 5.2 Schematic representation of fluorescence assay for uPA us<strong>in</strong>g<br />

Urok<strong>in</strong>ase Substrate III…………………………………………………….………….60<br />

Figure 5.3 ELISA assay of can<strong>in</strong>e ur<strong>in</strong>e versus dog groups, ng <strong>urok<strong>in</strong>ase</strong> / mg<br />

creat<strong>in</strong><strong>in</strong>e / µl ur<strong>in</strong>e…………………………………………………..………….……..63<br />

Figure 5.4 ELISA assay of can<strong>in</strong>e ur<strong>in</strong>e versus dog groups, ng <strong>urok<strong>in</strong>ase</strong> / µl<br />

ur<strong>in</strong>e……………………………………………………………………………………..63<br />

Figure 5.5 Correlation between creat<strong>in</strong><strong>in</strong>e levels <strong>and</strong> uPA concentrations <strong>in</strong><br />

female spayed dogs……………………………………………………………...……64<br />

Figure 5.6 Fluorescence activity assays of can<strong>in</strong>e ur<strong>in</strong>e versus dog groups, ng<br />

<strong>urok<strong>in</strong>ase</strong> / mg creat<strong>in</strong><strong>in</strong>e / µl ur<strong>in</strong>e…………………………………………………..64<br />

Figure 5.7 Fluorescence activity assays of can<strong>in</strong>e ur<strong>in</strong>e versus dog groups, ng<br />

<strong>urok<strong>in</strong>ase</strong> / µl ur<strong>in</strong>e………………………………………………………………...…..65<br />

Figure 6.1 SDS-PAGE gels, cont<strong>in</strong>uous <strong>and</strong> discont<strong>in</strong>uous<br />

arrangements……………………………………………………………..…...……….77<br />

Figure 6.2 Transfer of prote<strong>in</strong>s from SDS-PAGE gel to polyv<strong>in</strong>ylidene<br />

membrane…………………………………………………………………..…...……..78<br />

Figure 6.3 Western Blott<strong>in</strong>g procedure for uPA <strong>and</strong> uPAR <strong>in</strong> can<strong>in</strong>e ur<strong>in</strong>e <strong>and</strong><br />

tissues ………………………………………………………………….......................79<br />

Figure 6.4 Immunoprecipitation of uPA <strong>and</strong> uPAR us<strong>in</strong>g Prote<strong>in</strong> G/A Sepharose<br />

beads……………………………………………………………………………………85<br />

Figure 6.5 Western Blot show<strong>in</strong>g uPA b<strong>and</strong>s at 53 kDa molecular<br />

weight…………………………………………………………………………….……..88<br />

ix


Figure 6.6 Western Blot show<strong>in</strong>g <strong>urok<strong>in</strong>ase</strong> b<strong>and</strong>s at approximately 50 <strong>and</strong> 30<br />

kDa molecular weight …………………………………………...……………………88<br />

Figure 6.7 Western Blot show<strong>in</strong>g uPAR prote<strong>in</strong> b<strong>and</strong>s at 55 kDa <strong>and</strong> 35 kDa<br />

molecular weight……………………………………………………………………….89<br />

Figure 6.8 Western Blot show<strong>in</strong>g immunoprecipitated uPA prote<strong>in</strong> b<strong>and</strong>s at 50<br />

kDa <strong>and</strong> 30 kDa molecular weight………………………………………………...…90<br />

Figure 6.9 Western Blot show<strong>in</strong>g immunoprecipitated uPA prote<strong>in</strong> b<strong>and</strong>s at 50<br />

kDa <strong>and</strong> 35 kDa us<strong>in</strong>g rabbit anti-human uPA antibody………...........................90<br />

Figure 6.10 Western Blot show<strong>in</strong>g immunoprecipitated uPAR b<strong>and</strong>s at 60 kDa<br />

molecular weight……………………………………………………………….………91<br />

Figure 7.1 Schematic of <strong>the</strong> two step EnVision system for uPA detection <strong>in</strong><br />

can<strong>in</strong>e tissues………………………………………………………………..............100<br />

Figure 7.2 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> kidney……………...…103<br />

Figure 7.3 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> renal pelvis................104<br />

Figure 7.4 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR with<strong>in</strong> kidney……..............105<br />

Figure 7.5 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> ureter………..............106<br />

Figure 7.6 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR with<strong>in</strong> ureter……………….106<br />

Figure 7.7 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> ur<strong>in</strong>ary<br />

bladder……………………………………………………………………..…...……..108<br />

Figure 7.8 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR with<strong>in</strong> ur<strong>in</strong>ary<br />

bladder……………………………………………………………………..……...…..108<br />

Figure 7.9 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> prostate…………...….109<br />

Figure 7.10 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR with<strong>in</strong> prostate………...…111<br />

Figure 7.11 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> testicle…………..….112<br />

Figure 7.12 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR with<strong>in</strong> testicle…………….112<br />

Figure 7.13 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> prostatic<br />

urethra…………………………………………………………………………….…...113<br />

Figure 7.14 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> urethra………………114<br />

x


Figure 7.15 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR with<strong>in</strong> prostatic<br />

urethra……………………………………………………………………..………..…114<br />

Figure 7.16 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR with<strong>in</strong> urethra…………….115<br />

xi


List of Abbreviations<br />

uPA Urok<strong>in</strong>ase<br />

uPAR Urok<strong>in</strong>ase Receptor<br />

ATP Adenos<strong>in</strong>e triphosphate<br />

ADP Adenos<strong>in</strong>e diphosphate<br />

TF Tissue Factor<br />

PAI-1 Plasm<strong>in</strong>ogen Activator Inhibitor- 1<br />

PAI-2 Plasm<strong>in</strong>ogen Activator Inhibitor- 2<br />

PAI Plasm<strong>in</strong>ogen Activator Inhibitor<br />

PA Plasm<strong>in</strong>ogen Activator<br />

LDL Low Density Lipoprote<strong>in</strong><br />

α2-AP Alpha 2 antiplasm<strong>in</strong><br />

α2-MG Alpha 2 macroglobul<strong>in</strong><br />

kDa Kilodaltons<br />

TAFI Thromb<strong>in</strong> activated fibr<strong>in</strong>olysis <strong>in</strong>hibitor<br />

TNF Tumor necrosis factor<br />

IL-1 Interleuk<strong>in</strong> -1<br />

tPA Tissue Plasm<strong>in</strong>ogen Activator<br />

DAG Diacylglycerol<br />

xii


Abs<strong>tract</strong><br />

Urok<strong>in</strong>ase (uPA) <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> (uPAR) are present <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary<br />

<strong>tract</strong> of people, mice, rats <strong>and</strong> cows. The presence of <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong> <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of dogs has not been documented. Document<strong>in</strong>g <strong>the</strong><br />

presence of uPA <strong>and</strong> uPAR <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of healthy dogs will help<br />

determ<strong>in</strong>e <strong>the</strong> role <strong>the</strong>se prote<strong>in</strong>s play <strong>in</strong> pathology of <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> <strong>in</strong> fur<strong>the</strong>r<br />

research.<br />

Ur<strong>in</strong>e was collected from fifty-four healthy dogs. A fluorescence assay was<br />

developed us<strong>in</strong>g <strong>the</strong> fluorogenic substrate Z-Gly-Gly-Arg-AMC, HCl. This assay<br />

documented presence of active uPA-like prote<strong>in</strong> <strong>in</strong> concentrated ur<strong>in</strong>e. A direct<br />

s<strong>and</strong>wich ELISA assay was developed us<strong>in</strong>g a mouse anti-mouse primary<br />

antibody <strong>and</strong> a biot<strong>in</strong> labeled rabbit anti-human secondary antibody. This ELISA<br />

documented presence of active <strong>and</strong> <strong>in</strong>active uPA-like prote<strong>in</strong> <strong>and</strong> measured<br />

concentration of uPA-like prote<strong>in</strong> <strong>in</strong> concentrated ur<strong>in</strong>e.<br />

Tissues from <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of eleven normal dogs; four <strong>in</strong>tact females,<br />

five <strong>in</strong>tact males <strong>and</strong> two castrated males; were collected from kidney, ureter,<br />

ur<strong>in</strong>ary bladder, urethra, prostate <strong>and</strong> testicle. SDS-PAGE/Western blot analysis<br />

us<strong>in</strong>g mouse anti-mouse, mouse anti-human <strong>and</strong> rabbit anti-human uPA<br />

antibodies <strong>and</strong> a mouse anti-human uPAR antibody were used to identify uPA-<br />

like <strong>and</strong> uPAR-like prote<strong>in</strong> on <strong>the</strong> basis of molecular weight <strong>and</strong> antigen-antibody<br />

reactions.<br />

Immunoprecipitation was employed to enhance identification uPA-like <strong>and</strong><br />

uPAR-like prote<strong>in</strong> us<strong>in</strong>g mouse anti-mouse, mouse anti-human <strong>and</strong> rabbit anti-<br />

human uPA antibodies <strong>and</strong> a mouse anti-human uPAR antibody.<br />

xiii


Immunohistochemistry was utilized to identify sta<strong>in</strong><strong>in</strong>g <strong>in</strong> specific cell types with<strong>in</strong><br />

<strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong>. The uPA antibodies used were directed aga<strong>in</strong>st human <strong>and</strong><br />

mouse <strong>urok<strong>in</strong>ase</strong>. The uPAR antibody used was directed aga<strong>in</strong>st human<br />

<strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>.<br />

A <strong>urok<strong>in</strong>ase</strong>-like prote<strong>in</strong> is present <strong>in</strong> ur<strong>in</strong>e from healthy dogs <strong>in</strong> small but<br />

measurable quantities. Urok<strong>in</strong>ase-like <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>-like prote<strong>in</strong> are<br />

present <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of <strong>the</strong> healthy dog. This distribution is similar to that<br />

identified <strong>in</strong> people. The role of <strong>urok<strong>in</strong>ase</strong>-like <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>-like prote<strong>in</strong><br />

<strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of <strong>the</strong> normal dog is yet to be def<strong>in</strong>ed.<br />

xiv


Chapter 1 Introduction<br />

1.1 Ur<strong>in</strong>ary Tract Surgery <strong>in</strong> Animals<br />

Ur<strong>in</strong>ary <strong>tract</strong> surgery is performed <strong>in</strong> dogs to relieve ur<strong>in</strong>ary <strong>tract</strong><br />

obstruction due to neoplasia or urolithiasis, to correct congenital abnormalities or<br />

to obta<strong>in</strong> biopsies. Surgical procedures <strong>in</strong>clude cystotomy, cystostomy, partial<br />

cystectomy, nephrectomy, nephrotomy, ureteral implantation, urethrostomy <strong>and</strong><br />

urethrotomy. Post-operative hemorrhage is a potential complication of ur<strong>in</strong>ary<br />

<strong>tract</strong> surgery, particularly follow<strong>in</strong>g renal or lower ur<strong>in</strong>ary <strong>tract</strong> diversion surgery.<br />

In some cases, post-operative hemorrhage may necessitate blood transfusion<br />

1, 2<br />

<strong>and</strong> lead to extended hospitalization.<br />

1.2 Factors Contribut<strong>in</strong>g to Post-Operative Ur<strong>in</strong>ary Tract Hemorrhage<br />

Factors contribut<strong>in</strong>g to post-operative hemorrhage <strong>in</strong>clude: <strong>the</strong> vascularity<br />

of penile tissue, cont<strong>in</strong>ued mechanical disruption of blood clots due to ur<strong>in</strong>e flow<br />

past <strong>the</strong> surgical site, <strong>and</strong> failure to achieve an adequate fibr<strong>in</strong> seal when <strong>the</strong><br />

urethrostomy is left to heal by second <strong>in</strong>tention heal<strong>in</strong>g of urethrotomy closes<br />

2, 3<br />

<strong>and</strong> <strong>the</strong> selected suture pattern for urethrostomy closures.<br />

1.3 The Role of <strong>the</strong> Fibr<strong>in</strong>olytic System after Ur<strong>in</strong>ary Tract Surgery<br />

The role of <strong>the</strong> fibr<strong>in</strong>olytic system <strong>in</strong> dogs after ur<strong>in</strong>ary <strong>tract</strong> surgery has<br />

not been established. Some have alluded to <strong>the</strong> role of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> excessive<br />

post-operative hemorrhage after urethral surgery. 2<br />

1.4 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Ur<strong>in</strong>ary Tract<br />

Urok<strong>in</strong>ase or <strong>urok<strong>in</strong>ase</strong> plasm<strong>in</strong>ogen activator (uPA) <strong>and</strong> <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong> or <strong>urok<strong>in</strong>ase</strong> plasm<strong>in</strong>ogen activator <strong>receptor</strong> (uPAR) are present <strong>in</strong> <strong>the</strong><br />

tissues of <strong>the</strong> mammalian ur<strong>in</strong>ary <strong>tract</strong>. 4-6 The function of uPA <strong>and</strong> uPAR <strong>in</strong> <strong>the</strong><br />

1


ur<strong>in</strong>ary <strong>tract</strong> is not completely understood but <strong>the</strong>y are important <strong>in</strong> development<br />

of <strong>the</strong> tubular anatomy of <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> <strong>and</strong> <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g patency with<strong>in</strong> <strong>the</strong><br />

develop<strong>in</strong>g <strong>and</strong> mature ur<strong>in</strong>ary <strong>tract</strong>. 7<br />

The proteolytic activity of human ur<strong>in</strong>e <strong>and</strong> its ability to dissolve fibr<strong>in</strong> clots<br />

has been known for decades <strong>and</strong> was discovered to be due to <strong>the</strong> presence of a<br />

plasm<strong>in</strong>ogen activator, later named <strong>urok<strong>in</strong>ase</strong>. 5, 8, 9 Urok<strong>in</strong>ase is known to be<br />

<strong>in</strong>creased <strong>in</strong> <strong>in</strong>flammatory <strong>and</strong> o<strong>the</strong>r pathological conditions of <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> <strong>in</strong><br />

people. 7, 10, 11 Quantification of uPA <strong>in</strong> can<strong>in</strong>e ur<strong>in</strong>e <strong>and</strong> identification of <strong>urok<strong>in</strong>ase</strong><br />

<strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> tissues of <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> may help <strong>in</strong> determ<strong>in</strong><strong>in</strong>g if<br />

<strong>the</strong>y have a role <strong>in</strong> fibr<strong>in</strong>olysis which may contribute to post operative<br />

11, 12<br />

hemorrhage follow<strong>in</strong>g ur<strong>in</strong>ary <strong>tract</strong> surgery <strong>in</strong> dogs.<br />

1.5 Cl<strong>in</strong>ical Significance <strong>in</strong> Dogs<br />

Post-operative hemorrhage <strong>in</strong> dogs undergo<strong>in</strong>g ur<strong>in</strong>ary <strong>tract</strong> surgery can<br />

be substantial. Whe<strong>the</strong>r uPA has a substantial role <strong>in</strong> prolonged bleed<strong>in</strong>g after<br />

ur<strong>in</strong>ary <strong>tract</strong> surgery <strong>in</strong> dogs is unknown. If <strong>urok<strong>in</strong>ase</strong> does play a significant role,<br />

use of drugs such as ε-am<strong>in</strong>ocaproic acid that competitively <strong>in</strong>hibit plasm<strong>in</strong>ogen<br />

activator substances may be useful. ε-am<strong>in</strong>ocaproic acid has been successfully<br />

used <strong>in</strong> people to <strong>in</strong>hibit uPA <strong>and</strong> decrease bleed<strong>in</strong>g dur<strong>in</strong>g renal amyliodosis<br />

<strong>and</strong> menstruation. 13, 14 Anecdotal reports of ε-am<strong>in</strong>ocaproic acid successfully<br />

halt<strong>in</strong>g hemorrhage with<strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> are exist <strong>in</strong> veter<strong>in</strong>ary medic<strong>in</strong>e,<br />

however, no controlled studies have been performed. 15 Dosages of ε-<br />

am<strong>in</strong>ocaproic acid have not been established for dogs. 15<br />

The function of uPA with<strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of dogs is not known but might<br />

be important <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g patency of <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> <strong>in</strong> <strong>the</strong> face of hemorrhage<br />

2


<strong>and</strong> <strong>in</strong> <strong>the</strong> embryologic development of <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong>, which is a complex<br />

system of hollow tubes. Identify<strong>in</strong>g <strong>and</strong> quantify<strong>in</strong>g uPA <strong>and</strong> uPAR <strong>in</strong> <strong>the</strong> normal<br />

can<strong>in</strong>e ur<strong>in</strong>ary <strong>tract</strong> is an <strong>in</strong>itial step <strong>in</strong> evaluat<strong>in</strong>g a possible role of uPA <strong>in</strong> <strong>the</strong><br />

fibr<strong>in</strong>olytic system of <strong>the</strong> normal can<strong>in</strong>e ur<strong>in</strong>ary <strong>tract</strong>. A description of <strong>the</strong><br />

distribution of uPA <strong>and</strong> uPAR <strong>in</strong> ur<strong>in</strong>ary <strong>tract</strong> of normal dogs is <strong>the</strong> first step <strong>in</strong> <strong>the</strong><br />

identification of disease related changes <strong>in</strong> <strong>the</strong> distribution of uPA <strong>and</strong> uPAR.<br />

1.6 Investigational Objectives<br />

The objectives <strong>in</strong> this <strong>in</strong>vestigation were:<br />

1. To identify <strong>and</strong> quantitate <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e of healthy dogs.<br />

2. To identify <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of<br />

healthy dogs.<br />

3. To validate <strong>the</strong> use of antibodies directed aga<strong>in</strong>st human uPA <strong>and</strong><br />

1.7 References<br />

uPAR <strong>and</strong> mouse uPA for identification of uPA <strong>and</strong> uPAR <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary<br />

<strong>tract</strong> of healthy dogs.<br />

1. Boo<strong>the</strong> HW. Manag<strong>in</strong>g traumatic urethral <strong>in</strong>juries. Cl<strong>in</strong> Tech Small Anim<br />

Pract. Feb 2000;15(1):35-39.<br />

2. Smeak DD. Urethrotomy <strong>and</strong> urethrostomy <strong>in</strong> <strong>the</strong> dog. Cl<strong>in</strong> Tech Small<br />

Anim Pract. Feb 2000;15(1):25-34.<br />

3. Newton JD, Smeak DD. Simple cont<strong>in</strong>uous closure of can<strong>in</strong>e scrotal<br />

urethrostomy: results <strong>in</strong> 20 cases. J Am Anim Hosp Assoc. Nov-Dec<br />

1996;32(6):531-534.<br />

4. Di Cera E, Krem M.M. Ser<strong>in</strong>e Proteases. Vol 2. 1 ed. London: Macmillan<br />

Publishers Limited, Nature Publish<strong>in</strong>g Group; 2003.<br />

5. Sapp<strong>in</strong>o AP, Huarte J, Vassalli JD, Bel<strong>in</strong> D. Sites of syn<strong>the</strong>sis of <strong>urok<strong>in</strong>ase</strong><br />

<strong>and</strong> tissue-type plasm<strong>in</strong>ogen activators <strong>in</strong> <strong>the</strong> mur<strong>in</strong>e kidney. J Cl<strong>in</strong> Invest.<br />

Mar 1991;87(3):962-970.<br />

3


6. Zhang G, Heunhsoo, K., et. al. Urok<strong>in</strong>ase <strong>receptor</strong> deficiency accelerates<br />

renal fibrosis <strong>in</strong> obstructive nephropathy. J Am Soc Nephrol.<br />

2003;14:1254-1271.<br />

7. Colucci M, Semeraro N, Montemurro P, et al. Ur<strong>in</strong>ary procoagulant <strong>and</strong><br />

fibr<strong>in</strong>olytic activity <strong>in</strong> human glomerulonephritis. Relationship with renal<br />

function. Kidney Int. Jun 1991;39(6):1213-1217.<br />

8. McFarlane RG, Pill<strong>in</strong>g J. Fibr<strong>in</strong>olytic activity of normal ur<strong>in</strong>e. Nature(Lond).<br />

1947;159:779.<br />

9. Williams RJ. The fibr<strong>in</strong>olytic activity of ur<strong>in</strong>e. Br J Exp Pathol.<br />

1951;32:530-537.<br />

10. Casella R, Shariat SF, Monoski MA, Lerner SP. Ur<strong>in</strong>ary levels of<br />

<strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator <strong>and</strong> its <strong>receptor</strong> <strong>in</strong> <strong>the</strong> detection of<br />

bladder carc<strong>in</strong>oma. Cancer. Dec 15 2002;95(12):2494-2499.<br />

11. Florqu<strong>in</strong> S, van den Berg JG, Olszyna DP, et al. Release of <strong>urok<strong>in</strong>ase</strong><br />

plasm<strong>in</strong>ogen activator <strong>receptor</strong> dur<strong>in</strong>g urosepsis <strong>and</strong> endotoxemia. Kidney<br />

Int. Jun 2001;59(6):2054-2061.<br />

12. Deng FM, D<strong>in</strong>g M, Lavker RM, Sun TT. Uro<strong>the</strong>lial function reconsidered: a<br />

new role <strong>in</strong> ur<strong>in</strong>ary prote<strong>in</strong> secretion. Urology. Jun 2001;57(6 Suppl<br />

1):117.<br />

13. Rep<strong>in</strong>e T, Osswald M. Mennorrhea due to a qualitative deficiency of<br />

plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-1: case report <strong>and</strong> literature review. Cl<strong>in</strong><br />

Appl Thromb Hemost. 1994;10(3):293-296.<br />

14. Sane DC, Pizzo SV, Greenberg CS. Elevated <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen<br />

activator level <strong>and</strong> bleed<strong>in</strong>g <strong>in</strong> amyliodosis: case report <strong>and</strong> literature<br />

review. American Journal of Hematology. 1989;31:53-57.<br />

15. Senior DF. Anecdotal reports of epsilon am<strong>in</strong>ocaproic acid decreas<strong>in</strong>g<br />

hemorrhage <strong>in</strong> dogs orig<strong>in</strong>at<strong>in</strong>g form urethral <strong>and</strong> penile tissue. Louisiana<br />

State University, School of Veter<strong>in</strong>ary Medic<strong>in</strong>e, Baton Rouge, Louisiana;<br />

2004.<br />

4


Chapter 2 Literature Review<br />

2.1 Introduction<br />

The focus of this <strong>the</strong>sis is on <strong>the</strong> distribution of <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong> <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of <strong>the</strong> normal dog. These prote<strong>in</strong>s play an important<br />

role <strong>in</strong> <strong>the</strong> activation of <strong>the</strong> fibr<strong>in</strong>olytic system <strong>in</strong> <strong>the</strong> body, a system that is<br />

<strong>in</strong>tegrally <strong>in</strong>volved <strong>in</strong> hemostasis.<br />

2.2 Hemostasis<br />

Hemostasis refers to <strong>the</strong> prevention of blood loss through a vessel when<br />

vascular <strong>in</strong>tegrity is lost. Hemostasis is achieved as <strong>the</strong> result of several <strong>in</strong>tegral<br />

mechanisms. These mechanisms <strong>in</strong>clude vascular spasm, formation of a platelet<br />

plug, formation of a blood clot as a result of blood coagulation, <strong>and</strong> formation of a<br />

permanent seal through a fibr<strong>in</strong> plug. 1 The f<strong>in</strong>al step <strong>in</strong> those vessels which are<br />

able to restore patency is clot lysis. 2<br />

2.2.1 Vascular Constriction<br />

Follow<strong>in</strong>g trauma to a blood vessel, <strong>the</strong> autonomic nervous system,<br />

myogenic spasm <strong>and</strong> humoral factors released from traumatized endo<strong>the</strong>lium<br />

comb<strong>in</strong>e toge<strong>the</strong>r to reduce <strong>the</strong> flow of blood from <strong>the</strong> vessel. The majority of <strong>the</strong><br />

vasoconstriction is attributed to myogenic con<strong>tract</strong>ion. In very small vessels<br />

1, 2<br />

platelet derived thromboxane A2 is responsible for most of <strong>the</strong> constriction.<br />

Endo<strong>the</strong>l<strong>in</strong> <strong>and</strong> bradyk<strong>in</strong><strong>in</strong> also contributes to vascular constriction. 2<br />

2.2.2 Platelet Plug Formation<br />

Small holes with<strong>in</strong> blood vessels are sealed with a platelet plug as<br />

opposed to a blood clot. Platelets have many functional characteristics that allow<br />

5


<strong>the</strong>m to contribute to hemostasis. Act<strong>in</strong>, myos<strong>in</strong> <strong>and</strong> thrombos<strong>the</strong>n<strong>in</strong> allow<br />

platelets to con<strong>tract</strong> <strong>and</strong> exp<strong>and</strong>. Remnants of endoplasmic reticulum <strong>and</strong> Golgi<br />

apparatus mediate syn<strong>the</strong>sis of enzymes <strong>and</strong> storage of calcium for con<strong>tract</strong>ion<br />

<strong>and</strong> expansion. Platelets are capable of produc<strong>in</strong>g adenos<strong>in</strong>e triphosphate (ATP)<br />

<strong>and</strong> adenos<strong>in</strong>e diphosphate (ADP) with<strong>in</strong> mitochondria for energy for platelet<br />

activity. Prostagl<strong>and</strong><strong>in</strong>s are syn<strong>the</strong>sized with<strong>in</strong> platelets. These prostagl<strong>and</strong><strong>in</strong>s<br />

contribute to local vascular <strong>and</strong> tissue reactions like <strong>in</strong>flammation. Platelets<br />

conta<strong>in</strong> fibr<strong>in</strong>-stabiliz<strong>in</strong>g factor which is important <strong>in</strong> creat<strong>in</strong>g bonds <strong>and</strong> cross-<br />

l<strong>in</strong>kages between fibr<strong>in</strong> molecules <strong>and</strong> fibers. Platelets also secrete growth factor<br />

that causes vascular endo<strong>the</strong>lial, smooth muscle <strong>and</strong> fibroblasts to multiply <strong>and</strong><br />

grow, allow<strong>in</strong>g vascular repair. Platelet surfaces conta<strong>in</strong> glycoprote<strong>in</strong>s that<br />

promote adhesion to <strong>in</strong>jured endo<strong>the</strong>lial cells <strong>and</strong> exposed vessel wall. Platelet<br />

membranes also conta<strong>in</strong>s phospholipids that participate throughout <strong>the</strong> clott<strong>in</strong>g<br />

process 1<br />

In <strong>the</strong> presence of vascular <strong>in</strong>jury platelets undergo three reactions: 1.<br />

Adhesion <strong>and</strong> shape change, 2. secretion, <strong>and</strong> 3. aggregation. Reactions occur<br />

simultaneously. Follow<strong>in</strong>g adhesion, con<strong>tract</strong>ile prote<strong>in</strong>s cause release of<br />

granules from <strong>the</strong> platelets that adhere to collagen <strong>in</strong> <strong>the</strong> vessel wall <strong>and</strong> von<br />

Willebr<strong>and</strong> factor <strong>in</strong> <strong>the</strong> plasma. Platelets secrete adenos<strong>in</strong>e phosphate (ADP)<br />

<strong>and</strong> thromboxane A2 which activate <strong>and</strong> recruit more platelets to <strong>the</strong> form<strong>in</strong>g<br />

plug. 1, 2 Prostagl<strong>and</strong><strong>in</strong> I2 is secreted by surround<strong>in</strong>g <strong>in</strong>tact vascular endo<strong>the</strong>lium<br />

<strong>in</strong>hibit<strong>in</strong>g platelet aggregation past <strong>the</strong> site of <strong>in</strong>jury by decreas<strong>in</strong>g release of ADP<br />

from extra platelets. The platelet cell membrane glycoprote<strong>in</strong> also <strong>in</strong>hibits<br />

adherence to normal endo<strong>the</strong>lium. 2<br />

6


2.2.3 Blood Coagulation <strong>and</strong> Fibr<strong>in</strong> Plug Formation<br />

If <strong>the</strong> <strong>in</strong>jury to a vessel is severe a blood clot will beg<strong>in</strong> to form <strong>in</strong> 15 to 20<br />

seconds. If <strong>the</strong> trauma has been m<strong>in</strong>or, formation of this clot may take 1 to 2<br />

m<strong>in</strong>utes. The process is <strong>in</strong>itiated by activated substances from <strong>the</strong> endo<strong>the</strong>lium<br />

<strong>and</strong> exposed collagen, platelets <strong>and</strong> blood prote<strong>in</strong>s adher<strong>in</strong>g to <strong>the</strong> vessel wall.<br />

The clot can completely fill <strong>the</strong> end of a small vessel <strong>and</strong> with<strong>in</strong> an hour beg<strong>in</strong>s to<br />

re<strong>tract</strong>. 1<br />

Fibr<strong>in</strong> plug formation occurs when <strong>the</strong> blood clot is <strong>in</strong>vaded by fibroblasts,<br />

creat<strong>in</strong>g connective tissue throughout <strong>the</strong> clot. This process beg<strong>in</strong>s with<strong>in</strong> a few<br />

hours of <strong>the</strong> blood clot formation <strong>and</strong> cont<strong>in</strong>ues <strong>in</strong>to organization of fibrous tissue<br />

over 1 to 2 weeks. 1<br />

2.2.4 Clot Lysis<br />

Clot lysis requires <strong>the</strong> activation of circulat<strong>in</strong>g plasm<strong>in</strong>ogen to plasm<strong>in</strong>. In<br />

<strong>the</strong> <strong>in</strong>itial stages of clot formation, plasm<strong>in</strong>ogen is trapped with<strong>in</strong> <strong>the</strong> clot. Tissue<br />

plasm<strong>in</strong>ogen activator is <strong>the</strong>n released, which cleaves <strong>the</strong> plasm<strong>in</strong>ogen to<br />

plasm<strong>in</strong>, allow<strong>in</strong>g <strong>the</strong> clot to be removed. 2, 3 In non-vascular tissues a similar<br />

process is occurr<strong>in</strong>g. However, <strong>in</strong> non-vascular tissues <strong>urok<strong>in</strong>ase</strong> is <strong>the</strong><br />

plasm<strong>in</strong>ogen activator which cleaves <strong>the</strong> plasm<strong>in</strong>ogen. 3<br />

2.3 The Coagulation System<br />

The coagulation system is composed of more than a dozen factors which<br />

<strong>in</strong>teract <strong>in</strong> a complex cascade of reactions with<strong>in</strong> blood vessels <strong>and</strong> <strong>in</strong> <strong>the</strong><br />

surround<strong>in</strong>g tissues to produce hemostasis (table 2.1 <strong>and</strong> figure 2.1). Most of <strong>the</strong><br />

numbered factors are circulat<strong>in</strong>g <strong>in</strong>active ser<strong>in</strong>e proteases, except factors V <strong>and</strong><br />

7


VIII <strong>and</strong> fibr<strong>in</strong>ogen which are labile. The factors become activated after <strong>in</strong>itiation<br />

of coagulation. The coagulation pathway is divided <strong>in</strong>to <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic or contact<br />

pathway, <strong>the</strong> extr<strong>in</strong>sic pathway <strong>and</strong> <strong>the</strong> common pathway. 2, 4 Plasma <strong>in</strong> dogs<br />

<strong>and</strong> people have similar activity of prothromb<strong>in</strong>. Dogs have higher concentrations<br />

<strong>and</strong> activities of fibr<strong>in</strong>ogen, factor VIII <strong>and</strong> contact factors (factor XII, prekallikre<strong>in</strong>,<br />

4, 5<br />

high-molecular-weight-k<strong>in</strong><strong>in</strong>ogen <strong>and</strong> factor IX).<br />

Table 2.1. Coagulation Factors<br />

Name Synonym Pathway<br />

Factor I Fibr<strong>in</strong>ogen Common<br />

Factor II Prothromb<strong>in</strong> Common<br />

Factor III Tissue factor; tissue<br />

Extr<strong>in</strong>sic<br />

thromboplast<strong>in</strong><br />

Factor IV Calcium All<br />

Factor V Proacceler<strong>in</strong>; labile factor Intr<strong>in</strong>sic/extr<strong>in</strong>sic<br />

Factor VII Proconvert<strong>in</strong>; stabile factor Intr<strong>in</strong>sic<br />

Factor VIII Antihemophilac factor A Intr<strong>in</strong>sic/common<br />

Factor IX Christmas factor;<br />

antihemophilic factor B<br />

Intr<strong>in</strong>sic<br />

Factor X Stuart factor Common<br />

Factor XI Plasma thromboplast<strong>in</strong> Intr<strong>in</strong>sic<br />

antecedent<br />

Factor XII Hageman factor Intr<strong>in</strong>sic<br />

Factor XIII Fibr<strong>in</strong>-stabiliz<strong>in</strong>g factor Common<br />

Prekallikre<strong>in</strong> Fletcher factor Extr<strong>in</strong>sic<br />

High-molecular-weight- Fitzgerald factor, HMWK Intr<strong>in</strong>sic/extr<strong>in</strong>sic<br />

k<strong>in</strong><strong>in</strong>ogen<br />

Platelets Intr<strong>in</strong>sic/extr<strong>in</strong>sic<br />

Kallikre<strong>in</strong> Intr<strong>in</strong>sic<br />

Prote<strong>in</strong> C Intr<strong>in</strong>sic/common<br />

Prote<strong>in</strong> S Common<br />

2.3.1 The Extr<strong>in</strong>sic Pathway<br />

The extr<strong>in</strong>sic pathway is activated when traumatized tissue <strong>in</strong> vascular<br />

adventitia <strong>and</strong> surround<strong>in</strong>g tissues, i.e. muscle, release tissue factor (TF) from<br />

<strong>the</strong> cell membranes. Tissue factor complexes with circulat<strong>in</strong>g blood coagulation<br />

factor VII <strong>in</strong> <strong>the</strong> presence of calcium <strong>and</strong> phospholipids. 2, 4 Factor VII is activated<br />

by factors Xa <strong>and</strong> IXa or by factor XIIa. The factor VIIa-TF complex <strong>the</strong>n<br />

activates factor X which <strong>in</strong> turn activates factor IX. 4 The activated factor X<br />

8


Tissue Factor<br />

Pathway<br />

Extr<strong>in</strong>sic Pathway<br />

Tissue Damage,<br />

Perivascular<br />

tissues<br />

releases<br />

Tissue factor (TF)<br />

Factor III<br />

Ca 2+, Phospholipids<br />

Factor VII Factor VIIa<br />

Ca 2+, Phosphlipids<br />

Factor X Factor Xa<br />

Tissue Factor<br />

Pathway Inhibitor<br />

Antithromb<strong>in</strong><br />

Prothromb<strong>in</strong><br />

Factor II<br />

Ca 2+<br />

9<br />

Factor IXa<br />

Thromb<strong>in</strong><br />

Factor IIa<br />

Factor XIII Factor XIIIa<br />

Fibr<strong>in</strong>olysis<br />

Ca 2+, Factor<br />

Va,<br />

Platelet<br />

Phospholipid<br />

Factor V<br />

Factor VIII<br />

Factor XIIa<br />

Kallikre<strong>in</strong><br />

Contact Phase<br />

Intr<strong>in</strong>sic Pathway<br />

Contact with<br />

damaged<br />

endo<strong>the</strong>lium<br />

Factor XI Factor XIa<br />

Ca 2+, Factor VIIIa,<br />

Platelet Phospholipid<br />

Factor X<br />

Factor Va<br />

Factor VIIIa<br />

HMWK, PK<br />

Fibr<strong>in</strong>ogen<br />

Factor I<br />

TM<br />

Thromb<strong>in</strong><br />

Fibr<strong>in</strong> Monomer<br />

Fibr<strong>in</strong> Multimer<br />

Cross-l<strong>in</strong>ked fibr<strong>in</strong><br />

Factor IX<br />

Prote<strong>in</strong><br />

S<br />

Factor XII<br />

Ca 2+<br />

Activated<br />

Prote<strong>in</strong> C<br />

Prote<strong>in</strong> C<br />

Cross-l<strong>in</strong>ked<br />

FDP’s<br />

Figure 2.1. Coagulation Pathway: Blue arrows represent activation, Green broken arrows<br />

represent <strong>in</strong>hibitors, Red dotted arrow represents upregulation.<br />

Prote<strong>in</strong> C<br />

Inhibitor,<br />

a2macroglob<br />

ul<strong>in</strong><br />

complexes with tissue <strong>and</strong> platelet phospholipids, to form prothromb<strong>in</strong> activator.<br />

Prothromb<strong>in</strong> activator splits prothromb<strong>in</strong> to thromb<strong>in</strong>. At this po<strong>in</strong>t factor V can<br />

also split prothromb<strong>in</strong> to thromb<strong>in</strong> <strong>and</strong> thromb<strong>in</strong> itself can cause prothromb<strong>in</strong> to<br />

split <strong>in</strong>to active thromb<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic cascade. 2


2.3.2 The Intr<strong>in</strong>sic Pathway<br />

The <strong>in</strong>tr<strong>in</strong>sic pathway is <strong>in</strong>itiated by trauma to <strong>the</strong> blood vessel itself when<br />

collagen <strong>in</strong> a damaged vessel wall is exposed. This trauma causes activation of<br />

factor XII <strong>and</strong> release of platelet phospholipids. 2 Factor XII complexes with factor<br />

XI <strong>and</strong> high-molecular-weight-k<strong>in</strong><strong>in</strong>ogen (HMWK), caus<strong>in</strong>g activation of factor XII.<br />

Factor XIIa activates factor XI <strong>and</strong> prekallikre<strong>in</strong>. Kallikre<strong>in</strong> <strong>in</strong>creases factor XII<br />

activation. High-molecular-weight-k<strong>in</strong><strong>in</strong>ogen b<strong>in</strong>ds to prekallikre<strong>in</strong> <strong>and</strong> factor XI<br />

as a cofactor for <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic pathway surface-mediated reactions. 4 Factor IXa<br />

comb<strong>in</strong>es with factor VIII <strong>in</strong> <strong>the</strong> presence of platelet phospholipids to activate<br />

factor X. 2<br />

The complement system acts with <strong>the</strong> contact phase of blood coagulation.<br />

The complement system is comprised of plasma prote<strong>in</strong>s which give rise to<br />

chemotaxis mediators, <strong>in</strong>creased vascular permeability, opson<strong>in</strong> activity,<br />

phagocytic activity <strong>and</strong> cytolysis. Factor XIIa fragments <strong>in</strong>itiate <strong>the</strong> classical<br />

pathway of complement by activat<strong>in</strong>g C1. 6<br />

2.3.3 The Common Pathway<br />

The result of both <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic <strong>and</strong> extr<strong>in</strong>sic pathways is <strong>the</strong> conversion of<br />

factor X to factor Xa. This is <strong>the</strong> start<strong>in</strong>g po<strong>in</strong>t of <strong>the</strong> common pathway or <strong>the</strong><br />

phase of thrombus formation. Thromb<strong>in</strong> cleaves fibr<strong>in</strong>ogen <strong>in</strong>to fibr<strong>in</strong> monomers.<br />

The <strong>in</strong>itial clot is not cross-l<strong>in</strong>ked <strong>and</strong> is quite weak. Thromb<strong>in</strong> activates factor<br />

XIII, present <strong>in</strong> plasma <strong>and</strong> platelets. Factor XIIIa <strong>the</strong>n creates fibr<strong>in</strong> dimers by<br />

2, 4<br />

cross-l<strong>in</strong>k<strong>in</strong>g adjacent fibr<strong>in</strong> fibers. This gives <strong>the</strong> clot strength <strong>and</strong> durability.<br />

Fibr<strong>in</strong>ogen is an important prote<strong>in</strong> <strong>in</strong> both <strong>the</strong> formation <strong>and</strong> lysis of blood<br />

10


clots. Fibr<strong>in</strong>ogen is produced by hepatocytes <strong>and</strong> megakaryocytes <strong>and</strong> circulates<br />

<strong>in</strong> <strong>the</strong> plasma. Fibr<strong>in</strong>ogen is a symmetrical dimer which is cleaved by Factor IIa to<br />

convert fibr<strong>in</strong>ogen to fibr<strong>in</strong>. Once fibr<strong>in</strong> is formed it stacks with platelets <strong>and</strong><br />

thromb<strong>in</strong> to form a loose fibr<strong>in</strong> plug. The fibr<strong>in</strong> molecules are later cross-l<strong>in</strong>ked by<br />

factor XIII to form a stable fibr<strong>in</strong> plug. This is where <strong>the</strong> fibr<strong>in</strong>olytic system beg<strong>in</strong>s<br />

to dissolve <strong>the</strong> plug.<br />

2.4 The Fibr<strong>in</strong>olytic System<br />

Until <strong>the</strong> 1990’s <strong>the</strong> fibr<strong>in</strong>olytic system was regarded as be<strong>in</strong>g primarily<br />

<strong>in</strong>volved <strong>in</strong> <strong>the</strong> regulation of <strong>in</strong>travascular clot dissolution via activation of<br />

plasm<strong>in</strong>ogen. This came from <strong>the</strong> knowledge that impairments <strong>in</strong> <strong>the</strong> fibr<strong>in</strong>olytic<br />

system resulted <strong>in</strong> <strong>in</strong>creased bleed<strong>in</strong>g or thromboembolic disease. In more<br />

recent research with knock-out mice it became evident that <strong>the</strong> fibr<strong>in</strong>olytic system<br />

has a more global role <strong>in</strong> <strong>the</strong> body. Fibr<strong>in</strong>olysis is <strong>in</strong>volved <strong>in</strong> many aspects of<br />

cellular activity <strong>and</strong> tissue development, both beneficial <strong>and</strong> harmful to an<br />

organism as well as thrombolysis. 7 Some authors consider this system to be<br />

more properly named <strong>the</strong> plasm<strong>in</strong>ogen system due to <strong>the</strong> role <strong>in</strong> many o<strong>the</strong>r<br />

activities besides just resolution of fibr<strong>in</strong> clots with<strong>in</strong> <strong>the</strong> vascular system. 3<br />

The fibr<strong>in</strong>olytic system has many components (table 2.2). The role of <strong>the</strong><br />

fibr<strong>in</strong>olytic system <strong>in</strong> mammals is <strong>the</strong> ma<strong>in</strong>tenance of patent vasculature dur<strong>in</strong>g<br />

thrombosis. It also functions dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>flammatory <strong>and</strong> maturation phases of<br />

wound heal<strong>in</strong>g. Fibr<strong>in</strong>olysis occurs for <strong>in</strong> <strong>the</strong> testicle <strong>and</strong> <strong>the</strong> placenta.<br />

Fibr<strong>in</strong>olysis is also important <strong>in</strong> angiogenesis, embryologic development, tissue<br />

remodel<strong>in</strong>g, <strong>and</strong> <strong>in</strong> <strong>the</strong> pathogenesis of neoplastic disease. 8-18<br />

Tissue plasm<strong>in</strong>ogen activator (tPA) <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> (uPA) are <strong>the</strong> most<br />

11


Table 2.2 Components of <strong>the</strong> Fibr<strong>in</strong>olytic System<br />

Component Molecular Mass, Mean Half-Life Function<br />

kDa<br />

Plasma Conc<br />

Plasm<strong>in</strong>ogen 92 0.2 mg/ml 50 h Proenzyme<br />

Tissue-type<br />

70 5-10 ng/ml 2-3 m<strong>in</strong> Plasm<strong>in</strong>ogen<br />

plasm<strong>in</strong>ogen activator<br />

activator<br />

Urok<strong>in</strong>ase 53, 33 1 ng/ml 3-5 m<strong>in</strong> Plasm<strong>in</strong>ogen<br />

activator<br />

Prekallikre<strong>in</strong> 88 0.04 mg/ml 25 h Proenzyme<br />

Factor XII 80 0.03 mg/ml 60 h Proenzyme<br />

α2-Antiplasm<strong>in</strong> 70 0.07 mg/ml 50 h Plasm<strong>in</strong> <strong>in</strong>hibitor<br />

α2-Macroglobul<strong>in</strong> 4 160 Protease <strong>in</strong>hibitor<br />

Plasm<strong>in</strong>ogen activator 50 60 ng/ml 5-7 m<strong>in</strong> Inhibitor of tPA <strong>and</strong><br />

<strong>in</strong>hibitor type-1<br />

uPA<br />

Plasm<strong>in</strong>ogen activator 70 Inhibitor of uPA <strong>and</strong><br />

<strong>in</strong>hibitor type-2<br />

two-cha<strong>in</strong> tPA<br />

C1-<strong>in</strong>hibitor 105 Inhibitor of “contact<br />

activation”<br />

components<br />

Histid<strong>in</strong>e-rich<br />

75 Plasm<strong>in</strong>ogen<br />

glycoprote<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g<br />

Thromb<strong>in</strong> activated<br />

49 Attenuation of fibr<strong>in</strong><br />

<strong>in</strong>hibitor of fibr<strong>in</strong>olysis<br />

cofactor activity<br />

important mediators of plasm<strong>in</strong>ogen activation. The tPA mediated pathway is<br />

primarily <strong>in</strong>volved <strong>in</strong> <strong>the</strong> dissolution of blood clots with<strong>in</strong> <strong>the</strong> vascular system. The<br />

uPA-mediated pathway is activated to provide fibr<strong>in</strong>olysis for events <strong>in</strong>clud<strong>in</strong>g cell<br />

migration, tissue remodel<strong>in</strong>g <strong>and</strong> fibrosis formation. Outside of <strong>the</strong> vascular<br />

system <strong>in</strong>hibitors of <strong>the</strong> fibr<strong>in</strong>olytic system balance <strong>the</strong> action of fibr<strong>in</strong>olysis <strong>and</strong><br />

<strong>in</strong>clude α2 antiplasm<strong>in</strong>, α2 macroglobul<strong>in</strong>, antithromb<strong>in</strong> III, α2 antitrips<strong>in</strong>, C2<br />

<strong>in</strong>activators, plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor 1 (PAI 1) <strong>and</strong> plasm<strong>in</strong>ogen activator<br />

9, 19<br />

<strong>in</strong>hibitor 2 (PAI 2).<br />

Fibr<strong>in</strong>olytic activity <strong>in</strong> <strong>the</strong> blood is mediated by plasma <strong>and</strong> cellular<br />

components. In people <strong>and</strong> dogs, <strong>the</strong> plasma fraction contributes approximately<br />

30% of <strong>the</strong> fibr<strong>in</strong>olytic activity. 20 Urok<strong>in</strong>ase, tPA <strong>and</strong> PAI-1 <strong>and</strong> PAI-2 are not<br />

detectable <strong>in</strong> plasma of healthy people. 21 However, <strong>the</strong>se enzymes are present <strong>in</strong><br />

normal circulat<strong>in</strong>g monocytes. 21 Mononuclear phagocytes express uPA, uPAR<br />

12


<strong>and</strong> plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor (PAI). 22, 23 Neutrophils <strong>and</strong> platelets have<br />

high density of uPAR <strong>in</strong> <strong>the</strong>ir membrane. The <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>s b<strong>in</strong>d uPA <strong>and</strong><br />

accelerate plasm<strong>in</strong>ogen activation <strong>and</strong> fibr<strong>in</strong>olysis. 24-26 Cytok<strong>in</strong>es such as<br />

<strong>in</strong>terferon gamma <strong>and</strong> tumor necrosis factor stimulate plasm<strong>in</strong>ogen activator (PA)<br />

<strong>and</strong> PAI activity <strong>in</strong> monocytes. 23<br />

The plasma k<strong>in</strong><strong>in</strong>-form<strong>in</strong>g system consists of three plasma prote<strong>in</strong>s that<br />

<strong>in</strong>teract with certa<strong>in</strong> negatively charged surfaces or macromolecular complexes.<br />

They participate <strong>in</strong> <strong>the</strong> contact phase of <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic coagulation pathway to<br />

<strong>in</strong>duce fibr<strong>in</strong>olysis. 9, 27-30 The three plasma prote<strong>in</strong>s are high molecular weight<br />

k<strong>in</strong><strong>in</strong>ogen (HK), coagulation factor XII (FXII), <strong>and</strong> prekallikre<strong>in</strong>. 29 Factor XII<br />

activation is <strong>in</strong>duced by several mechanisms. Collagen contact <strong>and</strong> negatively<br />

charged surface contact, HMWK (Fitzgerald factor) <strong>and</strong> Kallikre<strong>in</strong> (Fletcher<br />

factor). Plasm<strong>in</strong> itself also activates Factor XII lead<strong>in</strong>g to fibr<strong>in</strong>olytic amplification.<br />

9, 28 For optimal activation of Factor XII (Hageman factor) both HK <strong>and</strong><br />

prekallikre<strong>in</strong> must be present to participate <strong>in</strong> <strong>the</strong> contact phase of <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic<br />

coagulation pathway <strong>and</strong> help <strong>in</strong>duce fibr<strong>in</strong>olysis. 9, 28 High molecular weight<br />

k<strong>in</strong><strong>in</strong>ogen b<strong>in</strong>ds to uPAR on <strong>the</strong> endo<strong>the</strong>lial cell surface. 29, 31 Some <strong>in</strong>vestigators<br />

propose that high concentrations of <strong>the</strong>se activators are <strong>in</strong> circulation for <strong>the</strong><br />

purpose of fibr<strong>in</strong>olysis. 32 O<strong>the</strong>rs propose that <strong>the</strong> circulat<strong>in</strong>g concentrations are<br />

low unless triggered by a thrombolytic event. 9<br />

2.5 Tissue Plasm<strong>in</strong>ogen Activator<br />

Tissue plasm<strong>in</strong>ogen activator is one of <strong>the</strong> endogenous extr<strong>in</strong>sic plasm<strong>in</strong>ogen<br />

activators. Tissue plasm<strong>in</strong>ogen activator has a high aff<strong>in</strong>ity for fibr<strong>in</strong><br />

13


Fibr<strong>in</strong>ogen<br />

C1-<strong>in</strong>hibitor<br />

Tissue<br />

Plasm<strong>in</strong>ogen<br />

Activator (tPA)<br />

Plasm<strong>in</strong>ogen<br />

activator Inhibitor<br />

1&2 (PAI 1&2)<br />

Urok<strong>in</strong>ase (uPA)<br />

Fibr<strong>in</strong><br />

Monomer<br />

Thromb<strong>in</strong><br />

14<br />

Circulat<strong>in</strong>g<br />

Plasm<strong>in</strong>ogen<br />

Plasm<strong>in</strong><br />

Fibr<strong>in</strong> Multimer Cross-l<strong>in</strong>ked Fibr<strong>in</strong><br />

XII? XIIa<br />

IIa<br />

Angiostat<strong>in</strong><br />

Thromb<strong>in</strong><br />

activatible<br />

fibr<strong>in</strong>olysis<br />

<strong>in</strong>hibitor<br />

Figure 2.2 Fibr<strong>in</strong>olytic Cascade: Blue arrows represent activation, red arrows represent<br />

<strong>in</strong>activation<br />

Factor XIa, XIIa,<br />

Kallikre<strong>in</strong><br />

a2-antiplasm<strong>in</strong><br />

a2-macroglobul<strong>in</strong><br />

Fibr<strong>in</strong> Degradation<br />

Proucts<br />

<strong>and</strong> is of primary importance for <strong>the</strong> lysis of clots <strong>in</strong> <strong>the</strong> circulatory system. 7 It is a<br />

ser<strong>in</strong>e protease with a molecular weight of approximately 70kDa. It is secreted as<br />

a s<strong>in</strong>gle cha<strong>in</strong> glycoprote<strong>in</strong>. The proform has some <strong>in</strong>tr<strong>in</strong>sic activity; however, <strong>the</strong><br />

two cha<strong>in</strong> form (held by s<strong>in</strong>gle disulfide bonds) that is produced after cleavage by<br />

plasm<strong>in</strong> is <strong>the</strong> most active form. 28<br />

Tissue plasm<strong>in</strong>ogen activator is produced by endo<strong>the</strong>lial cells, human<br />

kerat<strong>in</strong>ocytes, melanocytes <strong>and</strong> neurons. It is also produced <strong>in</strong> numerous human<br />

neoplastic cell l<strong>in</strong>es such as melanoma, neuroblastoma, ovarian, breast <strong>and</strong><br />

pancreatic cancer. 8-11, 13, 14, 16 Tissue plasm<strong>in</strong>ogen activator is most active with<strong>in</strong><br />

<strong>the</strong> vasculature <strong>and</strong> has a high aff<strong>in</strong>ity for fibr<strong>in</strong> or fibr<strong>in</strong>-bound plasm<strong>in</strong>ogen.


Tissue plasm<strong>in</strong>ogen activator has <strong>in</strong>creased activity <strong>in</strong> <strong>the</strong> presence of fibr<strong>in</strong><br />

which leads to localization of activity with<strong>in</strong> a clot, enhanced fibr<strong>in</strong>olysis <strong>and</strong><br />

improved b<strong>in</strong>d<strong>in</strong>g of plasm<strong>in</strong>ogen to fibr<strong>in</strong> clots. 33 This all ensures cont<strong>in</strong>uous<br />

plasm<strong>in</strong>ogen concentration dur<strong>in</strong>g tPA-mediated thrombolysis.<br />

Tissue plasm<strong>in</strong>ogen activator bound to plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor is<br />

cleared from <strong>the</strong> circulation by hepatocytes endocytosis. This clearance is via<br />

9, 28<br />

endocytosis. There are no cell surface <strong>receptor</strong>s identified for tPA.<br />

2.6 Urok<strong>in</strong>ase<br />

The fibr<strong>in</strong>olytic activity of <strong>urok<strong>in</strong>ase</strong> was discovered decades ago upon <strong>the</strong><br />

discovery that ur<strong>in</strong>e could dissolve blood clots. 34 Urok<strong>in</strong>ase is a chymotryps<strong>in</strong>-like<br />

ser<strong>in</strong>e protease <strong>and</strong> is <strong>the</strong> second of two endogenous extr<strong>in</strong>sic plasm<strong>in</strong>ogen<br />

activators that are important <strong>in</strong> <strong>the</strong> conversion of circulat<strong>in</strong>g proenzyme<br />

plasm<strong>in</strong>ogen <strong>in</strong>to <strong>the</strong> active ser<strong>in</strong>e protease plasm<strong>in</strong> <strong>in</strong> <strong>the</strong> extravascular<br />

tissues. 7, 35 Urok<strong>in</strong>ase promotes fibr<strong>in</strong>olysis by catalyz<strong>in</strong>g <strong>the</strong> cleavage of<br />

plasm<strong>in</strong>ogen to plasm<strong>in</strong>. 36<br />

Urok<strong>in</strong>ase is a s<strong>in</strong>gle-cha<strong>in</strong> glycoprote<strong>in</strong> with a molecular weight of 53<br />

kDa. 28 The chemical structure of uPA is complex. It is composed of three<br />

doma<strong>in</strong>s with 411 am<strong>in</strong>o acids. 37 The N-term<strong>in</strong>al doma<strong>in</strong> (am<strong>in</strong>o acids 9-45) or<br />

light cha<strong>in</strong> (scuPA) has a growth factor doma<strong>in</strong>. This is called <strong>the</strong> am<strong>in</strong>o term<strong>in</strong>al<br />

fragment <strong>and</strong> is also known as CD87. 38-40 This fragment is <strong>the</strong> region responsible<br />

for <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> b<strong>in</strong>d<strong>in</strong>g. 41 The kr<strong>in</strong>gle doma<strong>in</strong> (am<strong>in</strong>o acids 46-143)<br />

conta<strong>in</strong>s a sequence that <strong>in</strong>teracts with PAI-1. Urok<strong>in</strong>ase also b<strong>in</strong>ds to hepar<strong>in</strong> by<br />

this doma<strong>in</strong>. 37 The C-term<strong>in</strong>al catalytic doma<strong>in</strong> (am<strong>in</strong>o acids 144-411) is <strong>the</strong> B-<br />

cha<strong>in</strong> or heavy cha<strong>in</strong>. It has a carboxyl-term<strong>in</strong>al region with a ser<strong>in</strong>e protease<br />

15<br />

9, 28


doma<strong>in</strong>. 37 The two cha<strong>in</strong>s are l<strong>in</strong>ked by a peptide. Toge<strong>the</strong>r <strong>the</strong>y form active uPA<br />

which is also called high molecular weight <strong>urok<strong>in</strong>ase</strong>. 28, 36 Both s<strong>in</strong>gle <strong>and</strong> two-<br />

cha<strong>in</strong> forms of uPA b<strong>in</strong>d to uPAR or low-density lipoprote<strong>in</strong> (LDL) <strong>receptor</strong>s on<br />

cell surface membranes. 37 The C-term<strong>in</strong>al doma<strong>in</strong> b<strong>in</strong>ds to plasm<strong>in</strong>ogen lead<strong>in</strong>g<br />

to plasm<strong>in</strong> formation.<br />

G K C<br />

G<br />

G<br />

K<br />

K<br />

G K<br />

G<br />

Ser 47<br />

Lys 135<br />

S - S<br />

Lys156 Ile159<br />

S - S<br />

Arg156 Phe157<br />

S - S<br />

S - S<br />

Lys136<br />

C<br />

C<br />

K C<br />

Figure 2.3 Urok<strong>in</strong>ase <strong>and</strong> its cleavage products<br />

C<br />

16<br />

S<strong>in</strong>gle Cha<strong>in</strong> Urok<strong>in</strong>ase<br />

Two-Cha<strong>in</strong> Active Urok<strong>in</strong>ase<br />

Two-Cha<strong>in</strong> Inactive Urok<strong>in</strong>ase<br />

Am<strong>in</strong>o Term<strong>in</strong>al Fragment<br />

Growth Factor-Like Doma<strong>in</strong><br />

Two-Cha<strong>in</strong> Urok<strong>in</strong>ase lack<strong>in</strong>g <strong>the</strong><br />

Growth Factor-Like Doma<strong>in</strong><br />

Low-Molecular Weight Urok<strong>in</strong>ase<br />

In <strong>the</strong> mouse <strong>and</strong> human uPA is produced by many cell types with<strong>in</strong> <strong>the</strong><br />

body but is produced <strong>in</strong> <strong>the</strong> greatest quantity by renal epi<strong>the</strong>lial cells of <strong>the</strong><br />

proximal <strong>and</strong> distal kidney tubules. 42-44 Urok<strong>in</strong>ase is also syn<strong>the</strong>sized <strong>in</strong><br />

glomerular visceral epi<strong>the</strong>lial cells 44, 45 <strong>and</strong> is known to be excreted <strong>in</strong> mammalian<br />

ur<strong>in</strong>e. 46-49 Urok<strong>in</strong>ase is present <strong>in</strong> human ur<strong>in</strong>e <strong>in</strong> a 1:1 ratio with a uPA<br />

<strong>in</strong>hibitor. 47 The role of uPA with<strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> may be to ensure patency of <strong>in</strong><br />

<strong>the</strong> face of hemorrhage. 49 Urok<strong>in</strong>ase is also present <strong>in</strong> <strong>the</strong> human prostate <strong>and</strong>


semen where it is believed to play a role <strong>in</strong> sperm motility <strong>and</strong> maturation, <strong>and</strong> <strong>in</strong><br />

10, 11, 46, 50<br />

<strong>the</strong> uro<strong>the</strong>lium of <strong>the</strong> bov<strong>in</strong>e ur<strong>in</strong>ary bladder.<br />

2.7 Urok<strong>in</strong>ase Receptor<br />

Urok<strong>in</strong>ase <strong>receptor</strong> is a membrane bound prote<strong>in</strong> that b<strong>in</strong>ds uPA localiz<strong>in</strong>g<br />

extracellular <strong>and</strong> basement membrane degradation that promotes cellular<br />

migration <strong>and</strong> <strong>in</strong>vasion (figure 2.4). 51 Urok<strong>in</strong>ase <strong>receptor</strong> is a 55-60 kDa<br />

glycoprote<strong>in</strong>. 52-54 Urok<strong>in</strong>ase <strong>receptor</strong> is anchored to <strong>the</strong> plasma membrane of<br />

40, 51, 55, 56<br />

cells by a glycosylphosphatidyl<strong>in</strong>ositol (GPI) lipid moiety or a GPI tail.<br />

Urok<strong>in</strong>ase <strong>receptor</strong> consists of three different doma<strong>in</strong>s: <strong>the</strong> uPA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> 1<br />

(D1), <strong>the</strong> connect<strong>in</strong>g doma<strong>in</strong> 2 (D2) <strong>and</strong> <strong>the</strong> cell anchor<strong>in</strong>g doma<strong>in</strong> 3 (D3). 55 The<br />

presence of <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>s (uPAR) located on cell surface membranes is<br />

important, but not essential, for <strong>the</strong> activity of uPA with<strong>in</strong> <strong>the</strong> tissues. 37<br />

Urok<strong>in</strong>ase <strong>receptor</strong> b<strong>in</strong>ds both <strong>the</strong> <strong>in</strong>active <strong>and</strong> active forms of uPA. 40<br />

Once bound, <strong>the</strong> <strong>in</strong>active form of <strong>urok<strong>in</strong>ase</strong> becomes activated. Bound active<br />

<strong>urok<strong>in</strong>ase</strong> enzyme reta<strong>in</strong>s its enzymatic activity. These uPAR are upregulated <strong>in</strong><br />

several neoplastic cell l<strong>in</strong>es <strong>and</strong> <strong>in</strong> <strong>in</strong>flammatory processes on neutrophil<br />

membranes. 26 Although uPAR is present <strong>in</strong> normal cells, upregulation leads to<br />

<strong>the</strong> detrimental effects which have l<strong>in</strong>ked <strong>urok<strong>in</strong>ase</strong> to tumor <strong>in</strong>vasion <strong>in</strong> breast<br />

cancer 57 <strong>and</strong> <strong>in</strong>flammation. Urok<strong>in</strong>ase-uPAR complexes on any cell surface have<br />

proteolytic, cell migratory, adhesive <strong>and</strong> chemotactic effects <strong>and</strong> uPA-uPAR<br />

participates <strong>in</strong> extravascular fibr<strong>in</strong>olysis. 55 Extracellular matrix disruption occurs<br />

because uPAR has high aff<strong>in</strong>ity for <strong>the</strong> extra-cellular matrix prote<strong>in</strong> vitronect<strong>in</strong>. 37<br />

Urok<strong>in</strong>ase <strong>receptor</strong> plays a role <strong>in</strong> <strong>in</strong>vasion <strong>and</strong> migration of certa<strong>in</strong> immune cells<br />

<strong>in</strong>clud<strong>in</strong>g natural killer (NK) cells. 51 Increased concentrations of uPA <strong>and</strong> uPAR<br />

17


have been shown to be associated with a poor prognosis for some cancer l<strong>in</strong>es.<br />

8-11, 13, 14, 16 In several studies <strong>in</strong>creased plasma concentrations of uPAR have<br />

been reported <strong>in</strong> patients with chronic myeloproliferative <strong>and</strong> neoplastic<br />

diseases. 58<br />

Figure 2.4 Schematic representation of <strong>the</strong> relationship between uPA <strong>and</strong> uPAR. G, growth<br />

factor-like doma<strong>in</strong>; K, kr<strong>in</strong>gle doma<strong>in</strong>; C, catalytic doma<strong>in</strong>; D1, uPA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> of uPAR; D2,<br />

connect<strong>in</strong>g doma<strong>in</strong>; D3, cell anchor<strong>in</strong>g doma<strong>in</strong>; PAI-1, plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-1.<br />

Urok<strong>in</strong>ase <strong>receptor</strong> facilitates clearance of uPA by cells. The <strong>receptor</strong><br />

bound uPA complexes with PAI-1 <strong>and</strong> is immediately <strong>in</strong>ternalized. The uPA is<br />

degraded <strong>in</strong> <strong>the</strong> lysosomes. 37 The LDL <strong>receptor</strong> family consists of α2-<br />

macroglobul<strong>in</strong> <strong>receptor</strong>s <strong>and</strong> very low-density lipoprote<strong>in</strong> <strong>receptor</strong> related prote<strong>in</strong>.<br />

All are located with<strong>in</strong> <strong>the</strong> cell membrane. These <strong>receptor</strong>s aid <strong>in</strong>ternalization of<br />

<strong>the</strong> uPA/UPAR/PAI-1 complex through cla<strong>the</strong>r<strong>in</strong>-coated pits <strong>in</strong> cell membranes.<br />

Internalized uPAR is recycled to <strong>the</strong> cell surface to reb<strong>in</strong>d with ano<strong>the</strong>r uPA<br />

molecule. 28, 37 Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> degradation products b<strong>in</strong>d directly to <strong>the</strong><br />

18


LDL <strong>receptor</strong>-relative prote<strong>in</strong>/α2-macroglobul<strong>in</strong> <strong>receptor</strong> <strong>and</strong> are <strong>in</strong>ternalized for<br />

degradation. 37<br />

Urok<strong>in</strong>ase <strong>and</strong> uPAR have been localized <strong>in</strong> almost all cell types <strong>in</strong>clud<strong>in</strong>g<br />

renal tubular epi<strong>the</strong>lial cells, uro<strong>the</strong>lium, granulocytes <strong>and</strong> macrophages,<br />

fibroblast-like <strong>and</strong> vascular endo<strong>the</strong>lial-like cells <strong>in</strong> rat tendon, human pulmonary<br />

alveolar cells, umbilical ve<strong>in</strong> endo<strong>the</strong>lial cells <strong>and</strong> foresk<strong>in</strong> cells. 59-62<br />

2.8 Plasm<strong>in</strong>ogen <strong>and</strong> Plasm<strong>in</strong><br />

Plasm<strong>in</strong>ogen is a s<strong>in</strong>gle cha<strong>in</strong> glycoprote<strong>in</strong> with a molecular weight of 92<br />

kDa. The molecule has five kr<strong>in</strong>gle-like doma<strong>in</strong>s that conta<strong>in</strong> lys<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g sites<br />

<strong>and</strong> C term<strong>in</strong>al doma<strong>in</strong>s. The kr<strong>in</strong>gle doma<strong>in</strong>s b<strong>in</strong>d to fibr<strong>in</strong>, cell surfaces <strong>and</strong><br />

plasma <strong>in</strong>hibitor α2 antiplasm<strong>in</strong>. 7 The kr<strong>in</strong>gle doma<strong>in</strong>s mediate <strong>the</strong> <strong>in</strong>teractions of<br />

plasm<strong>in</strong>ogen <strong>and</strong> plasm<strong>in</strong> with substrate <strong>in</strong>hibitors <strong>and</strong> cell membranes.<br />

Plasm<strong>in</strong>ogen is a circulat<strong>in</strong>g zymogen present <strong>in</strong> all vasculature <strong>and</strong> body<br />

tissues. Plasm<strong>in</strong>ogen is syn<strong>the</strong>sized <strong>in</strong> <strong>the</strong> hepatocytes of mammals <strong>and</strong> is<br />

elim<strong>in</strong>ated primarily by catabolic degradation <strong>in</strong> <strong>the</strong> plasma. 7 63 Secondary<br />

elim<strong>in</strong>ation is accomplished by conversion of <strong>the</strong> plasm<strong>in</strong>ogen to plasm<strong>in</strong> <strong>in</strong><br />

areas of coagulation <strong>and</strong> clot formation. 9, 28 Plasm<strong>in</strong>ogen is also syn<strong>the</strong>sized by<br />

<strong>the</strong> sem<strong>in</strong>iferous tubules of <strong>the</strong> testis <strong>in</strong> <strong>the</strong> rat. 63<br />

Plasm<strong>in</strong>ogen is cleaved at <strong>the</strong> Arg561-Val562 bond <strong>in</strong>to <strong>the</strong> two cha<strong>in</strong> form of<br />

plasm<strong>in</strong>. 64 The N-term<strong>in</strong>al heavy (A) cha<strong>in</strong> has effector sites that are lys<strong>in</strong>e<br />

b<strong>in</strong>d<strong>in</strong>g sites. The light (B) cha<strong>in</strong> has an active site homologous with o<strong>the</strong>r ser<strong>in</strong>e<br />

proteases (thromb<strong>in</strong>, Factor Xa) that cleaves lys<strong>in</strong>e-arg<strong>in</strong><strong>in</strong>e bonds. The light<br />

cha<strong>in</strong> site allows plasm<strong>in</strong> to attack any peptide conta<strong>in</strong><strong>in</strong>g an arg<strong>in</strong><strong>in</strong>e-lys<strong>in</strong>e<br />

residue like <strong>the</strong> C-term<strong>in</strong>al residues on <strong>the</strong> surface of fibr<strong>in</strong>. 28, 65 These<br />

19


<strong>in</strong>teractions are important for <strong>the</strong> activity of plasm<strong>in</strong>ogen <strong>and</strong> <strong>the</strong> localization of<br />

proteolytic activity of plasm<strong>in</strong>. 7 Plasm<strong>in</strong> also has <strong>the</strong> ability to cleave<br />

plasm<strong>in</strong>ogen <strong>in</strong>to lys<strong>in</strong>e plasm<strong>in</strong>ogen that has a 20 times <strong>in</strong>creased aff<strong>in</strong>ity for<br />

fibr<strong>in</strong>. 65 This conversions leads to <strong>in</strong>creased reactivity with plasm<strong>in</strong>ogen<br />

9, 28<br />

activators accelerates conversion of plasm<strong>in</strong>ogen to plasm<strong>in</strong>.<br />

Plasm<strong>in</strong> <strong>in</strong>activates elements of <strong>the</strong> coagulation cascade. Plasm<strong>in</strong>ogen is<br />

present with<strong>in</strong> a fibr<strong>in</strong> clot bound to fibr<strong>in</strong>. It is cleaved to plasm<strong>in</strong> by tPA, uPA or<br />

kallikre<strong>in</strong>. Plasm<strong>in</strong> degrades fibr<strong>in</strong> <strong>in</strong>to D-dimers <strong>and</strong> fibr<strong>in</strong> degradation products<br />

(FDP’s). 25 Plasm<strong>in</strong> <strong>in</strong>activates Factor VIII, V <strong>and</strong> XII, this aids <strong>in</strong> lysis of <strong>the</strong> clot<br />

by destroy<strong>in</strong>g <strong>the</strong>se coagulation factors. 1 Plasm<strong>in</strong> also degrades prekallikre<strong>in</strong>,<br />

high molecular weight kallikre<strong>in</strong> <strong>and</strong> converts C3 to C3a <strong>in</strong> <strong>the</strong> complement<br />

cascade.<br />

9, 28<br />

When a clot is formed <strong>in</strong>side a vessel, <strong>the</strong> plasm<strong>in</strong>ogen is trapped <strong>in</strong>side<br />

<strong>the</strong> clot. The plasm<strong>in</strong>ogen does not become plasm<strong>in</strong> <strong>and</strong> beg<strong>in</strong> clot lysis until it is<br />

activated. Tissue plasm<strong>in</strong>ogen activator is released from <strong>the</strong> vascular<br />

endo<strong>the</strong>lium a day or so after <strong>the</strong> clot has stopped <strong>the</strong> bleed<strong>in</strong>g. This results <strong>in</strong><br />

lysis of <strong>the</strong> clot via plasm<strong>in</strong> mediated fibr<strong>in</strong> breakdown.<br />

Plasm<strong>in</strong> formation through <strong>the</strong> action of plasm<strong>in</strong>ogen activators is crucial<br />

for <strong>in</strong>flammation <strong>and</strong> wound heal<strong>in</strong>g. 23, 66 Granulocytes <strong>and</strong> monocytes are both<br />

sources of plasm<strong>in</strong>ogen activator activity among leukocytes. 23, 66 As cells are<br />

attached to a site of wound <strong>in</strong>flammation, neutrophils use uPA bound to uPAR to<br />

concentrate plasm<strong>in</strong> activity <strong>in</strong> <strong>the</strong> targeted tissue. By mobiliz<strong>in</strong>g proteolytic<br />

degradation of fibr<strong>in</strong> rich blood clots, uPA bound to uPAR <strong>and</strong> leukocyte <strong>in</strong>tegr<strong>in</strong><br />

αMβ2, a membrane bound leukocyte <strong>in</strong>tegr<strong>in</strong>, <strong>in</strong>fluences neutrophil adhesion <strong>and</strong><br />

20


NH2 PAP K1 K2 K3 K4 K5 Protease Doma<strong>in</strong><br />

Glu- plasm<strong>in</strong>ogen<br />

K1 K1 K2 K2 K3 K3 K4 K4 K5<br />

K5 Protease Protease Doma<strong>in</strong> Doma<strong>in</strong><br />

K1 K1 K2 K2 K3 K3 K4 K4 K5<br />

K5 Protease Protease Doma<strong>in</strong> Doma<strong>in</strong><br />

K1 K2 K3 K4 K5 Protease Protease Doma<strong>in</strong> Doma<strong>in</strong><br />

21<br />

K5<br />

Protease Protease Doma<strong>in</strong> Doma<strong>in</strong><br />

Lys-Plasm<strong>in</strong>ogen<br />

Lys-Plasm<strong>in</strong><br />

M<strong>in</strong>i-Plasm<strong>in</strong>ogen<br />

M<strong>in</strong>i-Plasm<strong>in</strong><br />

Figure 2.5 Plasm<strong>in</strong>ogen <strong>and</strong> Plasm<strong>in</strong>. Glu-Plasm<strong>in</strong>ogen is <strong>the</strong> form secreted by <strong>the</strong> liver. The<br />

kr<strong>in</strong>gle doma<strong>in</strong>s mediate <strong>in</strong>teractions of plasm<strong>in</strong>ogen <strong>and</strong> plasm<strong>in</strong> with substrates, <strong>in</strong>hibitors <strong>and</strong><br />

cell membranes <strong>and</strong> are crucial for <strong>the</strong> activation of plasm<strong>in</strong>ogen <strong>and</strong> localization of <strong>the</strong> activity of<br />

plasm<strong>in</strong>. Release of <strong>the</strong> N-term<strong>in</strong>al doma<strong>in</strong> or PAP forms Lys-plasm<strong>in</strong>ogen which can be<br />

activated <strong>in</strong> <strong>the</strong> absence of fibr<strong>in</strong> at a rate higher than Glu-plasm<strong>in</strong>ogen. The N-term<strong>in</strong>al heavy Acha<strong>in</strong><br />

conta<strong>in</strong>s all <strong>the</strong> kr<strong>in</strong>gle doma<strong>in</strong>s. The C-term<strong>in</strong>al light B-cha<strong>in</strong> conta<strong>in</strong>s <strong>the</strong> catalytic sites.<br />

The specificity of plasm<strong>in</strong> comes from <strong>the</strong> doma<strong>in</strong>s of its heavy cha<strong>in</strong><br />

migration. 25 This allows degradation of <strong>the</strong> provisional extracellular matrix by<br />

b<strong>in</strong>d<strong>in</strong>g to vitronect<strong>in</strong> <strong>and</strong> permits migration of <strong>the</strong> neutrophils <strong>and</strong> macrophages<br />

through <strong>the</strong> tissue planes. 23, 67, 68 Plasm<strong>in</strong> is important <strong>in</strong> all tissue remodel<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> face of wound heal<strong>in</strong>g because of degradation of fibr<strong>in</strong>-vitronect<strong>in</strong> matrices<br />

<strong>and</strong> <strong>the</strong> glycoprote<strong>in</strong> constituents of basement membranes. 66<br />

Lys<strong>in</strong>e analogs such as ∋-am<strong>in</strong>ocaproic acid b<strong>in</strong>d to lys<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g on <strong>the</strong><br />

N-term<strong>in</strong>al heavy cha<strong>in</strong> of plasm<strong>in</strong> <strong>and</strong> compete with lys<strong>in</strong>e-like sites of fibr<strong>in</strong> for<br />

69, 70<br />

plasm<strong>in</strong>ogen. By b<strong>in</strong>d<strong>in</strong>g of plasm<strong>in</strong> on fibr<strong>in</strong> <strong>the</strong>y reduce fibr<strong>in</strong>olysis.<br />

2.9 Endogenous Inhibitors of Fibr<strong>in</strong>olysis<br />

Endogenous <strong>in</strong>hibitors of fibr<strong>in</strong>olysis are important <strong>in</strong> keep<strong>in</strong>g <strong>the</strong><br />

fibr<strong>in</strong>olytic system <strong>in</strong> check. Interest<strong>in</strong>gly, most of <strong>the</strong> activators of fibr<strong>in</strong>olysis are<br />

<strong>in</strong>active <strong>in</strong> <strong>the</strong> absence of <strong>the</strong> <strong>in</strong>hibitors.


2.9.1 Inhibitors of Plasm<strong>in</strong>ogen <strong>and</strong> Plasm<strong>in</strong><br />

The primary <strong>in</strong>hibitor of plasm<strong>in</strong> <strong>and</strong> plasm<strong>in</strong>ogen is α2-antiplasm<strong>in</strong> (α2-<br />

AP), which is located circulat<strong>in</strong>g <strong>in</strong> plasma <strong>and</strong> platelets. α2-Antiplasm<strong>in</strong> is<br />

secreted by <strong>the</strong> liver as a 70 kDa glycoprote<strong>in</strong>. 7 Alpha2-AP is important <strong>in</strong><br />

regulation of lysis of <strong>the</strong> fibr<strong>in</strong> matrix of a thrombus, provid<strong>in</strong>g <strong>in</strong>termittent<br />

activation at local sites of fibr<strong>in</strong> deposition without <strong>in</strong>itiat<strong>in</strong>g a systemic proteolytic<br />

state. 7, 28 The α2-AP is bound to fibr<strong>in</strong> at <strong>the</strong> C-term<strong>in</strong>al region, which is <strong>the</strong> first<br />

site on fibr<strong>in</strong> to be degraded by plasm<strong>in</strong>. It reacts quickly with plasm<strong>in</strong>, form<strong>in</strong>g an<br />

irreversible bond at <strong>the</strong> lys<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g sites. The α2-AP is <strong>the</strong>n partially degraded<br />

by plasm<strong>in</strong>. The α2-AP works quickly when plasm<strong>in</strong> is <strong>in</strong> circulation. However,<br />

when plasm<strong>in</strong> or plasm<strong>in</strong>ogen are bound to a cell surface, <strong>the</strong> lys<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g sites<br />

are occupied <strong>and</strong> α2-AP acts more slowly as <strong>the</strong> plasm<strong>in</strong> is protected aga<strong>in</strong>st α2-<br />

AP <strong>in</strong>actiavtion. 28, 65 Fibr<strong>in</strong> clots are reduced <strong>in</strong> size layer by layer to provide<br />

temporary ability at sites of vascular <strong>in</strong>jury. 7<br />

Alpha2-macroglobul<strong>in</strong> (α2-MG) is a 725 kDa glycoprote<strong>in</strong> which is also a<br />

plasm<strong>in</strong> <strong>in</strong>hibitor but is only important if α2-AP capacity is exceeded by excess<br />

circulat<strong>in</strong>g plasm<strong>in</strong>. The α2-MG can only <strong>in</strong>hibit circulat<strong>in</strong>g plasm<strong>in</strong> <strong>and</strong> is<br />

<strong>in</strong>effective aga<strong>in</strong>st cell bound plasm<strong>in</strong>. 9, 28 Alpha2-macroglobul<strong>in</strong> works at a much<br />

slower rate than α2-AP.<br />

Thromb<strong>in</strong>-activated fibr<strong>in</strong>olysis <strong>in</strong>hibitor (TAFI) is a newly identified<br />

<strong>in</strong>hibitor which is secreted by <strong>the</strong> liver as a s<strong>in</strong>gle cha<strong>in</strong> 58 kDa glycoprote<strong>in</strong>. Its<br />

antifibr<strong>in</strong>olytic activity consists of remov<strong>in</strong>g <strong>the</strong> C-term<strong>in</strong>al b<strong>in</strong>d<strong>in</strong>g sites for<br />

plasm<strong>in</strong>ogen <strong>and</strong> tPA which are present on <strong>the</strong> degraded fibr<strong>in</strong> surface. 65 The<br />

TAFI is activated by thromb<strong>in</strong> or plasm<strong>in</strong>. 7 This system appears to operate on a<br />

22


threshold system by act<strong>in</strong>g as <strong>the</strong> means of remov<strong>in</strong>g <strong>the</strong> C-term<strong>in</strong>al arg<strong>in</strong><strong>in</strong>e-<br />

lys<strong>in</strong>e groups from <strong>the</strong> surface of <strong>the</strong> degraded fibr<strong>in</strong>. In do<strong>in</strong>g so <strong>the</strong> α2-AP which<br />

b<strong>in</strong>ds to this site is decreased <strong>and</strong> <strong>the</strong> rate of plasm<strong>in</strong> formation is decreased<br />

s<strong>in</strong>ce plasm<strong>in</strong>ogen b<strong>in</strong>ds to <strong>the</strong> arg<strong>in</strong><strong>in</strong>e-lys<strong>in</strong>e sites. 65<br />

O<strong>the</strong>r direct plasm<strong>in</strong>ogen <strong>and</strong> plasm<strong>in</strong> <strong>in</strong>hibitors <strong>in</strong>clude antithromb<strong>in</strong> III,<br />

α2-antitryps<strong>in</strong> <strong>and</strong> C2-<strong>in</strong>activators. These <strong>in</strong>hibitors have some activity <strong>in</strong> vitro but<br />

limited activity <strong>in</strong> plasma. 28<br />

2.9.2 Inhibitors of Plasm<strong>in</strong>ogen Activators<br />

Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor 1 <strong>and</strong> plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor 2<br />

(PAI-2) are important <strong>in</strong>hibitors of tPA <strong>and</strong> uPA. Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor 1<br />

<strong>and</strong> PAI-2 are present <strong>in</strong> low concentrations <strong>in</strong> plasma. The concentrations are<br />

<strong>in</strong>creased dur<strong>in</strong>g neoplasia, sepsis <strong>and</strong> <strong>in</strong>flammation. The PAIs are secreted <strong>in</strong><br />

response to thromb<strong>in</strong>, endotox<strong>in</strong>, tumor necrosis factor (TNF) <strong>and</strong> <strong>in</strong>terleuk<strong>in</strong>-1<br />

(IL-1). Increased concentrations of PAI-1 have been used as a negative<br />

9, 28<br />

prognostic marker <strong>in</strong> certa<strong>in</strong> cancers <strong>in</strong> people.<br />

The PAI-1 is syn<strong>the</strong>sized by endo<strong>the</strong>lial cells, hepatocytes <strong>and</strong> is stored <strong>in</strong><br />

<strong>the</strong> α granules of platelets. When platelets are activated, <strong>the</strong>y release PAI-1,<br />

<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> local concentration of PAI-1 at a clot <strong>and</strong> <strong>the</strong>refore <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

proteolytic stability of fibr<strong>in</strong> matrix. 7 The PAI-1 rapidly <strong>in</strong>activates tPA by form<strong>in</strong>g<br />

a reversible complex. The activity of PAI-1 is decreased by activated prote<strong>in</strong> C<br />

<strong>in</strong>creas<strong>in</strong>g fibr<strong>in</strong>olysis. 9<br />

Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-1 also forms a reversible complex with<br />

s<strong>in</strong>gle cha<strong>in</strong> uPA <strong>and</strong> tPA <strong>and</strong> <strong>in</strong>hibits <strong>receptor</strong> bound uPA <strong>and</strong> tPA from caus<strong>in</strong>g<br />

23


plasm<strong>in</strong>ogen activation. Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-1 forms a 1:1 complex<br />

with tPA <strong>and</strong> uPA. Plasm<strong>in</strong>ogen activator-1 is present <strong>in</strong> plasma <strong>and</strong> o<strong>the</strong>r<br />

biological fluids <strong>in</strong> an active <strong>and</strong> latent form. The active form does not require any<br />

conformational change to produce its effect. Active PAI-1 can be spontaneously<br />

reverted to latent PAI-1. Latent PAI-1 can be activated by phosphatidyl<strong>in</strong>ositol<br />

which is present <strong>in</strong> phospholipids vesicles from cell membranes. The active PAI-<br />

1 <strong>in</strong>teracts with vitronect<strong>in</strong>, stabiliz<strong>in</strong>g <strong>the</strong> active PAI-1 <strong>and</strong> decreas<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g of<br />

vitronect<strong>in</strong> to cellular <strong>receptor</strong>s such as those for uPA <strong>and</strong> tPA. 7<br />

Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-2 is expressed by placenta, monocytes<br />

<strong>and</strong> macrophages. Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-2 <strong>in</strong>hibits uPA very rapidly but<br />

9, 28<br />

<strong>in</strong>hibits tPA very slowly.<br />

2.10 Fibr<strong>in</strong>olysis <strong>and</strong> <strong>the</strong> Dog<br />

Dogs have a very potent fibr<strong>in</strong>olytic system compared to people,<br />

particularly dur<strong>in</strong>g pulmonary thromboembolism. 71, 72 In one study, a s<strong>in</strong>gle<br />

<strong>in</strong>duced pulmonary embolus rema<strong>in</strong>ed <strong>in</strong> <strong>the</strong> pulmonary vasculature of a dog for<br />

5 days. 71 In people with a similar lesion, resolution is usually <strong>in</strong>complete even<br />

after one year. 71 The difference may be because can<strong>in</strong>e platelets reveal<br />

plasm<strong>in</strong>ogen activator, tPA <strong>and</strong> uPA, <strong>and</strong> plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-1<br />

activity, where as human platelets exhibit primarily PAI-1 activity. Endo<strong>the</strong>lial<br />

cells <strong>in</strong> <strong>the</strong> dog also secrete uPA <strong>and</strong> likely play a role <strong>in</strong> <strong>the</strong> breakdown of clots<br />

<strong>in</strong> <strong>the</strong> pulmonary vasculature. Concentrations of uPA <strong>in</strong> <strong>the</strong> membranes of can<strong>in</strong>e<br />

platelets have been shown to be approximately 50 times greater than <strong>in</strong><br />

membranes of human platelets. 71 This difference may play an important role <strong>in</strong><br />

<strong>the</strong> lack of problems <strong>in</strong> veter<strong>in</strong>ary patients with deep ve<strong>in</strong> thrombosis <strong>and</strong><br />

24


pulmonary thromboembolism compared to similar diseases, <strong>in</strong>juries <strong>and</strong> degrees<br />

of immobility <strong>in</strong> people.<br />

2.11 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Kidney<br />

High concentrations of <strong>urok<strong>in</strong>ase</strong> are syn<strong>the</strong>sized <strong>in</strong> <strong>the</strong> kidney. 40 In<br />

particular syn<strong>the</strong>sis of uPA is evident <strong>in</strong> <strong>the</strong> medullary rays <strong>and</strong> epi<strong>the</strong>lial cells of<br />

<strong>the</strong> proximal <strong>and</strong> distal kidney tubules <strong>in</strong> <strong>the</strong> mouse <strong>and</strong> human. 42-44 Urok<strong>in</strong>ase<br />

is also syn<strong>the</strong>sized <strong>and</strong> bound <strong>in</strong> human glomerular visceral epi<strong>the</strong>lial cells <strong>in</strong><br />

culture. 44, 45 Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> appear to be very important <strong>in</strong> <strong>the</strong><br />

pathophysiology of many renal diseases.<br />

Glomerulosclerosis causes progressive glomerular <strong>in</strong>jury <strong>in</strong> people due to<br />

an accumulation of extracellular matrix <strong>in</strong> <strong>the</strong> glomerular mesangium. This is a<br />

common problem <strong>in</strong> diabetic nephropathy <strong>in</strong> people <strong>and</strong> has been shown <strong>in</strong> rats<br />

<strong>and</strong> mice as well. 73, 74 Glomerular mesangial cells are a major source of<br />

extracellular matrix production <strong>in</strong> chronic glomerular disease <strong>and</strong> cultured<br />

mesangial cells produce uPA, tPA <strong>and</strong> PAI-1. 75, 76 S<strong>in</strong>ce abnormal extracellular<br />

matrix accumulation is often preceded or comb<strong>in</strong>ed with an <strong>in</strong>creased expression<br />

of extracellular matrix degrad<strong>in</strong>g enzymes 77 , PAI-1 has been implicated as a<br />

mediator of extracellular matrix accumulation <strong>in</strong> renal disease. 78 In cultured<br />

human mesangial cells, low-density-lipoprote<strong>in</strong> (LDL) appears to upregulate PAI-<br />

1 syn<strong>the</strong>sis <strong>and</strong> activity, <strong>and</strong> uPA <strong>and</strong> tPA after long term <strong>in</strong>cubation <strong>in</strong> biphasic<br />

patterns. Upregulation of PAI-1, uPA <strong>and</strong> tPA may be mediated by delayed<br />

prote<strong>in</strong> k<strong>in</strong>ase C activation associated with <strong>in</strong>creased PAI activity. Prote<strong>in</strong> k<strong>in</strong>ase<br />

C is activated by diacylglycerol (DAG), a product of phosphatidyl<strong>in</strong>ositol.<br />

Phosphatidyl<strong>in</strong>ositol turnover is stimulated by oxidized LDL <strong>in</strong> culture. In vivo this<br />

25


may favor an accumulation of matrix with<strong>in</strong> <strong>the</strong> kidney lead<strong>in</strong>g to<br />

glomerulosclerosis. 79<br />

Renal ischemia <strong>and</strong> reperfusion <strong>in</strong>jury is mediated by plasm<strong>in</strong>ogen<br />

activators as well as <strong>the</strong> previously described free radicals, leukocytes, cytok<strong>in</strong>es<br />

prote<strong>in</strong>ases. 80, 81 Renal ischemia/reperfusion <strong>in</strong>jury is often encountered <strong>in</strong><br />

surgery particularly dur<strong>in</strong>g procedures <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> vasculature or<br />

transplantation. 80 In a rabbit model of renal ischemia/reperfusion <strong>the</strong> expression<br />

of uPA <strong>and</strong> tPA was down-regulated <strong>and</strong> PAI-1 was up-regulated <strong>in</strong> cell lysates<br />

of <strong>the</strong> ischemic kidney compared to <strong>the</strong> non-ischemic kidney. Fibr<strong>in</strong>olytic activity<br />

was also lower <strong>in</strong> <strong>the</strong> ischemic kidney than <strong>the</strong> non-ischemic kidney. Repression<br />

of fibr<strong>in</strong>olysis may contribute to <strong>the</strong> progression of renal damage <strong>in</strong> this model. 80<br />

In immune mediated nephritis or nephrotoxic nephritis, fibr<strong>in</strong> deposition,<br />

glomerular cell proliferation <strong>and</strong> macrophage <strong>in</strong>filtration are present. 82 Recovery<br />

from this disease requires plasm<strong>in</strong> mediated fibr<strong>in</strong> degradation. Plasm<strong>in</strong> is<br />

activated by tPA <strong>and</strong> uPA that are produced <strong>in</strong> <strong>the</strong> kidney. 45, 83, 84 In many<br />

glomerulonephropathies, fibr<strong>in</strong>olysis appears to be <strong>in</strong>hibited by <strong>in</strong>creased local<br />

release of PAI-1. 85 Urok<strong>in</strong>ase <strong>receptor</strong> may also have a role <strong>in</strong> <strong>the</strong> long term<br />

development of glomerulosclerosis <strong>in</strong> <strong>the</strong>se disease processes. Glomerular<br />

uPAR is <strong>in</strong>creased <strong>in</strong> an accelerated model of nephrotoxic nephritis <strong>in</strong> <strong>the</strong> rat.<br />

Urok<strong>in</strong>ase may facilitate local fibr<strong>in</strong>olysis by b<strong>in</strong>d<strong>in</strong>g uPA <strong>and</strong> lead<strong>in</strong>g to<br />

degradation of <strong>the</strong> glomerular matrix. 86<br />

2.12 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Ureter<br />

Little is known about uPA <strong>and</strong> uPAR <strong>in</strong> <strong>the</strong> ureter. In <strong>the</strong> ureter of healthy people<br />

uPA <strong>and</strong> uPAR exhibit weak to moderate immunohistochemical sta<strong>in</strong><strong>in</strong>g<br />

26


<strong>in</strong> <strong>the</strong> cytoplasm of both uro<strong>the</strong>lial <strong>and</strong> stromal cells. 87<br />

2.13 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Ur<strong>in</strong>ary Bladder<br />

Urok<strong>in</strong>ase <strong>and</strong> uPAR have been extensively evaluated <strong>in</strong> people with<br />

malignancy of <strong>the</strong> ur<strong>in</strong>ary bladder. 88-90 Urok<strong>in</strong>ase has <strong>in</strong>creases significantly <strong>in</strong><br />

89, 90<br />

malignant cell l<strong>in</strong>es <strong>and</strong> is believed be a negative prognostic marker.<br />

Concentration of uPAR does not correlate with severity of disease. 8<br />

The ur<strong>in</strong>ary bladder functions as an impermeable barrier. 46, 91 In<br />

mammals, sodium <strong>and</strong> potassium are transported across <strong>the</strong> epi<strong>the</strong>lium of <strong>the</strong><br />

ur<strong>in</strong>ary bladder from <strong>the</strong> ur<strong>in</strong>e to <strong>the</strong> <strong>in</strong>terstitial space. Sodium transport occurs<br />

through amiloride-sensitive Na + channels <strong>in</strong> <strong>the</strong> apical membrane. Once Na + is <strong>in</strong><br />

<strong>the</strong> cell, it is extruded across <strong>the</strong> basolateral membrane by Na +- K + ATPase <strong>in</strong><br />

exchange for K + which is actively transported back <strong>in</strong>to <strong>the</strong> cell via K + channels <strong>in</strong><br />

<strong>the</strong> basolateral cell membrane. On average <strong>the</strong>re is one amiloride-sensitive Na +<br />

channel <strong>in</strong> <strong>the</strong> rabbit ur<strong>in</strong>ary bladder for every 40 µm 2 of apical membrane. These<br />

channels are hydrolyzed by endogenous uPA released from <strong>the</strong> kidney. After<br />

exposure to <strong>urok<strong>in</strong>ase</strong>, <strong>the</strong> normal Na + channel loses its amiloride <strong>and</strong> becomes<br />

unstable <strong>in</strong> <strong>the</strong> membrane. 92 The significance of this relationship is unknown.<br />

In cows, <strong>the</strong> ur<strong>in</strong>ary bladder uro<strong>the</strong>lium is <strong>the</strong> source of ur<strong>in</strong>ary<br />

plasm<strong>in</strong>ogen activators, <strong>in</strong>clud<strong>in</strong>g uPA. In o<strong>the</strong>r mammalian species, <strong>the</strong> kidney<br />

is <strong>the</strong> primary source of ur<strong>in</strong>ary plasm<strong>in</strong>ogen activators . 46 The significance of<br />

this f<strong>in</strong>d<strong>in</strong>g is unknown.<br />

2.14 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Prostate<br />

Evaluation of uPA <strong>and</strong> uPAR <strong>in</strong> <strong>the</strong> prostate is focused on prostate cancer<br />

<strong>in</strong> people <strong>and</strong> models of prostatic disease <strong>in</strong> mice <strong>and</strong> rats. 93-95 The prostate<br />

27


gl<strong>and</strong> is comprised of different lobes that are easily dist<strong>in</strong>guished <strong>in</strong> rats. 96 In a<br />

study by Wilson, plasm<strong>in</strong>ogen activity varied significantly when <strong>the</strong> variables of<br />

age, region of <strong>the</strong> prostate <strong>and</strong> castration were evaluated. Activity <strong>in</strong> all lobes<br />

was low at 4 months <strong>and</strong> <strong>in</strong>creased <strong>in</strong> <strong>the</strong> dorsal <strong>and</strong> anterior lobes at 31 months.<br />

Plasm<strong>in</strong>ogen activity <strong>in</strong> <strong>the</strong> lateral lobe did not change with age. Follow<strong>in</strong>g<br />

castration, plasm<strong>in</strong>ogen activity <strong>in</strong>creased by 3 to 5 fold <strong>in</strong> <strong>the</strong> ventral lobe <strong>in</strong> 4,<br />

18 <strong>and</strong> 31 month old rats. Involution also <strong>in</strong>creased <strong>in</strong> <strong>the</strong> ventral lobe of <strong>the</strong> 4<br />

<strong>and</strong> 18 month old rats. These differences may reflect changes <strong>in</strong> cell function<br />

such as secretion, <strong>in</strong>flammatory tissue pathology, altered hormone regulation of<br />

<strong>the</strong>se gl<strong>and</strong>s or unknown factors. 97<br />

Ventral prostates <strong>in</strong> older Fischer 344 rats demonstrated 25 times greater<br />

plasm<strong>in</strong>ogen activator activity per unit of prote<strong>in</strong> than juvenile rats. As rat aged<br />

<strong>the</strong> activity of <strong>urok<strong>in</strong>ase</strong> versus tissue-type plasm<strong>in</strong>ogen activator changed.<br />

Urok<strong>in</strong>ase is predom<strong>in</strong>ant <strong>in</strong> <strong>the</strong> 4 <strong>and</strong> 16 month old rats. Tissue-type<br />

plasm<strong>in</strong>ogen activator is more predom<strong>in</strong>ant <strong>in</strong> <strong>the</strong> 30 month old rats. 100 These<br />

f<strong>in</strong>d<strong>in</strong>gs are based on amiloride activity which is selective as a <strong>urok<strong>in</strong>ase</strong><br />

100, 101<br />

<strong>in</strong>hibitor.<br />

In people, <strong>the</strong> prostate is more commonly divided <strong>in</strong>to zones <strong>and</strong> <strong>the</strong><br />

development of pathology is different for <strong>the</strong>se specific zones. 97 In men, 80% of<br />

prostate cancer is seen <strong>in</strong> <strong>the</strong> peripheral zone of <strong>the</strong> gl<strong>and</strong>. 17 Proteases are<br />

important <strong>in</strong> mediat<strong>in</strong>g cellular atrophy <strong>and</strong> changes <strong>in</strong> tissue organization which<br />

occur <strong>in</strong> normal development <strong>and</strong> <strong>in</strong> pathologic conditions. One group of <strong>the</strong>se<br />

proteases is <strong>the</strong> plasm<strong>in</strong>ogen activators. Proteases may be important <strong>in</strong><br />

remodel<strong>in</strong>g <strong>the</strong> extracellular matrix <strong>in</strong> <strong>the</strong> prostate dur<strong>in</strong>g development. In men,<br />

28


several studies have shown that uPA is <strong>the</strong> predom<strong>in</strong>ant plasm<strong>in</strong>ogen activator <strong>in</strong><br />

17, 98, 99<br />

malignant <strong>and</strong> hyperplastic prostate tissue.<br />

2.15 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Testicle<br />

Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> have been identified <strong>in</strong> spermatozoa of<br />

mice, rats, rhesus monkeys <strong>and</strong> men. 43, 50, 102-105 Mouse spermatozoa have uPA<br />

bound to <strong>the</strong> cell surface which is believed to be acquired from genital <strong>tract</strong><br />

secretions <strong>and</strong> syn<strong>the</strong>sized by epi<strong>the</strong>lial cells <strong>in</strong> <strong>the</strong> caudal epididymis <strong>and</strong> vas<br />

deferens. 43 B<strong>in</strong>d<strong>in</strong>g of uPA occurs due to syn<strong>the</strong>sis <strong>and</strong> subsequent presence of<br />

uPAR by <strong>the</strong> germ cells dur<strong>in</strong>g spermatogenesis. 103 Urok<strong>in</strong>ase is present <strong>in</strong><br />

Sertoli cells of <strong>the</strong> rat <strong>and</strong> rhesus monkey <strong>and</strong> <strong>the</strong> Sertoli cells have been shown<br />

to secrete uPA <strong>in</strong> cycles with tPA. 50, 106 Urok<strong>in</strong>ase production is decreased <strong>in</strong><br />

cultured Sertoli cells of <strong>the</strong> rat by <strong>the</strong> presence of follicle stimulat<strong>in</strong>g hormone. 104<br />

Urok<strong>in</strong>ase is higher <strong>in</strong> <strong>the</strong> first fraction of ejaculate than <strong>in</strong> <strong>the</strong> second, suggest<strong>in</strong>g<br />

a ma<strong>in</strong>ly prostatic orig<strong>in</strong>. In cases of azoospermia <strong>in</strong> men, concentrations of<br />

measured uPA are much lower than <strong>in</strong> normal semen. 105 The role of uPA <strong>and</strong><br />

uPAR <strong>in</strong> semen is still unknown but may be l<strong>in</strong>ked to cases of <strong>in</strong>fertility.<br />

2.16 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Urethra<br />

Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> <strong>the</strong> urethra have not been reported.<br />

2.17 Urok<strong>in</strong>ase <strong>and</strong> Ur<strong>in</strong>e<br />

The ability of ur<strong>in</strong>e to lyse clots has been recognized for many years. 107-109<br />

Fibr<strong>in</strong>olytic ability is known to come from <strong>urok<strong>in</strong>ase</strong>, which is excreted <strong>in</strong>to <strong>the</strong><br />

ur<strong>in</strong>e from <strong>the</strong> kidney <strong>in</strong> most species. Ur<strong>in</strong>e samples from people have been<br />

collected <strong>in</strong> large quantities <strong>and</strong> dialyzed us<strong>in</strong>g column chromatography to<br />

evaluate <strong>the</strong> forms of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> ur<strong>in</strong>e <strong>and</strong> to measure <strong>the</strong>ir activity. 110 Both<br />

29


high <strong>and</strong> low molecular weight forms of <strong>urok<strong>in</strong>ase</strong> are present <strong>in</strong> ur<strong>in</strong>e from<br />

110, 111<br />

people.<br />

2.18 Cl<strong>in</strong>ical Importance of <strong>the</strong> Fibr<strong>in</strong>olytic System<br />

2.18.1 Coagulopathies <strong>and</strong> Hypercoagulation<br />

Coagulation <strong>and</strong> fibr<strong>in</strong>olysis are believed to occur simultaneously dur<strong>in</strong>g<br />

<strong>the</strong> active state of hemostasis. Two pathologic conditions of this system are<br />

coagulopathies <strong>and</strong> hypercoagulable states. 28<br />

A coagulopathy due to derangements <strong>in</strong> <strong>the</strong> fibr<strong>in</strong>olytic system leads to<br />

excessive fibr<strong>in</strong>olysis with<strong>in</strong> <strong>the</strong> tissues. Increased circulat<strong>in</strong>g tissue plasm<strong>in</strong>ogen<br />

activator with<strong>in</strong> <strong>the</strong> vasculature would <strong>in</strong>crease <strong>in</strong>travascular fibr<strong>in</strong>olysis.<br />

Decreased concentration of α2-antiplasm<strong>in</strong> <strong>in</strong> circulation can produce a<br />

coagulopathy. 112-114 α2-antiplasm<strong>in</strong> concentration will decrease <strong>in</strong> response to <strong>the</strong><br />

activation of plasm<strong>in</strong>ogen which occurs <strong>in</strong> many fibr<strong>in</strong>olytic states. 112 A PAI-1<br />

deficiency could be <strong>the</strong> cause of <strong>in</strong>creased tPA <strong>and</strong> may also <strong>in</strong>crease circulat<strong>in</strong>g<br />

uPA s<strong>in</strong>ce PAI-1 <strong>in</strong>hibits both tPA <strong>and</strong> uPA. 113 Antihemostatic effects of fibr<strong>in</strong><br />

degradation products <strong>in</strong> conditions such as <strong>in</strong> dissem<strong>in</strong>ated <strong>in</strong>travascular<br />

coagulation (DIC) also lead to coagulopathies.<br />

Hypercoagulation is <strong>the</strong> result of activated coagulation factors with<br />

decreased resistance to thrombosis. In cases of <strong>in</strong>flammation <strong>and</strong> <strong>in</strong>fections <strong>in</strong><br />

<strong>the</strong> horse <strong>and</strong> cow, consumption of prote<strong>in</strong> C <strong>and</strong> antithromb<strong>in</strong> decreases <strong>the</strong><br />

host anticoagulant response to coagulation. In o<strong>the</strong>r words, a lack of<br />

plasm<strong>in</strong>ogen activators secondary to <strong>in</strong>creased PAIs <strong>and</strong> consumption of<br />

circulat<strong>in</strong>g anticoagulants is occurr<strong>in</strong>g with<strong>in</strong> <strong>the</strong> body. 9 Therefore, thrombosis<br />

occurs when <strong>in</strong>appropriate <strong>in</strong>creases <strong>in</strong> fibr<strong>in</strong>olytic <strong>in</strong>hibitors reduce fibr<strong>in</strong>olysis.<br />

30


Inflammation, <strong>and</strong> ischemia can cause thrombosis by decreas<strong>in</strong>g plasm<strong>in</strong>ogen,<br />

plasm<strong>in</strong>ogen activators <strong>and</strong> Prote<strong>in</strong> C. Antithromb<strong>in</strong> III, which <strong>in</strong>activates Factor<br />

Xa <strong>and</strong> thromb<strong>in</strong>, is also decreased <strong>in</strong> <strong>the</strong>se disease states. 3 Hypercoagulation<br />

precedes cl<strong>in</strong>ical DIC.<br />

Secondary fibr<strong>in</strong>olysis is a physiologic response to systemic large vessel<br />

<strong>and</strong> microvascular thrombosis that occurs dur<strong>in</strong>g hypercoagulation <strong>and</strong> DIC.<br />

Excessive fibr<strong>in</strong> forms <strong>in</strong>dependent of activation of <strong>the</strong> coagulation cascade.<br />

Inflammatory cells <strong>and</strong> platelets carry <strong>the</strong>ir own <strong>in</strong>ternal stores of<br />

plasm<strong>in</strong>ogen activators <strong>and</strong> <strong>in</strong>hibitors to sites of <strong>in</strong>flammation <strong>and</strong> <strong>in</strong>fection.<br />

Urok<strong>in</strong>ase <strong>receptor</strong> is produced <strong>and</strong> present on <strong>the</strong> cell membranes of<br />

granulocytes <strong>and</strong> monocytes. Urok<strong>in</strong>ase will b<strong>in</strong>d to uPAR on granulocytes <strong>and</strong><br />

monocytes <strong>and</strong> be <strong>in</strong>troduced to <strong>in</strong>flammatory sites by migrat<strong>in</strong>g cells. The<br />

<strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen system consist<strong>in</strong>g of uPA, uPAR <strong>and</strong> <strong>in</strong>hibitors plays<br />

an important role <strong>in</strong> neutrophil, macrophage <strong>and</strong> platelet activation, adhesion,<br />

migration <strong>and</strong> extravasation. 115 Granulocytes have <strong>the</strong> highest expression of<br />

uPAR among blood cells. Tissue plasm<strong>in</strong>ogen activator <strong>and</strong> PAI-1 <strong>and</strong> 2 are also<br />

present <strong>in</strong> granulocytes <strong>and</strong> monocytes. PAI-1 <strong>and</strong> uPA are present <strong>in</strong> <strong>the</strong><br />

platelets of dogs. 71 Upregulation of <strong>the</strong> <strong>in</strong>flammatory systems <strong>in</strong> a case such as<br />

sepsis causes derangements <strong>in</strong> <strong>the</strong> coagulation/hemostatic system, <strong>in</strong>clud<strong>in</strong>g<br />

consumption of coagulation factors, <strong>in</strong>creased coagulation/hemostatic activity,<br />

<strong>and</strong> reduced fibr<strong>in</strong>olysis. 116, 117 Dur<strong>in</strong>g sepsis circulat<strong>in</strong>g leukocytes release uPA,<br />

tPA, PAI-1 <strong>and</strong> PAI-2. Which, <strong>in</strong> conjunction with fibr<strong>in</strong> deposits <strong>and</strong> with<br />

<strong>in</strong>flammatory responses, may cause <strong>the</strong> persistence of fibr<strong>in</strong>, thrombosis <strong>and</strong><br />

subsequent multiple organ failure. 21<br />

31


Table 2.3 Pathophysiologic factors that regulate fibr<strong>in</strong>olysis/thrombolysis. 9<br />

Promote Limit<br />

Plasm<strong>in</strong>ogen <strong>in</strong>corporation <strong>in</strong>to a thrombus via<br />

fibr<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g<br />

Fibr<strong>in</strong> crossl<strong>in</strong>k<strong>in</strong>g by factor XIIIa<br />

Platelet clot re<strong>tract</strong>ion Low ratio of tPA to plasm<strong>in</strong>ogen activator<br />

<strong>in</strong>hibitor (PAI-1 or 2)<br />

Endo<strong>the</strong>lial cell <strong>and</strong> macrophage biosyn<strong>the</strong>sis Low ratio of endo<strong>the</strong>lial surface to thrombus<br />

of tPA <strong>and</strong> uPA<br />

volume <strong>in</strong> large vessels<br />

B<strong>in</strong>d<strong>in</strong>g of tPA to fibr<strong>in</strong> Efficient <strong>in</strong>hibition of free plasm<strong>in</strong> by α2antiplasm<strong>in</strong><br />

Enhanced tPA or uPA activity <strong>in</strong> <strong>the</strong> presence<br />

of fibr<strong>in</strong><br />

α2-antiplasm<strong>in</strong> impairs plasm<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to fibr<strong>in</strong><br />

Protection of plasm<strong>in</strong> (bound to fibr<strong>in</strong>) from α2antiplasm<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g<br />

B<strong>in</strong>d<strong>in</strong>g of α2-antiplasm<strong>in</strong> to fibr<strong>in</strong><br />

Plasm<strong>in</strong> activation of factor XII Increased activated prote<strong>in</strong> C decreases PAI-1<br />

activity<br />

2.18.2 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> <strong>the</strong> Vascular<br />

System<br />

Fibr<strong>in</strong>olysis is <strong>in</strong>itiated <strong>in</strong> a damaged vessel wall follow<strong>in</strong>g production of<br />

tissue-type <strong>and</strong> <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activators by <strong>the</strong> endo<strong>the</strong>lial cell. 118<br />

Increased plasm<strong>in</strong>ogen activator expression <strong>in</strong> <strong>the</strong> vessel wall facilitates vascular<br />

smooth muscle migration <strong>and</strong> cell proliferation for vessel heal<strong>in</strong>g by <strong>in</strong>itiat<strong>in</strong>g a<br />

proteolytic cascade of matrix degradation. 118 Angiogenic properties of uPAR are<br />

related to b<strong>in</strong>d<strong>in</strong>g of <strong>and</strong> improv<strong>in</strong>g adhesion properties of vitronect<strong>in</strong>, which is an<br />

important extracellular matrix prote<strong>in</strong> <strong>in</strong> angiogenesis dur<strong>in</strong>g vascular remodel<strong>in</strong>g<br />

<strong>and</strong> repair. 31 In normal saphenous ve<strong>in</strong>s <strong>and</strong> <strong>in</strong>ternal mammary arteries of<br />

people, tPA, uPA <strong>and</strong> PAI are m<strong>in</strong>imally expressed <strong>in</strong> <strong>the</strong> endo<strong>the</strong>lium, <strong>in</strong>timal<br />

<strong>and</strong> medial smooth muscle cells. The uPAR is observed on <strong>the</strong> endo<strong>the</strong>lium of<br />

normal saphenous ve<strong>in</strong> or <strong>in</strong>ternal mammary artery but absent on <strong>the</strong> smooth<br />

muscle cells. 118 A recent study of mouse arteriogenesis suggested that uPA<br />

itself is <strong>the</strong> most important promoter of leukocytes required for collateral artery<br />

growth. Association of leukocyte <strong>in</strong>filtration with arteriogenesis is strongly<br />

reduced <strong>in</strong> uPA-/- but not <strong>in</strong> uPAR-/- or tPA-/- mice. 119<br />

32


2.18.3 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor <strong>in</strong> Wound Heal<strong>in</strong>g<br />

Urok<strong>in</strong>ase <strong>and</strong> uPAR are important <strong>in</strong> clot lysis, <strong>and</strong> <strong>the</strong> <strong>in</strong>flammatory,<br />

proliferative <strong>and</strong> maturation phases of wound heal<strong>in</strong>g. Dur<strong>in</strong>g clot lysis, <strong>urok<strong>in</strong>ase</strong><br />

is released from <strong>the</strong> tissues <strong>and</strong> <strong>in</strong>flammatory cells. Urok<strong>in</strong>ase cleaves<br />

plasm<strong>in</strong>ogen to plasm<strong>in</strong> which leads to fibr<strong>in</strong> breakdown. 3 In <strong>the</strong> <strong>in</strong>flammatory<br />

phase, uPA <strong>and</strong> uPAR aid <strong>in</strong> at<strong>tract</strong>ion, adhesion <strong>and</strong> migration of neutrophils<br />

<strong>and</strong> monocytes <strong>in</strong>to <strong>the</strong> <strong>in</strong>jured tissue. 9 Dur<strong>in</strong>g <strong>the</strong> proliferative phase, uPA is<br />

important <strong>in</strong> stimulat<strong>in</strong>g <strong>the</strong> growth of capillaries <strong>in</strong>to <strong>the</strong> granulation bed through<br />

its angiogenic properties. In <strong>the</strong> maturation phase, uPA-uPAR complexes<br />

cont<strong>in</strong>ue to contribute to break down of fibr<strong>in</strong> <strong>in</strong> <strong>the</strong> provisional matrix to allow<br />

fibroblasts to enter <strong>and</strong> make true extracellular matrix. Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong> would also aid <strong>in</strong> epi<strong>the</strong>lialization because of <strong>the</strong> high aff<strong>in</strong>ity for uPAR<br />

to vitronect<strong>in</strong>, which is important <strong>in</strong> allow<strong>in</strong>g epidermal cells to <strong>in</strong>teract with <strong>the</strong><br />

31, 120<br />

underly<strong>in</strong>g extracellular matrix.<br />

In a rat model of tendon heal<strong>in</strong>g, uPAR <strong>and</strong> uPA accumulation <strong>in</strong> <strong>the</strong><br />

heal<strong>in</strong>g tendon was regulated h<strong>in</strong> a time dependant manner. Changes <strong>in</strong><br />

concentrations of uPA <strong>and</strong> uPAR correlated with phases of wound heal<strong>in</strong>g. Both<br />

uPAR <strong>and</strong> uPA expression peaked at day 14 <strong>and</strong> decreased at day 21 post-<br />

<strong>in</strong>jury. 60<br />

2.19 Summary<br />

The fibr<strong>in</strong>olytic system has many roles both with<strong>in</strong> <strong>and</strong> outside of <strong>the</strong><br />

vascular system. Urok<strong>in</strong>ase is an activator of <strong>the</strong> fibr<strong>in</strong>olytic system. Urok<strong>in</strong>ase is<br />

present <strong>in</strong> parts of <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of mammals <strong>and</strong> is excreted <strong>in</strong> ur<strong>in</strong>e. The<br />

33


exact purpose of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> ur<strong>in</strong>e is unknown but it may prevent obstruction of<br />

<strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> by blood clots <strong>and</strong> fibr<strong>in</strong>.<br />

Identification <strong>and</strong> quantification of uPA <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e of dogs would suggest<br />

that uPA has some role <strong>in</strong> <strong>the</strong> health of <strong>the</strong> can<strong>in</strong>e ur<strong>in</strong>ary <strong>tract</strong>. Localization of<br />

uPA <strong>in</strong> <strong>the</strong> prostate of can<strong>in</strong>es may be important s<strong>in</strong>ce castration prior to ur<strong>in</strong>ary<br />

diversion surgery may be beneficial <strong>in</strong> decreas<strong>in</strong>g post-operative bleed<strong>in</strong>g. Use<br />

of drugs such as ε-am<strong>in</strong>ocaproic acid that competitively <strong>in</strong>hibit plasm<strong>in</strong>ogen<br />

activator substances have been used successfully <strong>in</strong> people to <strong>in</strong>hibit uPA <strong>and</strong><br />

decrease bleed<strong>in</strong>g; however dosages have not been established <strong>in</strong> dogs. If uPA<br />

is identified <strong>in</strong> ur<strong>in</strong>e from dogs <strong>in</strong> significant concentrations, <strong>the</strong> possibility of<br />

explor<strong>in</strong>g its role <strong>in</strong> unhealthy dogs <strong>and</strong> <strong>the</strong> use of pharmacologic agents <strong>in</strong><br />

manipulat<strong>in</strong>g its activity can be explored.<br />

2.20 References<br />

1. Guyton AC, Hall JE. Hemostasis <strong>and</strong> Blood Coagulation <strong>in</strong> Textbook of<br />

Medical Physiology. Vol 1. 9 ed. Philadephia, Pennsylvania: W.B.<br />

Saunders Company; 2000.<br />

2. Kerw<strong>in</strong> SC, Mauld<strong>in</strong> GE. Hemostasis, Surgical Bleed<strong>in</strong>g, <strong>and</strong> Transfusion<br />

<strong>in</strong> Textbook of Small Animal Surgery. Vol 1. 3 ed. Philadelphia, PA:<br />

Saunders; 2003.<br />

3. Collen D. The plasm<strong>in</strong>ogen (fibr<strong>in</strong>olytic) system. Thromb Haemost.<br />

1999;82:259-270.<br />

4. Roncales FJ, Sancho JM. Coagulation Activators <strong>in</strong> Schalm's Veter<strong>in</strong>ary<br />

Hematology. Vol 1. 5 ed. Baltimore, MD: Lippencott Williams & Wilk<strong>in</strong>s;<br />

2000.<br />

5. Fe<strong>in</strong>gold HM, Pivacek LE, Melaragon AJ, Vareri CR. Coagulation assays<br />

<strong>and</strong> platelet aggregation patterns <strong>in</strong> humans, baboon, <strong>and</strong> can<strong>in</strong>e blood.<br />

Am J Vet Res. 1986;47(10):2197-2199.<br />

34


6. Jimenez C, Fern<strong>and</strong>ez F. Inflammation, K<strong>in</strong><strong>in</strong>s, <strong>and</strong> Complement System<br />

Interaction with Hemostasis <strong>in</strong> Schalm's Veter<strong>in</strong>ary Hematology. Vol 1. 5<br />

ed. Baltimore, MD: Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s; 2000.<br />

7. Dobrovolsky AB, Titaeva EV. The Fibr<strong>in</strong>olysis Systen: Regulation of<br />

activity <strong>and</strong> <strong>the</strong> physiologic functions of its ma<strong>in</strong> components.<br />

Biochemistry (Moscow). 2002;67(1):116-126.<br />

8. Casella R, Shariat SF, Monoski MA, Lerner SP. Ur<strong>in</strong>ary levels of<br />

<strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator <strong>and</strong> its <strong>receptor</strong> <strong>in</strong> <strong>the</strong> detection of<br />

bladder carc<strong>in</strong>oma. Cancer. Dec 15 2002;95(12):2494-2499.<br />

9. Darien BJ, P.A. Jones, et al., ed. Fibr<strong>in</strong>olytic System. 3 ed. Philadelphia:<br />

Lippencott Williams <strong>and</strong> Wilkens; 2000. Feldman BF, J.G. Z<strong>in</strong>kel <strong>and</strong> N.C.<br />

Ja<strong>in</strong>, ed. Schalm's Veter<strong>in</strong>ary Hematology.<br />

10. Dubeau L, Jones PA, Rideout WM, 3rd, Laug WE. Differential regulation<br />

of plasm<strong>in</strong>ogen activators by epidermal growth factor <strong>in</strong> normal <strong>and</strong><br />

neoplastic human uro<strong>the</strong>lium. Cancer Res. Oct 1 1988;48(19):5552-5556.<br />

11. du Toit PJ, van Aswegen CH, du Plessis DJ. The effect of essential fatty<br />

acids on growth <strong>and</strong> <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator production <strong>in</strong><br />

human prostate DU-145 cells. Prostagl<strong>and</strong><strong>in</strong>s Leukot Essent Fatty Acids.<br />

Sep 1996;55(3):173-177.<br />

12. Florqu<strong>in</strong> S, van den Berg JG, Olszyna DP, et al. Release of <strong>urok<strong>in</strong>ase</strong><br />

plasm<strong>in</strong>ogen activator <strong>receptor</strong> dur<strong>in</strong>g urosepsis <strong>and</strong> endotoxemia. Kidney<br />

Int. Jun 2001;59(6):2054-2061.<br />

13. Memarzadeh S, Kozak KR, Chang L, et al. Urok<strong>in</strong>ase plasm<strong>in</strong>ogen<br />

activator <strong>receptor</strong>: Prognostic biomarker for endometrial cancer. Proc Natl<br />

Acad Sci U S A. Aug 6 2002;99(16):10647-10652.<br />

14. Ray P, Bhatti R, Gadarowski J, Bell N, Nasrudd<strong>in</strong> S. Inhibitory effect of<br />

amiloride on <strong>the</strong> <strong>urok<strong>in</strong>ase</strong> plasm<strong>in</strong>ogen activators <strong>in</strong> prostatic cancer.<br />

Tumour Biol. 1998;19(1):60-64.<br />

15. Ruiz de Gopegui RM, Luis. Anticoagulant <strong>and</strong> Fibr<strong>in</strong>olytic Drugs. 5 ed.<br />

Philadelphia: Lippencott Williams <strong>and</strong> Wilkens; 2000.<br />

16. Yoshida E, Ohmura S, Sugiki M, Maruyama M, Mihara H. Prostatespecific<br />

antigen activates s<strong>in</strong>gle-cha<strong>in</strong> <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen<br />

activator. Int J Cancer. Dec 11 1995;63(6):863-865.<br />

17. Plas E, Carroll VA, Jilch R, et al. Variations of components of <strong>the</strong><br />

plasm<strong>in</strong>ogen activation system with <strong>the</strong> cell cycle <strong>in</strong> benign prostate tissue<br />

<strong>and</strong> prostate cancer. Cytometry. Jun 15 2001;46(3):184-189.<br />

35


18. Uszynski M, Perlik M, Uszynski W, Zekanowska E. Urok<strong>in</strong>ase<br />

plasm<strong>in</strong>ogen activator (uPA) <strong>and</strong> it's <strong>receptor</strong> (uPAR) <strong>in</strong> gestational<br />

tissues; Measurements <strong>and</strong> cl<strong>in</strong>ical implications. Eur J Obstet Gynecol<br />

Reprod Biol. May 10 2004;114(1):54-58.<br />

19. Ke SH, Coombs GS, Tachias K, Navre M, Corey DR, Madison EL.<br />

Dist<strong>in</strong>guish<strong>in</strong>g <strong>the</strong> specificities of closely related proteases. Role of P3 <strong>in</strong><br />

substrate <strong>and</strong> <strong>in</strong>hibitor discrim<strong>in</strong>ation between tissue-type plasm<strong>in</strong>ogen<br />

activator <strong>and</strong> <strong>urok<strong>in</strong>ase</strong>. J Biol Chem. Jun 27 1997;272(26):16603-16609.<br />

20. van Giezen JJ, Chung AHJE, Vegter CB, Bouma BN, Jansen JW.<br />

Fibr<strong>in</strong>olytic activity <strong>in</strong> blood is distributed over a cellular <strong>and</strong> <strong>the</strong> plasma<br />

fraction which can be modulated separately. Thromb Haemost. Dec<br />

1994;72(6):887-892.<br />

21. Robbie LA, Dummer S, Boo<strong>the</strong> NA, Adey GD, Bennett B. Plasm<strong>in</strong>ogen<br />

activator <strong>in</strong>hibitor 2 <strong>and</strong> <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator <strong>in</strong> plasma<br />

<strong>and</strong> leukocytes <strong>in</strong> patients with severe sepsis. Br J Haematol.<br />

2000;109(2):342-348.<br />

22. Blasi F, Stoppelli MP, Cubellis MV. The <strong>receptor</strong> for <strong>urok<strong>in</strong>ase</strong>plasm<strong>in</strong>ogen<br />

activator. J Cell Biochem. 1986;32(3):179-186.<br />

23. Gyetko MR, Shollenberger SB, Sitr<strong>in</strong> RG. Urok<strong>in</strong>ase expression <strong>in</strong><br />

mononuclear phagocytes: cytok<strong>in</strong>e-specific modulation by <strong>in</strong>terferongamma<br />

<strong>and</strong> tumor necrosis factor-alpha. J Leukoc Biol. Mar<br />

1992;51(3):256-263.<br />

24. Piguet PF, Ves<strong>in</strong> C, Laperousaz CD, Rochat A. Role of plasm<strong>in</strong>ogen<br />

activators <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> platelet k<strong>in</strong>etics. The Hematology<br />

Journal. 2000;1:199-205.<br />

25. Pluskota E, Soloviev DA, Bdeir K, C<strong>in</strong>es DB, Plow EF. Integr<strong>in</strong> alpha-mbeta-2<br />

orchestrates <strong>and</strong> accelerates plasm<strong>in</strong>ogen activation <strong>and</strong><br />

fibr<strong>in</strong>olysis by neutrophils. J Biol Chem. 2004;279(17):18063-18072.<br />

26. Sitr<strong>in</strong> RG, Pan PM, Harper HA, Todd III RF, Harsh DM, Blackwood RA.<br />

Cluster<strong>in</strong>g of <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>s (uPAR; CD87) <strong>in</strong>duces pro<strong>in</strong>flammatory<br />

signal<strong>in</strong>g <strong>in</strong> human polymorphonuclear neutrophils. J Immunol.<br />

2000;165:3341-3349.<br />

27. Schmaier AH. Plasma kallikre<strong>in</strong>/k<strong>in</strong><strong>in</strong> system: a revised hypo<strong>the</strong>sis for its<br />

activation <strong>and</strong> its physiologic contributions. Curr Op<strong>in</strong> Hematol. Sep<br />

2000;7(5):261-265.<br />

36


28. Myohanen H. Regulation of Plasm<strong>in</strong>ogen Activation. Hels<strong>in</strong>iki:<br />

Departement of Virology, Haartman Institute, University of Hels<strong>in</strong>iki; 2003.<br />

29. Joseph K, Tholanikunnel BG, Ghebrehiwet B, Kaplan AP. Interaction of<br />

high molecular weight k<strong>in</strong><strong>in</strong>ogen b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s on endo<strong>the</strong>lial cells.<br />

Thromb Haemost. 2004;91:61-70.<br />

30. Lovgren J, Airas K, Lilja H. Enzymatic action of human gl<strong>and</strong>ular kallikre<strong>in</strong><br />

2 (hK2). Substrate specificity <strong>and</strong> regulation by Zn2+ <strong>and</strong> extracellular<br />

protease <strong>in</strong>hibitors. Eur J Biochem. Jun 1999;262(3):781-789.<br />

31. Cao DJ, Guo Y-L, Colman RW. Urok<strong>in</strong>ase-type plasm<strong>in</strong>ogen activator<br />

<strong>receptor</strong> <strong>in</strong> <strong>in</strong>volved <strong>in</strong> mediat<strong>in</strong>g <strong>the</strong> apoptotic effect of cleaved high<br />

molecular weight k<strong>in</strong><strong>in</strong>ogen <strong>in</strong> human endo<strong>the</strong>lial cells. Circ Res.<br />

2004;94:1227-1234.<br />

32. Feldman BF. Cl<strong>in</strong>ical Hemostasis. Paper presented at: World Small<br />

Animal Veter<strong>in</strong>ary Association, 2002; Granada, Spa<strong>in</strong>.<br />

33. Rijken DC, Groeneveld E. Substrate specificity of tissue-type <strong>and</strong><br />

<strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activators. Biochem Biophys Res Commun.<br />

1991;174(2):432-438.<br />

34. Williams RJ. The fibr<strong>in</strong>olytic activity of ur<strong>in</strong>e. Br J Exp Pathol.<br />

1951;32:530-537.<br />

35. Di Cera E, Krem M.M. Ser<strong>in</strong>e Proteases. Vol 2. 1 ed. London: Macmillan<br />

Publishers Limited, Nature Publish<strong>in</strong>g Group; 2003.<br />

36. Spraggon G, Phillips C, Nowak UK, et al. The crystal structure of <strong>the</strong><br />

catalytic doma<strong>in</strong> of human <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator.<br />

Structure. Jul 15 1995;3(7):681-691.<br />

37. Stepanova VV, Tkachuk VA. Urok<strong>in</strong>ase as a multidoma<strong>in</strong> prote<strong>in</strong> <strong>and</strong><br />

polyfunctional cell regulator. Biochemistry (Moscow). 2002;67(1):109-118.<br />

38. Vassalli JD, Bacc<strong>in</strong>o D, Bel<strong>in</strong> D. A cellular b<strong>in</strong>d<strong>in</strong>g site for <strong>the</strong> Mr 55,000<br />

form of <strong>the</strong> human plasm<strong>in</strong>ogen activator, <strong>urok<strong>in</strong>ase</strong>. J Cell Biol.<br />

1985;100:86-92.<br />

39. Preissner KT, Kanse SM, May AE. Urok<strong>in</strong>ase <strong>receptor</strong>: a molecular<br />

organizer <strong>in</strong> cellular communication. Curr Op<strong>in</strong> Cell Biol. 2000;12:621-628.<br />

40. Zhang G, Heunhsoo, K., et. al. Urok<strong>in</strong>ase <strong>receptor</strong> deficiency accelerates<br />

renal fibrosis <strong>in</strong> obstructive nephropathy. J Am Soc Nephrol.<br />

2003;14:1254-1271.<br />

37


41. Appella E, Rob<strong>in</strong>son EA, Ullrich SJ, et al. The <strong>receptor</strong>-b<strong>in</strong>d<strong>in</strong>g sequence<br />

of <strong>urok<strong>in</strong>ase</strong>. A biological function for <strong>the</strong> growth-factor module of<br />

proteases. J Biol Chem. Apr 5 1987;262(10):4437-4440.<br />

42. Toomoka S, Border WA, Marshall BC, Noble NA. Glomerular matrix<br />

accumulation is l<strong>in</strong>ked to <strong>in</strong>hibition of <strong>the</strong> plasm<strong>in</strong> protease system. Kid<br />

Internat. 1992;42:1462-1469.<br />

43. Larsson LI, Skriver L, Nielsen LS, Grondahl-Hansen J, Kristensen P, Dano<br />

K. Distribution of <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator Immunoreactivity<br />

<strong>in</strong> <strong>the</strong> mouse. J Cell Biol. Mar 1984;98(3):894-903.<br />

44. Bequaj S, Shah A, M., Ryan J, M. Identification of cells responsible for<br />

<strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator syn<strong>the</strong>sis <strong>and</strong> secretion <strong>in</strong> human<br />

diploid kidney cell cultures. In Vitro Cell. Dev. Biol. 2004;40:102-107.<br />

45. Rondeau E, Ochi, S., et. al. Urok<strong>in</strong>ase syn<strong>the</strong>sis <strong>and</strong> b<strong>in</strong>d<strong>in</strong>g by<br />

glomerular epi<strong>the</strong>lial cells <strong>in</strong> culture. Kidney Int. 1989;36:593-600.<br />

46. Deng FM, D<strong>in</strong>g M, Lavker RM, Sun TT. Uro<strong>the</strong>lial function reconsidered: a<br />

new role <strong>in</strong> ur<strong>in</strong>ary prote<strong>in</strong> secretion. Urology. Jun 2001;57(6 Suppl<br />

1):117.<br />

47. Stump DC, Thienpont M, Collen D. Purification <strong>and</strong> characterization of a<br />

novel <strong>in</strong>hibitor of <strong>urok<strong>in</strong>ase</strong> from human ur<strong>in</strong>e. Quantitation <strong>and</strong><br />

prelim<strong>in</strong>ary characterization <strong>in</strong> plasma. J Biol Chem. Sep 25<br />

1986;261(27):12759-12766.<br />

48. Horl WH. The medic<strong>in</strong>al use of ur<strong>in</strong>e. Am J Nephrology. 1999;19:111-113.<br />

49. Andrassy K, Buchholz L, Bleyl U, Ritz E, Seidel D. Topography of human<br />

<strong>urok<strong>in</strong>ase</strong> activity <strong>in</strong> renal tissue. Nephron. 1976;16(3):213-219.<br />

50. Zhang T, Zhou HM, Liu YX. Expression of plasm<strong>in</strong>ogen activator <strong>and</strong><br />

<strong>in</strong>hibitor, <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>and</strong> <strong>in</strong>hib<strong>in</strong> subunits <strong>in</strong> rhesus monkey testes.<br />

Mol Hum Reprod. Mar 1997;3(3):223-231.<br />

51. Gellert GC, Goldfarb RH, Kitson RP. Physical association of uPAR with<br />

<strong>the</strong> alpha V <strong>in</strong>tegr<strong>in</strong> on <strong>the</strong> surface of human NK cells. Biochem Biophys<br />

Res Commun. 2004;315:1025-1032.<br />

52. Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The <strong>urok<strong>in</strong>ase</strong>-type<br />

plasm<strong>in</strong>ogen activator system <strong>in</strong> cancer metastasis; a review. Int J<br />

Cancer. 1997;72:1-22.<br />

53. Blasi F, Carmeliet P. uPAR: a versatile signal<strong>in</strong>g orchestrator. Nat Rev<br />

Mol Cell Biol. 2002;3:932-943.<br />

38


54. Behrendt N, Ronne E, Dano K. The structure <strong>and</strong> function of <strong>the</strong> <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong>, a membrane prote<strong>in</strong> govern<strong>in</strong>g plasm<strong>in</strong>ogen activation on <strong>the</strong><br />

cell surface. Biol Chem Hoppe Seyler. 1995;376:269-279.<br />

55. Montuori N, Mattiello A, Manc<strong>in</strong>i A, et al. Urok<strong>in</strong>ase-type plasm<strong>in</strong>ogen<br />

activator up-regulates <strong>the</strong> expression of its cellular <strong>receptor</strong> through a<br />

post-transcriptional mechanism. FEBS Lett. Nov 23 2001;508(3):379-384.<br />

56. Mond<strong>in</strong>o A, Resnati M, Blasi F. Structure <strong>and</strong> function of <strong>the</strong> <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong>. Thromb Haemost. 1999;82:19-22.<br />

57. Hemsen A, Riethdorf L, Brunner N, et al. Comparative evaluation of<br />

<strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator <strong>receptor</strong> expression <strong>in</strong> primary<br />

breast carc<strong>in</strong>omas <strong>and</strong> on metastatic tumor cells. Int J Cancer.<br />

2003;107:903-909.<br />

58. Jensen MK, Riisbro R, De Nully Brown P, Brunner N, Hasselbalch HC.<br />

Elevated soluble <strong>urok<strong>in</strong>ase</strong> plasm<strong>in</strong>ogen activator <strong>receptor</strong> <strong>in</strong> plasma from<br />

patients with idiopathic myelofibrosis or polycy<strong>the</strong>mia vera. Eur J<br />

Haematol. 2002;69:43-49.<br />

59. Bajpai A, Baker JB. Urok<strong>in</strong>ase b<strong>in</strong>d<strong>in</strong>g sites on human foresk<strong>in</strong> cells.<br />

Evidence for occupancy with endogenous <strong>urok<strong>in</strong>ase</strong>. Biochem Biophys<br />

Res Commun. Dec 31 1985;133(3):994-1000.<br />

60. Xia W, de Block C, Murrell GAC, Wang Y. Expression of <strong>urok<strong>in</strong>ase</strong>-type<br />

palsm<strong>in</strong>ogen activator <strong>and</strong> its <strong>receptor</strong> is upregulated dur<strong>in</strong>g tendon<br />

heal<strong>in</strong>g. Journal of Orthopaedic Research. 2003;21:819-825.<br />

61. Chapman HA, Bertozzi P, Sailor LZ, Nusrat AR. Alveolar macrophage<br />

<strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>s localize enzyme activity to <strong>the</strong> cell surface. Am J<br />

Physiol. Dec 1990;259(6 Pt 1):L432-438.<br />

62. Hoddock RC, Spell ML, Baker ICD, et al. Urok<strong>in</strong>ase b<strong>in</strong>d<strong>in</strong>g <strong>and</strong> <strong>receptor</strong><br />

identification <strong>in</strong> cultured endo<strong>the</strong>lial cells. J Biol Chem. 1991;266(32):466-<br />

473.<br />

63. Saksela O, Vihko KK. Local syn<strong>the</strong>sis of plasm<strong>in</strong>ogen by <strong>the</strong> sem<strong>in</strong>iferous<br />

tubules of <strong>the</strong> testis. FEBS. 1986;204(2):193-197.<br />

64. Lijnen HR, Collen D. Mechanisms of plasm<strong>in</strong>ogen activation by<br />

mammalian plasm<strong>in</strong>ogen activators. Enzyme. 1988;40(2):90-96.<br />

65. Walker JB, Bajzar L. The <strong>in</strong>tr<strong>in</strong>sic threshold of <strong>the</strong> fibr<strong>in</strong>olytic system is<br />

modified by basic carboxypeptidases, but <strong>the</strong> magnitude of <strong>the</strong><br />

39


antifibr<strong>in</strong>olytic effect of activated thromb<strong>in</strong>-activatible fibr<strong>in</strong>olysis <strong>in</strong>hibitor is<br />

masked by its <strong>in</strong>stability. J Biol Chem. 2004;279(27):27896-27904.<br />

66. Dano K, Andreasen PA, Grondahl-Hansen J, Kristensen P, Nielsen LS,<br />

Skriver L. Plasm<strong>in</strong>ogen activators, tissue degradation <strong>and</strong> cancer. Adv<br />

Canc Res. 1985;44:139-266.<br />

67. Estreicher A, Muhlhauser J, Carpentier JL, Orci L, Vassalli JD. The<br />

<strong>receptor</strong> for <strong>urok<strong>in</strong>ase</strong> type plasm<strong>in</strong>ogen activator polarizes expression of<br />

<strong>the</strong> protease to <strong>the</strong> lead<strong>in</strong>g edge of migrat<strong>in</strong>g monocytes <strong>and</strong> promotes<br />

degradation of enzyme <strong>in</strong>hibitor complexes. J Cell Biol. Aug<br />

1990;111(2):783-792.<br />

68. Kirchheimer JC, Remold HG. Functional characteristics of <strong>receptor</strong>-bound<br />

<strong>urok<strong>in</strong>ase</strong> on human monocytes: catalytic efficiency <strong>and</strong> susceptibility to<br />

<strong>in</strong>activation by plasm<strong>in</strong>ogen activator <strong>in</strong>hibitors. Blood. Sep<br />

1989;74(4):1396-1402.<br />

69. Midura-Nowaczek K, Bruzgo I, Roszkowska-Jakimiec W, Markowska A.<br />

Effects of epsilon-am<strong>in</strong>ocaproiloam<strong>in</strong>oacids on <strong>the</strong> amidolytic activity of<br />

tissue plasm<strong>in</strong>ogen activator, <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> kallikre<strong>in</strong>. Acta Pol Pharm.<br />

Jan-Feb 2004;61(1):75-76.<br />

70. Rep<strong>in</strong>e T, Osswald M. Menorrhea due to a qualitative deficiency of<br />

plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-1: case report <strong>and</strong> literature review. Cl<strong>in</strong><br />

Appl Thromb Hemost. 1994;10(3):293-296.<br />

71. Lang IM, Marsh JJ, Konopka RG, et al. Factors contribut<strong>in</strong>g to <strong>in</strong>creased<br />

vascular fibr<strong>in</strong>olytic activity <strong>in</strong> mongrel dogs. Circulation. Jun<br />

1993;87(6):1990-2000.<br />

72. Prewitt RM, Hoy C, Kong A, et al. Thrombolytic <strong>the</strong>rapy <strong>in</strong> can<strong>in</strong>e<br />

pulmonary embolism. Comparative effects of <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> recomb<strong>in</strong>ant<br />

tissue plasm<strong>in</strong>ogen activator. Am Rev Respir Dis. Feb 1990;141(2):290-<br />

295.<br />

73. Kenichi M, Masanobu M, Takehiko K, et al. Renal syn<strong>the</strong>sis of <strong>urok<strong>in</strong>ase</strong><br />

type-plasm<strong>in</strong>ogen activator, its <strong>receptor</strong>, <strong>and</strong> plasm<strong>in</strong>ogen activator<br />

<strong>in</strong>hibitor-1 <strong>in</strong> diabetic nephropathy <strong>in</strong> rats: modulation by angiotens<strong>in</strong>convert<strong>in</strong>g-enzyme<br />

<strong>in</strong>hibitor. J Lab Cl<strong>in</strong> Med. Aug 2004;144(2):69-77.<br />

74. Schena FP, Gesualdo L. Pathogenic mechanisms of diabetic<br />

nephropathy. J Am Soc Nephrol. 2005;16(Suppl 1):S30-S33.<br />

75. Glass WFI, Kreisberg JI, Troyer DA. Two-cha<strong>in</strong> <strong>urok<strong>in</strong>ase</strong>, <strong>receptor</strong>, <strong>and</strong><br />

type I <strong>in</strong>hibitor <strong>in</strong> cultured human mesangial cells. Am J Physiol Renal<br />

Fluid Electrolyte Physiol. 1993;264:F532-F539.<br />

40


76. Baricos WH, Cortez SL, El-Dahr SS, Schnaper HW. ECM degradation by<br />

cultured human mesangial cells is mediated by PA/plasm<strong>in</strong>/MMP-2<br />

cascade. Kid Internat. 1995;47:1039-1047.<br />

77. Stetler-Stevenson WG. Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitors. Blood.<br />

1987;69:381-387.<br />

78. Rerolle JP, Hertig A, Nguyen G, Sraer JD, Rondeau EP. Plasm<strong>in</strong>ogen<br />

activator <strong>in</strong>hibitor type I is a potential target <strong>in</strong> renal fibrogenesis. Kid<br />

Internat. 2000;58:1841-1850.<br />

79. Song CY, Kim BC, Hong HK, Kim BK, Kim YS, Lee HS. Biphasic<br />

regulation of plasm<strong>in</strong>ogen activator/<strong>in</strong>hibitor by LDL <strong>in</strong> mesangial cells. Am<br />

J Physiol Renal Physiol. 2002;283:F423-F430.<br />

80. Sugiki M, Sayuri, O., Etsuo, Y., Hiroshi, I., Kataoka, H., Masugi, M.<br />

Downregulation of <strong>urok<strong>in</strong>ase</strong>-type <strong>and</strong> tissue-type plasm<strong>in</strong>ogen activators<br />

<strong>in</strong> a rabbit model of renal ischemia/reperfusion. J Biochem. 2002;132:501-<br />

508.<br />

81. Weight SC, Bell PRF, Nicholson ML. Renal ischemia perfusion <strong>in</strong>jury. Br J<br />

Surg. 1996;83:162-170.<br />

82. Kanfer A, Rondeau E, Peraldi MN, Sraer JD. Coagulation <strong>in</strong> renal<br />

diseases: The role of <strong>the</strong> glomerular hemostasis system <strong>and</strong> implication<br />

for <strong>the</strong>rapy. London: Kluwer Academic Publishers; 1991.<br />

83. Sapp<strong>in</strong>o AP, Huarte J, Vassalli JD, Bel<strong>in</strong> D. Sites of syn<strong>the</strong>sis of <strong>urok<strong>in</strong>ase</strong><br />

<strong>and</strong> tissue-type plasm<strong>in</strong>ogen activators <strong>in</strong> <strong>the</strong> mur<strong>in</strong>e kidney. J Cl<strong>in</strong> Invest.<br />

1991;87:962-970.<br />

84. Rondeau E, Sraer JD, Schleung WD. The renal plasm<strong>in</strong>ogen activat<strong>in</strong>g<br />

system. New York: Dekker; 1995.<br />

85. Rondeau E, Mougenot B, Lacave R, Peraldi MN, Kruithof EKO, Sraer JD.<br />

Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor 1 <strong>in</strong> renal fibr<strong>in</strong> deposits of human<br />

nephropathies. J Cell Biol. 1990;110:155-163.<br />

86. Xu Y, Berrou J, Chen X, et al. Induction of <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> expression<br />

<strong>in</strong> nephrotoxic nephritis. Exp Nephrol. 2001;9:397-404.<br />

87. Nakanishi K, Kawai T, Torikata C, Aurues T, Ikeda T. Urok<strong>in</strong>ase-type<br />

plasm<strong>in</strong>ogen activator, its <strong>in</strong>hibitor, <strong>and</strong> its <strong>receptor</strong> <strong>in</strong> patients with upper<br />

ur<strong>in</strong>ary <strong>tract</strong> carc<strong>in</strong>oma. Cancer. Feb 15 1998;82(4):724-732.<br />

41


88. Seddighzadeh M, Ste<strong>in</strong>eck G, Larsson P, et al. Expression of uPA <strong>and</strong><br />

uPAR is associated with <strong>the</strong> cl<strong>in</strong>ical course of ur<strong>in</strong>ary bladder neoplasms.<br />

Int J Cancer. 2002;99:721-726.<br />

89. Hasui Y, Suzumiya J, Marutsuka K, Sumiyoshi A, Hashida S, Ishikawa E.<br />

Comparative study of plasm<strong>in</strong>ogen activators <strong>in</strong> cancers <strong>and</strong> normal<br />

mucosae of human ur<strong>in</strong>ary bladder. Cancer Res. Feb 15 1989;49(4):1067-<br />

1070.<br />

90. Hasui Y, Marutsuka K, Suzumiya J, Kitada S, Osada Y, Sumiyoshi A. The<br />

content of <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator antigen as a prognostic<br />

factor <strong>in</strong> ur<strong>in</strong>ary bladder cancer. Int J Cancer. 1992;50:871-873.<br />

91. Lewis SA. Everyth<strong>in</strong>g you wanted to know about <strong>the</strong> bladder epi<strong>the</strong>lium<br />

but were afraid to ask. Am J Physiol Renal Physiol. 2000;278:F867-F874.<br />

92. Lewis SA, Hanrahan JW. Apical <strong>and</strong> basolateral membrane ionic channels<br />

<strong>in</strong> rabbit ur<strong>in</strong>ary bladder epi<strong>the</strong>lium. Eur J Physiol. 1985;405(Suppl 1):S83-<br />

S88.<br />

93. Muralikrishna PS, Gondi CS, Lakka SS, et al. RNA <strong>in</strong>terference-directed<br />

knockdown of <strong>urok<strong>in</strong>ase</strong> plasm<strong>in</strong>ogen activator <strong>and</strong> <strong>urok<strong>in</strong>ase</strong><br />

plasm<strong>in</strong>ogen activator <strong>receptor</strong> <strong>in</strong>hibits prostate cancer cell <strong>in</strong>vasion,<br />

survival <strong>and</strong> tumorigenicity <strong>in</strong> vivo. J Biol Chem. Aug 26 2005.<br />

94. Margheri F, D'Alessio S, Serrati S, et al. Effects of block<strong>in</strong>g <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong> signal<strong>in</strong>g by antisense oligonucleotides <strong>in</strong> a mouse model of<br />

experimental prostate cancer bone metastases. Gene Ther. Apr<br />

2005;12(8):702-714.<br />

95. Gilardoni MB, Cesch<strong>in</strong> DG, Sahores MM, Oviedo M, Gehrau RC,<br />

Chiabr<strong>and</strong>o GA. Decreased expression of <strong>the</strong> low-density lipoprote<strong>in</strong><br />

<strong>receptor</strong>-related prote<strong>in</strong>-1 (LRP-1) <strong>in</strong> rats with prostate cancer. J<br />

Histochem Cytochem. Dec 2003;51(12):1575-1580.<br />

96. Wilson MJ. Proteases <strong>in</strong> prostate development, function, <strong>and</strong> pathology.<br />

Microsc Res Tech. Mar 1 1995;30(4):305-318.<br />

97. Wilson MJ, Norris H, Woodson M, S<strong>in</strong>ha AA, Estensen RD. Effects of<br />

ag<strong>in</strong>g <strong>and</strong> castration on plasm<strong>in</strong>ogen activator <strong>and</strong> metalloprotease<br />

activities <strong>in</strong> <strong>the</strong> rat prostate complex. Celllar <strong>and</strong> Molecular Biology<br />

Research. 1995;41(6):603-612.<br />

98. Kirchheimer JC, Koller A, B<strong>in</strong>der BR. Isolation <strong>and</strong> characterization of<br />

plasm<strong>in</strong>ogen activators from hyperplastic <strong>and</strong> malignant prostate tissue.<br />

Biochem Biophys Acta. 1984;797:256-265.<br />

42


99. Camiolo SM, Markus G, Engl<strong>and</strong>er LS, Siuta MR, Hobika GH, Kohga S.<br />

Plasm<strong>in</strong>ogen activator content <strong>and</strong> secretion <strong>in</strong> explants of neoplastic <strong>and</strong><br />

benign human prostate tissues. Cancer Res. Jan 1984;44(1):311-318.<br />

100. Wilson MJ, Ditmanson JD, S<strong>in</strong>ha AA, Estensen RD. Plasm<strong>in</strong>ogen<br />

activator activites <strong>in</strong> <strong>the</strong> ventral <strong>and</strong> dorsolateral prostatic lobes of ag<strong>in</strong>g<br />

Fischer 344 rats. The Prostate. 1990;16:147-161.<br />

101. Vassalli JD, Bel<strong>in</strong> D. Amiloride selectively <strong>in</strong>hibits <strong>the</strong> <strong>urok<strong>in</strong>ase</strong>-type<br />

plasm<strong>in</strong>ogen activator. FEBS Lett. 1987;214:187-191.<br />

102. One Dimensional Prote<strong>in</strong> Electrophoresis Separation: SDS PAGE.<br />

http://www4.amershambiosciences.com/aptrix/upp00919.nsf/Content/Elph<br />

o_1D_SDS+PA.<br />

103. Liu YX, Du Q, Liu K, Fu GQ. Hormonal regulation of plasm<strong>in</strong>ogen activator<br />

<strong>in</strong> rat <strong>and</strong> mouse sem<strong>in</strong>iferous epi<strong>the</strong>lium. Biol Signals. Jul-Aug<br />

1995;4(4):232-240.<br />

104. Tolli R, Monaco L, Di Bonito P, Canipari R. Hormonal regulation of<br />

<strong>urok<strong>in</strong>ase</strong>- <strong>and</strong> tissue- type plasm<strong>in</strong>ogen activator <strong>in</strong> rat Sertoli cells. Biol<br />

Reprod. Jul 1995;53(1):193-200.<br />

105. Van Dreden P, Gonzales J, Poirot C. Human sem<strong>in</strong>al fibr<strong>in</strong>olytic activity:<br />

specific determ<strong>in</strong>ations of tissue plasm<strong>in</strong>ogen activator <strong>and</strong> <strong>urok<strong>in</strong>ase</strong>.<br />

Andrologia. Jan-Feb 1991;23(1):29-33.<br />

106. Penttila TL, Kaipia A, Toppari J, Parv<strong>in</strong>en M, Mali P. Localization of<br />

<strong>urok<strong>in</strong>ase</strong>- <strong>and</strong> tissue-type plasm<strong>in</strong>ogen activator mRNAs <strong>in</strong> rat testes.<br />

Mol Cell Endocr<strong>in</strong>ol. Oct 1994;105(1):55-64.<br />

107. Husa<strong>in</strong> SS, Gurewich, V., Lip<strong>in</strong>ski, B. Purification <strong>and</strong> partial<br />

characterization of a s<strong>in</strong>gle-cha<strong>in</strong> high-molecular-weight form of <strong>urok<strong>in</strong>ase</strong><br />

from human ur<strong>in</strong>e. Arch Biochem <strong>and</strong> Biophys. 1983;220(1):31-38.<br />

108. McFarlane RG, Pill<strong>in</strong>g J. Fibr<strong>in</strong>olytic activity of normal ur<strong>in</strong>e. Nature(Lond).<br />

1947;159:779.<br />

109. Paar D, Marhund, D. Spectrophotometric determ<strong>in</strong>ation of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong><br />

ur<strong>in</strong>e after gel filtration, us<strong>in</strong>g chromogenic substrate S-2444. J Cl<strong>in</strong> Chem<br />

Cl<strong>in</strong> Biochem. 1980;18:557-562.<br />

110. Shibantani T, Kakimoto T, Chibata I. Purification of high molecular weight<br />

<strong>urok<strong>in</strong>ase</strong> from human ur<strong>in</strong>e <strong>and</strong> comparative study of two active forms of<br />

<strong>urok<strong>in</strong>ase</strong>. Thromb Haemost. 1983;40(2):91-95.<br />

43


111. Takahashi R, Akiba K, Koike M, Noguchi T, Ezure Y. Aff<strong>in</strong>ity<br />

chromatography for purification of two <strong>urok<strong>in</strong>ase</strong>s from human ur<strong>in</strong>e.<br />

Journal of Chromatography. 2000;742:71-78.<br />

112. Aoki N, Moroi M, Matsuda M, Tachiya K. The behavior of alpha2-plasm<strong>in</strong><br />

<strong>in</strong>hibitor <strong>in</strong> fibr<strong>in</strong>olytic states. J Cl<strong>in</strong> Invest. Aug 1977;60(2):361-369.<br />

113. Sane DC, Pizzo SV, Greenberg CS. Elevated <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen<br />

activator level <strong>and</strong> bleed<strong>in</strong>g <strong>in</strong> amyliodosis: case report <strong>and</strong> literature<br />

review. American Journal of Hematology. 1989;31:53-57.<br />

114. Akoi N, Saito H, Kamiya T, Koie K, Sakata Y, Kobakura M. Congenital<br />

deficiency of alpha 2 plasm<strong>in</strong> <strong>in</strong>hibitor associated with severe hemorrhagic<br />

tendency. J Cl<strong>in</strong> Invest. 1979;63:877-884.<br />

115. Storgaard M, Obel N, Black FT, Moller BK. Decreased <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong><br />

expression on granulocytes <strong>in</strong> HIV-<strong>in</strong>fected patients. Sc<strong>and</strong>. J. Immunol.<br />

2002;55:409-413.<br />

116. Hotchkiss RS, Karl IE. The pathophysiology <strong>and</strong> treatment of sepsis. N<br />

Engl J Med. 2003;348:138-150.<br />

117. Miyaji T, Hu X, Yuen PST, et al. Ethyl pyruvate decreases sepsis-<strong>in</strong>duced<br />

acute renal failure <strong>and</strong> multiple organ damage <strong>in</strong> aged mice. Kid Internat.<br />

2003;64:1620-1631.<br />

118. Salame MY, Samani NJ, Masood I, deBono DP. Expression of <strong>the</strong><br />

plasm<strong>in</strong>ogen activator system <strong>in</strong> <strong>the</strong> human vascular wall. A<strong>the</strong>rosclerosis.<br />

Sep 2000;152(1):19-28.<br />

119. De<strong>in</strong>dl E, Ziegelhoffer T, Kanse SM, et al. Receptor-<strong>in</strong>dependent role of<br />

<strong>the</strong> <strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator dur<strong>in</strong>g arteriogenesis. Faseb J.<br />

Jun 2003;17(9):1174-1176.<br />

120. Hosgood G. Wound Repair <strong>and</strong> Specific Tissue Response <strong>in</strong> Textbook of<br />

Small Animal Surgery. Vol 1. 3 ed. Philadelphia, PA: Saunders; 2003.<br />

44


Chapter 3 Hypo<strong>the</strong>sis <strong>and</strong> Objectives<br />

3.1 Overall goals<br />

This study demonstrated <strong>the</strong> presence of <strong>urok<strong>in</strong>ase</strong> (uPA) <strong>in</strong> can<strong>in</strong>e ur<strong>in</strong>e<br />

<strong>and</strong> quantified it <strong>in</strong> normal male <strong>and</strong> female dogs us<strong>in</strong>g an ELISA <strong>and</strong> a<br />

fluorogenic activity assay. This study also demonstrated <strong>the</strong> presence of<br />

<strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> <strong>the</strong> tissues of <strong>the</strong> can<strong>in</strong>e ur<strong>in</strong>ary <strong>tract</strong>, both<br />

male <strong>and</strong> female, us<strong>in</strong>g immunoprecipitation, SDS PAGE / Western Blot Analysis<br />

<strong>and</strong> immunohistochemistry techniques.<br />

3.2 Hypo<strong>the</strong>sis <strong>and</strong> Specific Objectives<br />

3.2.1 Hypo<strong>the</strong>sis<br />

1. Urok<strong>in</strong>ase will be present <strong>in</strong> ur<strong>in</strong>e from healthy dogs.<br />

2. Urok<strong>in</strong>ase concentration will be higher <strong>in</strong> ur<strong>in</strong>e from <strong>in</strong>tact male<br />

dogs than <strong>in</strong>tact or neutered female dogs.<br />

3. Urok<strong>in</strong>ase concentration will be higher <strong>in</strong> ur<strong>in</strong>e from <strong>in</strong>tact male<br />

dogs than neutered male dogs.<br />

4. Urok<strong>in</strong>ase concentration will be <strong>the</strong> same <strong>in</strong> <strong>in</strong>tact <strong>and</strong> neutered<br />

female dogs.<br />

5. Urok<strong>in</strong>ase concentration will be similar <strong>in</strong> ur<strong>in</strong>e from <strong>in</strong>tact female<br />

dogs <strong>and</strong> neutered male dogs.<br />

6. Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> will be present <strong>in</strong> <strong>the</strong> can<strong>in</strong>e<br />

ur<strong>in</strong>ary <strong>tract</strong>.<br />

7. Antibodies directed aga<strong>in</strong>st human <strong>and</strong> mouse <strong>urok<strong>in</strong>ase</strong> will<br />

recognize <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> <strong>and</strong><br />

from healthy dogs.<br />

45


3.2.2 Specific Objectives<br />

• Demonstrate <strong>and</strong> quantify <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> ur<strong>in</strong>e from healthy dogs.<br />

• Demonstrate presence of <strong>urok<strong>in</strong>ase</strong>-like antigen <strong>and</strong> <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong>-like antigen <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> from healthy dogs.<br />

46


Chapter 4 Sample Selection <strong>and</strong> Preparation<br />

4.1 Sample Populations<br />

4.1.1 Sample Population for Ur<strong>in</strong>e Collection<br />

Fifty four client owned dogs presented to <strong>the</strong> LSU SVM Small Animal<br />

Hospital Companion Animal Surgery Service that met <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>clusion<br />

criteria were used. The dogs were treated accord<strong>in</strong>g to <strong>the</strong> regulations of <strong>the</strong><br />

Institutional Cl<strong>in</strong>ical Protocol Committee. The dogs were divided <strong>in</strong>to four groups:<br />

16 <strong>in</strong>tact males, 15 sterilized males, 9 <strong>in</strong>tact females, 12 sterilized females.<br />

Inclusion criteria:<br />

1. No physical or biochemical evidence of current renal or lower<br />

ur<strong>in</strong>ary <strong>tract</strong> disease (appendix table 1).<br />

2. No antibiotic adm<strong>in</strong>istration <strong>in</strong> <strong>the</strong> previous 2 weeks.<br />

3. Blood <strong>and</strong> ur<strong>in</strong>e samples be<strong>in</strong>g taken for reasons o<strong>the</strong>r than this<br />

study (appendix table 1).<br />

4. Normal physical exam, complete blood count, serum<br />

biochemistry <strong>and</strong> ur<strong>in</strong>alysis (appendix table 1).<br />

4.1.2 Sample Population for Ur<strong>in</strong>ary Tract Tissue Collection<br />

Eleven dogs were used for tissue collection; 5 <strong>in</strong>tact males, 2 neutered<br />

males, 4 <strong>in</strong>tact females<br />

The follow<strong>in</strong>g <strong>in</strong>clusion criteria were used for case selection:<br />

1. Euthanasia for reasons o<strong>the</strong>r than ur<strong>in</strong>ary <strong>tract</strong> or renal disease.<br />

2. No gross pathologic signs of ur<strong>in</strong>ary <strong>tract</strong> or renal disease.<br />

Samples were collected at <strong>the</strong> time of euthanasia.<br />

47


4.2 Sampl<strong>in</strong>g Technique<br />

4.2.1 Ur<strong>in</strong>e Collection<br />

A m<strong>in</strong>imum of 3 ml of voided ur<strong>in</strong>e was collected <strong>in</strong>to a clean receptacle<br />

<strong>and</strong> transferred to 50ml polypropylene tubes (352070, Becton Dickenson,<br />

Frankl<strong>in</strong> Lakes, NJ) for immediate freez<strong>in</strong>g <strong>and</strong> storage at -75°C. Freez<strong>in</strong>g <strong>and</strong><br />

thaw<strong>in</strong>g up to five times does not appear to affect <strong>urok<strong>in</strong>ase</strong> activity. 1 The entire<br />

volume of ur<strong>in</strong>e collected <strong>and</strong> <strong>the</strong> date were recorded for each sample.<br />

A second ur<strong>in</strong>e sample was collected from each dog us<strong>in</strong>g a cystocentesis<br />

technique. This ur<strong>in</strong>e was <strong>the</strong>n transferred us<strong>in</strong>g a sterile needle to a sterile<br />

vacuta<strong>in</strong>er tube. Each sample was <strong>the</strong>n plated on blood agar <strong>and</strong> Maconkey<br />

plates, <strong>in</strong>cubated for 72 hours at 37ºC <strong>and</strong> evaluated every 24 hours by <strong>the</strong><br />

pr<strong>in</strong>cipal <strong>in</strong>vestigator for presence of bacterial colony growth.<br />

4.2.2 Ur<strong>in</strong>ary Tract Tissue Collection<br />

1. Kidney: A 2 cm X 1cm full thickness wedge of cortex <strong>and</strong> medulla was<br />

taken from <strong>the</strong> middle portion of <strong>the</strong> kidney.<br />

2. Ureter: A 2 cm full-thickness section was taken from <strong>the</strong> ureter contra<br />

lateral to that of <strong>the</strong> kidney biopsy.<br />

3. Ur<strong>in</strong>ary bladder: A 2 cm full-thickness 2 cm sample section was taken<br />

from <strong>the</strong> ventral wall.<br />

4. Prostate: A 1 cm X 1 cm wedge was taken from one lobe of <strong>the</strong><br />

prostate.<br />

5. Urethra (male dogs): A 2 cm full-thickness section was taken from <strong>the</strong><br />

prostatic <strong>and</strong> penile regions of <strong>the</strong> urethra.<br />

48


6. Urethra (female dogs): A 2cm full-thickness section was taken from <strong>the</strong><br />

middle of <strong>the</strong> urethra.<br />

7. Testicle: A 2 cm full-thickness wedge biopsy was taken from one<br />

testicle.<br />

4.3 Sample Preparation<br />

4.3.1 Ur<strong>in</strong>e Preparation<br />

All ur<strong>in</strong>e was thawed <strong>in</strong> <strong>the</strong> polypropylene storage tubes at room<br />

temperature <strong>and</strong> concentrated us<strong>in</strong>g Amicon Ulltra-15 PLTK Centrifugal Filter<br />

Units with 30kDa membranes (UFC903024, Millipore Corporation, Burl<strong>in</strong>gton,<br />

MA) <strong>and</strong> Amicon Ultra-4 PLHK Centrifugal Filter Units with 100kDa membranes<br />

(UFC810024, Millipore Corporation, Burl<strong>in</strong>gton, MA).<br />

Steps <strong>in</strong> ur<strong>in</strong>e preparation <strong>and</strong> concentration:<br />

1. The ur<strong>in</strong>e was centrifuged <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al polystyrene tubes at<br />

2500rpm for 10 m<strong>in</strong>utes to pull down any debris.<br />

2. Cleared ur<strong>in</strong>e was transferred to clean polystyrene tubes leav<strong>in</strong>g<br />

<strong>the</strong> pelleted debris at <strong>the</strong> bottom of <strong>the</strong> orig<strong>in</strong>al tube.<br />

3. The ur<strong>in</strong>e was transferred to 100kDa filter units <strong>and</strong> volume was<br />

recorded.<br />

4. The ur<strong>in</strong>e <strong>in</strong> <strong>the</strong> 30 kDa filter units was centrifuged at 2500rpm for<br />

45 m<strong>in</strong>utes. This allowed separation of <strong>the</strong> ur<strong>in</strong>e <strong>in</strong>to two fractions.<br />

The fraction conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s greater than 30 kDa was reta<strong>in</strong>ed<br />

<strong>in</strong> <strong>the</strong> upper chamber. The fraction conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s less than 30<br />

49


kDa passed through <strong>the</strong> filter <strong>and</strong> was deposited <strong>in</strong> <strong>the</strong> lower<br />

chamber.<br />

5. Ur<strong>in</strong>e <strong>in</strong> <strong>the</strong> upper chamber (with prote<strong>in</strong>s greater than 30 kDa) was<br />

removed, <strong>the</strong> volume was measured <strong>and</strong> <strong>the</strong> ur<strong>in</strong>e was placed <strong>in</strong><br />

<strong>the</strong> 100 kDa filter tubes. The ur<strong>in</strong>e <strong>in</strong> <strong>the</strong> 100kDa filter units was<br />

centrifuged at 2500rpm for 30 m<strong>in</strong>utes. This allowed separation of<br />

<strong>the</strong> ur<strong>in</strong>e <strong>in</strong>to two fractions. The fraction conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s greater<br />

than 100 kDa was reta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> upper chamber. The fraction<br />

conta<strong>in</strong><strong>in</strong>g <strong>the</strong> rema<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s between 100 kDa <strong>and</strong> 30 kDa<br />

passed through <strong>the</strong> filter <strong>and</strong> was deposited <strong>in</strong> <strong>the</strong> lower chamber.<br />

This fraction should conta<strong>in</strong> <strong>urok<strong>in</strong>ase</strong> which has a molecular<br />

weight of 33kDa <strong>in</strong> <strong>the</strong> short cha<strong>in</strong> form <strong>and</strong> 53kDa <strong>in</strong> <strong>the</strong> heavy<br />

cha<strong>in</strong> form.<br />

6. Ur<strong>in</strong>e <strong>in</strong> <strong>the</strong> lower chamber (with prote<strong>in</strong>s between 30 kDa <strong>and</strong> 100<br />

kDa) was removed, <strong>the</strong> volume was measured <strong>and</strong> <strong>the</strong> ur<strong>in</strong>e was<br />

placed <strong>in</strong> placed <strong>in</strong> 1.5ml microcentrifuge tubes (20170.022, VWR<br />

International, Suwanee, GA).<br />

7. Ur<strong>in</strong>e samples were frozen at -20°C until evaluation.<br />

4.3.2 Tissue Preparation for Morphological Study<br />

Tissue samples collected from n<strong>in</strong>e dogs (four <strong>in</strong>tact males, two castrated<br />

males <strong>and</strong> three <strong>in</strong>tact females) were immediately frozen <strong>in</strong> Tissue-Tek OTC<br />

compound (4583, Sakura F<strong>in</strong>etechnical Co., Ltd., Tokoya, Japan) <strong>and</strong> stored at -<br />

50


70 ºC for later paraff<strong>in</strong> embedd<strong>in</strong>g or desiccation <strong>and</strong> process<strong>in</strong>g with RIPA<br />

buffer.<br />

Samples collected from two dogs (one <strong>in</strong>tact male <strong>and</strong> one <strong>in</strong>tact female)<br />

were placed <strong>in</strong> formal<strong>in</strong> immediately for later comparison with <strong>the</strong> fresh frozen<br />

samples to identify any freez<strong>in</strong>g artifacts.<br />

Paraff<strong>in</strong> sections (4um) were cut <strong>and</strong> sta<strong>in</strong>ed with hematoxyl<strong>in</strong> <strong>and</strong> eos<strong>in</strong><br />

or used for immunohistochemical sta<strong>in</strong><strong>in</strong>g.<br />

4.4 References<br />

1. Wilson MJ, Ditmanson JD, S<strong>in</strong>ha AA, Estensen RD. Plasm<strong>in</strong>ogen<br />

activator activites <strong>in</strong> <strong>the</strong> ventral <strong>and</strong> dorsolateral prostatic lobes of ag<strong>in</strong>g<br />

Fischer 344 rats. The Prostate. 1990;16:147-161.<br />

51


Chapter 5 Fluorogenic <strong>and</strong> ELISA Assays for Urok<strong>in</strong>ase <strong>in</strong> Ur<strong>in</strong>e<br />

5.1 ELISA Assay Introduction<br />

Quantification of prote<strong>in</strong>s <strong>in</strong> tissues or fluids can be achieved <strong>in</strong> several<br />

ways. An ELISA can measure both <strong>the</strong> <strong>in</strong>active <strong>and</strong> active forms of an antigen by<br />

measur<strong>in</strong>g antibody-antigen <strong>in</strong>teraction which is l<strong>in</strong>ked to an enzyme which<br />

reacts on a chromogenic substrate. This substrate causes production of a color<br />

change. The color <strong>in</strong>tensity is measured by a plate reader based on <strong>the</strong> number<br />

of antibody-antigen complexes formed. Success with this method requires<br />

measurable amounts of <strong>the</strong> antigen of <strong>in</strong>terest. 1<br />

ELISAs. 2<br />

The direct ELISA, Indirect ELISA <strong>and</strong> S<strong>and</strong>wich ELISA are <strong>the</strong> basis of all<br />

The direct ELISA is <strong>the</strong> simplest. Only one primary antibody is used <strong>and</strong><br />

this antibody is directly conjugated with an enzyme. Addition of a substrate<br />

allows visualization of <strong>the</strong> reaction. 2<br />

The <strong>in</strong>direct ELISA is similar to <strong>the</strong> direct ELISA except that <strong>the</strong> antigen is<br />

targeted <strong>in</strong>itially by an unlabelled detect<strong>in</strong>g or primary antibody. An antispecies<br />

antibody, which is bound to a conjugated enzyme, is <strong>the</strong>n added. Addition of a<br />

substrate specific for <strong>the</strong> enzyme allows detection of <strong>the</strong> reaction. 2<br />

The s<strong>and</strong>wich ELISA can be subdivided <strong>in</strong>to direct <strong>and</strong> <strong>in</strong>direct s<strong>and</strong>wich<br />

ELISAs. In both <strong>the</strong> primary antibody is passively attached to a solid phase plate<br />

by <strong>in</strong>cubation <strong>in</strong> a buffer. After wash<strong>in</strong>g away <strong>the</strong> free antibodies, <strong>the</strong> antigen of<br />

<strong>in</strong>terest is added <strong>and</strong> captured by <strong>the</strong> coat<strong>in</strong>g antibodies. For <strong>the</strong> direct s<strong>and</strong>wich<br />

ELISA a s<strong>in</strong>gle antigen-specific antibody with an enzyme label is added; for <strong>the</strong><br />

<strong>in</strong>direct s<strong>and</strong>wich ELISA, an unlabelled antibody is used followed by a second<br />

52


enzyme labeled-antibody. For both s<strong>and</strong>wich ELISAs, a substrate specific for <strong>the</strong><br />

enzyme is added to visualize <strong>the</strong> reaction. 2<br />

Read<strong>in</strong>g of <strong>the</strong> reactions or measurement of <strong>the</strong> color produced <strong>in</strong> <strong>the</strong><br />

ELISA is generally performed with <strong>the</strong> use of a plate reader. The plate reader<br />

conta<strong>in</strong>s a spectrophotometer which quantifies <strong>the</strong> degree of color change<br />

obta<strong>in</strong>ed with particular enzyme/chromophore systems. The wavelength must be<br />

set for <strong>the</strong> absorption maxima of <strong>the</strong> chromophore. Plates can be read only<br />

qualitatively by <strong>the</strong> naked eye. A plate reader is required to more able to detect<br />

subtle differences <strong>in</strong> absorption between wells <strong>in</strong> <strong>the</strong> plates <strong>and</strong> give a<br />

quantitative analysis. 2<br />

5.2 ELISA for Urok<strong>in</strong>ase Quantification <strong>in</strong> Ur<strong>in</strong>e<br />

Urok<strong>in</strong>ase is present <strong>in</strong> tissues <strong>and</strong> ur<strong>in</strong>e of mammals <strong>in</strong> active <strong>and</strong><br />

<strong>in</strong>active enzymatic forms. 3-6 An ELISA can measure both <strong>the</strong> active <strong>and</strong> <strong>in</strong>active<br />

<strong>urok<strong>in</strong>ase</strong> <strong>in</strong> a sample. ELISA kits for <strong>urok<strong>in</strong>ase</strong> are available. The antibodies <strong>in</strong><br />

<strong>the</strong>se kits are directed towards human <strong>and</strong> mouse <strong>urok<strong>in</strong>ase</strong>. We created a direct<br />

s<strong>and</strong>wich ELISA us<strong>in</strong>g antibodies which we had already shown to successfully<br />

b<strong>in</strong>d with can<strong>in</strong>e <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> western blot analysis, immunoprecipitation <strong>and</strong><br />

immunohistochemistry. (Chapter 6, section 6.6 <strong>and</strong> chapter 7, section 7.4)<br />

5.2.1 Samples<br />

Fifty-four ur<strong>in</strong>e samples were collected from healthy dogs (appendix table<br />

1) <strong>and</strong> prepared as described <strong>in</strong> chapter 4, Sample Selection <strong>and</strong> Preparation.<br />

Each sample was allowed to thaw at room temperature prior to addition to <strong>the</strong><br />

sample wells. Thirty-eight samples were run <strong>in</strong> duplicate (appendix table 3).<br />

53


5.2.2 Antibodies, Purified Enzymes <strong>and</strong> Buffers<br />

• Primary Coat<strong>in</strong>g Antibody - Mouse Monoclonal to mouse uPA – A capture<br />

monoclonal antibody produced <strong>in</strong> a uPA knockout mouse. IgG fraction<br />

purified by Prote<strong>in</strong> A Sepharose. (H77A10, Molecular Innovations,<br />

Southfield, MI)<br />

• Secondary Labeled Antibody - Rabbit anti-human uPA IgG fraction, biot<strong>in</strong><br />

labeled – Biot<strong>in</strong> labeled polyclonal antibody (host rabbit). IgG fraction<br />

purified by prote<strong>in</strong> A sepharose. (ASHUPA-GF-BIO, Molecular<br />

Innovations, Southfield, MI)<br />

• St<strong>and</strong>ard Control Enzyme - Human HMW Urok<strong>in</strong>ase – Prepared from<br />

human ur<strong>in</strong>e as <strong>the</strong> two-cha<strong>in</strong> form. (UPA-HTC, Molecular Innovations,<br />

Southfield, MI)<br />

• General Buffer - Phosphate Buffered Sal<strong>in</strong>e (PBS) – Fisher Gram-Pac<br />

Buffer pH 7.41. (B-82, Fisher Scientific, Fair Lawn, NJ)<br />

• Block<strong>in</strong>g Buffer - 2% bov<strong>in</strong>e serum album<strong>in</strong> (BSA) (0332-25G, Amerseco,<br />

Solon, OH) <strong>in</strong> PBS<br />

• Dilution Buffer - 0.5% BSA (0332-25G, Amerseco, Solon, OH) <strong>in</strong> PBS<br />

• Wash<strong>in</strong>g Buffer – 0.5% Triton-X-100 (161-0407, Bio-Rad Laboratories,<br />

Hercules, CA) <strong>in</strong> PBS<br />

• Substrate – Peroxidase Solution B, H2O2, (50-65-00, KPL, Gai<strong>the</strong>rsburg,<br />

MD)<br />

• Chromophore – TMB (50-76-01, KPL, Gai<strong>the</strong>rsburg, MD) to <strong>in</strong>teract with<br />

54


Horseradish peroxidase enzyme to produce a blue color change <strong>in</strong> <strong>the</strong><br />

ELISA wells<br />

• Stop Agent - 0.1% H2SO4, when added to <strong>the</strong> well this stops <strong>the</strong> reaction<br />

between TMB <strong>and</strong> H2O2, decreases <strong>the</strong> pH <strong>and</strong> changes <strong>the</strong> reaction to a<br />

yellow color.<br />

5.2.3 ELISA Technique<br />

St<strong>and</strong>ardization: N<strong>in</strong>ety-six well plates were <strong>in</strong>cubated to determ<strong>in</strong>e <strong>the</strong><br />

optimal antibody dilution for <strong>the</strong> ELISA with 100µl of mouse anti-mouse uPA<br />

antibody at 1:250, 1:500, 1:1000, 1:2000, 1:4000 <strong>and</strong> 1:8000 dilutions at room<br />

temperature overnight. All samples <strong>and</strong> st<strong>and</strong>ards were run <strong>in</strong> duplicate. After<br />

<strong>in</strong>cubation, 300µl of <strong>the</strong> block<strong>in</strong>g buffer was added to <strong>the</strong> wells for 1 hour at room<br />

temperature. The wells were <strong>the</strong>n washed three times with wash<strong>in</strong>g solution <strong>and</strong><br />

blotted. Log dilutions of 100µl of pure uPA diluted <strong>in</strong> PBS were <strong>the</strong>n added to<br />

each of <strong>the</strong> wells. The st<strong>and</strong>ard curve ran from 1 µg to 1 pg <strong>in</strong> serial log dilutions.<br />

One row was left as blank. The uPA was <strong>in</strong>cubated at room temperature for 2<br />

hours. The wells were aga<strong>in</strong> washed three times with wash<strong>in</strong>g solution. The<br />

rabbit anti-human uPA antibody was <strong>the</strong>n added at 1:1000 dilutions <strong>in</strong> a volume<br />

of 100µl at room temperature for 2 hours. The wells were aga<strong>in</strong> washed 3 times<br />

with <strong>the</strong> wash<strong>in</strong>g buffer. Streptavid<strong>in</strong> conjugated to horseradish peroxidase<br />

enzyme was <strong>the</strong>n added at a volume of 100 µl for 30 m<strong>in</strong>utes. The chromophore<br />

was <strong>the</strong>n added for 15 m<strong>in</strong>utes. After this time <strong>the</strong> reaction was stopped with<br />

0.1% sulfuric acid <strong>and</strong> <strong>the</strong> reaction was read <strong>in</strong> a plate reader at 405 nm.<br />

Ur<strong>in</strong>e samples were run <strong>in</strong> <strong>the</strong> same manner as described. The dilution of<br />

55


<strong>the</strong> mouse anti-mouse uPA antibody was 1:8000. The uPA st<strong>and</strong>ard was diluted<br />

from 1000 ng to 1 ng (figure 5.1).<br />

Figure 5.1 Direct s<strong>and</strong>wich ELISA for can<strong>in</strong>e uPA. The addition of <strong>the</strong> substrate H2O2 results <strong>in</strong><br />

<strong>the</strong> follow<strong>in</strong>g reaction H202 → H20 + Ö. The resultant free oxygen radical reacts with <strong>the</strong><br />

chromogen TMB to produce a blue color change. Stopp<strong>in</strong>g <strong>the</strong> reaction with H2SO4 decreases <strong>the</strong><br />

pH caus<strong>in</strong>g <strong>the</strong> end color to be yellow.<br />

5.2.4 Problems<br />

The large number of dilutions was required to choose <strong>the</strong> primary antibody<br />

dilution for <strong>the</strong> test samples was due to presence of background <strong>in</strong> <strong>the</strong> wells.<br />

Ideally one would like to see background read<strong>in</strong>gs close to 0 to ensure that<br />

samples with low concentrations of <strong>the</strong> antigen of <strong>in</strong>terest are not blocked out. In<br />

our case, <strong>the</strong> background was likely due to <strong>the</strong> non-specific b<strong>in</strong>d<strong>in</strong>g of <strong>the</strong> rabbit-<br />

polyclonal antibody to <strong>the</strong> mouse-monoclonal antibody. Even with a dilution of<br />

1:8000, some background was still evident; however <strong>the</strong> level was acceptable<br />

56


acceptable without loss of uPA delectability.<br />

5.3 Activity Assays Introduction<br />

Chromogenic <strong>and</strong> fluorogenic substrates are used to measure only <strong>the</strong><br />

active form of <strong>the</strong> enzyme <strong>in</strong> question. 3-7 Enzymes are prote<strong>in</strong>s which catalyze<br />

most of <strong>the</strong> chemical reactions <strong>in</strong> <strong>the</strong> body. In <strong>the</strong> case of uPA <strong>the</strong> activity is<br />

thrombolytic activity. 8 The chemical compound upon which <strong>the</strong> enzyme exerts its<br />

catalytic activity is <strong>the</strong> substrate. 7 Proteolytic enzymes degrade <strong>the</strong>ir substrates,<br />

prote<strong>in</strong>s <strong>and</strong> peptides by hydrolyz<strong>in</strong>g one or more peptide bonds.<br />

5.3.1 Chromogenic Assays<br />

Chromogenic substrates are peptides which react with proteolytic<br />

enzymes caus<strong>in</strong>g color changes based on <strong>the</strong> level of activity. 3-6 Chromogenic<br />

substrates are made up of a protect<strong>in</strong>g group, am<strong>in</strong>o acid residue(s), side cha<strong>in</strong><br />

modification if applicable <strong>and</strong> <strong>the</strong> chromophore. The most commonly used<br />

chromogenic substrate for measurement of uPA activity <strong>in</strong> tissues, plasma <strong>and</strong><br />

ur<strong>in</strong>e is S-2444 (Chromogenix, MöIndal, Sweden) from Diapharma. The chemical<br />

formula for this compound is


human ur<strong>in</strong>e, however, <strong>the</strong> method of purification used was gel filtration <strong>and</strong> <strong>the</strong><br />

quantities of ur<strong>in</strong>e used were large. 3-6 In our study we did not purify <strong>the</strong> ur<strong>in</strong>e but<br />

ra<strong>the</strong>r concentrated it us<strong>in</strong>g biologic filters to conta<strong>in</strong> molecular weight prote<strong>in</strong>s<br />

between 30 kDa <strong>and</strong> 100 kDa. This allowed us to decrease <strong>the</strong> quantity of ur<strong>in</strong>e<br />

collected s<strong>in</strong>ce collection of large volumes of ur<strong>in</strong>e from one dog was often<br />

impossible. Filter<strong>in</strong>g <strong>the</strong> ur<strong>in</strong>e did not alter <strong>the</strong> yellow color of ur<strong>in</strong>e. S<strong>in</strong>ce <strong>the</strong><br />

wavelength used for measur<strong>in</strong>g <strong>the</strong> reaction with S-2444 <strong>and</strong> o<strong>the</strong>r chromogenic<br />

substrates is 405nm, which is <strong>the</strong> yellow wavelength; <strong>the</strong> filtered ur<strong>in</strong>e could not<br />

be accurately assessed with this method as <strong>the</strong> yellow color <strong>in</strong>terfered with <strong>the</strong><br />

results.<br />

5.3.2 Fluorogenic Assays<br />

Fluorogenic substrates measure activity along <strong>the</strong> same pr<strong>in</strong>cipal as <strong>the</strong><br />

colorimetric substrates. These substrates conta<strong>in</strong> a fluorophore ra<strong>the</strong>r than a<br />

chromophore <strong>and</strong> cleavage of this fragment is determ<strong>in</strong>ed by <strong>the</strong> fluorescent<br />

activity. 7 The substrate used to evaluate uPA excites at 360-380nm with<br />

emission at 440-460nm. 9 These reactions can also be performed <strong>in</strong> 96 well plates<br />

however <strong>the</strong> wells must be have black sides <strong>and</strong> black or clear bottoms to<br />

prevent <strong>in</strong>terference from neighbor<strong>in</strong>g wells. This method can quantify <strong>the</strong><br />

concentration of uPA <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e. The fluorescence activity is compared to a<br />

st<strong>and</strong>ard fluorescence curve derived from with known concentrations of pure<br />

human <strong>urok<strong>in</strong>ase</strong>.<br />

5.4 Fluorogenic Activity Assay for Urok<strong>in</strong>ase Quantification <strong>in</strong> Ur<strong>in</strong>e<br />

The fluorogenic substrate used <strong>in</strong> our experiment was Urok<strong>in</strong>ase<br />

58


Substrate III from Calbiochem. The chemical composition of this substrate is<br />

similar to that of S-2444 with <strong>the</strong> exception of <strong>the</strong> end group Glutaryl-Gly-Arg-<br />

AMC, AMC be<strong>in</strong>g <strong>the</strong> fluorophore. The yellow color of <strong>the</strong> ur<strong>in</strong>e does not <strong>in</strong>terfere<br />

with <strong>the</strong> fluorescence however ur<strong>in</strong>e does conta<strong>in</strong> xan<strong>the</strong>nes which have<br />

autofluorogenic properties. Fortunately <strong>the</strong> xan<strong>the</strong>nes tend to excite at higher<br />

wavelengths than that of uPA activity. To verify lack of <strong>in</strong>terference with our<br />

samples, r<strong>and</strong>om samples were run without <strong>the</strong> substrate at <strong>the</strong> required<br />

excitation <strong>and</strong> emission for <strong>the</strong> Glutaryl-Gly-Arg-AMC reaction. No fluorescent<br />

activity was noted.<br />

5.4.1 Samples<br />

Ur<strong>in</strong>e samples were collected <strong>and</strong> processed as described <strong>in</strong> chapter 4,<br />

Sample Selection <strong>and</strong> Preparation. Each sample was allowed to thaw on ice to<br />

4ºC prior to addition to <strong>the</strong> sample wells. Fifty samples evaluated <strong>in</strong> <strong>the</strong> assay.<br />

5.4.2 Substrates <strong>and</strong> Buffers<br />

• Fluorescence Buffer – 6g Tris, 7.9g TrisHCL adjusted to pH 7.5-7.7; 1g<br />

polyethylene glycol(6000); 5.8g Sodium Chloride; 3.78g D-Mannitol, <strong>in</strong> one<br />

liter of distilled water.<br />

• Substrate – Urok<strong>in</strong>ase Substrate III, Fluorogenic, Z-Gly-Gly-Arg-AMC, HCl<br />

(672159, Calbiochem, San Diego, CA)<br />

• Enzyme - Human HMW Urok<strong>in</strong>ase – Prepared from human ur<strong>in</strong>e as <strong>the</strong><br />

two-cha<strong>in</strong> form. (UPA-HTC, Molecular Innovations, Southfield, MI)<br />

5.4.3 Fluorogenic Assay Technique<br />

The technique used was modified from a technique described by Enzyme<br />

59


Figure 5.2 Schematic representation of fluorescence assay for uPA us<strong>in</strong>g Urok<strong>in</strong>ase Substrate III.<br />

When <strong>the</strong> Urok<strong>in</strong>ase Substrate III is added to <strong>the</strong> uPA <strong>in</strong> <strong>the</strong> fluorescence buffer, <strong>the</strong> active uPA<br />

cleaves <strong>the</strong> AMC group from <strong>the</strong> Urok<strong>in</strong>ase Substrate III. The AMC is excited at a wavelength of<br />

360/380 nm <strong>and</strong> <strong>the</strong> fluorescence is emitted at a wavelength of 440/460 nm. The diagrams<br />

represent one well <strong>in</strong> <strong>the</strong> 96 well plate. Activity is read at time 0 <strong>and</strong> 5 m<strong>in</strong>utes.<br />

Systems Products. 10 We modified volume of ur<strong>in</strong>e to allow samples to be run <strong>in</strong><br />

96 well Microplat St<strong>and</strong>ard SUR plates (BD 353293, Becton Dickenson, Batavia,<br />

IL)<br />

All samples were run <strong>in</strong> triplicate <strong>and</strong> all reactions were performed at<br />

approximately 4ºC. Urok<strong>in</strong>ase st<strong>and</strong>ard curves were run with each plate us<strong>in</strong>g<br />

pure human uPA <strong>in</strong> serial dilution start<strong>in</strong>g at 2 µg <strong>and</strong> end<strong>in</strong>g at a 1:64 µg<br />

dilution. With <strong>the</strong> plates on ice, 182µl of <strong>the</strong> fluorogenic buffer was added to each<br />

test well. Eight microliters of pure uPA or sample was <strong>the</strong>n added to each well.<br />

This mixture was allowed to equilibrate for 15 m<strong>in</strong>utes on ice. Follow<strong>in</strong>g <strong>the</strong><br />

equilibration, 8 µl of <strong>the</strong> Urok<strong>in</strong>ase Substrate III was added to each well. The<br />

plate was <strong>the</strong>n placed <strong>in</strong> a Fluorescence Plate Reader <strong>and</strong> agitated for 6<br />

seconds. The plates were read at time 0 <strong>and</strong> 5 m<strong>in</strong>utes at excitation maxima of<br />

360/40 <strong>and</strong> emission maxima of 460/40nm (figure 5.2). St<strong>and</strong>ard curves were<br />

60


generated for each plate <strong>and</strong> concentration based on activity was translated from<br />

<strong>the</strong> st<strong>and</strong>ard curve (appendix figure 1).<br />

5.5 Statistical Analysis<br />

The <strong>urok<strong>in</strong>ase</strong> concentration <strong>and</strong> <strong>the</strong> <strong>urok<strong>in</strong>ase</strong> enzymatic activity (EA)<br />

was corrected for <strong>the</strong> volume of concentrate:orig<strong>in</strong>al volume of ur<strong>in</strong>e by<br />

multiply<strong>in</strong>g <strong>the</strong> concentration of <strong>the</strong> tested sample by <strong>the</strong> orig<strong>in</strong>al<br />

volume/concentrated volume. The <strong>urok<strong>in</strong>ase</strong> concentration <strong>and</strong> <strong>the</strong> enzymatic<br />

activity were expressed as units/mg Cr /uL ur<strong>in</strong>e.<br />

The <strong>urok<strong>in</strong>ase</strong> concentration <strong>and</strong> <strong>the</strong> enzymatic activity was also adjusted<br />

for <strong>the</strong> concentration of creat<strong>in</strong><strong>in</strong>e <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e. The creat<strong>in</strong><strong>in</strong>e-adjusted <strong>urok<strong>in</strong>ase</strong><br />

concentration <strong>and</strong> <strong>the</strong> enzymatic activity were <strong>the</strong>n expressed as units/mg Cr /mL<br />

ur<strong>in</strong>e.<br />

The <strong>urok<strong>in</strong>ase</strong> concentrations <strong>and</strong> <strong>the</strong> creat<strong>in</strong><strong>in</strong>e-adjusted <strong>urok<strong>in</strong>ase</strong><br />

concentrations were plotted <strong>and</strong> <strong>the</strong> distribution of <strong>the</strong> data visualized <strong>and</strong><br />

described. Normality was tested us<strong>in</strong>g <strong>the</strong> Shapiro-Wilk statistic with <strong>the</strong> null<br />

hypo<strong>the</strong>sis of normality rejected at p 0.40.<br />

61


SAS (PROC CORR, PROC NPAR1WAY, PROC UNIVARIATE) was used<br />

for <strong>the</strong> analysis. (SAS v 9.1, SAS Institute, Cary, NC).<br />

5.6 Results<br />

Urok<strong>in</strong>ase concentration - The distribution for <strong>the</strong> <strong>urok<strong>in</strong>ase</strong> concentration<br />

<strong>and</strong> <strong>the</strong> creat<strong>in</strong><strong>in</strong>e-adjusted <strong>urok<strong>in</strong>ase</strong> concentration for each group was skewed<br />

to <strong>the</strong> right <strong>and</strong> <strong>the</strong> null hypo<strong>the</strong>sis of normality was not rejected, except for <strong>the</strong><br />

<strong>urok<strong>in</strong>ase</strong> concentration of females <strong>and</strong> castrated males (figs 5.3 <strong>and</strong> 5.4, tables<br />

5.1 <strong>and</strong> 5.2 <strong>and</strong> appendix table 3). There was no significant difference between<br />

males <strong>and</strong> females or among sexual status for <strong>urok<strong>in</strong>ase</strong> or creat<strong>in</strong><strong>in</strong>e-adjusted<br />

<strong>urok<strong>in</strong>ase</strong> concentrations.<br />

There was poor to marg<strong>in</strong>al correlation between <strong>the</strong> creat<strong>in</strong><strong>in</strong>e<br />

concentration <strong>and</strong> <strong>the</strong> <strong>urok<strong>in</strong>ase</strong> concentration <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e from male dogs<br />

(ρ=0.24), male castrated dogs (ρ=0.49) <strong>and</strong> female dogs (ρ=0.49). There was<br />

moderate correction for female spayed dogs (ρ=0.67) (fig 5.5). When all female<br />

dogs were grouped toge<strong>the</strong>r, <strong>the</strong> correlation was marg<strong>in</strong>al (ρ=0.36).<br />

EA concentration – The distribution for <strong>the</strong> EA <strong>and</strong> for <strong>the</strong> creat<strong>in</strong><strong>in</strong>e-<br />

adjusted EA for each group was heavily skewed to <strong>the</strong> right <strong>and</strong> <strong>the</strong> null<br />

hypo<strong>the</strong>sis of normality was not rejected (figs 5.6 <strong>and</strong> 5.7 <strong>and</strong> appendix table 2)<br />

5.7 Discussion<br />

Urok<strong>in</strong>ase is present <strong>in</strong> ur<strong>in</strong>e of healthy dogs <strong>in</strong> small but measurable<br />

quantities. The ELISA assay measured <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> both <strong>the</strong> active <strong>and</strong> <strong>in</strong>active<br />

state. The fluorescent assay measures only active uPA <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e.<br />

Sampl<strong>in</strong>g technique created additional work <strong>in</strong> this experiment because<br />

we used variable volumes <strong>in</strong> our samples <strong>and</strong> concentrated <strong>the</strong>m to variable<br />

62


Figure 5.3 ELISA assay of can<strong>in</strong>e ur<strong>in</strong>e versus dog groups, ng <strong>urok<strong>in</strong>ase</strong>/µl ur<strong>in</strong>e<br />

Figure 5.4 ELISA assay of can<strong>in</strong>e ur<strong>in</strong>e versus dog groups, ng <strong>urok<strong>in</strong>ase</strong>/mg creat<strong>in</strong><strong>in</strong>e/µl ur<strong>in</strong>e<br />

Table 5.1 St<strong>and</strong>ard Deviation, coefficient of variation, median <strong>and</strong> quartiles for volume corrected<br />

ELISA results<br />

Female Female Spayed Male Male Castrated<br />

Mean 381.49 1007.10 890.44 366.41<br />

Std Deviation 269.82 924.19 928.41 272.55<br />

Coeff of Variation 70.73 91.77 104.26 74.38<br />

M<strong>in</strong>imum - 53.89 114.87 81.43 -21.18<br />

Lower Quartile 199.71 329.63 185.42 106.91<br />

Median 305.15 612.38 395.19 379.21<br />

Upper Quartile 617.58 1652.52 2030.64 598.48<br />

Maximum 825.39 2944.16 2524.30 799.36<br />

63


Table 5.2 St<strong>and</strong>ard Deviation, coefficient of variation, median <strong>and</strong> quartiles for volume <strong>and</strong><br />

creat<strong>in</strong><strong>in</strong>e corrected ELISA results.<br />

Female Female Spayed Male Male Castrated<br />

Mean 14.12 63.85 59.59 32.39<br />

Std Deviation 9.93 66.35 92.98 27.47<br />

Coeff of Variation 70.38 103.92 156.03 84.81<br />

M<strong>in</strong>imum -2.42 7.56 3.69 -1.65<br />

Lower Quartile 6.44 17.48 9.64 10.63<br />

Median 15.06 45.15 24.89 23.09<br />

Upper Quartile 19.89 68.26 69.31 55.30<br />

Maximum 34.67 226.29 386.90 86.30<br />

Figure 5.5 Fluorescent Activity assays of can<strong>in</strong>e ur<strong>in</strong>e versus dog groups, emission activity (EA)<br />

of <strong>urok<strong>in</strong>ase</strong> / mg creat<strong>in</strong><strong>in</strong>e/ µl ur<strong>in</strong>e<br />

Figure 5.6 Correlation between creat<strong>in</strong><strong>in</strong>e levels <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> concentrations <strong>in</strong> female spayed<br />

dogs.<br />

64


Figure 5.7 Fluorescent Activity assays of can<strong>in</strong>e ur<strong>in</strong>e versus dog groups, emission activity (EA)<br />

<strong>urok<strong>in</strong>ase</strong> / µl ur<strong>in</strong>e<br />

Table 5.3 St<strong>and</strong>ard Deviation, coefficient of variation, median <strong>and</strong> quartiles for volume corrected<br />

fluorescent assay results<br />

Female Female Spayed Male Male Castrated<br />

Mean 0.001 0.001 0.001 0.001<br />

Std Deviation 0.001 0.002 0.002 0.002<br />

Coeff of Variation 158.31 176.02 173.48 167.67<br />

M<strong>in</strong>imum 0 0 0 0<br />

Lower Quartile 0 0 0 0<br />

Median 0 0 0 0<br />

Upper Quartile 0.001 0.001 0.002 0.001<br />

Maximum 0.003 0.005 0.007 0.006<br />

Table 5.4 St<strong>and</strong>ard Deviation, coefficient of variation, median <strong>and</strong> quartiles for volume <strong>and</strong><br />

creat<strong>in</strong><strong>in</strong>e corrected fluorescent assay results.<br />

Female Female Spayed Male Male Castrated<br />

Mean 0.03 0.07 0.10 0.07<br />

Std Deviation 0.06 0.12 0.18 0.10<br />

Coeff of Variation 188.24 166.06 187.09 146.21<br />

M<strong>in</strong>imum 0 0 0 0<br />

Lower Quartile 0 0 0 0<br />

Median 0.003 0 0 0<br />

Upper Quartile 0.04 0.13 0.09 0.001<br />

Maximum 0.19 0.34 0.65 0.32<br />

volumes. Do<strong>in</strong>g this required that we calculate concentration factors for each<br />

ur<strong>in</strong>e sample <strong>and</strong> apply this number to <strong>the</strong> values obta<strong>in</strong>ed <strong>in</strong> each assay prior to<br />

65


evaluation. This method was necessary <strong>in</strong> our study because we did not have<br />

any prior knowledge of <strong>the</strong> expected concentration of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> can<strong>in</strong>e ur<strong>in</strong>e.<br />

We collected maximum volumes <strong>in</strong> an attempt to ensure we did not miss<br />

<strong>urok<strong>in</strong>ase</strong> because <strong>the</strong> volume was too small. If <strong>the</strong> expected concentration of a<br />

prote<strong>in</strong> is known per unit of volume, one can start with <strong>and</strong> end with equal<br />

volumes of <strong>the</strong> ur<strong>in</strong>e or o<strong>the</strong>r sample to elim<strong>in</strong>ate this step. With <strong>the</strong> results from<br />

<strong>the</strong> data we collected, <strong>in</strong> future studies we could use uniform start volumes of at<br />

least 3 mls <strong>and</strong> end volumes of at least 150 µl.<br />

Urok<strong>in</strong>ase activity has been measured directly by means of chromogenic<br />

substrates such as S-2444 which measure <strong>the</strong> amidolytic determ<strong>in</strong>ation of<br />

<strong>urok<strong>in</strong>ase</strong> activity <strong>in</strong> purified preparations <strong>and</strong> ur<strong>in</strong>e. 4 This method requires a<br />

colorless sample as <strong>the</strong> yellow color of xan<strong>the</strong>nes <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e <strong>in</strong>terferes with <strong>the</strong><br />

spectrum for measur<strong>in</strong>g color change <strong>in</strong> <strong>the</strong> chromogen of S-2444 <strong>and</strong> o<strong>the</strong>r<br />

similar compounds. To purify <strong>the</strong> ur<strong>in</strong>e for this technique, gel chromatography is<br />

used to recover only <strong>the</strong> purified <strong>urok<strong>in</strong>ase</strong> from samples. This requires large<br />

volumes of ur<strong>in</strong>e which are difficult to collect from dogs. This problem led us to<br />

<strong>in</strong>stead choose <strong>the</strong> fluorescent assay as a means of measur<strong>in</strong>g <strong>the</strong> active uPA <strong>in</strong><br />

<strong>the</strong> ur<strong>in</strong>e samples collected from <strong>the</strong> dogs.<br />

The technique used was adapted from a technique described by Enzyme<br />

Systems Products. 10 The orig<strong>in</strong>al technique was run <strong>in</strong> larger wells with larger<br />

volumes of buffer, enzyme <strong>and</strong> sample <strong>and</strong> was <strong>in</strong>tended for use <strong>in</strong> plasma. To<br />

ensure that <strong>the</strong> autofluorescent properties of ur<strong>in</strong>e did not <strong>in</strong>terfere with <strong>the</strong><br />

sample read<strong>in</strong>g ur<strong>in</strong>e samples were placed <strong>in</strong> wells without enzyme. They<br />

showed no fluorescence. The chemical, Z-Gly-Gly-Arg-AMC, HCl, has aff<strong>in</strong>ity for<br />

66


<strong>urok<strong>in</strong>ase</strong> as was demonstrated by its activity on pure <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> st<strong>and</strong>ard.<br />

This chemical has also been used for evaluation of <strong>urok<strong>in</strong>ase</strong> activity <strong>in</strong> plasma<br />

but not <strong>in</strong> ur<strong>in</strong>e.<br />

Results In <strong>the</strong> fluorescence assay showed high variability, as<br />

demonstrated by <strong>the</strong> slopes of <strong>the</strong> st<strong>and</strong>ard curves. The variable read<strong>in</strong>gs <strong>in</strong> our<br />

assay could be <strong>the</strong> result of many issues. Us<strong>in</strong>g ur<strong>in</strong>e which had not been<br />

dialyzed by gel filtration left a sample which was still high <strong>in</strong> organic salts. This<br />

may have <strong>in</strong>terfered with <strong>the</strong> reaction between <strong>the</strong> ur<strong>in</strong>e <strong>and</strong> <strong>the</strong> fluorescent<br />

substrate. The sample volumes placed <strong>in</strong> each well were very small, 8µl. This<br />

leads to <strong>in</strong>creased risk of error by <strong>the</strong> person fill<strong>in</strong>g <strong>the</strong> wells. Use of a<br />

multichanel pipette would have decreased that risk but multichanel pipettes are<br />

not made to h<strong>and</strong>le volumes smaller than 10 µl. Errors made with small volumes<br />

<strong>in</strong>clude leav<strong>in</strong>g <strong>the</strong> sample on <strong>the</strong> side of <strong>the</strong> well, <strong>and</strong> not completely empty<strong>in</strong>g<br />

<strong>the</strong> pipette when add<strong>in</strong>g <strong>the</strong> sample. Ei<strong>the</strong>r <strong>in</strong>cident would dramatically change<br />

<strong>the</strong> result when <strong>the</strong> activity is volume dependant. A third area for error was also<br />

due to <strong>the</strong> fact that a multichanel pipette was not used. This assay is time<br />

sensitive, with measurements taken at time 0 <strong>and</strong> 5 m<strong>in</strong>utes. Although we tried<br />

to m<strong>in</strong>imize <strong>the</strong> error associated with this problem by plat<strong>in</strong>g multiple plates with<br />

fewer samples, this probably also factored <strong>in</strong>to <strong>the</strong> f<strong>in</strong>al values. All of <strong>the</strong>se<br />

sources of error affected <strong>the</strong> results of our st<strong>and</strong>ard curves result<strong>in</strong>g <strong>in</strong> a lot of<br />

variability from plate to plate. This made comparison of values from plate to plate<br />

us<strong>in</strong>g <strong>the</strong> generated st<strong>and</strong>ard curves impossible. To enable comparison of all <strong>the</strong><br />

plates we transformed <strong>the</strong> st<strong>and</strong>ard curves us<strong>in</strong>g a global fit st<strong>and</strong>ard curve,<br />

which averaged <strong>the</strong> read<strong>in</strong>gs of all <strong>the</strong> st<strong>and</strong>ard curves creat<strong>in</strong>g to make one of<br />

67


est fit, <strong>the</strong>reby creat<strong>in</strong>g an artificial curve. The fluorogenic read<strong>in</strong>gs from each<br />

plate were <strong>the</strong>n plotted along this new st<strong>and</strong>ard curve to extrapolate<br />

concentrations for each sample. In an ideal situation one would be able to use<br />

<strong>the</strong> same st<strong>and</strong>ard curve for every plate because <strong>the</strong> protocol would have very<br />

little variance from run to run. Methods for improv<strong>in</strong>g <strong>the</strong> variability <strong>in</strong> our assay<br />

would improve our results. Larger volumes of ur<strong>in</strong>e <strong>and</strong> substrate would help to<br />

decrease <strong>the</strong> effects of dilution or concentration if <strong>the</strong> volume varied slightly<br />

between wells. In most assays <strong>the</strong> m<strong>in</strong>imum repeated volume is 50 µl, which<br />

decreases <strong>the</strong> risk of pipette <strong>in</strong>duced error. Us<strong>in</strong>g larger volumes of <strong>the</strong> substrate<br />

also <strong>in</strong>creases <strong>the</strong> cost of <strong>the</strong> assay considerably. Use of a multi-channel pipette<br />

to load <strong>the</strong> samples <strong>and</strong> substrate would decrease <strong>the</strong> time <strong>in</strong>volved <strong>and</strong> <strong>the</strong><br />

variability between wells. Switch<strong>in</strong>g to 24 well plates would allow larger volumes.<br />

All of <strong>the</strong>se th<strong>in</strong>gs toge<strong>the</strong>r would decrease <strong>the</strong> variation considerably <strong>and</strong> maybe<br />

allow a repeatable st<strong>and</strong>ard curve <strong>and</strong> comparison of values without transform<strong>in</strong>g<br />

<strong>the</strong> data.<br />

Due to <strong>the</strong> extreme variability <strong>in</strong> results I do not feel that <strong>the</strong><br />

concentrations obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> fluorescence activity assay could be taken as<br />

accurate concentrations (appendix table 2). I do feel that for those samples <strong>in</strong><br />

which a value was obta<strong>in</strong>ed, that value is a measure of <strong>the</strong> <strong>urok<strong>in</strong>ase</strong> activity <strong>in</strong><br />

<strong>the</strong> volume of ur<strong>in</strong>e placed <strong>in</strong> <strong>the</strong> well. The comparison between groups is also of<br />

limited value. There may be differences between <strong>the</strong> groups that are not evident<br />

because <strong>the</strong> higher values <strong>in</strong> <strong>the</strong> actual plate would have been lowered to fit <strong>the</strong><br />

global st<strong>and</strong>ard <strong>and</strong> <strong>the</strong> lowest values would have been raised. This results <strong>in</strong><br />

less difference between <strong>the</strong> highest <strong>and</strong> lowest values. If <strong>the</strong>re were a large<br />

68


difference <strong>in</strong> activity between <strong>the</strong> groups we may still have seen a difference<br />

despite <strong>the</strong> large variation <strong>in</strong> our samples due to pipette error.<br />

The ELISA assay appeared to produce less variable results (appendix<br />

table 3), however, <strong>the</strong> amount of background <strong>in</strong> <strong>the</strong> ELISA was higher than<br />

desired. The high background was likely due to <strong>the</strong> non-specific b<strong>in</strong>d<strong>in</strong>g of <strong>the</strong><br />

rabbit-polyclonal antibody to <strong>the</strong> mouse-monoclonal antibody. This could be<br />

fur<strong>the</strong>r decreased by ei<strong>the</strong>r <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> dilution of secondary labeled antibody<br />

to 1:2000 or fur<strong>the</strong>r, or by pass<strong>in</strong>g <strong>the</strong> rabbit antibody through a mouse<br />

immunoglobul<strong>in</strong> column to remove <strong>the</strong> mouse specific immunoglobul<strong>in</strong>s.<br />

The antibodies chosen for <strong>the</strong> ELISA were tested <strong>in</strong> <strong>the</strong> SDS-<br />

PAGE/western blot assays. Both antibodies worked <strong>in</strong> <strong>the</strong> non-<br />

immunoprecipitated <strong>and</strong> immunoprecipitated ur<strong>in</strong>e samples, suggest<strong>in</strong>g that <strong>the</strong><br />

mouse anti-mouse antibody <strong>and</strong> <strong>the</strong> rabbit anti-human antibody for uPA<br />

recognize uPA-like prote<strong>in</strong> <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e <strong>and</strong> tissues of healthy dogs. The choice of<br />

a 1:1000 dilution for <strong>the</strong> rabbit antibody was based on <strong>the</strong> use of this dilution <strong>in</strong><br />

<strong>the</strong> Western blot assay. In general <strong>the</strong> dilution <strong>in</strong> a Western blot will also work<br />

well <strong>in</strong> an ELISA us<strong>in</strong>g <strong>the</strong> same antibodies.<br />

One concern <strong>in</strong> <strong>the</strong> ELISA assay <strong>and</strong> <strong>the</strong> method of concentration used to<br />

prepare <strong>the</strong> ur<strong>in</strong>e samples is retention of organic salts <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e samples.<br />

These salts can <strong>in</strong>terfere with b<strong>in</strong>d<strong>in</strong>g of <strong>the</strong> antibody to <strong>the</strong> prote<strong>in</strong> result<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> appearance of lower concentration of uPA than is actually present. This may<br />

have been a problem with our samples. The relationship between <strong>the</strong> ELISA<br />

concentrations <strong>and</strong> <strong>the</strong> fluorescent concentrations cannot be compared directly;<br />

however, one would expect that <strong>the</strong> fluorescent read<strong>in</strong>gs would all be lower than<br />

69


<strong>the</strong> ELISA read<strong>in</strong>gs because <strong>the</strong> fluorescent read<strong>in</strong>gs are only measur<strong>in</strong>g active<br />

uPA. The samples evaluated were consistently lower <strong>in</strong> <strong>the</strong> ELISA, once<br />

corrected for volume <strong>and</strong> ur<strong>in</strong>e creat<strong>in</strong><strong>in</strong>e, than <strong>the</strong> comparable corrected<br />

fluorescent read<strong>in</strong>gs. This would suggest that salts may have a major impact on<br />

b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> <strong>the</strong> ELISA assay.<br />

Use of a s<strong>and</strong>wich ELISA allowed us to measure concentration of active<br />

<strong>and</strong> <strong>in</strong>active <strong>urok<strong>in</strong>ase</strong>. Aga<strong>in</strong>, I am unsure of whe<strong>the</strong>r <strong>the</strong> absolute concentration<br />

with<strong>in</strong> <strong>the</strong> samples is accurate. I do believe that <strong>the</strong> relative concentrations<br />

between samples are of value as <strong>the</strong> procedure had less room for operator error<br />

than <strong>the</strong> fluorescent assay. The volumes were much larger us<strong>in</strong>g 100 µl for each<br />

sample <strong>and</strong> a multichanel pipette was used to apply all <strong>the</strong> antibodies <strong>and</strong><br />

stopp<strong>in</strong>g agents.<br />

Ano<strong>the</strong>r issue which may have an impact on determ<strong>in</strong><strong>in</strong>g absolute<br />

concentrations of uPA <strong>in</strong> ur<strong>in</strong>e for comparison between animals is <strong>the</strong> question of<br />

relationship between concentration of ur<strong>in</strong>e <strong>and</strong> uPA. Us<strong>in</strong>g creat<strong>in</strong><strong>in</strong>e is an<br />

acceptable method of correct<strong>in</strong>g for concentration when evaluat<strong>in</strong>g urea <strong>and</strong> uric<br />

acid because <strong>the</strong> prote<strong>in</strong>s are all excreted <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e at a constant rate. We do<br />

not know if uPA <strong>and</strong> creat<strong>in</strong><strong>in</strong>e are excreted <strong>in</strong> a comparable rate or ratio. Some<br />

papers do correct for ur<strong>in</strong>e concentration us<strong>in</strong>g creat<strong>in</strong><strong>in</strong>e <strong>and</strong> express <strong>the</strong><br />

concentration of uPA as a function of mg/ml of creat<strong>in</strong><strong>in</strong>e. 1, 11 O<strong>the</strong>r papers<br />

express <strong>the</strong> concentration of uPA <strong>in</strong> mg/ml us<strong>in</strong>g only a volume correction for<br />

<strong>the</strong>ir calculation. 12, 13 This tends to be used more often <strong>in</strong> healthy subjects or<br />

when uPA activity is be<strong>in</strong>g evaluated as opposed to total concentration. To use<br />

only a volume correction <strong>the</strong> assumption must be made that uPA is excreted at a<br />

70


constant rate per milliliter of ur<strong>in</strong>e produced. This may be <strong>the</strong> case <strong>in</strong> a normal<br />

healthy person; however, one study has shown that diuresis does decrease <strong>the</strong><br />

uPA concentration <strong>in</strong> ur<strong>in</strong>e. 14 This would <strong>in</strong>dicate that, at least <strong>in</strong> extreme cases<br />

of diuresis <strong>and</strong> filtration activity by <strong>the</strong> kidney, uPA excretion <strong>in</strong>to <strong>the</strong> ur<strong>in</strong>e does<br />

not match <strong>the</strong> normal concentration produced per milliliter of ur<strong>in</strong>e. 14, 15 In <strong>the</strong><br />

case of renal disease <strong>the</strong> concentration of uPA <strong>in</strong> excreted ur<strong>in</strong>e, as compared to<br />

healthy people, has been shown to be higher <strong>in</strong> people with renal disease of<br />

various types. 13 Some o<strong>the</strong>r papers suggest that uPA excretion may be<br />

16, 17<br />

decreases <strong>in</strong> renal disease due to <strong>in</strong>creased PAI-1 activity <strong>in</strong> <strong>the</strong> kidney.<br />

Many of <strong>the</strong> dogs presented to <strong>the</strong> Louisiana State University Veter<strong>in</strong>ary<br />

Teach<strong>in</strong>g Hospital <strong>and</strong> Cl<strong>in</strong>ic are stressed, have had long car rides or may have<br />

been fasted if <strong>the</strong>y were scheduled for surgery <strong>the</strong> day <strong>the</strong>y presented. This may<br />

have affected <strong>the</strong>ir normal hydration status <strong>and</strong> <strong>in</strong> turn have affected our<br />

samples. Collect<strong>in</strong>g samples <strong>in</strong> a more controlled manner would elim<strong>in</strong>ate this<br />

consideration. This, however, is often not a practical solution when try<strong>in</strong>g to<br />

obta<strong>in</strong> large numbers of samples.<br />

Statistically <strong>the</strong>re may be a weak correlation between creat<strong>in</strong><strong>in</strong>e <strong>and</strong> uPA<br />

noted only <strong>in</strong> female spayed dogs. Whe<strong>the</strong>r creat<strong>in</strong><strong>in</strong>e is appropriate to use as a<br />

correction factor for uPA would depend on whe<strong>the</strong>r its excretion is proportional to<br />

that of uPA. Creat<strong>in</strong><strong>in</strong>e is excreted at a constant rate <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e due to muscle<br />

metabolism. It appears that uPA is excreted <strong>in</strong> healthy people at a constant rate<br />

per volume of ur<strong>in</strong>e. However, if <strong>the</strong> same person undergoes diuresis, <strong>the</strong><br />

concentration of uPA per milliliter of ur<strong>in</strong>e decreases. 14 Obviously <strong>in</strong> a cl<strong>in</strong>ical<br />

sett<strong>in</strong>g <strong>the</strong>se factors would be impossible to control. This is most likely why<br />

71


esearchers use creat<strong>in</strong><strong>in</strong>e is used to correct for concentration differences<br />

between samples.<br />

When evaluat<strong>in</strong>g <strong>the</strong> statistical differences between gender <strong>and</strong> sexual<br />

alteration, <strong>the</strong>re is a large amount of overlap between <strong>the</strong> groups. With <strong>the</strong> small<br />

sample numbers we cannot state that <strong>the</strong>re is a significant difference between<br />

<strong>the</strong> groups, however, evaluation of <strong>the</strong> distribution with<strong>in</strong> <strong>the</strong> scatter plots shows<br />

evidence of extreme outliers <strong>in</strong> <strong>the</strong> male <strong>in</strong>tact <strong>and</strong> female spayed groups when<br />

uPA concentration is corrected for creat<strong>in</strong><strong>in</strong>e. If we had a larger sample size, this<br />

may reveal that <strong>the</strong>se po<strong>in</strong>ts are not actually outliers but <strong>the</strong> tail of <strong>the</strong><br />

distribution.<br />

In conclusion, uPA is present <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e of healthy dogs <strong>in</strong> very small but<br />

measurable quantities. It appears to be present <strong>in</strong> both <strong>the</strong> active <strong>and</strong> <strong>in</strong>active<br />

form. At this time, differences <strong>in</strong> uPA excretion based on gender <strong>and</strong> sexual<br />

alteration appear to be not significantly different. This may change as <strong>the</strong> assays<br />

are improved <strong>and</strong> with larger sample sizes. The assays described are not ref<strong>in</strong>ed<br />

enough to give accurate concentrations of uPA <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e. Fur<strong>the</strong>r work would<br />

enable both techniques to be useful <strong>in</strong> a research sett<strong>in</strong>g to provide <strong>in</strong>formation<br />

about uPA concentration <strong>in</strong> ur<strong>in</strong>e <strong>and</strong> possibly even <strong>in</strong> a cl<strong>in</strong>ical sett<strong>in</strong>g.<br />

5.8 References<br />

1. Casella R, Shariat SF, Monoski MA, Lerner SP. Ur<strong>in</strong>ary levels of<br />

<strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator <strong>and</strong> its <strong>receptor</strong> <strong>in</strong> <strong>the</strong> detection of<br />

bladder carc<strong>in</strong>oma. Cancer. Dec 15 2002;95(12):2494-2499.<br />

2. Crow<strong>the</strong>r JR. The ELISA Guidebook, Methods <strong>in</strong> Molecular Biology<br />

(Clifton, N.J.). Vol 149: Totowa, NJ Humana Press; 2000.<br />

72


3. Reboud-Ravaux M, Desvages, G. Inactivation of human high- <strong>and</strong> lowmolecular-weight<br />

<strong>urok<strong>in</strong>ase</strong>s analyses of <strong>the</strong>ir active site. Biochimica et<br />

Biophysica Acta. 1984;791:333-341.<br />

4. Paar D, Marhund, D. Spectrophotometric determ<strong>in</strong>ation of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong><br />

ur<strong>in</strong>e after gel filtration, us<strong>in</strong>g chromogenic substrate S-2444. J Cl<strong>in</strong> Chem<br />

Cl<strong>in</strong> Biochem. 1980;18:557-562.<br />

5. Ryoki T, Akiba, K., et. al. Aff<strong>in</strong>ity chromatography for purification of two<br />

<strong>urok<strong>in</strong>ase</strong>s from human ur<strong>in</strong>e. J Chromatography B. 2000;724:71-78.<br />

6. Someno T, Sa<strong>in</strong>o, T., et. al. Aff<strong>in</strong>ity chromatography of <strong>urok<strong>in</strong>ase</strong> on<br />

agrose derivative coupled with Pyroglutamyl-Lysyl-Leucyl-Arg<strong>in</strong><strong>in</strong>al. J<br />

Biochem. 1985;97:1493-1500.<br />

7. Harris JL, Backes, B.J., et al. Rapid <strong>and</strong> general profil<strong>in</strong>g of protease<br />

specificity by us<strong>in</strong>g comb<strong>in</strong>atorial fluorogenic substrate libraries. PNAS.<br />

2000;97(14):7754-7759.<br />

8. Ruiz de Gopegui RM, Luis. Anticoagulant <strong>and</strong> Fibr<strong>in</strong>olytic Drugs. 5 ed.<br />

Philadelphia: Lippencott Williams <strong>and</strong> Wilkens; 2000.<br />

9. Husa<strong>in</strong> SS, Gurewich, V., Lip<strong>in</strong>ski, B. Purification <strong>and</strong> partial<br />

characterization of a s<strong>in</strong>gle-cha<strong>in</strong> high-molecular-weight form of <strong>urok<strong>in</strong>ase</strong><br />

from human ur<strong>in</strong>e. Arch Biochem <strong>and</strong> Biophys. 1983;220(1):31-38.<br />

10. Products ES. Method for Assay of Urok<strong>in</strong>ase (EC 3.4.21.31) with glut-Gly-<br />

Arg. http://www.enzymesys.com/Methods_ESP-050.htm. Accessed June<br />

26, 2003.<br />

11. Florqu<strong>in</strong> S, van den Berg JG, Olszyna DP, et al. Release of <strong>urok<strong>in</strong>ase</strong><br />

plasm<strong>in</strong>ogen activator <strong>receptor</strong> dur<strong>in</strong>g urosepsis <strong>and</strong> endotoxemia. Kidney<br />

Int. Jun 2001;59(6):2054-2061.<br />

12. Shibantani T, Kakimoto T, Chibata I. Purification of high molecular weight<br />

<strong>urok<strong>in</strong>ase</strong> from human ur<strong>in</strong>e <strong>and</strong> comparative study of two active forms of<br />

<strong>urok<strong>in</strong>ase</strong>. Thromb Haemost. 1983;40(2):91-95.<br />

13. Takada A, Sakakibara K, Nagase M, Kengo S, Takada Y. Determ<strong>in</strong>ation<br />

of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e of healthy volunteers <strong>and</strong> patients with renal<br />

disease. Thrombosis Research. 1986;44:867-873.<br />

14. Matsuo O, Kawaguchi T, Kosugi T, Mihara H, Kimura T. Effect of diuresis<br />

on <strong>urok<strong>in</strong>ase</strong> excretion rate. Thromb Haemost. August 31 1979;42(2):596-<br />

602.<br />

73


15. Olofsson P, Astedt B. Renal function <strong>and</strong> ur<strong>in</strong>ary <strong>urok<strong>in</strong>ase</strong> <strong>in</strong><br />

hypertensive <strong>and</strong> diabetic pregnancies. J Per<strong>in</strong>at Med. 1994;22(3):181-<br />

188.<br />

16. Kenichi M, Masanobu M, Takehiko K, et al. Renal syn<strong>the</strong>sis of <strong>urok<strong>in</strong>ase</strong><br />

type-plasm<strong>in</strong>ogen activator, its <strong>receptor</strong>, <strong>and</strong> plasm<strong>in</strong>ogen activator<br />

<strong>in</strong>hibitor-1 <strong>in</strong> diabetic nephropathy <strong>in</strong> rats: modulation by angiotens<strong>in</strong>convert<strong>in</strong>g-enzyme<br />

<strong>in</strong>hibitor. J Lab Cl<strong>in</strong> Med. Aug 2004;144(2):69-77.<br />

17. Lee HS, Park SY, Moon KC, Hong HK, Song CY, Hong SY. mRNA<br />

expression of <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor-1 <strong>in</strong> human<br />

crescentic glomerulonephritis. Histopathology. Aug 2001;39(2):203-209.<br />

74


Chapter 6 Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor Identification with<br />

SDS PAGE, Western Blot <strong>and</strong> Immunoprecipitation<br />

6.1 Introduction<br />

Prote<strong>in</strong>s <strong>in</strong> tissues or fluids can be identified by separat<strong>in</strong>g <strong>the</strong>m based on<br />

molecular weight. Prote<strong>in</strong>s can be separated for identification by sodium dodecyl<br />

(lauryl) sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 1 A molecular<br />

weight marker <strong>and</strong> control sample conta<strong>in</strong><strong>in</strong>g <strong>the</strong> targeted prote<strong>in</strong> allow<br />

identification of <strong>the</strong> molecular weight of samples tested <strong>in</strong> this manner. Migration<br />

of <strong>the</strong> prote<strong>in</strong>s through <strong>the</strong> gel, compared to molecular weight markers <strong>and</strong><br />

controls, identifies <strong>the</strong> prote<strong>in</strong>. Western Blot allows visualization of a prote<strong>in</strong> b<strong>and</strong><br />

based on its recognition by an enzyme-labeled antibody <strong>in</strong> an ELISA-type<br />

reaction. 2 The prote<strong>in</strong> b<strong>and</strong> is <strong>the</strong>n compared to <strong>the</strong> molecular weight marker<br />

<strong>and</strong> control sample.<br />

6.2 SDS-PAGE<br />

Sodium dodecyl (lauryl) sulfate-polyacrylamide gel electrophoresis utilizes<br />

an anionic detergent (SDS) to coat a sample of prote<strong>in</strong>s with uniform negative<br />

changes to <strong>the</strong> prote<strong>in</strong> will migrate through a gel towards a cathode. SDS has a<br />

long hydrophobic tail that b<strong>in</strong>ds quantitatively to <strong>the</strong> hydrophobic side-cha<strong>in</strong>s of<br />

am<strong>in</strong>o acids of prote<strong>in</strong>s. 1 SDS b<strong>in</strong>ds at a constant ratio of 1.4g of SDS to 1g of<br />

polypeptide. The larger <strong>the</strong> molecule, <strong>the</strong> more SDS b<strong>in</strong>ds.<br />

Prote<strong>in</strong>s possess am<strong>in</strong>o acid cha<strong>in</strong>s which are ei<strong>the</strong>r positively or<br />

negatively charged. Electrophoresis separates prote<strong>in</strong>s by mov<strong>in</strong>g <strong>the</strong>m across a<br />

gel towards a positive charge. The SDS has a high negative charge giv<strong>in</strong>g<br />

prote<strong>in</strong>s with<strong>in</strong> a sample an equal negative charge. 1<br />

75


Prote<strong>in</strong> tertiary structure also <strong>in</strong>fluences migration through a gel. If two<br />

prote<strong>in</strong>s have equal mass, <strong>the</strong> prote<strong>in</strong> with a more l<strong>in</strong>ear structure will traverse<br />

<strong>the</strong> gel more slowly due to <strong>the</strong> greater resistance offered by its length. Prote<strong>in</strong><br />

tertiary structure is formed by <strong>the</strong> oppos<strong>in</strong>g electrical charges on <strong>the</strong> am<strong>in</strong>o acid<br />

cha<strong>in</strong>s. B<strong>in</strong>d<strong>in</strong>g of SDS to <strong>the</strong> am<strong>in</strong>o acid cha<strong>in</strong>s removes <strong>the</strong> oppos<strong>in</strong>g electrical<br />

charges result<strong>in</strong>g <strong>in</strong> unfold<strong>in</strong>g of <strong>the</strong> prote<strong>in</strong>. 2-mercaptoethanol or dithiothreitol<br />

added to <strong>the</strong> SDS causes disruption of disulphide bonds which also hold <strong>the</strong><br />

prote<strong>in</strong> <strong>in</strong> its native physical form. Removal of both electrostatic <strong>and</strong> <strong>the</strong> disulfide<br />

bonds from a prote<strong>in</strong> sample results <strong>in</strong> all prote<strong>in</strong>s with<strong>in</strong> <strong>the</strong> sample becom<strong>in</strong>g<br />

uniformly l<strong>in</strong>ear <strong>and</strong> movement through <strong>the</strong> gel. 1<br />

Polyacrylamide gel is a semisolid matrix of acrylamide cha<strong>in</strong>s cross-l<strong>in</strong>ked<br />

to create a porous gel. The percent of acrylamide used depends on <strong>the</strong> size of<br />

<strong>the</strong> prote<strong>in</strong> be<strong>in</strong>g identified. The porosity of that gel is determ<strong>in</strong>ed by <strong>the</strong> length of<br />

<strong>the</strong> acrylamide cha<strong>in</strong>s <strong>and</strong> <strong>the</strong> degree of cross-l<strong>in</strong>k<strong>in</strong>g. The length of <strong>the</strong><br />

acrylamide cha<strong>in</strong>s is determ<strong>in</strong>ed by <strong>the</strong> concentration of acrylamide <strong>in</strong> <strong>the</strong><br />

polymerization reaction used to make <strong>the</strong> gel (3.5%-20%). The more<br />

concentrated <strong>the</strong> acrylamide, <strong>the</strong> longer <strong>the</strong> result<strong>in</strong>g acrylamide cha<strong>in</strong>s <strong>and</strong> <strong>the</strong><br />

denser <strong>the</strong> gel. The denser <strong>the</strong> gel <strong>the</strong> more difficult it is for larger prote<strong>in</strong>s to<br />

move though. 3 A 7.5% acrylamide gel was selected for identification of uPA s<strong>in</strong>ce<br />

uPA is relatively small molecule <strong>and</strong> a previous study had shown success with<br />

this concentration of acrylamide. 4 O<strong>the</strong>r experiments used a 10% acrylamide gel<br />

5, 6<br />

for identification of both uPA <strong>and</strong> uPAR.<br />

A gel can be set up as cont<strong>in</strong>uous or discont<strong>in</strong>uous (figure 6.1). Use of<br />

different buffers is required to create <strong>the</strong> gel <strong>and</strong> to fill <strong>the</strong> runn<strong>in</strong>g tank. A<br />

76


cont<strong>in</strong>uous system has only one separat<strong>in</strong>g gel <strong>and</strong> uses <strong>the</strong> same buffer <strong>in</strong> <strong>the</strong><br />

tank <strong>and</strong> <strong>the</strong> gel. We used a discont<strong>in</strong>uous system with a large pore non-<br />

restrictive gel (stack<strong>in</strong>g gel) layered on top of a separat<strong>in</strong>g gel (resolv<strong>in</strong>g gel).<br />

The discont<strong>in</strong>uous system has superior resolution for prote<strong>in</strong> separation <strong>and</strong><br />

visualization of prote<strong>in</strong> b<strong>and</strong>s over <strong>the</strong> cont<strong>in</strong>uous system. 1<br />

Figure 6.1 SDS-PAGE gels, cont<strong>in</strong>uous <strong>and</strong> discont<strong>in</strong>uous arrangement<br />

6.3 Western Blot<br />

Western Blot (a.k.a. immunoblot) identifies a prote<strong>in</strong> from a mixture of<br />

prote<strong>in</strong>s based on a specific antigenicity towards a known antibody <strong>in</strong> an ELISA-<br />

type reaction. This also identifies <strong>the</strong> molecular weight of <strong>the</strong> prote<strong>in</strong> as<br />

compared to <strong>the</strong> visual molecular weight marker because it allows visualization of<br />

<strong>the</strong> prote<strong>in</strong> b<strong>and</strong>. 2 The prote<strong>in</strong> b<strong>and</strong>s separated us<strong>in</strong>g SDS-PAGE are transferred<br />

to a solid membrane (nitrocellulose or polyv<strong>in</strong>ylidene) via an electric current<br />

applied across <strong>the</strong> gel <strong>and</strong> membrane (figure 6.2). The current moves <strong>the</strong><br />

separated negatively charged prote<strong>in</strong>s through <strong>the</strong> gel, onto <strong>the</strong> membrane. The<br />

membrane is <strong>the</strong> medium for <strong>the</strong> ELISA-type reaction. 7 Follow<strong>in</strong>g transfer <strong>the</strong><br />

membrane is non-specifically blocked with a prote<strong>in</strong> solution to prevent sites<br />

which do not conta<strong>in</strong> <strong>the</strong> targeted blotted prote<strong>in</strong> from b<strong>in</strong>d<strong>in</strong>g with antibody. This<br />

77


non-specific b<strong>in</strong>d<strong>in</strong>g would give false positive results <strong>and</strong>/or cause background<br />

reaction.<br />

The membrane, with <strong>the</strong> transferred prote<strong>in</strong>s, is <strong>in</strong>cubated <strong>in</strong> a solution<br />

conta<strong>in</strong><strong>in</strong>g a primary antibody towards <strong>the</strong> targeted prote<strong>in</strong>. 7 The solution of<br />

primary antibody also conta<strong>in</strong>s a prote<strong>in</strong> solution such as non-fat dried milk,<br />

case<strong>in</strong> or bov<strong>in</strong>e serum album<strong>in</strong>. If <strong>the</strong> targeted prote<strong>in</strong> is on <strong>the</strong> membrane <strong>the</strong><br />

primary antibody <strong>in</strong> <strong>the</strong> solution will b<strong>in</strong>d with that prote<strong>in</strong>. Follow<strong>in</strong>g <strong>in</strong>cubation<br />

with <strong>the</strong> primary antibody, unbound antibody is washed away <strong>and</strong> a secondary<br />

antibody labeled with an enzymatic marker is added to <strong>the</strong> membrane. This<br />

secondary antibody is directed towards <strong>the</strong> species <strong>the</strong> primary antibody was<br />

raised <strong>in</strong>, creat<strong>in</strong>g a s<strong>and</strong>wich type effect. The reaction is visualized by add<strong>in</strong>g a<br />

substrate to <strong>the</strong> enzyme marker on <strong>the</strong> secondary antibody. This may be a color<br />

reaction or a chemilum<strong>in</strong>escent reaction depend<strong>in</strong>g on <strong>the</strong> substrate (figure 6.3). 7<br />

Figure 6.2 Transfer of prote<strong>in</strong>s from SDS-PAGE gel to polyv<strong>in</strong>ylidene membrane.<br />

78


Figure 6.3 Western Blott<strong>in</strong>g Procedure for uPA <strong>and</strong> uPAR <strong>in</strong> can<strong>in</strong>e ur<strong>in</strong>e <strong>and</strong> tissue.<br />

6.4 SDS-PAGE <strong>and</strong> Western Blot for Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor<br />

6.4.1 Samples<br />

Pooled fresh frozen kidney, testicle <strong>and</strong> prostate <strong>and</strong> concentrated frozen<br />

ur<strong>in</strong>e from healthy dogs were exam<strong>in</strong>ed. Samples of ur<strong>in</strong>e were chosen at<br />

r<strong>and</strong>om from <strong>the</strong> 54 ur<strong>in</strong>e samples collected (Chapter 4, Sample Selection <strong>and</strong><br />

Preparation). Samples selected were from Male <strong>in</strong>tact #7 <strong>and</strong> #4 <strong>and</strong> female<br />

spayed #9 <strong>and</strong> #7 <strong>and</strong> an unknown ur<strong>in</strong>e sample.<br />

Tissue samples were manually crushed us<strong>in</strong>g a Dounce tissue gr<strong>in</strong>der.<br />

Samples were suspended <strong>in</strong> RIPA buffer (MFCD2100484, Sigma-Aldrich, St.<br />

79


Louis, MO) at 4ºC until a homogenous substance rema<strong>in</strong>ed. The supernatant<br />

was <strong>the</strong>n transferred to polypropylene screw cap micro tubes (72.694, Sarstedt<br />

AG & Co., Newton, NC) <strong>and</strong> frozen at -20 ºC for later analysis <strong>the</strong>n thawed prior<br />

to SDS-PAGE. Previously concentrated ur<strong>in</strong>e that was frozen <strong>in</strong> 1.5ml<br />

microcentrifuge tubes (20170.022, VWR International, Suwanee, GA) was<br />

thawed at room temperature prior prote<strong>in</strong> separation by SDS-PAGE.<br />

6.4.2 Antibodies, Purified Enzymes <strong>and</strong> Buffers<br />

• Monoclonal Antibody aga<strong>in</strong>st Mouse uPA – A capture monoclonal<br />

antibody produced <strong>in</strong> a uPA knockout mouse. IgG fraction purified by<br />

Prote<strong>in</strong> A Sepharose. (H77A10, Molecular Innovations, Southfield, MI)<br />

• Monoclonal antibody aga<strong>in</strong>st human <strong>urok<strong>in</strong>ase</strong> B-cha<strong>in</strong> – A mur<strong>in</strong>e IgG1<br />

monoclonal antibody directed aga<strong>in</strong>st a B-cha<strong>in</strong> epitope of human<br />

<strong>urok<strong>in</strong>ase</strong>, near <strong>the</strong> catalytic site. Reacts with free <strong>and</strong> <strong>receptor</strong> bound,<br />

s<strong>in</strong>gle <strong>and</strong> two cha<strong>in</strong> (HMW) <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>the</strong> B-cha<strong>in</strong> (33kDa) fragment.<br />

(3689, American Diagnostica Inc., Stamford, CT)<br />

• Rabbit anti-human uPA IgG fraction, biot<strong>in</strong> labeled – Biot<strong>in</strong> labeled<br />

polyclonal antibody (host rabbit). IgG fraction purified by prote<strong>in</strong> A<br />

sepharose. (ASHUPA-GF-BIO, Molecular Innovations, Southfield, MI)<br />

• Monoclonal antibody aga<strong>in</strong>st human uPA <strong>receptor</strong> (CD 87) – A mur<strong>in</strong>e<br />

monoclonal antibody, subclass IgG2a, recogniz<strong>in</strong>g <strong>the</strong> human <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong>. It b<strong>in</strong>ds with both unoccupied <strong>and</strong> occupied uPAR, to soluble<br />

uPAR <strong>and</strong> <strong>in</strong>tracellular uPAR of both normal blood cells <strong>and</strong> tumor cells.<br />

(3936, American Diagnostica Inc., Stamford, CT)<br />

80


• Peroxidase conjugated Aff<strong>in</strong>ity-purified Anti-Mouse IgG (H&L) (Goat) (M<strong>in</strong><br />

X Human Serum Prote<strong>in</strong>s). (611-1322, Rockl<strong>and</strong> Immunochemicals Inc.,<br />

Philadelphia, PN)<br />

• Peroxidase conjugated Aff<strong>in</strong>ity purified Anti-Rabbit IgG (H&L) (Goat) (M<strong>in</strong><br />

X Human Serum Prote<strong>in</strong>s). (611-1322, Rockl<strong>and</strong> Immunochemicals Inc.,<br />

Philadelphia, PN)<br />

• Active Mouse Urok<strong>in</strong>ase, HMW – Active two-cha<strong>in</strong> HMW mouse<br />

<strong>urok<strong>in</strong>ase</strong>, recomb<strong>in</strong>ant produced <strong>in</strong> <strong>in</strong>sect cells. (MUPA, Molecular<br />

Innovations, Southfield, MI)<br />

• Human HMW Urok<strong>in</strong>ase – Prepared from human ur<strong>in</strong>e as <strong>the</strong> two-cha<strong>in</strong><br />

form. (UPA-HTC, Molecular Innovations, Southfield, MI)<br />

• Lower Gel Buffer – 181.7g Tris, 5.0g SDS to 750ml distilled water, adjust<br />

pH to 8.8 with concentrated HCl, <strong>the</strong>n br<strong>in</strong>g to 1000ml. Refrigerated.<br />

• Upper Gel Buffer – 30.3g Tris, 2.0g SDS to 350ml distilled water, adjust<br />

pH to 6.8 with concentrated HCl, <strong>the</strong>n br<strong>in</strong>g to 500ml. Refrigerated.<br />

• SDS Runn<strong>in</strong>g Buffer – 60.6g Tris, 288.0g Glyc<strong>in</strong>e, SDS 20.0g <strong>in</strong> 2 liters of<br />

distilled water. Store at room temperature. Diluted 1:10 with distilled water<br />

before us<strong>in</strong>g.<br />

• Tris Buffered Sal<strong>in</strong>e (TBS) – 10 mM Tris pH 7.5, 150 mM NaCl <strong>in</strong> 1000 ml<br />

distilled water.<br />

• Western Transfer Buffer – 0.2g SDS, 5.8g Tris, 2.8g Glyc<strong>in</strong>e, 150ml<br />

MeOH, 850ml distilled water. Refrigerate.<br />

• Stack<strong>in</strong>g Gel – 1.25ml upper gel buffer, 2.95 ml distilled water, 0.8ml of<br />

30% acrylamide(EM Science, Darmstadt, Germany) , 15µl 10%<br />

81


Ammonium Persulfate (17874, Pierce Chemicals, Rockford, IL), 5µl TMED<br />

(17919, Pierce Chemicals, Rockford, IL)<br />

• 7.5% SDS PAGE Resolv<strong>in</strong>g Gel – 8ml lower gel buffer, 13.25ml distilled<br />

water, 10.5ml 30% acrylamide (EM Science, Darmstadt, Germany), 50µl<br />

10% Ammonium Persulfate (17874, Pierce Chemicals, Rockford, IL), 25µl<br />

TMED (17919, Pierce Chemicals, Rockford, IL)<br />

6.4.3 SDS PAGE Procedure<br />

The SDS-PAGE gel <strong>and</strong> buffers were prepared as described above <strong>in</strong><br />

quantities sufficient to create to gels <strong>in</strong> a BioRad M<strong>in</strong>igel II apparatus (170-3056,<br />

Bio-Rad, Hercules, CA). This is consistent with <strong>the</strong> procedure described by<br />

Laemelli. 8 Prote<strong>in</strong> <strong>in</strong> both tissue <strong>and</strong> ur<strong>in</strong>e samples were denatured by boil<strong>in</strong>g at<br />

100ºC. Four microliters of 4X SDS Sample Buffer (70607, Novagen, Madison,<br />

WI) was added to 20 µl of denatured sample <strong>and</strong> applied to <strong>the</strong> SDS gel (10cm<br />

resolv<strong>in</strong>g gels of 7.5% acrylamide <strong>and</strong> 2cm stack<strong>in</strong>g gels of 4% acrylamide). The<br />

samples were subjected to electrophoresis at room temperature at 100mV for 2<br />

hours or until <strong>the</strong> dye reached <strong>the</strong> bottom of <strong>the</strong> gel. Perfect Prote<strong>in</strong> HRP<br />

Western Blot (69078-3, Novagen, Madison, WI) molecular weight marker or<br />

Ra<strong>in</strong>bow Markers (RPN800, Amersham Biosciences, Buck<strong>in</strong>ghamshire, Engl<strong>and</strong>)<br />

molecular weight marker, were run <strong>in</strong> <strong>the</strong> first lane beside <strong>the</strong> samples to enable<br />

identification of <strong>the</strong> molecular weight of each prote<strong>in</strong> b<strong>and</strong>.<br />

6.4.4 Western Blot Procedure<br />

Separated prote<strong>in</strong>s were transferred from <strong>the</strong> SDS gel to Polyv<strong>in</strong>ylidene<br />

Fluoride membranes (BioTrace PVDF, 66543, Pall Corporation, Pensacola, FL)<br />

82


for Western Blot analysis us<strong>in</strong>g western transfer buffer. Prote<strong>in</strong> transfer was<br />

performed <strong>in</strong> a Bio Rad M<strong>in</strong>i Gel Transfer (170-3056, Bio-Rad, Hercules, CA)<br />

western blot apparatus over one hour at 100mV. The polyv<strong>in</strong>ylidene membrane<br />

was <strong>the</strong>n <strong>in</strong>cubated with <strong>the</strong> primary antibody at 1:1000 dilutions <strong>in</strong> a 4% non-fat<br />

dry milk powder reconstituted <strong>in</strong> TBS solution for 16 hours at 4ºC. For detection<br />

of <strong>urok<strong>in</strong>ase</strong> we used mouse anti-mouse uPA (H77A10, Molecular Innovations),<br />

mouse anti-human uPA (3689, American Diagnostica Inc.) <strong>and</strong> rabbit anti-human<br />

uPA (ASHUPA-GF-BIO, Molecular Innovations) as <strong>the</strong> primary antibodies. For<br />

<strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> detection we used a mouse anti-human uPAR antibody<br />

(3936, American Diagnostica Inc.) as <strong>the</strong> primary antibody.<br />

The follow<strong>in</strong>g morn<strong>in</strong>g <strong>the</strong> membrane was washed 3 times, (30 m<strong>in</strong>utes<br />

each), with <strong>the</strong> 4% non-fat skim milk solution at room temperature. Follow<strong>in</strong>g<br />

wash<strong>in</strong>g, <strong>the</strong> membrane was <strong>in</strong>cubated at room temperature for 2 hours, with a<br />

secondary antibody (goat-anti-mouse or goat-anti-rabbit dependant on <strong>the</strong><br />

species <strong>in</strong> which <strong>the</strong> primary antibody was raised) labeled with a<br />

chemilum<strong>in</strong>escent tag at a 1:5000 dilution. The membrane was aga<strong>in</strong> washed 3<br />

times (30 m<strong>in</strong>utes each) with a 1% non-fat dry milk solution. The results were<br />

visualized us<strong>in</strong>g Western Lightn<strong>in</strong>g Chemilum<strong>in</strong>escence Reagent (NEL101,<br />

Perk<strong>in</strong>Elmer Life Sciences, Boston, MA) on Fuji Medical X-ray film, Super RX<br />

(91454, Tokyo, Japan).<br />

6.4.5 Problems<br />

Two ma<strong>in</strong> problems were encountered dur<strong>in</strong>g our SDS-PAGE <strong>and</strong><br />

Western Blot experiments. The first was non-specific b<strong>in</strong>d<strong>in</strong>g of antibody to <strong>the</strong><br />

polyv<strong>in</strong>ylidene membrane caus<strong>in</strong>g high background (dark background<br />

83


precipitation) at <strong>the</strong> time of development of <strong>the</strong> films. This was resolved by us<strong>in</strong>g<br />

a lower primary antibody concentration at 1:1000 <strong>and</strong> secondary antibody<br />

concentration at 1:5000 which lowered <strong>the</strong> non-specific b<strong>in</strong>d<strong>in</strong>g. The membrane<br />

was blocked with <strong>the</strong> 4% case<strong>in</strong> solution between <strong>the</strong> first <strong>and</strong> second antibody<br />

<strong>in</strong>cubations for three 45 m<strong>in</strong>ute applications. This block<strong>in</strong>g also aided <strong>in</strong><br />

prevention of non-specific b<strong>in</strong>d<strong>in</strong>g to <strong>the</strong> polyv<strong>in</strong>ylidene membrane. Use of film<br />

specifically <strong>in</strong>tended for Western Blot analysis also reduced <strong>in</strong> background.<br />

The second problem was fa<strong>in</strong>t or absent signal <strong>in</strong> our test lanes for<br />

concentrated ur<strong>in</strong>e samples <strong>and</strong> testicle <strong>and</strong> prostate samples. This was<br />

postulated to be due to low concentrations of uPA <strong>in</strong> <strong>the</strong> samples <strong>and</strong> was<br />

resolved by us<strong>in</strong>g immunoprecipitation of <strong>the</strong> sample prior to SDS-PAGE.<br />

6.5 Immunoprecipitation<br />

Immunoprecipitation is <strong>the</strong> <strong>in</strong>teraction between a prote<strong>in</strong> <strong>and</strong> a specific<br />

antibody which allows <strong>the</strong> prote<strong>in</strong>s to be removed from solution <strong>and</strong> exam<strong>in</strong>ed for<br />

quantity or physical characteristics such as molecular weight or isoelectric po<strong>in</strong>t. 9<br />

Antibody-prote<strong>in</strong> complexes are removed from solution by add<strong>in</strong>g an <strong>in</strong>soluble<br />

form of an antibody b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> such as Prote<strong>in</strong> A, Prote<strong>in</strong> G or comb<strong>in</strong>ation<br />

Prote<strong>in</strong> A/G, ra<strong>the</strong>r than depend<strong>in</strong>g on spontaneous formation of <strong>in</strong>soluble<br />

antigen-antibody complexes. This makes determ<strong>in</strong>ation of an optimal antibody<br />

dilution favor<strong>in</strong>g spontaneously occurr<strong>in</strong>g immunoprecipitates unnecessary.<br />

Analysis of <strong>the</strong> immunoprecipitate is usually via electrophoresis. 9 The<br />

choice of immobilized antibody b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> depends on <strong>the</strong> species <strong>the</strong><br />

primary antibody was raised <strong>in</strong>. The strength of <strong>the</strong> <strong>in</strong>teraction between a<br />

monoclonal antibody <strong>and</strong> Prote<strong>in</strong> G or Prote<strong>in</strong> A is important factor <strong>in</strong> <strong>the</strong><br />

84


decision of which to use. These <strong>in</strong>teractions have been evaluated <strong>and</strong> published.<br />

The success of immunoprecipitation depends on <strong>the</strong> aff<strong>in</strong>ity of <strong>the</strong> primary<br />

antibody for <strong>the</strong> targeted prote<strong>in</strong> as well as for Prote<strong>in</strong> A or Prote<strong>in</strong> G. In this<br />

study a comb<strong>in</strong>ation Sepharose bead with both Prote<strong>in</strong> A <strong>and</strong> Prote<strong>in</strong> G was<br />

used.<br />

The simplified procedure is as follows 9 (figure 6.4):<br />

Figure 6.4 Immunoprecipitation of uPA or uPAR us<strong>in</strong>g Prote<strong>in</strong> G/A Sepharose beads<br />

1. An antibody is added to a mixture of prote<strong>in</strong>s which b<strong>in</strong>ds specifically<br />

to <strong>the</strong> targeted prote<strong>in</strong> dur<strong>in</strong>g an <strong>in</strong>cubation period.<br />

2. The antigen-antibody complex is absorbed from <strong>the</strong> solution through<br />

addition of an immobilized antibody b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> such as Prote<strong>in</strong> A-<br />

Sepharose beads <strong>and</strong> this solution is <strong>in</strong>cubated.<br />

3. The solution is centrifuged <strong>and</strong> <strong>the</strong> antigen-antibody complex settles to<br />

<strong>the</strong> bottom of <strong>the</strong> tube, attached to <strong>the</strong> Sepharose beads, <strong>in</strong> <strong>the</strong> form of<br />

a pellet.<br />

4. The supernatant is removed from <strong>the</strong> tube, leav<strong>in</strong>g <strong>the</strong> pellet beh<strong>in</strong>d.<br />

85


5. Liberation of <strong>the</strong> targeted prote<strong>in</strong> can be achieved by boil<strong>in</strong>g <strong>the</strong> pellet<br />

<strong>in</strong> <strong>the</strong> presence of SDS. This destroys <strong>the</strong> bond between <strong>the</strong> primary<br />

antibody <strong>and</strong> <strong>the</strong> prote<strong>in</strong>, free<strong>in</strong>g <strong>the</strong> denatured prote<strong>in</strong>.<br />

6.5.1 Samples<br />

For immunoprecipitation 200µm of pooled fresh frozen kidney, testicle <strong>and</strong><br />

prostate <strong>and</strong> concentrated frozen ur<strong>in</strong>e from healthy dogs were exam<strong>in</strong>ed.<br />

Samples of ur<strong>in</strong>e were chosen at r<strong>and</strong>om from <strong>the</strong> 54 ur<strong>in</strong>e samples previously<br />

collected (Chapter 2, Sample Selection <strong>and</strong> Preparation. Samples selected were<br />

from female spayed #7 <strong>and</strong> an unmarked ur<strong>in</strong>e sample.<br />

6.5.2 Immunoprecipitation Procedure<br />

Both tissue <strong>and</strong> ur<strong>in</strong>e samples were <strong>in</strong>cubated with or without 2µm of anti-<br />

human uPA antibody at room temperature for 2 hours. Samples without antibody<br />

were used as controls. For uPA detection we used mouse anti-mouse uPA<br />

(H77A10, Molecular Innovations) <strong>and</strong> mouse anti-human uPA (3689, American<br />

Diagnostica Inc.). For <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> detection we used a mouse anti-human<br />

uPAR antibody (3936, American Diagnostica Inc.).<br />

The antibody complexes were precipitated by add<strong>in</strong>g Prote<strong>in</strong> G<br />

PLUS/Prote<strong>in</strong> A-Agarose Sepharose beads (IP05, Calbiochem, San Diego, CA)<br />

<strong>and</strong> <strong>in</strong>cubat<strong>in</strong>g for 1 hour at room temperature. The beads were washed 3 times<br />

us<strong>in</strong>g Tris Buffered Sal<strong>in</strong>e at 4 ºC <strong>and</strong> <strong>the</strong> antibody-prote<strong>in</strong> complexes were<br />

separated from each o<strong>the</strong>r <strong>and</strong> <strong>the</strong> Sepharose beads by boil<strong>in</strong>g at 100 ºC for 3<br />

m<strong>in</strong>utes. The result<strong>in</strong>g solution conta<strong>in</strong><strong>in</strong>g <strong>the</strong> targeted prote<strong>in</strong> was separated<br />

us<strong>in</strong>g SDS PAGE <strong>and</strong> evaluated us<strong>in</strong>g <strong>the</strong> western blot technique as described<br />

86


previously. Negative controls conta<strong>in</strong>ed <strong>the</strong> antibody alone without <strong>the</strong> tissue<br />

lysate. Perfect Prote<strong>in</strong> HRP Western Blot (69078-3, Novagen, Madison, WI)<br />

molecular weight marker or Ra<strong>in</strong>bow Markers (RPN800, Amersham Biosciences,<br />

Buck<strong>in</strong>ghamshire, Engl<strong>and</strong>) molecular weight marker, was run <strong>in</strong> <strong>the</strong> first lane<br />

beside <strong>the</strong> samples to enable identification of <strong>the</strong> molecular weight of each<br />

prote<strong>in</strong> b<strong>and</strong>.<br />

6.6 Results<br />

6.6.1 Urok<strong>in</strong>ase without Immunoprecipitation<br />

All samples were evaluated for molecular weight by compar<strong>in</strong>g <strong>the</strong><br />

generated prote<strong>in</strong>s b<strong>and</strong>s with Perfect Prote<strong>in</strong> HRP Western Blot (69078-3,<br />

Novagen, Madison, WI) molecular weight marker or Ra<strong>in</strong>bow Markers (RPN800,<br />

Amersham Biosciences, Buck<strong>in</strong>ghamshire, Engl<strong>and</strong>) molecular weight marker,<br />

which was run <strong>in</strong> <strong>the</strong> first lane beside <strong>the</strong> samples. Negative controls conta<strong>in</strong>ed<br />

lanes without <strong>the</strong> targeted antigen. Incubation of kidney tissue lysate with both<br />

<strong>the</strong> mouse anti-mouse antibody <strong>and</strong> <strong>the</strong> mouse anti-human antibody produced a<br />

strong b<strong>and</strong> at approximately 50kDa molecular weight (figure 6.5). A second<br />

western blot evaluat<strong>in</strong>g <strong>the</strong> testicle, prostate <strong>and</strong> kidney lysates demonstrated a<br />

b<strong>and</strong> at approximately 50 kDa <strong>and</strong> at 30 kDa. The sample was run with a pure<br />

sample of uPA, with known high molecular weight <strong>and</strong> low molecular weight<br />

forms of uPA <strong>in</strong> <strong>the</strong> purified enzyme, which produced b<strong>and</strong>s at <strong>the</strong> same<br />

molecular weight as <strong>the</strong> tissue prote<strong>in</strong>s (figure 6.6)<br />

6.6.2 Urok<strong>in</strong>ase Receptor without Immunoprecipitation<br />

All samples were evaluated for molecular weight by compar<strong>in</strong>g <strong>the</strong><br />

87


Figure 6.5 Western Blot show<strong>in</strong>g <strong>urok<strong>in</strong>ase</strong> b<strong>and</strong>s at approximately 50 kDa molecular weight.<br />

Samples are of concentrated ur<strong>in</strong>e from healthy dogs. PP, Perfect Prote<strong>in</strong> HRP Western Blot<br />

(69078-3, Novagen) molecular weight marker; MI, mouse anti-mouse uPA (H77A10, Molecular<br />

Innovations); AD, mouse anti-human uPA (3689, American Diagnostica Inc); #7, unk, F, r<strong>and</strong>om<br />

ur<strong>in</strong>e samples; kDa, molecular weight <strong>in</strong> kilodaltons.<br />

Figure 6.6 Western Blot show<strong>in</strong>g <strong>urok<strong>in</strong>ase</strong> b<strong>and</strong>s at approximately 50 <strong>and</strong> 30 kDa molecular<br />

weight. (Ra<strong>in</strong>bow Markers) Samples were run with a known control of pure human <strong>urok<strong>in</strong>ase</strong><br />

which conta<strong>in</strong>s high molecular-weight uPA <strong>and</strong> low molecular-weight uPA. Samples are from<br />

desiccated prostate, kidney <strong>and</strong> testicle from a male <strong>in</strong>tact dog (Male #4). kDa, molecular weight<br />

<strong>in</strong> kilodaltons.<br />

generated prote<strong>in</strong>s b<strong>and</strong>s with Ra<strong>in</strong>bow Markers (RPN800, Amersham<br />

Biosciences, Buck<strong>in</strong>ghamshire, Engl<strong>and</strong>) molecular weight marker which was run<br />

<strong>in</strong> <strong>the</strong> first lane beside <strong>the</strong> samples. The samples evaluated were from<br />

desiccated prostate, kidney <strong>and</strong> testicle from <strong>the</strong> tissue sample group, male dog<br />

# 4 (appendix table 8). Boiled prostate, kidney <strong>and</strong> testicle samples <strong>in</strong>cubated<br />

with <strong>the</strong> mouse anti-human uPAR antibody generated 2 prote<strong>in</strong> b<strong>and</strong>s. One b<strong>and</strong><br />

is at approximately 55 kDa, which is quite light, <strong>and</strong> ano<strong>the</strong>r darker b<strong>and</strong> at<br />

approximately 35 kDa (figure 6.7).<br />

88


Figure 6.7 Western Blot show<strong>in</strong>g uPAR prote<strong>in</strong> b<strong>and</strong>s at 55 kDa <strong>and</strong> 35 kDa. (Ra<strong>in</strong>bow Markers)<br />

Samples were run <strong>in</strong> SDS-PAGE on <strong>the</strong> same gel as figure 6 which conta<strong>in</strong>s a known control of<br />

pure human <strong>urok<strong>in</strong>ase</strong>. Samples are from desiccated prostate, kidney <strong>and</strong> testicle from a male<br />

<strong>in</strong>tact dog (Male #4). kDa, molecular weight <strong>in</strong> kilodaltons.<br />

6.6.3 Urok<strong>in</strong>ase with Immunoprecipitation<br />

All samples were evaluated for molecular weight by compar<strong>in</strong>g <strong>the</strong><br />

generated prote<strong>in</strong>s b<strong>and</strong>s with Perfect Prote<strong>in</strong> HRP Western Blot (69078-3,<br />

Novagen, Madison, WI) molecular weight marker or Ra<strong>in</strong>bow Markers (RPN800,<br />

Amersham Biosciences, Buck<strong>in</strong>ghamshire, Engl<strong>and</strong>) molecular weight marker,<br />

which was run <strong>in</strong> <strong>the</strong> first lane beside <strong>the</strong> samples. Negative control lanes<br />

conta<strong>in</strong>ed solution without <strong>the</strong> antibody. Boiled testicle, prostate <strong>and</strong> kidney<br />

lysates <strong>in</strong>cubated with <strong>the</strong> mouse anti-mouse <strong>and</strong> <strong>the</strong> rabbit anti-human<br />

<strong>urok<strong>in</strong>ase</strong> antibodies produced strong b<strong>and</strong>s at approximately 50kDa <strong>and</strong> 33kDa.<br />

Boiled concentrated ur<strong>in</strong>e <strong>and</strong> unconcentrated ur<strong>in</strong>e <strong>in</strong>cubated with <strong>the</strong> mouse<br />

anti-mouse, <strong>the</strong> mouse anti-human <strong>urok<strong>in</strong>ase</strong>, <strong>and</strong> <strong>the</strong> rabbit anti-human<br />

antibodies produced strong b<strong>and</strong>s at approximately 50kDa <strong>and</strong> 33kDa (figures<br />

6.8 <strong>and</strong> 6.9).<br />

89


Figure 6.8 Western Blot show<strong>in</strong>g immunoprecipitated uPA prote<strong>in</strong> b<strong>and</strong>s at 50kDa <strong>and</strong> 30 kDa<br />

molecular weights as compared to <strong>the</strong> perfect prote<strong>in</strong> molecular weight marker us<strong>in</strong>g <strong>the</strong> mouse<br />

anti-mouse uPA antibody (H77A10, Molecular Innovations) as <strong>the</strong> primary antibody. MWM,<br />

Perfect Prote<strong>in</strong> HRP Western Blot (69078-3, Novagen) molecular weight marker; Ur<strong>in</strong>e,<br />

concentrated samples; Straight, unconcentrated sample; Ab, antibody used to immunoprecipitate<br />

<strong>the</strong> sample; No Ab, Antibody was not added to <strong>the</strong> immunoprecipitation; kDa, molecular weight <strong>in</strong><br />

kilodaltons.<br />

Figure 6.9 Western Blot show<strong>in</strong>g immunoprecipitated uPA b<strong>and</strong>s at 50 kDa <strong>and</strong> 35 kDa us<strong>in</strong>g <strong>the</strong><br />

rabbit anti-human uPA antibody. kDa, molecular weight <strong>in</strong> kilodaltons.<br />

6.6.4 Urok<strong>in</strong>ase Receptor with Immunoprecipitation<br />

All samples were evaluated for molecular weight by compar<strong>in</strong>g <strong>the</strong><br />

generated prote<strong>in</strong>s b<strong>and</strong>s with Ra<strong>in</strong>bow Markers (RPN800, Amersham<br />

Biosciences, Buck<strong>in</strong>ghamshire, Engl<strong>and</strong>) molecular weight marker which was run<br />

<strong>in</strong> <strong>the</strong> first lane beside <strong>the</strong> samples. Immunoprecipitated boiled kidney, testicle<br />

90


<strong>and</strong> prostate lysates <strong>in</strong>cubated with mouse anti-human <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong><br />

antibody produced strong b<strong>and</strong>s at approximately 60kDa (figure 6.10).<br />

Figure 6.10 Western Blot show<strong>in</strong>g immunoprecipitated uPAR b<strong>and</strong>s at 60 kDa, as compared to<br />

Ra<strong>in</strong>bow Marker, us<strong>in</strong>g <strong>the</strong> mouse anti-human uPAR antibody. kDa, molecular weight <strong>in</strong><br />

kilodaltons.<br />

6.7 Discussion<br />

We have identified prote<strong>in</strong>s <strong>in</strong> <strong>the</strong> tissues <strong>and</strong> ur<strong>in</strong>e of healthy dogs, with<br />

antibodies directed aga<strong>in</strong>st human <strong>and</strong> mouse uPA <strong>and</strong> human uPAR. The uPA<br />

antibodies detected a prote<strong>in</strong> <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e, kidney, prostate <strong>and</strong> testicle from<br />

healthy dogs which is <strong>the</strong> same molecular weight as uPA <strong>in</strong> both <strong>the</strong> high<br />

molecular weight form (53 kDa) <strong>and</strong> <strong>the</strong> low molecular weight form (33 kDa). A<br />

high molecular weight b<strong>and</strong> for uPA is expected at approximately 50 kDa <strong>and</strong> <strong>the</strong><br />

low molecular weight b<strong>and</strong> is generally at approximately 30 kDa. 10, 11 In <strong>the</strong><br />

western blots run with pure uPA as a control, <strong>the</strong> prote<strong>in</strong>s b<strong>and</strong>s were present at<br />

<strong>the</strong> same molecular weight as <strong>the</strong> pure uPA which fur<strong>the</strong>r supports that <strong>the</strong><br />

b<strong>and</strong>s we identified are high <strong>and</strong> low molecular weight uPA. The uPAR antibody<br />

detected a prote<strong>in</strong> <strong>in</strong> immunoprecipitated kidney, testicle <strong>and</strong> prostate from<br />

91


healthy dogs which is <strong>the</strong> same molecular weight as uPAR. The b<strong>and</strong> at 55 kDa<br />

12, 13<br />

is with<strong>in</strong> <strong>the</strong> reported reference range for uPA at 55-60 kDa.<br />

This would provide evidence that <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>-like<br />

prote<strong>in</strong>s are present <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> <strong>and</strong> ur<strong>in</strong>e of healthy dogs. This also<br />

suggests that antibodies aga<strong>in</strong>st mouse <strong>and</strong> human uPA <strong>and</strong> human uPAR can<br />

be used to detect <strong>the</strong>se prote<strong>in</strong>s <strong>in</strong> <strong>the</strong> dog. The results from our Western Blot<br />

analysis with <strong>the</strong> mouse anti-mouse uPA antibody were also duplicated at <strong>the</strong><br />

Molecular Innovations laboratory <strong>in</strong> Southfield Michigan.<br />

Immunoprecipitation was used to concentrate uPA from ur<strong>in</strong>e, testicle,<br />

prostate <strong>and</strong> kidney. Immunoprecipitation was also used to concentrate uPAR <strong>in</strong><br />

kidney, testicle <strong>and</strong> prostate samples. The uPA-like concentration <strong>in</strong> <strong>the</strong> ur<strong>in</strong>e of<br />

healthy dogs appears to be low. Western blot without immunoprecipitation<br />

resulted <strong>in</strong> very fa<strong>in</strong>t or no b<strong>and</strong>s. Immunoprecipitation enhanced visualization of<br />

b<strong>and</strong>s for uPA <strong>in</strong> concentrated <strong>and</strong> unconcentrated ur<strong>in</strong>e. These f<strong>in</strong>d<strong>in</strong>gs suggest<br />

that uPA is present <strong>in</strong> ur<strong>in</strong>e but <strong>in</strong> small quantities.<br />

Immunoprecipitation was not as necessary <strong>in</strong> <strong>the</strong> tissue samples. Kidney<br />

samples produced consistently strong b<strong>and</strong>s <strong>in</strong> <strong>the</strong> western blot analysis.<br />

Prostate <strong>and</strong> testicle produced b<strong>and</strong>s, but <strong>the</strong>y were often much weaker <strong>and</strong> <strong>the</strong><br />

immunoprecipitation enhanced <strong>the</strong> visualization of <strong>the</strong> b<strong>and</strong>s.<br />

We did not measure <strong>the</strong> weight of <strong>the</strong> kidney, prostate <strong>and</strong> testicle tissues<br />

prior to desiccation <strong>the</strong>refore we cannot compare <strong>the</strong> <strong>in</strong>tensities of <strong>the</strong> b<strong>and</strong>s <strong>in</strong> a<br />

s<strong>in</strong>gle Western blot to quantify <strong>the</strong> amount of uPA <strong>and</strong> uPAR with<strong>in</strong> <strong>the</strong> samples.<br />

Western blots are at best semiquantitative <strong>and</strong> a better method of compar<strong>in</strong>g<br />

prote<strong>in</strong> concentrations would be <strong>in</strong> an ELISA or activity assay such as <strong>the</strong><br />

92


fluorescence assay discussed <strong>in</strong> Chapter 5, Fluorogenic <strong>and</strong> ELISA Assays for<br />

Urok<strong>in</strong>ase <strong>in</strong> Ur<strong>in</strong>e.<br />

6.8 References<br />

1. Rybeicki E, Purves M. SDS Polyacrylamide Gel Electrophoresis (SDS-<br />

PAGE) <strong>in</strong> Molecular Biology Techniques Manuel, Third edition. Vol 2004:<br />

University of Cape Town; 1996.<br />

2. Rybeicki EP, Purves M. Enzyme-Assisted Immunoelectroblott<strong>in</strong>g (IEB or<br />

Western Blott<strong>in</strong>g) <strong>in</strong> Molecular Biology Techniques Manuel, Third Edition.<br />

University of Cape Town: University of Cape Town; 1996.<br />

3. One Dimensional Prote<strong>in</strong> Electrophoresis Separation: SDS PAGE.<br />

http://www4.amershambiosciences.com/aptrix/upp00919.nsf/Content/Elph<br />

o_1D_SDS+PA.<br />

4. Hall CL, Tsan, R., et. al. Enhanced <strong>in</strong>vasion of hormone refractory<br />

prostate cancer cells through hepatocyte growth factor (HGF) <strong>in</strong>duction of<br />

<strong>urok<strong>in</strong>ase</strong>-type plasmo<strong>in</strong>ogen activator (u-Pa). The Prostate. 2004;59:167-<br />

176.<br />

5. Zhang G, Cai X, Lopez-Guisa JM, Coll<strong>in</strong>s SJ, Eddy AA. Mitogenic<br />

signal<strong>in</strong>g of <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>-deficient kidney fibroblasts: actions of an<br />

alternative <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>and</strong> LDL <strong>receptor</strong>-related prote<strong>in</strong>. J Am Soc<br />

Nephrol. Aug 2004;15(8):2090-2102.<br />

6. Zhang G, Heunhsoo, K., et. al. Urok<strong>in</strong>ase <strong>receptor</strong> modulates cellular <strong>and</strong><br />

angiogenic responses <strong>in</strong> obstructive nephropathy. J Am Soc Nephrol.<br />

2003;14:1234-1253.<br />

7. The Biology Project.<br />

http://www.biology.arizona.edu/immunology/activities/western_blot/west3.<br />

html>, 2004.<br />

8. Laemmli UK. Cleavage of structural prote<strong>in</strong>s dur<strong>in</strong>g <strong>the</strong> assembly of <strong>the</strong><br />

head of bacteriophage T4. Nature. Aug 15 1970;227(5259):680-685.<br />

9. Hansen PJ. Analysis of Prote<strong>in</strong>s by Immunoprecipitation.<br />

http://dps.ufl.edu/hansen/protocols/imp98.prt.htm, 2004.<br />

10. Andrassy K, Ritz E, Bleyl U, Egbr<strong>in</strong>g R. Proceed<strong>in</strong>gs: Purification of<br />

human <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> its topographical localisation <strong>in</strong> renal parenchyma.<br />

Thromb Diath Haemorrh. Sep 30 1975;34(1):338.<br />

93


11. Glass WFI, Kreisberg JI, Troyer DA. Two-cha<strong>in</strong> <strong>urok<strong>in</strong>ase</strong>, <strong>receptor</strong>, <strong>and</strong><br />

type I <strong>in</strong>hibitor <strong>in</strong> cultured human mesangial cells. Am J Physiol Renal<br />

Fluid Electrolyte Physiol. 1993;264:F532-F539.<br />

12. Blasi F, Carmeliet P. uPAR: a versatile signal<strong>in</strong>g orchestrator. Nat Rev<br />

Mol Cell Biol. 2002;3:932-943.<br />

13. Blasi F, Stoppelli MP, Cubellis MV. The <strong>receptor</strong> for <strong>urok<strong>in</strong>ase</strong>plasm<strong>in</strong>ogen<br />

activator. J Cell Biochem. 1986;32(3):179-186.<br />

94


Chapter 7 Localization of Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor<br />

Us<strong>in</strong>g Immunohistochemistry<br />

7.1 Immunohistochemistry Introduction<br />

Immunohistochemistry is <strong>the</strong> localization of antigens <strong>in</strong> tissue sections<br />

through antigen-antibody <strong>in</strong>teractions that are visualized microscopically via a<br />

1, 2<br />

marker such as fluorescent dye, enzyme, radioactive element or colloidal gold.<br />

Immunohistochemistry identifies <strong>the</strong> distribution of specific cellular components<br />

with<strong>in</strong> a cell or tissue. The term immunohistochemistry is used <strong>in</strong>terchangeably<br />

with immunocytochemistry <strong>and</strong> immunosta<strong>in</strong><strong>in</strong>g.<br />

Immunohistochemistry is an ELISA reaction, <strong>in</strong> which a primary antibody<br />

is applied to <strong>the</strong> tissue with a secondary, labeled-antibody <strong>the</strong>n applied to detect<br />

<strong>the</strong> bound primary antibody. 1, 2 A typical immunohistochemical protocol <strong>in</strong>volves:<br />

1. Fixation of <strong>the</strong> tissue - Fresh frozen tissue can be used <strong>and</strong> for<br />

some antigens, is required. Although frozen tissues have <strong>the</strong> best<br />

antigen preservation <strong>the</strong>y are more difficult to work with <strong>and</strong><br />

preservation of tissue architecture is poor. 2, 3 Tissues preserved <strong>in</strong> a<br />

fixative of commonly formal<strong>in</strong> is preferred <strong>and</strong> provides better<br />

preservation of tissue architecture with “m<strong>in</strong>imal” loss of tissue<br />

antigenicity. 1, 3 Fixed tissues are <strong>the</strong>n embedded <strong>in</strong> paraff<strong>in</strong> for<br />

section<strong>in</strong>g. Paraff<strong>in</strong> embedd<strong>in</strong>g may cause some shr<strong>in</strong>kage or<br />

distortion, but will preserve <strong>the</strong> tissue architecture. 3 O<strong>the</strong>r fixation<br />

solutions <strong>in</strong>clude mercuric chloride-based fixatives, which cause<br />

m<strong>in</strong>imum distortion but have poor tissue penetration, <strong>and</strong> acetone,<br />

95


which has excellent antigen preservation but very poor tissue<br />

preservation. Acetone is preferred for cell smears. 3<br />

2. Antigen retrieval - Fixation <strong>and</strong> embedd<strong>in</strong>g can cause antigen<br />

mask<strong>in</strong>g. 2, 4 Some epitopes are formal<strong>in</strong> sensitive <strong>and</strong> undergo<br />

substantial change. 4 O<strong>the</strong>r epitopes are formal<strong>in</strong>-resistant <strong>and</strong><br />

rema<strong>in</strong> unchanged. Cross-l<strong>in</strong>k<strong>in</strong>g of unrelated prote<strong>in</strong>s to <strong>the</strong> target<br />

antigen is also possible. Both enzymatic <strong>and</strong> heat-mediated antigen<br />

retrieval are used to overcome antigen loss. 2, 4 Enzymatic retrieval<br />

can be used alone or <strong>in</strong> comb<strong>in</strong>ation with heat-<strong>in</strong>duced antigen<br />

retrieval. Enzymatic or proteolytic retrieval works by etch<strong>in</strong>g <strong>the</strong><br />

tissue <strong>and</strong> allow<strong>in</strong>g hidden determ<strong>in</strong>ants to be exposed. Enzymes<br />

used <strong>in</strong>clude chymotryps<strong>in</strong> <strong>and</strong> peps<strong>in</strong>. Digestion procedures are<br />

often comb<strong>in</strong>ed with heat<strong>in</strong>g by microwave or pressure-cook<strong>in</strong>g to<br />

enhance retrieval of antigens. The energy from <strong>the</strong> heat<strong>in</strong>g is<br />

believed to break some of <strong>the</strong> bonds formed dur<strong>in</strong>g fixation.<br />

Tissues to be heat treated may be immersed <strong>in</strong> retrieval solutions<br />

such as citrate prior to process<strong>in</strong>g.<br />

3. Endogenous enzyme block – All hemoprote<strong>in</strong>s conta<strong>in</strong> endogenous<br />

peroxidase activity which results <strong>in</strong> <strong>in</strong>creased background sta<strong>in</strong><strong>in</strong>g<br />

on immunohistochemistry slides. Peroxidase activity can be<br />

suppressed by <strong>in</strong>cubat<strong>in</strong>g formal<strong>in</strong> fixed tissues <strong>in</strong> 3% H2O2 prior to<br />

beg<strong>in</strong>n<strong>in</strong>g sta<strong>in</strong><strong>in</strong>g. This is especially important <strong>in</strong> red blood cells,<br />

leukocytes, muscle, liver <strong>and</strong> kidney. 5<br />

96


4. Avid<strong>in</strong>-biot<strong>in</strong> block – Biot<strong>in</strong> is present <strong>in</strong> many tissues <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

liver, mammary gl<strong>and</strong>, adipose tissue <strong>and</strong> kidney <strong>and</strong> can result <strong>in</strong><br />

false positive sta<strong>in</strong><strong>in</strong>g, falsely <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> presence of an antigen.<br />

Avid<strong>in</strong> or streptavid<strong>in</strong> are commonly used as block<strong>in</strong>g agents which<br />

suppress endogenous biot<strong>in</strong> by b<strong>in</strong>d<strong>in</strong>g <strong>the</strong> biot<strong>in</strong> with <strong>the</strong> avid<strong>in</strong> or<br />

streptavid<strong>in</strong> mak<strong>in</strong>g <strong>the</strong> biot<strong>in</strong> unavailable for b<strong>in</strong>d<strong>in</strong>g with<br />

antibodies used <strong>in</strong> <strong>the</strong> immunohistochemical sta<strong>in</strong>. 5<br />

5. Block<strong>in</strong>g nonspecific sites – Block<strong>in</strong>g reactive sites <strong>in</strong> tissues is<br />

important for an immunohistochemical reaction. Non-immune<br />

serum from <strong>the</strong> host species of <strong>the</strong> secondary antibody is applied to<br />

<strong>the</strong> tissue at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> procedure. The serum adheres to<br />

<strong>the</strong> prote<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g sites by nonspecific adsorption or by b<strong>in</strong>d<strong>in</strong>g of<br />

specific, but unwanted, serum antibodies to antigens <strong>in</strong> <strong>the</strong> tissue. 1<br />

6. Incubation with primary antibody – The primary antibody may be<br />

directly labeled with a detection enzyme (horseradish peroxidase)<br />

or fluorophore (Fluoresce<strong>in</strong>) or unlabeled, allow<strong>in</strong>g detection with a<br />

labeled secondary antibody. Choice of primary antibody depends<br />

on <strong>the</strong> antigen of <strong>in</strong>terest. Homology between species with<strong>in</strong> an<br />

antigen allows use of antibodies from o<strong>the</strong>r species. Choice of a<br />

monoclonal or polyclonal antibody is also important <strong>and</strong> aga<strong>in</strong><br />

depends on <strong>the</strong> species of <strong>in</strong>terest <strong>and</strong> <strong>the</strong> target antigen. Dilutions<br />

for each antibody <strong>and</strong> tissue must be optimized for <strong>the</strong> system<br />

be<strong>in</strong>g used. The optimal dilution gives <strong>the</strong> strongest specific antigen<br />

1, 2<br />

sta<strong>in</strong><strong>in</strong>g with <strong>the</strong> lowest non-specific background.<br />

97


7. Incubation with a secondary antibody-enzyme conjugate – If a<br />

system us<strong>in</strong>g a secondary antibody is selected, <strong>the</strong> secondary<br />

antibody is labeled with ei<strong>the</strong>r an enzymatic or fluorescent label.<br />

The secondary antibody is generated aga<strong>in</strong>st <strong>the</strong> immunoglobul<strong>in</strong>s<br />

of <strong>the</strong> primary antibody source. For example, if <strong>the</strong> primary antibody<br />

is raised <strong>in</strong> a mouse, <strong>the</strong> secondary antibody could be goat anti-<br />

mouse. Dilutions for <strong>the</strong> secondary antibody must also be optimized<br />

for <strong>the</strong> system be<strong>in</strong>g used. 1, 2 Methods to amplify <strong>the</strong> signal <strong>in</strong>clude<br />

biot<strong>in</strong>ylated compounds such as <strong>in</strong> <strong>the</strong> ABC procedure <strong>and</strong> cha<strong>in</strong><br />

polymer-conjugated technology such as with <strong>the</strong> biot<strong>in</strong> free<br />

2, 6<br />

EnVision system.<br />

8. Enzyme-mediated detection – Enzymatic color change or<br />

fluorescence is required to visualize <strong>the</strong> f<strong>in</strong>al ELISA reaction <strong>in</strong> <strong>the</strong><br />

tissue. Horseradish peroxidase is commonly used <strong>and</strong> will react<br />

with a chromogenic substrate to cause a color change. The color<br />

change depends on <strong>the</strong> chromogen chosen. 7<br />

9. Controls – Negative tissue controls must be processed identically to<br />

<strong>the</strong> tissue be<strong>in</strong>g <strong>in</strong>vestigated <strong>and</strong> should not conta<strong>in</strong> <strong>the</strong> relevant<br />

tissue marker. Positive tissue controls must be processed<br />

identically to <strong>the</strong> tissue be<strong>in</strong>g <strong>in</strong>vestigated <strong>and</strong> must conta<strong>in</strong> <strong>the</strong><br />

target prote<strong>in</strong>. Internal tissue controls conta<strong>in</strong> <strong>the</strong> target antigen of<br />

<strong>the</strong> tissues be<strong>in</strong>g <strong>in</strong>vestigated <strong>and</strong> also <strong>in</strong> adjacent normal tissue as<br />

is <strong>the</strong> case with many tumor samples which conta<strong>in</strong> normal <strong>and</strong><br />

affected tissue. 8<br />

98


Sta<strong>in</strong>ed tissues can be described based on subjective evaluation of <strong>the</strong><br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong>tensity with<strong>in</strong> <strong>the</strong> tissue <strong>and</strong> specific cell types. Sta<strong>in</strong>ed tissue can also<br />

be assessed semi-quantitatively us<strong>in</strong>g software that codes specific <strong>in</strong>tensities.<br />

7.2 Immunohistochemistry for Urok<strong>in</strong>ase <strong>and</strong> Urok<strong>in</strong>ase Receptor<br />

Detection<br />

7.2.1 Samples<br />

Tissue samples were harvested <strong>and</strong> processed as described <strong>in</strong> Chapter 4,<br />

Sample Selection <strong>and</strong> Preparation. Slides cut from <strong>the</strong> same tissue block were<br />

used for both <strong>the</strong> <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> immunohistochemistry.<br />

7.2.2 Antibodies<br />

• Mouse Monoclonal to mouse uPA – A capture monoclonal antibody<br />

produced <strong>in</strong> a uPA knockout mouse. IgG fraction purified by Prote<strong>in</strong> A<br />

Sepharose. (H77A10, Molecular Innovations, Southfield, MI)<br />

• Monoclonal antibody aga<strong>in</strong>st human <strong>urok<strong>in</strong>ase</strong> B-cha<strong>in</strong> – A mur<strong>in</strong>e IgG1<br />

monoclonal antibody directed aga<strong>in</strong>st a B-cha<strong>in</strong> epitope of human<br />

<strong>urok<strong>in</strong>ase</strong>, near <strong>the</strong> catalytic site. Reacts with free <strong>and</strong> <strong>receptor</strong> bound,<br />

s<strong>in</strong>gle <strong>and</strong> two cha<strong>in</strong> (HMW) <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>the</strong> B-cha<strong>in</strong> (33kDa) fragment.<br />

(3689, American Diagnostica Inc., Stanford, CT)<br />

• Monoclonal antibody aga<strong>in</strong>st human uPA <strong>receptor</strong> (CD 87) – A mur<strong>in</strong>e<br />

monoclonal antibody, subclass IgG2a, recogniz<strong>in</strong>g <strong>the</strong> human <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong>. It b<strong>in</strong>ds with both unoccupied <strong>and</strong> occupied uPAR, to soluble<br />

uPAR <strong>and</strong> to uPAR <strong>in</strong>side both normal blood cells <strong>and</strong> tumor cells. (3936,<br />

American Diagnostica Inc., Stanford, CT)<br />

99


7.2.3 Immunohistochemistry Technique for Urok<strong>in</strong>ase Detection<br />

Figure 7.1 Schematic of <strong>the</strong> two step EnVision System for uPA detection <strong>in</strong> can<strong>in</strong>e tissue<br />

sections. The dextran cha<strong>in</strong> allows for multiple sites of secondary antibody <strong>and</strong> enzyme<br />

attachment to <strong>the</strong> primary antibody. This results <strong>in</strong> signal amplification.<br />

All immunohistochemical studies were performed on paraff<strong>in</strong> embedded<br />

sections (4µm). For <strong>urok<strong>in</strong>ase</strong> detection, endogenous enzyme block was<br />

performed us<strong>in</strong>g 0.3% hydrogen peroxide for 10 m<strong>in</strong>utes. Sections were <strong>the</strong>n<br />

treated with Prote<strong>in</strong>ase K for 2 m<strong>in</strong>utes for enzyme retrieval followed by prote<strong>in</strong><br />

block with horse serum for 30 m<strong>in</strong>utes. The sections were <strong>in</strong>cubated for 30<br />

m<strong>in</strong>utes with Primary mouse anti-mouse uPA antibody at 1:200 dilutions. The<br />

primary antibody was omitted for negative controls. The secondary antibody<br />

system used <strong>the</strong> mouse EnVision system, which uses a biot<strong>in</strong> free cha<strong>in</strong><br />

polymer-conjugated technology with horseradish peroxidase as <strong>the</strong> enzyme. This<br />

<strong>in</strong>cubation was performed for 30 m<strong>in</strong>utes. The sections were <strong>the</strong>n <strong>in</strong>cubated for 8<br />

m<strong>in</strong>utes with <strong>the</strong> chromogen NovaRed to allow visualization of <strong>the</strong> antigen-<br />

100


antibody complexes (figure 7.1). Slides were countersta<strong>in</strong>ed with hematoxyl<strong>in</strong> for<br />

5 m<strong>in</strong>utes. Intensity of sta<strong>in</strong><strong>in</strong>g was subjectively evaluated by one <strong>in</strong>vestigator.<br />

Cell types sta<strong>in</strong><strong>in</strong>g were identified <strong>and</strong> described.<br />

7.2.4 Immunohistochemistry Technique for Urok<strong>in</strong>ase Receptor<br />

Detection<br />

For <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> detection endogenous, enzyme block was<br />

performed us<strong>in</strong>g 0.3% hydrogen peroxide for 10 m<strong>in</strong>utes. Sections were <strong>the</strong>n<br />

treated with high pH TRS for 2 m<strong>in</strong>utes for enzyme retrieval followed by prote<strong>in</strong><br />

block with horse serum for 30 m<strong>in</strong>utes. The sections were <strong>in</strong>cubated for 60<br />

m<strong>in</strong>utes <strong>the</strong> with primary antibody mouse anti-human uPAR at a 1:100 dilution.<br />

The secondary antibody system used <strong>the</strong> mouse EnVision system, which uses<br />

a biot<strong>in</strong> free cha<strong>in</strong> polymer-conjugated technology with horseradish peroxidase<br />

as <strong>the</strong> enzyme. The sections were <strong>the</strong>n <strong>in</strong>cubated for 8 m<strong>in</strong>utes with <strong>the</strong><br />

chromogen NovaRed to allow visualization of <strong>the</strong> antigen-antibody complexes.<br />

Slides were countersta<strong>in</strong>ed with hematoxyl<strong>in</strong> for 5 m<strong>in</strong>utes. Intensity of sta<strong>in</strong><strong>in</strong>g<br />

was subjectively evaluated by one <strong>in</strong>vestigator. Cell types sta<strong>in</strong><strong>in</strong>g were identified<br />

<strong>and</strong> described.<br />

7.3 Problems<br />

The antibody chosen for our tissue samples was <strong>the</strong> mouse anti-mouse<br />

monoclonal antibody from Innovative Research which is produced us<strong>in</strong>g<br />

<strong>urok<strong>in</strong>ase</strong> knock-out mice. Our immunohistochemistry protocol was based on <strong>the</strong><br />

protocol from Innovative Research. One problem was over digestion of <strong>the</strong><br />

tissues by <strong>the</strong> enzymatic antigen retrieval system. This was especially<br />

problematic with <strong>the</strong> testicular <strong>and</strong> prostate tissue. Use of a 1:2 dilution protocol<br />

101


for <strong>the</strong> Prote<strong>in</strong>ase K solved this problem. Increased background was also an<br />

issue due to known endogenous biot<strong>in</strong> <strong>in</strong> <strong>the</strong> kidney. This was overcome by<br />

us<strong>in</strong>g an EnVision system which uses a biot<strong>in</strong> free cha<strong>in</strong> polymer-conjugated<br />

technology as <strong>the</strong> secondary antibody system.<br />

Ano<strong>the</strong>r problem encountered was with orientation of <strong>the</strong> tissue samples<br />

for mount<strong>in</strong>g. In some of <strong>the</strong> ur<strong>in</strong>ary bladder, urethra <strong>and</strong> ureter samples <strong>the</strong><br />

tissues required reorientation with <strong>the</strong> paraff<strong>in</strong> blocks to allow cross sections<br />

which conta<strong>in</strong>ed mucosa. This could have been prevented by more careful<br />

exam<strong>in</strong>ation of each tissue sample at <strong>the</strong> time of embedd<strong>in</strong>g. Smudg<strong>in</strong>g of some<br />

of <strong>the</strong> mucosal borders was also evident. This can be prevented by fix<strong>in</strong>g <strong>the</strong><br />

samples prior to cutt<strong>in</strong>g for paraff<strong>in</strong> embedd<strong>in</strong>g. Freez<strong>in</strong>g of <strong>the</strong> samples may<br />

have contributed to loss of some of <strong>the</strong> mucosal edges as well mak<strong>in</strong>g <strong>the</strong><br />

mucosal l<strong>in</strong><strong>in</strong>g more susceptible to damage when be<strong>in</strong>g placed <strong>in</strong> <strong>the</strong> cassettes<br />

for paraff<strong>in</strong> embedd<strong>in</strong>g. Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> epitopes <strong>in</strong> can<strong>in</strong>e<br />

tissue do not appear to be masked direct fixation <strong>in</strong> formal<strong>in</strong>, so this technique is<br />

acceptable. Formal<strong>in</strong> fixation provides good preservation of architecture.<br />

7.4 Results<br />

All organs <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> showed evidence of sta<strong>in</strong><strong>in</strong>g for <strong>urok<strong>in</strong>ase</strong><br />

<strong>and</strong> most tissues were positive for <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>. O<strong>the</strong>r support<strong>in</strong>g tissues<br />

such as smooth muscle, skeletal muscle, vascular endo<strong>the</strong>lial cells <strong>and</strong><br />

leukocytes also showed evidence of sta<strong>in</strong><strong>in</strong>g for <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong> (appendix tables 4, 5, 6, 7, 8 <strong>and</strong> 9).<br />

102


7.4.1 Urok<strong>in</strong>ase <strong>and</strong> Kidney<br />

Figure 7.2 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> kidney. (100X magnification) Sta<strong>in</strong><strong>in</strong>g is<br />

noted <strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong> epi<strong>the</strong>lial cells l<strong>in</strong><strong>in</strong>g <strong>the</strong> renal tubules. Some plasma sta<strong>in</strong><strong>in</strong>g is<br />

noted with<strong>in</strong> <strong>the</strong> glomeruli.<br />

Sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> kidney was consistent was consistent for male <strong>and</strong> female dogs<br />

<strong>and</strong> for castrated <strong>and</strong> <strong>in</strong>tact male dogs (appendix table 4) Sta<strong>in</strong><strong>in</strong>g was red to<br />

red-brown <strong>and</strong> uniform <strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong> cells. There was <strong>in</strong>tense sta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> tubular epi<strong>the</strong>lial cells throughout <strong>the</strong> cortex <strong>and</strong> medulla of <strong>the</strong> kidney. In<br />

some samples cells <strong>in</strong> <strong>the</strong> medullary tubules sta<strong>in</strong>ed slightly more <strong>in</strong>tensely than<br />

cells <strong>in</strong> <strong>the</strong> proximal convoluted tubules. Sta<strong>in</strong><strong>in</strong>g was evident <strong>in</strong> <strong>the</strong> endo<strong>the</strong>lial<br />

cells of <strong>the</strong> glomeruli <strong>in</strong> some kidneys. Inflammatory cells <strong>and</strong> endo<strong>the</strong>lial cells of<br />

both arteries <strong>and</strong> ve<strong>in</strong>s also sta<strong>in</strong>ed (figure 7.2). Sta<strong>in</strong><strong>in</strong>g was evident <strong>in</strong> <strong>the</strong><br />

mucosa of <strong>the</strong> renal pelvis with<strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong> lum<strong>in</strong>al cells <strong>in</strong> <strong>the</strong><br />

transitional epi<strong>the</strong>lium. Sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> transitional epi<strong>the</strong>lium was segmental. The<br />

renal pelvis that was <strong>in</strong>voluted sta<strong>in</strong>ed uniformly throughout <strong>the</strong> cytoplasm of <strong>the</strong><br />

entire layer of cells. The renal pelvis which protruded <strong>in</strong>to <strong>the</strong> pelvis sta<strong>in</strong>ed along<br />

<strong>the</strong> surface or not at all (figure 7.3).<br />

103


Figure 7.3 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA with<strong>in</strong> <strong>the</strong> transitional epi<strong>the</strong>lium of <strong>the</strong> renal<br />

pelvis. (100X magnification) Sta<strong>in</strong><strong>in</strong>g of cytoplasm of <strong>the</strong> transitional epi<strong>the</strong>lial cells is present.<br />

Sta<strong>in</strong><strong>in</strong>g is more <strong>in</strong>tense <strong>in</strong> <strong>the</strong> lum<strong>in</strong>al cells <strong>and</strong> is segmental. Sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> cytoplasm of<br />

endo<strong>the</strong>lial cells of ve<strong>in</strong>s <strong>and</strong> <strong>in</strong>flammatory cells with<strong>in</strong> <strong>the</strong> renal parenchyma is visible.<br />

7.4.2 Urok<strong>in</strong>ase Receptor <strong>and</strong> Kidney<br />

Sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> kidney was consistent was consistent for male <strong>and</strong> female<br />

dogs <strong>and</strong> for castrated <strong>and</strong> <strong>in</strong>tact male dogs (appendix table 4). Sta<strong>in</strong><strong>in</strong>g was red<br />

to red-brown <strong>and</strong> appeared more granular than <strong>the</strong> <strong>urok<strong>in</strong>ase</strong> sta<strong>in</strong><strong>in</strong>g. Intense<br />

granular sta<strong>in</strong><strong>in</strong>g was noted <strong>in</strong> cytoplasm of <strong>in</strong>flammatory cells <strong>in</strong> <strong>the</strong> parenchyma<br />

<strong>and</strong> <strong>in</strong> <strong>the</strong> blood vessels. Granular sta<strong>in</strong><strong>in</strong>g was present along <strong>the</strong> basement<br />

membranes of <strong>the</strong> epi<strong>the</strong>lial cells <strong>in</strong> both proximal <strong>and</strong> medullary tubules (figure<br />

7.4). The mucosa <strong>in</strong> <strong>the</strong> renal pelvis showed granular sta<strong>in</strong><strong>in</strong>g along <strong>the</strong> surface<br />

<strong>and</strong> with<strong>in</strong> cytoplasm of <strong>the</strong> lum<strong>in</strong>al cells of <strong>the</strong> transitional epi<strong>the</strong>lium.<br />

104


Figure 7.4 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR <strong>in</strong> <strong>the</strong> kidney. (0000 magnification) Granular<br />

sta<strong>in</strong><strong>in</strong>g along <strong>the</strong> basement membrane of tubular epi<strong>the</strong>lial cells. Slight cytoplasmic sta<strong>in</strong><strong>in</strong>g of<br />

<strong>the</strong>se tubular cells is also evident.<br />

7.4.3 Urok<strong>in</strong>ase <strong>and</strong> Ureter<br />

There was <strong>in</strong>tense <strong>and</strong> uniform sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> transitional epi<strong>the</strong>lium of <strong>the</strong><br />

ureter <strong>in</strong> all dogs evaluated (appendix table 5). Sta<strong>in</strong><strong>in</strong>g was along <strong>the</strong> lum<strong>in</strong>al<br />

cell membrane of <strong>the</strong> surface epi<strong>the</strong>lial cells <strong>and</strong> with<strong>in</strong> <strong>the</strong> cytoplasm throughout<br />

all layers of transitional epi<strong>the</strong>lial cells of <strong>the</strong> mucosal l<strong>in</strong><strong>in</strong>g. The cytoplasm of<br />

<strong>in</strong>flammatory cells with<strong>in</strong> <strong>the</strong> connective tissue of <strong>the</strong> ureter wall <strong>and</strong> vascular<br />

endo<strong>the</strong>lial cells were sta<strong>in</strong>ed (figure 7.5).<br />

7.4.4 Urok<strong>in</strong>ase Receptor <strong>and</strong> Ureter<br />

There was granular sta<strong>in</strong><strong>in</strong>g was noted along <strong>the</strong> membrane of <strong>the</strong> lum<strong>in</strong>al<br />

cells at <strong>the</strong> surface of <strong>the</strong> transitional epi<strong>the</strong>lium l<strong>in</strong><strong>in</strong>g <strong>the</strong> ureter <strong>in</strong> all dogs<br />

evaluated (appendix table 5). Granular cytoplasmic sta<strong>in</strong><strong>in</strong>g was noted <strong>in</strong> <strong>the</strong> first<br />

<strong>and</strong> sometimes second layer of cells. Inflammatory cells sta<strong>in</strong>ed positive. No<br />

105


Figure 7.5 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA <strong>in</strong> <strong>the</strong> ureter. Membrane sta<strong>in</strong><strong>in</strong>g is noted along<br />

<strong>the</strong> lum<strong>in</strong>al surface of <strong>the</strong> cells <strong>in</strong> <strong>the</strong> transitional epi<strong>the</strong>lium. The cytoplasm of all cells <strong>in</strong> <strong>the</strong><br />

transitional epi<strong>the</strong>lium is sta<strong>in</strong><strong>in</strong>g. Also sta<strong>in</strong><strong>in</strong>g are <strong>the</strong> <strong>in</strong>flammatory cells <strong>in</strong> <strong>the</strong> connective tissue<br />

of <strong>the</strong> ureter wall <strong>and</strong> vascular endo<strong>the</strong>lial cells.<br />

Figure 7.6 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR <strong>in</strong> <strong>the</strong> ureter. Granular membrane sta<strong>in</strong><strong>in</strong>g is<br />

noted along <strong>the</strong> lum<strong>in</strong>al surface of <strong>the</strong> cells <strong>in</strong> <strong>the</strong> transitional epi<strong>the</strong>lium. The cytoplasm of cells <strong>in</strong><br />

<strong>the</strong> first two cells layer <strong>in</strong> <strong>the</strong> epi<strong>the</strong>lium is sta<strong>in</strong><strong>in</strong>g. Also sta<strong>in</strong><strong>in</strong>g are <strong>the</strong> <strong>in</strong>flammatory cells <strong>in</strong> <strong>the</strong><br />

connective tissue of <strong>the</strong> ureter wall<br />

106


sta<strong>in</strong><strong>in</strong>g was noted <strong>in</strong> <strong>the</strong> deeper cells of <strong>the</strong> transitional epi<strong>the</strong>lium. Inflammatory<br />

cells with<strong>in</strong> <strong>the</strong> connective tissue of <strong>the</strong> ureter wall were sta<strong>in</strong>ed (figure 7.6).<br />

7.4.5 Urok<strong>in</strong>ase <strong>and</strong> Ur<strong>in</strong>ary Bladder<br />

There was sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> transitional epi<strong>the</strong>lium on <strong>the</strong> ur<strong>in</strong>ary bladder <strong>in</strong><br />

all dogs evaluated (appendix table 6). Sta<strong>in</strong><strong>in</strong>g was variable with some sections<br />

of <strong>the</strong> mucosa sta<strong>in</strong>ed throughout all cell layers on <strong>the</strong> lum<strong>in</strong>al membrane surface<br />

<strong>and</strong> with<strong>in</strong> <strong>the</strong> cytoplasm. O<strong>the</strong>r sections only showed sta<strong>in</strong><strong>in</strong>g on <strong>the</strong> surface<br />

layer or not at all. The sections which had sta<strong>in</strong><strong>in</strong>g appear <strong>in</strong>vag<strong>in</strong>ated <strong>and</strong> <strong>the</strong>re<br />

was <strong>in</strong>creased vacuolization of <strong>the</strong> cytoplasm. O<strong>the</strong>r cells which sta<strong>in</strong>ed positive<br />

were <strong>the</strong> smooth muscle cells <strong>and</strong> skeletal muscle cells, endo<strong>the</strong>lial cells of<br />

vessels <strong>and</strong> <strong>in</strong>flammatory cells with<strong>in</strong> <strong>the</strong> bladder wall. These cells all sta<strong>in</strong>ed <strong>in</strong><br />

<strong>the</strong> cytoplasm. Two of <strong>the</strong> ur<strong>in</strong>ary bladder sections showed <strong>in</strong>flammation<br />

consistent with chronic cystitis. These samples displayed <strong>in</strong>tense <strong>urok<strong>in</strong>ase</strong><br />

sta<strong>in</strong><strong>in</strong>g along <strong>the</strong> mucosa <strong>in</strong> <strong>the</strong> same regions as <strong>the</strong> normal bladder (figure 7.7)<br />

7.4.6 Urok<strong>in</strong>ase Receptor <strong>and</strong> Ur<strong>in</strong>ary Bladder<br />

Granular sta<strong>in</strong><strong>in</strong>g was noted along <strong>the</strong> lum<strong>in</strong>al surface membrane of <strong>the</strong><br />

cells <strong>in</strong> <strong>the</strong> transitional epi<strong>the</strong>lium <strong>in</strong> all dogs evaluated (appendix table 6).<br />

Granular cytoplasmic sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> cells <strong>in</strong> <strong>the</strong> transitional epi<strong>the</strong>lium was<br />

evident <strong>in</strong> some regions extend<strong>in</strong>g only to <strong>the</strong> first one to two layers of cells.<br />

Inflammatory cells with<strong>in</strong> <strong>the</strong> wall sta<strong>in</strong>ed consistently (figure 7.8).<br />

7.4.7 Urok<strong>in</strong>ase <strong>and</strong> Prostate<br />

Sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> prostate was highly variable (appendix table 8). Male 1<br />

through 5 were <strong>in</strong>tact, males 6 <strong>and</strong> 7 were castrated. Male 1 had a mature<br />

107


Figure 7.7 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary bladder. Sta<strong>in</strong><strong>in</strong>g is noted <strong>in</strong> <strong>the</strong><br />

cytoplasm of cells <strong>in</strong> <strong>the</strong> transitional epi<strong>the</strong>lium <strong>in</strong> <strong>the</strong> <strong>in</strong>vag<strong>in</strong>ated section. These cells are also<br />

more vacuolated than <strong>the</strong> cells <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g regions. Sta<strong>in</strong><strong>in</strong>g is also noted along <strong>the</strong> surface<br />

membrane of <strong>the</strong> cells of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g mucosa.<br />

Figure 7.8 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR with<strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary bladder. Intense granular<br />

sta<strong>in</strong><strong>in</strong>g is noted along <strong>the</strong> membrane of <strong>the</strong> lum<strong>in</strong>al cells of <strong>the</strong> transitional epi<strong>the</strong>lium. Granular<br />

cytoplasmic sta<strong>in</strong><strong>in</strong>g is noted with<strong>in</strong> <strong>the</strong> first cell layer of <strong>the</strong> transitional epi<strong>the</strong>lium <strong>and</strong><br />

<strong>in</strong>flammatory cells <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary bladder wall.<br />

108<br />

.


prostate <strong>and</strong> showed variable light sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong> connective<br />

tissue cells of gl<strong>and</strong>ular epi<strong>the</strong>lium but most gl<strong>and</strong>ular tissue did not sta<strong>in</strong>.<br />

Epi<strong>the</strong>lial cells l<strong>in</strong><strong>in</strong>g <strong>the</strong> prostatic ducts did not sta<strong>in</strong>. Inflammatory cells with<strong>in</strong><br />

<strong>the</strong> connective tissue of <strong>the</strong> prostate sta<strong>in</strong>ed positive. Male 2 had a mature<br />

prostate with some evidence of hyperplasia. Some fa<strong>in</strong>t sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> cytoplasm<br />

of gl<strong>and</strong>ular cells was noted but <strong>the</strong> majority of <strong>the</strong> gl<strong>and</strong>ular cells did not sta<strong>in</strong>.<br />

The prostate of male 3 was mature <strong>and</strong> hyperplastic. Fixation of <strong>the</strong> tissue was<br />

not optimal but showed very weak sta<strong>in</strong><strong>in</strong>g of some gl<strong>and</strong>ular cells. Male 4 was a<br />

young dog <strong>and</strong> <strong>the</strong> prostate had very little ac<strong>in</strong>ar development. Urok<strong>in</strong>ase<br />

sta<strong>in</strong><strong>in</strong>g was prom<strong>in</strong>ent <strong>in</strong> <strong>the</strong> regions of develop<strong>in</strong>g ducts <strong>in</strong> <strong>the</strong> epi<strong>the</strong>lial cells<br />

l<strong>in</strong><strong>in</strong>g <strong>the</strong> ducts. Sta<strong>in</strong><strong>in</strong>g was decreased but still present <strong>in</strong> comparable cells <strong>in</strong><br />

more differentiated ducts. Sta<strong>in</strong><strong>in</strong>g was also visualized <strong>in</strong> <strong>in</strong>flammatory cells<br />

with<strong>in</strong> <strong>the</strong> gl<strong>and</strong>ular connective tissue (figure 7.9). Male 5 was a mature dog<br />

prostate sample with multiple hyperplastic <strong>and</strong> cystic regions. Epi<strong>the</strong>lium with<strong>in</strong><br />

<strong>the</strong> ducts <strong>and</strong> <strong>the</strong> gl<strong>and</strong>ular epi<strong>the</strong>lium of <strong>the</strong> cystic regions showed moderate to<br />

<strong>in</strong>tense sta<strong>in</strong><strong>in</strong>g. Very weak to no sta<strong>in</strong><strong>in</strong>g was noted <strong>in</strong> <strong>the</strong> gl<strong>and</strong>ular cells of <strong>the</strong><br />

hyperplastic regions. Male 6 had normal prostate tissue <strong>and</strong> no sta<strong>in</strong><strong>in</strong>g was<br />

noted <strong>in</strong> gl<strong>and</strong>s or ducts. Very light sta<strong>in</strong><strong>in</strong>g was noted <strong>in</strong> <strong>the</strong> cytoplasm of a few<br />

foamy prostatic cells. The prostate of Male 7 was hypoplastic or atrophied.<br />

Prostatic gl<strong>and</strong>ular epi<strong>the</strong>lial tissue <strong>and</strong> apical cytoplasm of <strong>the</strong> epi<strong>the</strong>lial cells<br />

with<strong>in</strong> <strong>the</strong> ducts sta<strong>in</strong>ed. Inflammatory cells <strong>in</strong> <strong>the</strong> connective tissue <strong>and</strong> vascular<br />

endo<strong>the</strong>lium sta<strong>in</strong>ed. Some sta<strong>in</strong><strong>in</strong>g was noted <strong>in</strong> <strong>the</strong> cytoplasm of epi<strong>the</strong>lial cells<br />

l<strong>in</strong><strong>in</strong>g primitive or poorly differentiated ducts.<br />

109


Figure 7.9 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA <strong>in</strong> <strong>the</strong> prostate of Male 4. Epi<strong>the</strong>lial cells along<br />

surround<strong>in</strong>g <strong>the</strong> duct show sta<strong>in</strong><strong>in</strong>g at <strong>the</strong> apical membrane <strong>and</strong> with<strong>in</strong> <strong>the</strong> cytoplasm.<br />

7.4.8 Urok<strong>in</strong>ase Receptor <strong>and</strong> Prostate<br />

Most of <strong>the</strong> prostatic sections did not sta<strong>in</strong> for <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> sta<strong>in</strong><strong>in</strong>g<br />

(appendix table 8). Inflammatory cells <strong>in</strong> <strong>the</strong> connective tissue sta<strong>in</strong>ed well <strong>in</strong> all<br />

samples, act<strong>in</strong>g as an <strong>in</strong>ternal control. Male 4 was <strong>in</strong>tact <strong>and</strong> granular sta<strong>in</strong><strong>in</strong>g<br />

was visualized <strong>in</strong> <strong>the</strong> epi<strong>the</strong>lial cells of <strong>the</strong> develop<strong>in</strong>g ducts at both <strong>the</strong> apical<br />

surface <strong>and</strong> <strong>the</strong> cytoplasm. Sta<strong>in</strong><strong>in</strong>g was also noted <strong>in</strong> <strong>the</strong> more mature ducts at<br />

<strong>the</strong> apical borders of <strong>the</strong> epi<strong>the</strong>lial cells at <strong>the</strong> same <strong>in</strong>tensity as <strong>the</strong> less mature<br />

ducts. Intense sta<strong>in</strong><strong>in</strong>g was evident <strong>in</strong> <strong>in</strong>terstitial <strong>in</strong>flammatory cells (figure 7.10).<br />

Male 7 was neutered <strong>and</strong> <strong>the</strong> prostate appeared hypoplastic or atrophied<br />

suggest<strong>in</strong>g castration had been performed at a young age or that <strong>the</strong> gl<strong>and</strong> was<br />

<strong>in</strong>volut<strong>in</strong>g. Granular sta<strong>in</strong><strong>in</strong>g was noted <strong>in</strong> <strong>the</strong> apical region of epi<strong>the</strong>lial cells<br />

l<strong>in</strong><strong>in</strong>g primitive or poorly developed ducts. Inflammatory cells <strong>in</strong> <strong>the</strong> gl<strong>and</strong>ular<br />

connective tissue sta<strong>in</strong>ed.<br />

110


Figure 7.10 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR <strong>in</strong> <strong>the</strong> prostate of Male 4. Intense sta<strong>in</strong><strong>in</strong>g is<br />

noted along <strong>the</strong> cell membranes <strong>and</strong> with<strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong> epi<strong>the</strong>lial cells l<strong>in</strong><strong>in</strong>g <strong>the</strong><br />

develop<strong>in</strong>g ac<strong>in</strong>ar structures.<br />

7.4.9 Urok<strong>in</strong>ase <strong>and</strong> Testicle<br />

Cytoplasm <strong>in</strong> <strong>the</strong> cells <strong>in</strong> <strong>the</strong> testicle sta<strong>in</strong>ed <strong>in</strong>tensely <strong>in</strong> all samples<br />

throughout <strong>the</strong> <strong>in</strong>terstitial cells <strong>and</strong> <strong>the</strong> sem<strong>in</strong>iferous tubules, <strong>in</strong>clud<strong>in</strong>g all phases<br />

of spermatogonia (figure 7.11 <strong>and</strong> appendix table 9).<br />

7.4.10 Urok<strong>in</strong>ase Receptor <strong>and</strong> Testicle<br />

Testicular cells did not to sta<strong>in</strong> well for <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>. Very fa<strong>in</strong>t<br />

sta<strong>in</strong><strong>in</strong>g was noted <strong>in</strong> <strong>the</strong> cytoplasm of <strong>in</strong>terstitial cells. The sem<strong>in</strong>iferous tubules<br />

<strong>and</strong> <strong>the</strong> conta<strong>in</strong>ed spermatogonia did not sta<strong>in</strong>. Inflammatory cells <strong>in</strong> <strong>the</strong><br />

connective tissue still sta<strong>in</strong>ed (figure 7.12 <strong>and</strong> appendix table 9)<br />

7.4.11 Urok<strong>in</strong>ase <strong>and</strong> Urethra<br />

Transitional epi<strong>the</strong>lium with<strong>in</strong> <strong>the</strong> ureter showed consistent sta<strong>in</strong><strong>in</strong>g along<br />

<strong>the</strong> lum<strong>in</strong>al border <strong>and</strong> with<strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong> cells extend<strong>in</strong>g all <strong>the</strong> way<br />

111


Figure 7.11 Immunohistochemical sta<strong>in</strong><strong>in</strong>g uPA <strong>in</strong> <strong>the</strong> testicle. Intense sta<strong>in</strong><strong>in</strong>g <strong>in</strong> noted<br />

throughout <strong>the</strong> <strong>in</strong>terstitial cells <strong>and</strong> <strong>the</strong> sem<strong>in</strong>iferous tubules <strong>in</strong>clud<strong>in</strong>g all phases of<br />

spermatogonia.<br />

Figure 7.12 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR <strong>in</strong> <strong>the</strong> testicle. Very fa<strong>in</strong>t sta<strong>in</strong><strong>in</strong>g of <strong>the</strong><br />

cytoplasm of <strong>the</strong> <strong>in</strong>terstitial cells is seen.<br />

through <strong>the</strong> mucosa <strong>in</strong> all dogs evaluated (appendix table 7). This sta<strong>in</strong><strong>in</strong>g was<br />

similar to <strong>the</strong> ur<strong>in</strong>ary bladder mucosa <strong>in</strong> those areas which appeared to have<br />

112


<strong>in</strong>creased numbers of cells with vacuolated cytoplasm <strong>and</strong> was <strong>in</strong>vag<strong>in</strong>ated. In<br />

o<strong>the</strong>r areas of <strong>the</strong> mucosa, <strong>the</strong> sta<strong>in</strong><strong>in</strong>g was more lum<strong>in</strong>al <strong>and</strong> <strong>in</strong> some places no<br />

sta<strong>in</strong><strong>in</strong>g. Inflammatory cells <strong>in</strong> <strong>the</strong> connective tissue of <strong>the</strong> urethral wall sta<strong>in</strong>ed<br />

well (figure 7.14) There was no difference <strong>in</strong> <strong>the</strong> transitional epi<strong>the</strong>lium of <strong>the</strong><br />

prostatic (figure 7.13) <strong>and</strong> penile urethra of male dogs.<br />

7.4.12 Urok<strong>in</strong>ase Receptor <strong>and</strong> Ureter<br />

The transitional epi<strong>the</strong>lium of <strong>the</strong> ureter sta<strong>in</strong>ed for <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> on<br />

<strong>the</strong> lum<strong>in</strong>al surface of <strong>the</strong> cells <strong>and</strong> with<strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong> cells closest to <strong>the</strong><br />

lumen (appendix table 7). The sta<strong>in</strong><strong>in</strong>g was granular. Inflammatory cells <strong>in</strong> <strong>the</strong><br />

connective tissue of <strong>the</strong> urethral wall sta<strong>in</strong>ed positive (figure 7.16) Cells of <strong>the</strong><br />

transitional epi<strong>the</strong>lium of <strong>the</strong> prostatic urethra (figure 7.15) sta<strong>in</strong>ed more <strong>in</strong>tensely<br />

than <strong>the</strong> cells of <strong>the</strong> transitional epi<strong>the</strong>lium of <strong>the</strong> penile urethra <strong>in</strong> some sections.<br />

Figure 7.13 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA <strong>in</strong> <strong>the</strong> prostatic urethra. Sta<strong>in</strong><strong>in</strong>g is noted <strong>in</strong> <strong>the</strong><br />

cytoplasm of cells <strong>in</strong> <strong>the</strong> transitional epi<strong>the</strong>lium <strong>in</strong> <strong>the</strong> <strong>in</strong>vag<strong>in</strong>ated section. These cells are also<br />

more vacuolated than <strong>the</strong> cells <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g regions. Sta<strong>in</strong><strong>in</strong>g is also noted along <strong>the</strong> surface<br />

membrane of <strong>the</strong> cells of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g mucosa.<br />

113


Figure 7.14 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPA <strong>in</strong> <strong>the</strong> urethra. Sta<strong>in</strong><strong>in</strong>g is noted along <strong>the</strong><br />

entire layer of lum<strong>in</strong>al cells along <strong>the</strong> membrane <strong>and</strong> <strong>in</strong> <strong>the</strong> cytoplasm. Sta<strong>in</strong><strong>in</strong>g cont<strong>in</strong>ues<br />

throughout <strong>the</strong> cell layers <strong>in</strong> <strong>the</strong> mucosa <strong>in</strong> some regions of <strong>the</strong> section exam<strong>in</strong>ed. Cytoplasm of<br />

<strong>in</strong>flammatory cells <strong>and</strong> vascular endo<strong>the</strong>lial cells sta<strong>in</strong> positive.<br />

Figure 7.15 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR <strong>in</strong> <strong>the</strong> prostatic urethra.<br />

Light sta<strong>in</strong><strong>in</strong>g is present along <strong>the</strong> outer membrane of <strong>the</strong> lum<strong>in</strong>al transitional epi<strong>the</strong>lium <strong>and</strong><br />

with<strong>in</strong> <strong>the</strong> cytoplasm of some epi<strong>the</strong>lial cells <strong>in</strong> <strong>the</strong> upper corner of <strong>the</strong> <strong>in</strong>vag<strong>in</strong>ation. Inflammatory<br />

cells <strong>in</strong> <strong>the</strong> urethral wall are sta<strong>in</strong><strong>in</strong>g <strong>in</strong>tensely.<br />

114


Figure 7.16 Immunohistochemical sta<strong>in</strong><strong>in</strong>g of uPAR <strong>in</strong> <strong>the</strong> urethra. Intense granular sta<strong>in</strong><strong>in</strong>g is<br />

noted along <strong>the</strong> membrane of <strong>the</strong> lum<strong>in</strong>al cells of <strong>the</strong> transitional epi<strong>the</strong>lium. Granular cytoplasmic<br />

sta<strong>in</strong><strong>in</strong>g is noted with<strong>in</strong> <strong>the</strong> cell layers of <strong>the</strong> transitional epi<strong>the</strong>lium <strong>and</strong> <strong>in</strong>flammatory cells <strong>in</strong> <strong>the</strong><br />

urethral wall.<br />

7.5 Discussion<br />

Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> appear to be present <strong>in</strong> all tissues of<br />

<strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of <strong>the</strong> dog. Urok<strong>in</strong>ase <strong>receptor</strong> appears to be present <strong>in</strong> most<br />

tissues except <strong>the</strong> testicle.<br />

The kidney specimens evaluated <strong>in</strong> our study showed sta<strong>in</strong><strong>in</strong>g for<br />

<strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> epi<strong>the</strong>lium of <strong>the</strong> renal tubules throughout <strong>the</strong> kidney <strong>and</strong><br />

sta<strong>in</strong><strong>in</strong>g along <strong>the</strong> epi<strong>the</strong>lial cells of <strong>the</strong> glomeruli <strong>in</strong> most specimens. Urok<strong>in</strong>ase<br />

expression <strong>in</strong> <strong>the</strong> kidney is consistent with that reported <strong>in</strong> <strong>the</strong> literature for<br />

people, mice <strong>and</strong> rats. Immunohistochemistry cannot differentiate whe<strong>the</strong>r <strong>the</strong><br />

antigen is present due to syn<strong>the</strong>sis with<strong>in</strong> <strong>the</strong> cells or because of b<strong>in</strong>d<strong>in</strong>g to a<br />

<strong>receptor</strong> <strong>in</strong> or on <strong>the</strong> cell membrane. However, <strong>in</strong>vitro <strong>and</strong> tissue studies of cells<br />

l<strong>in</strong>es from human mesangial <strong>and</strong> tubule cells show that <strong>urok<strong>in</strong>ase</strong> is syn<strong>the</strong>sized<br />

115


<strong>and</strong> secreted by glomerular visceral epi<strong>the</strong>lial cells <strong>and</strong> kidney tubular epi<strong>the</strong>lial<br />

cells. 9-11 Given <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> o<strong>the</strong>r mammalian species <strong>the</strong> <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong><br />

renal tubules <strong>and</strong> glomeruli of <strong>the</strong> dog is likely syn<strong>the</strong>sized <strong>the</strong>re also. To verify<br />

this, cell culture studies would be required to document secretion of <strong>urok<strong>in</strong>ase</strong><br />

<strong>in</strong>to <strong>the</strong> cell medium.<br />

With<strong>in</strong> <strong>the</strong> kidney <strong>urok<strong>in</strong>ase</strong> sta<strong>in</strong><strong>in</strong>g was also visualized along <strong>the</strong><br />

transitional epi<strong>the</strong>lium of <strong>the</strong> renal pelvis. Sta<strong>in</strong><strong>in</strong>g was <strong>in</strong>tense <strong>and</strong> throughout<br />

<strong>the</strong> cytoplasm of all cell layers. Presence of <strong>and</strong> fibr<strong>in</strong>olytic activity of <strong>urok<strong>in</strong>ase</strong><br />

has been documented <strong>in</strong> epi<strong>the</strong>lial cells of <strong>the</strong> renal calyces. 11, 12 Urok<strong>in</strong>ase may<br />

be produced <strong>the</strong> transitional epi<strong>the</strong>lial cells. This has been shown to be <strong>the</strong> case<br />

<strong>in</strong> bov<strong>in</strong>e uro<strong>the</strong>lium. 13 To my knowledge this has not been <strong>in</strong>vestigated <strong>in</strong> o<strong>the</strong>r<br />

species. Presence of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> tubular structures of <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> is<br />

important to ma<strong>in</strong>ta<strong>in</strong> patency of <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> <strong>in</strong> face of hemorrhage <strong>and</strong> fibr<strong>in</strong><br />

deposition.<br />

Urok<strong>in</strong>ase <strong>receptor</strong> sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> tissues of <strong>the</strong> kidney was limited to <strong>the</strong><br />

basement membranes of renal tubular cells. Urok<strong>in</strong>ase <strong>receptor</strong> sta<strong>in</strong><strong>in</strong>g is not<br />

noted <strong>in</strong> normal mur<strong>in</strong>e kidney samples. 14 This is consistent with f<strong>in</strong>d<strong>in</strong>gs from<br />

people <strong>in</strong> which <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> was not noted <strong>in</strong> <strong>the</strong> tubules of <strong>the</strong> kidneys<br />

from healthy people present<strong>in</strong>g as donors. 15 In ano<strong>the</strong>r study glomerular cells did<br />

not sta<strong>in</strong> <strong>in</strong> healthy kidney samples. 16 In <strong>the</strong> dog kidney studied, uPAR was<br />

present along <strong>the</strong> basement membrane. This could <strong>in</strong>dicate that <strong>the</strong> can<strong>in</strong>e<br />

kidney does produce uPAR <strong>and</strong> is different than human kidneys <strong>in</strong> healthy<br />

subjects. Many of <strong>the</strong> dogs <strong>in</strong> our study did have heartworm disease as evident<br />

by <strong>the</strong> identification of microfilaria <strong>in</strong> glomeruli. This may have resulted <strong>in</strong> mild<br />

116


<strong>in</strong>terstitial disease <strong>and</strong> upregulation of uPAR <strong>in</strong> <strong>the</strong>se dogs. More samples would<br />

have to be evaluated from known heartworm negative dogs to answer this<br />

question. Based on this study we can only say that <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> is present<br />

<strong>in</strong> <strong>the</strong> kidney of dogs. The role of uPAR <strong>and</strong> sites of production cannot be<br />

determ<strong>in</strong>ed without additional studies such as cell culture.<br />

Transitional epi<strong>the</strong>lium <strong>in</strong> <strong>the</strong> renal pelvis showed positive <strong>urok<strong>in</strong>ase</strong><br />

<strong>receptor</strong> sta<strong>in</strong><strong>in</strong>g along <strong>the</strong> surface <strong>and</strong> with<strong>in</strong> cytoplasm of lum<strong>in</strong>al cells <strong>in</strong> <strong>the</strong><br />

same regions as <strong>urok<strong>in</strong>ase</strong> sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> renal pelvis. This may <strong>in</strong>dicate that at<br />

least some of <strong>the</strong> <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> this tissue is bound to <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> at <strong>the</strong><br />

cell surface or that <strong>urok<strong>in</strong>ase</strong> is produced <strong>in</strong> this tissue.<br />

The pattern of <strong>urok<strong>in</strong>ase</strong> sta<strong>in</strong><strong>in</strong>g along <strong>the</strong> mucosal surfaces of <strong>the</strong><br />

ur<strong>in</strong>ary <strong>tract</strong> was consistent between section <strong>and</strong> site. The ureter sta<strong>in</strong>ed most<br />

<strong>in</strong>tensely along <strong>the</strong> entire region of transitional epi<strong>the</strong>lium available for<br />

exam<strong>in</strong>ation on <strong>the</strong> slide preparations. With<strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary bladder <strong>and</strong> <strong>the</strong> ureter<br />

<strong>the</strong> sta<strong>in</strong><strong>in</strong>g was more variable. These tissues sta<strong>in</strong>ed but only <strong>in</strong> some regions.<br />

The regions more likely to sta<strong>in</strong> were areas which appeared to be <strong>in</strong>vag<strong>in</strong>ated<br />

<strong>and</strong> <strong>the</strong> cytoplasm of <strong>the</strong> sta<strong>in</strong><strong>in</strong>g cells had <strong>in</strong>creased vacuolization. Areas of <strong>the</strong><br />

mucosa which had decreased sta<strong>in</strong><strong>in</strong>g often sta<strong>in</strong>ed along <strong>the</strong> lum<strong>in</strong>al surface<br />

edge <strong>and</strong> sometimes <strong>in</strong>to <strong>the</strong> cytoplasm of <strong>the</strong> first layer of cells. The significance<br />

of this f<strong>in</strong>d<strong>in</strong>g is unknown. The sta<strong>in</strong>ed regions may be areas of <strong>urok<strong>in</strong>ase</strong><br />

b<strong>in</strong>d<strong>in</strong>g to cells which are damaged or be<strong>in</strong>g renewed or <strong>the</strong>se regions may be<br />

<strong>in</strong>dicative of <strong>urok<strong>in</strong>ase</strong> produc<strong>in</strong>g cells with <strong>the</strong> transitional epi<strong>the</strong>lium. Bov<strong>in</strong>e<br />

uro<strong>the</strong>lium has been shown to produce <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> culture medium. 13<br />

117


Urok<strong>in</strong>ase <strong>receptor</strong> showed a similar pattern of sta<strong>in</strong><strong>in</strong>g to <strong>urok<strong>in</strong>ase</strong>. It<br />

differed <strong>in</strong> that its appearance was granular <strong>and</strong> <strong>the</strong> sta<strong>in</strong><strong>in</strong>g was limited to <strong>the</strong><br />

lum<strong>in</strong>al surface <strong>and</strong> <strong>the</strong> cytoplasm of <strong>the</strong> first one to two layers of cells. It did not<br />

extend to <strong>the</strong> <strong>in</strong>ner most layers of <strong>the</strong> mucosa. This pattern could <strong>in</strong>dicate that<br />

<strong>the</strong> <strong>urok<strong>in</strong>ase</strong> is be<strong>in</strong>g produced <strong>and</strong> secreted by <strong>the</strong> deeper cells layers <strong>and</strong><br />

<strong>the</strong>n bound to <strong>the</strong> lum<strong>in</strong>al layers. These layers are rapidly turned over <strong>in</strong> <strong>the</strong><br />

ur<strong>in</strong>ary <strong>tract</strong>.<br />

The variability of <strong>urok<strong>in</strong>ase</strong> expression with<strong>in</strong> <strong>the</strong> prostate tissue is<br />

<strong>in</strong>terest<strong>in</strong>g. I do not believe that this series of samples adequately describes <strong>the</strong><br />

presence of <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> this tissue type, as presence<br />

seems to depend greatly on stage of development with<strong>in</strong> <strong>the</strong> prostate gl<strong>and</strong>. It<br />

has been shown that <strong>urok<strong>in</strong>ase</strong> production <strong>in</strong> rats is <strong>in</strong>fluenced by hormones. 17-19<br />

In <strong>the</strong>se rats, immunohistochemical evaluation found <strong>urok<strong>in</strong>ase</strong> to be present <strong>in</strong><br />

scattered cells at <strong>the</strong> surface of <strong>the</strong> epi<strong>the</strong>lium fac<strong>in</strong>g <strong>the</strong> lumen of <strong>the</strong> gl<strong>and</strong>ular<br />

ducts. This sta<strong>in</strong><strong>in</strong>g <strong>in</strong>creased <strong>in</strong> epi<strong>the</strong>lium after castration suggest<strong>in</strong>g a role for<br />

<strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>volution of <strong>the</strong> ventral prostate of <strong>the</strong> rat as well as <strong>in</strong> <strong>the</strong><br />

normal turnover of prostate epi<strong>the</strong>lium. 19 Increased activity of plasm<strong>in</strong>ogen<br />

activators was noted with use of plasm<strong>in</strong>ogen activator assays <strong>in</strong> develop<strong>in</strong>g<br />

prostate tissue which decreased when development was complete. 17 This is<br />

consistent with <strong>the</strong> role of <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> o<strong>the</strong>r plasm<strong>in</strong>ogen activators <strong>in</strong> tissue<br />

remodel<strong>in</strong>g. This is supported by <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs of this study <strong>in</strong> which expression of<br />

<strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> appeared to be limited to only develop<strong>in</strong>g<br />

ductile tissue. More samples at set developmental stages would be required to<br />

adequately characterize <strong>the</strong> presence of <strong>urok<strong>in</strong>ase</strong> with<strong>in</strong> <strong>the</strong> prostate of <strong>the</strong> dog.<br />

118


Urok<strong>in</strong>ase <strong>receptor</strong> did not sta<strong>in</strong> <strong>the</strong> majority of prostate sample evaluated.<br />

Male 4 was <strong>in</strong>tact <strong>and</strong> sta<strong>in</strong><strong>in</strong>g was visualized <strong>in</strong> <strong>the</strong> epi<strong>the</strong>lial cells of <strong>the</strong><br />

develop<strong>in</strong>g ducts at both <strong>the</strong> apical surface <strong>and</strong> <strong>the</strong> cytoplasm. Sta<strong>in</strong><strong>in</strong>g was also<br />

noted <strong>in</strong> <strong>the</strong> more mature ducts at <strong>the</strong> apical borders of <strong>the</strong> epi<strong>the</strong>lial cells at <strong>the</strong><br />

same <strong>in</strong>tensity as <strong>the</strong> less mature ducts. Male 7 was neutered but <strong>the</strong> prostate<br />

appeared hypoplastic or atrophied suggest<strong>in</strong>g castration had been performed at<br />

a young age <strong>and</strong> maybe recently lead<strong>in</strong>g to <strong>in</strong>volution. Granular sta<strong>in</strong><strong>in</strong>g was<br />

noted around primitive or poorly developed ducts <strong>in</strong> <strong>the</strong> apical region. Sta<strong>in</strong><strong>in</strong>g<br />

<strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> <strong>the</strong> same regions leads to question of<br />

whe<strong>the</strong>r <strong>urok<strong>in</strong>ase</strong> is produced <strong>in</strong> <strong>the</strong>se tissues or bound to <strong>the</strong> cells. It is<br />

possible, given <strong>the</strong> abundance of <strong>urok<strong>in</strong>ase</strong> with<strong>in</strong> <strong>the</strong> o<strong>the</strong>r tissues of <strong>the</strong> ur<strong>in</strong>ary<br />

<strong>tract</strong>, that <strong>urok<strong>in</strong>ase</strong> is truly bound at this site <strong>and</strong> not produced. Answer<strong>in</strong>g this<br />

question would require cell culture <strong>and</strong> measurement of products <strong>in</strong> <strong>the</strong> culture<br />

medium. Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> may contribute to tissue remodel<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> prostate of <strong>the</strong> dog. The importance of uPA <strong>and</strong> uPAR <strong>in</strong> development of<br />

<strong>the</strong> gl<strong>and</strong> <strong>and</strong> <strong>in</strong>volution after castration has been shown <strong>in</strong> rat models of<br />

prostate development. 18, 20, 21 Urok<strong>in</strong>ase <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> are known to be<br />

important <strong>in</strong> tissue remodel<strong>in</strong>g due to <strong>the</strong> ability of <strong>the</strong> uPA-uPAR complex to<br />

degrade basement membranes <strong>in</strong> <strong>in</strong>flammation <strong>and</strong> neoplasia. 22<br />

Intense sta<strong>in</strong><strong>in</strong>g for uPA was seen <strong>in</strong> testicle sections. Sem<strong>in</strong>iferous<br />

tubules <strong>and</strong> <strong>in</strong>terstial cells all sta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> dog. This has been documented <strong>in</strong><br />

<strong>the</strong> rhesus monkey <strong>and</strong> man. 23, 24, 25 The role of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> testicle is<br />

believed to be <strong>in</strong> spermatogenesis <strong>and</strong> sperm motility. It has been suggested that<br />

<strong>in</strong>fertility <strong>in</strong> some men may be due decreased levels of <strong>urok<strong>in</strong>ase</strong> with<strong>in</strong> <strong>the</strong><br />

119


testicle. 25 The role of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> dog cannot be determ<strong>in</strong>ed by<br />

immunohistochemistry. Urok<strong>in</strong>ase <strong>receptor</strong> did not sta<strong>in</strong> <strong>in</strong> <strong>the</strong> sem<strong>in</strong>iferous<br />

tubules of <strong>the</strong> dog. Sta<strong>in</strong><strong>in</strong>g was very weak <strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong> <strong>in</strong>terstitial<br />

cells. Urok<strong>in</strong>ase may be produced <strong>in</strong> <strong>the</strong> testicle is produced <strong>the</strong>re <strong>and</strong> not<br />

bound. In vitro studies <strong>in</strong> cell culture would provide fur<strong>the</strong>r <strong>in</strong>formation on exactly<br />

which cell types produce <strong>urok<strong>in</strong>ase</strong>.<br />

The expectation that <strong>urok<strong>in</strong>ase</strong> would be present <strong>in</strong> <strong>the</strong> can<strong>in</strong>e ur<strong>in</strong>ary<br />

<strong>tract</strong> is extrapolated from evidence of its presence <strong>in</strong> people. Actual identification<br />

of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> can<strong>in</strong>e ur<strong>in</strong>ary <strong>tract</strong> has not been previously performed. Cell<br />

types which sta<strong>in</strong>ed positive for <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> <strong>the</strong> tissues<br />

from <strong>the</strong> dog are consistent with those described <strong>in</strong> both people, rats, monkeys<br />

<strong>and</strong> mice. This lends support to <strong>the</strong> results of <strong>the</strong> immunohistochemical sta<strong>in</strong><strong>in</strong>g.<br />

Currently <strong>the</strong>re are no specific antibodies for can<strong>in</strong>e <strong>urok<strong>in</strong>ase</strong>. Use of an<br />

antibody from ano<strong>the</strong>r species to identify uPA <strong>and</strong> uPAR poses problems when<br />

<strong>in</strong>terpret<strong>in</strong>g results. Use of antibodies which were successfully used <strong>in</strong> our<br />

immunoprecipitation <strong>and</strong> SDS PAGE/ Western Blot also helps to validate <strong>the</strong> use<br />

of <strong>the</strong>se antibodies <strong>in</strong> <strong>the</strong> can<strong>in</strong>e tissues <strong>and</strong> support <strong>the</strong> conclusions that uPA an<br />

uPAR are present <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of <strong>the</strong> healthy dog.<br />

Selection of an antibody for identification of <strong>urok<strong>in</strong>ase</strong> <strong>in</strong> <strong>the</strong> can<strong>in</strong>e ur<strong>in</strong>ary<br />

<strong>tract</strong> required consideration of any documentation of cross species reactivity of<br />

that antibody. Different antigens have greater or less degree of species<br />

specificity than o<strong>the</strong>rs. At least two <strong>in</strong>vestigations have used a mouse anti-human<br />

monoclonal antibody from American Diagnostica to successfully detect <strong>urok<strong>in</strong>ase</strong><br />

with<strong>in</strong> bov<strong>in</strong>e uro<strong>the</strong>lium <strong>and</strong> rat mammary tissue. 13, 26 A third <strong>in</strong>vestigation used<br />

120


a polyclonal goat antihuman uPA antibody to demonstrate uPA <strong>in</strong> bov<strong>in</strong>e<br />

endo<strong>the</strong>lial cells. 27 This cross species reactivity would suggest that at least some<br />

segment of <strong>the</strong> uPA prote<strong>in</strong> structure is reta<strong>in</strong>ed across some species <strong>and</strong> or<br />

results suggest this <strong>in</strong>cludes <strong>the</strong> dog.<br />

7.6 References<br />

1. Pierce Introduction to Immunohistochemistry.<br />

.<br />

2. Chemicon International Introduction to Antibodies.<br />

.<br />

3. Farmilo AJ, Stead, R. H., Atwood, K.N. Fixation. 3 ed. Carp<strong>in</strong>teria, CA:<br />

DAKO Corporation; 2001.<br />

4. Key M. Retrieval. 3 ed. Carp<strong>in</strong>teria, CA: DAKO Corporation; 2001.<br />

5. Boenish T. Background. 3 ed. Carp<strong>in</strong>teria, CA: DAKO Corporation; 2001.<br />

6. Boenish T. Sta<strong>in</strong><strong>in</strong>g Methods. 3 ed. Carp<strong>in</strong>teria, CA: DAKO Corporation;<br />

2001.<br />

7. Boenish T. Basic Enzymology. 3 ed. Carp<strong>in</strong>teria, CA: DAKO Corporation;<br />

2001.<br />

8. Boenish T. Controls. 3 ed. Carp<strong>in</strong>teria, CA: DAKO Corporation; 2001.<br />

9. Bequaj S, Shah A, M., Ryan J, M. Identification of cells responsible for<br />

<strong>urok<strong>in</strong>ase</strong>-type plasm<strong>in</strong>ogen activator syn<strong>the</strong>sis <strong>and</strong> secretion <strong>in</strong> human<br />

diploid kidney cell cultures. In Vitro Cell. Dev. Biol. 2004;40:102-107.<br />

10. Rondeau E, Ochi, S., et. al. Urok<strong>in</strong>ase syn<strong>the</strong>sis <strong>and</strong> b<strong>in</strong>d<strong>in</strong>g by<br />

glomerular epi<strong>the</strong>lial cells <strong>in</strong> culture. Kidney Int. 1989;36:593-600.<br />

11. Andrassy K, Buchholz L, Bleyl U, Ritz E, Seidel D. Topography of human<br />

<strong>urok<strong>in</strong>ase</strong> activity <strong>in</strong> renal tissue. Nephron. 1976;16(3):213-219.<br />

12. Andrassy K, Ritz E. Isolation <strong>and</strong> renal localization of <strong>urok<strong>in</strong>ase</strong>. Paper<br />

presented at: International Symposium on <strong>the</strong> Biochemical Aspects of <strong>the</strong><br />

Diagnostic Value of Ur<strong>in</strong>e, 1978; K<strong>and</strong>ersteg, Switzerl<strong>and</strong>.<br />

121


13. Deng FM, D<strong>in</strong>g M, Lavker RM, Sun TT. Uro<strong>the</strong>lial function reconsidered: a<br />

new role <strong>in</strong> ur<strong>in</strong>ary prote<strong>in</strong> secretion. Urology. Jun 2001;57(6 Suppl<br />

1):117.<br />

14. Xu Y, Hagege J, Mougenot B, Sraer JD, Ronne E, Rondeau E. Different<br />

expression of <strong>the</strong> plasm<strong>in</strong>ogen activation system <strong>in</strong> renal thrombotic<br />

microangiopathy <strong>and</strong> <strong>the</strong> normal human kidney. Kidney Int. Dec<br />

1996;50(6):2011-2019.<br />

15. Roelofs JJ, Rowshani AT, van den Berg JG, et al. Expression of <strong>urok<strong>in</strong>ase</strong><br />

plasm<strong>in</strong>ogen activator <strong>and</strong> its <strong>receptor</strong> dur<strong>in</strong>g acute renal allograft<br />

rejection. Kidney Int. Nov 2003;64(5):1845-1853.<br />

16. Tang W, Freiss H, di Mola FF, et al. Activation of <strong>the</strong> ser<strong>in</strong>e prote<strong>in</strong>ase<br />

system <strong>in</strong> chronic kidney rejection. Transplantation. 1998;65(12):1628-<br />

1634.<br />

17. Wilson MJ, S<strong>in</strong>ha AA, Powell JE, Estensen RD. Plasm<strong>in</strong>ogen activator<br />

activities <strong>in</strong> <strong>the</strong> develop<strong>in</strong>g rat prostate. Biol Reprod. 1988;38:723-731.<br />

18. Wilson MJ, Ditmanson JD, S<strong>in</strong>ha AA, Estensen RD. Plasm<strong>in</strong>ogen<br />

activator activities <strong>in</strong> <strong>the</strong> ventral <strong>and</strong> dorsolateral prostatic lobes of ag<strong>in</strong>g<br />

Fischer 344 rats. The Prostate. 1990;16:147-161.<br />

19. Andreasen PA, Kristensen P, Lund LR, Dano K. Urok<strong>in</strong>ase-type<br />

plasm<strong>in</strong>ogen activator is <strong>in</strong>creased <strong>in</strong> <strong>the</strong> <strong>in</strong>volut<strong>in</strong>g ventral prostate of<br />

castrated rats. Endocr<strong>in</strong>ology. 1990;126(5):2567-2575.<br />

20. Wilson MJ. Proteases <strong>in</strong> prostate development, function, <strong>and</strong> pathology.<br />

Microsc Res Tech. Mar 1 1995;30(4):305-318.<br />

21. Wilson MJ, Norris H, Woodson M, S<strong>in</strong>ha AA, Estensen RD. Effects of<br />

ag<strong>in</strong>g <strong>and</strong> castration on plasm<strong>in</strong>ogen activator <strong>and</strong> metalloprotease<br />

activities <strong>in</strong> <strong>the</strong> rat prostate complex. Cellular <strong>and</strong> Molecular Biology<br />

Research. 1995;41(6):603-612.<br />

22. Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The <strong>urok<strong>in</strong>ase</strong>-type<br />

plasm<strong>in</strong>ogen activator system <strong>in</strong> cancer metastasis; a review. Int J<br />

Cancer. 1997;72:1-22.<br />

23. Zhang T, Guo CX, Hu ZY, Liu YX. Localization of plasm<strong>in</strong>ogen activator<br />

<strong>and</strong> <strong>in</strong>hibitor, LH <strong>and</strong> <strong>and</strong>rogen <strong>receptor</strong>s <strong>and</strong> <strong>in</strong>hib<strong>in</strong> subunits <strong>in</strong> monkey<br />

epididymis. Mol Hum Reprod. Nov 1997;3(11):945-952.<br />

24. Zhang T, Zhou HM, Liu YX. Expression of plasm<strong>in</strong>ogen activator <strong>and</strong><br />

<strong>in</strong>hibitor, <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>and</strong> <strong>in</strong>hib<strong>in</strong> subunits <strong>in</strong> rhesus monkey testes.<br />

Mol Hum Reprod. Mar 1997;3(3):223-231.<br />

122


25. Huang X, Xia W, Xiong C, Xiao D, Shen J, Zhou J. Studies on <strong>the</strong><br />

relationship between <strong>urok<strong>in</strong>ase</strong> plasm<strong>in</strong>ogen activator (uPA) <strong>and</strong> human<br />

sperm motility. J Tongji Med Univ. 1997;17(4):213-217.<br />

26. Evans DM, Sloan-Stakleff, K.D. Maximum effect of <strong>urok<strong>in</strong>ase</strong> plasm<strong>in</strong>ogen<br />

activator <strong>in</strong>hibitors <strong>in</strong> <strong>the</strong> control of <strong>in</strong>vasion <strong>and</strong> metastasis of rat<br />

mammary cancer. Invasion Metastasis. 1998-99;18(5-6):252-260.<br />

27. Lee SW, Kahn, M.L., Dichek, D.A. Expression of an anchored <strong>urok<strong>in</strong>ase</strong> <strong>in</strong><br />

<strong>the</strong> apical endo<strong>the</strong>lial cell membrane. J Biol Chem. 1992;267(18):13020-<br />

13027.<br />

123


Chapter 8 Conclusions<br />

Identification of prote<strong>in</strong>s such as <strong>urok<strong>in</strong>ase</strong> <strong>and</strong> <strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> <strong>in</strong> a<br />

species without species specific antibodies provides numerous challenges. In<br />

veter<strong>in</strong>ary medic<strong>in</strong>e we must often rely on antibodies produced for human<br />

medical research <strong>and</strong> <strong>the</strong>refore our f<strong>in</strong>d<strong>in</strong>gs cannot always be conclusive <strong>and</strong> we<br />

are left stat<strong>in</strong>g that, as <strong>in</strong> this case, we have identified <strong>urok<strong>in</strong>ase</strong>-like <strong>and</strong><br />

<strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong>-like prote<strong>in</strong>s <strong>and</strong> activity <strong>in</strong> <strong>the</strong> samples tested.<br />

Uses of multiple methods of detection which support <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g of each<br />

test help validate <strong>the</strong> use of uPA <strong>and</strong> uPAR antibodies directed aga<strong>in</strong>st mouse<br />

<strong>and</strong> human prote<strong>in</strong>s for detection of <strong>the</strong> homologous prote<strong>in</strong> <strong>in</strong> dogs. SDS-<br />

PAGE/Western Blot <strong>and</strong> immunoprecipitation all demonstrated antibody b<strong>in</strong>d<strong>in</strong>g<br />

with uPA-like <strong>and</strong> uPAR-like prote<strong>in</strong> at <strong>the</strong> accepted molecular weight for <strong>the</strong>se<br />

prote<strong>in</strong>s. Immunohistochemistry showed positive sta<strong>in</strong><strong>in</strong>g <strong>in</strong> tissues of <strong>the</strong> ur<strong>in</strong>ary<br />

<strong>tract</strong> from <strong>the</strong> dog <strong>in</strong> cells consistent with descriptions from o<strong>the</strong>r mammals<br />

<strong>in</strong>clud<strong>in</strong>g people, rats, mice <strong>and</strong> monkeys. The ELISA assay also detected<br />

presence of a uPA-like prote<strong>in</strong> <strong>in</strong> concentrated ur<strong>in</strong>e samples. All of <strong>the</strong>se<br />

immunological techniques were run with <strong>the</strong> same mouse anti-mouse<br />

monoclonal antibody from Innovative Research.<br />

The fluorescence assay <strong>and</strong> ELISA assay are promis<strong>in</strong>g methods to<br />

evaluate concentration of uPA <strong>in</strong> ur<strong>in</strong>e samples. They require more time <strong>and</strong><br />

work to elim<strong>in</strong>ate variability <strong>and</strong> improve <strong>the</strong> results. Whe<strong>the</strong>r or not <strong>the</strong>y will<br />

provide <strong>in</strong>formation that may be useful <strong>in</strong> a cl<strong>in</strong>ical sett<strong>in</strong>g is not determ<strong>in</strong>ed s<strong>in</strong>ce<br />

recent literature has conflicted as to whe<strong>the</strong>r renal disease would result <strong>in</strong><br />

<strong>in</strong>creased or decreased release of uPA <strong>in</strong>to <strong>the</strong> ur<strong>in</strong>e. These assays may be very<br />

124


useful, however, <strong>in</strong> evaluat<strong>in</strong>g tissues <strong>in</strong> studies on wound heal<strong>in</strong>g <strong>and</strong> cancer<br />

growth <strong>and</strong> metastasis.<br />

This research has resulted <strong>in</strong> very strong evidence that <strong>urok<strong>in</strong>ase</strong> <strong>and</strong><br />

<strong>urok<strong>in</strong>ase</strong> <strong>receptor</strong> are present <strong>in</strong> <strong>the</strong> ur<strong>in</strong>ary <strong>tract</strong> of <strong>the</strong> healthy dog. The<br />

physiologic, pathophysiologic <strong>and</strong> cl<strong>in</strong>ical roles of <strong>the</strong>se prote<strong>in</strong>s are yet to be<br />

determ<strong>in</strong>ed.<br />

125


APPENDIX: RAW DATA<br />

Table 1 Cl<strong>in</strong>ical Parameters for establish<strong>in</strong>g health of dogs for ur<strong>in</strong>e collection<br />

Group N Case BUN Creat<strong>in</strong><strong>in</strong>e Phosphorus Ur<strong>in</strong>e Spec Grav PCV<br />

f 1 80735 12 1.019 44.3<br />

f 2 79737 47<br />

f 3 80810 9 1.037 33<br />

f 4 74708 20 1.2 4.5 1.049 50<br />

f 5 81588 15 0.7 4.5 45<br />

f 6 81020 25 1.015 43.8<br />

f 7 81038 8 0.8 3.2 50<br />

f 8 81833 20 0.7 4.9 1.038 40<br />

fs 1 62001 15 0.6 2.6 45.8<br />

fs 2 81144 9 0.8 4.5 1.027 36.5<br />

fs 3 81357 13 1 4.1 1.032 49<br />

fs 4 76045 17 0.9 3.9 45<br />

fs 5 81337 18 1.3 3.6 1.02 44.7<br />

fs 6 81375 16 0.9 3.5 1.044 44.6<br />

fs 7 81414 9 0.7 3.1 1.013 41.3<br />

fs 8 81441 17 0.9 7.9 36.4<br />

fs 9 81188 16 0.9 5.1 1.017 37.6<br />

fs 10 81496 22 0.7 5.1 1.027 49.6<br />

fs 11 76846 14 1 2.8 1.05 48.3<br />

fs 12 81517 11 0.8 2.7 1.048 34.6<br />

fs 13 81528 9 0.3 5 1.008 41.6<br />

m 1 81252 10 1.011 43.6<br />

m 2 67922 20 1.1 3.7 1.037 45<br />

m 3 80982 14 1.038 41<br />

m 4 81451 16 1.1 4.7 1.049 42<br />

m 5 81460 11 1 3.8 10.32 45<br />

m 6 81419 10 0.6 3.4 1.038 44<br />

m 7 81440 17 1.055 57<br />

m 8 81482 25 0.9 4.2 40<br />

m 9 54704 6 0.3 7.7 1.024 29<br />

m 10 81610 17 0.4 4.1 43<br />

m 11 81618 18 0.9 4.3 1.057 31<br />

m 12 81748 15 1 4.7 1.045 51<br />

m 13 81892 10 0.7 4.2 1.017 55<br />

m 14 81913 8 1.2 4.8 1.037 49<br />

m 15 81108 10 1.048 43<br />

m 16 81962 13 0.4 5.7 1.041 33<br />

mc 1 78717 17 1 4.1 1.01 46<br />

mc 2 72533 21 1 4.5 1.028 41<br />

mc 3 81360 16 0.7 3.1 1.025 44<br />

mc 4 81380 7 0.4 4 1.012 39<br />

mc 5 81356 22 1 4.3 1.035 41<br />

mc 6 78701 20 1.2 4.3 42<br />

mc 7 81445 14 1 2.6 48<br />

mc 8 78785 36 0.8 5.3 1.038 52<br />

mc 9 81494 9 0.9 4.5 1.028 46<br />

mc 10 81511 21 1.3 6.6 1.012 35<br />

126


mc 11 48505 15 0.5 2.7 1.041 45<br />

mc 12 81635 7 0.5 2.8 1.029 38<br />

mc 13 81688 11 0.9 3.8 1.043 45<br />

Key:<br />

Groups<br />

f = female <strong>in</strong>tact<br />

fs = female spayed<br />

m = male <strong>in</strong>tact<br />

mc = male castrated<br />

N = Dog number<br />

Case – Louisiana State University veter<strong>in</strong>ary Teach<strong>in</strong>g Hospital <strong>and</strong> Cl<strong>in</strong>ic patient<br />

number<br />

BUN – blood urea nitrogen mg/dl<br />

Creat<strong>in</strong><strong>in</strong>e – mg/dl<br />

Phosphorus – mg/dl<br />

Ur<strong>in</strong>e SG – Ur<strong>in</strong>e specific gravity<br />

PCV – Packed cell volume %<br />

Total prote<strong>in</strong> – g/dl<br />

Table 2 Fluorescence activity assay data<br />

Sample Pt # Creat Start<br />

Vol<br />

ml<br />

End<br />

Vol<br />

ul<br />

conc<br />

factor<br />

127<br />

Fluoro<br />

1<br />

Fluoro<br />

2<br />

Fluoro<br />

3<br />

uPA Conc<br />

Fluoro<br />

M#1 81252 57 50 450 111.1111 28 12 30 0.182055<br />

M#2 67922 234 12.9 400 32.25 18 0 11 0.075423<br />

M#3 80982 103 45 410 109.7561 0 0 39 0.101431<br />

M#4 81451 356 19 150 126.6667 13 10 0 0.059818<br />

M#5 81460 410 13.5 225 60 0 0 0 0<br />

M#6 81419 65 16.2 525 30.85714 0 0 0 0<br />

M#7 81440 87 2 150 13.33333 14 12 3 0.075432<br />

M#8 81482 89 48 350 137.1429 0 0 0 0<br />

M#9 54704 213 6.5 200 32.5 22 25 43 0.234071<br />

M#10 81610 150 4.5 150 30 0 0 0 0<br />

M#11 81618 435 13.5 175 77.14286 0 0 0 0<br />

M#12 81748 466 47 300 156.6667 1 0 0 0.002601<br />

M#13 81892 109 45 300 150 0 0 0 0<br />

M#14 81913 261 42 275 152.7273 25 35 49 0.283485<br />

M#15 81108 514 5.5 225 24.44444 0 0 0 0<br />

M#16 81962 127 11 160 68.75 0 0 0 0<br />

F#1 80735 123 52 450 115.5556 0 0 0 0<br />

F#2 79737 159 11 150 73.33333 0 40 43 0.215865<br />

F#3 80810 176 17 150 113.3333 5 0 0 0.013004<br />

F#4 74708 380 48 755 63.57616 0 12 15 0.070221<br />

F#6 81588 223 10.5 175 60 16 5 5 0.06762<br />

F#7 81020 95 30 275 109.0909 0 0 0 0<br />

F#8 81038 415 49 475 103.1579 0 0 0 0<br />

F#9 81833 393 50 450 111.1111 0 0 0 0<br />

M/N#1 78717 86 56 725 77.24138 0 2 0 0.005202<br />

M/N#2 72533 128 19 140 135.7143 1 0 0 0.002601


M/N#3 81360 166 41 250 164 41 31 16 0.228869<br />

M/N#4 81380 44 22 150 146.6667 37 33 10 0.208063<br />

M/N#5 81356 213 42 450 93.33333 20 17 2 0.101431<br />

M/N#6 78701 553 20 160 125 0 0 0 0<br />

M/N#7 81445 621 50.5 300 168.3333 122 142 135 1.035112<br />

M/N#8 78785 52 24 160 150 0 0 0 0<br />

M/N#9 81494 213 32.5 175 185.7143 8 12 6 0.06762<br />

M/N#10 81511 98 7.5 150 50 0 0 0 0<br />

M/N#11 48505 134 36 450 80 36 22 34 0.239272<br />

M/N#12 81635 27 29 275 105.4545 6 1 0 0.018205<br />

M/N#13 81688 49 50 550 90.90909 0 0 2 0.005202<br />

F/S#1 62001 192 13.5 175 77.14286 0 0 0 0<br />

F/S#3 81144 218 50 350 142.8571 0 0 0 0<br />

F/S#4 81357 152 21.5 275 78.18182 0 0 0 0<br />

F/S#5 76045 228 4.5 150 30 0 0 0 0<br />

F/S#6 81337 114 44 300 146.6667 0 5 6 0.028609<br />

F/S#7 81375 179 3.5 125 28 0 0 0 0<br />

F/S#8 81414 283 6.5 350 18.57143 0 0 0 0<br />

F/S#9 81441 173 45 450 100 58 74 93 0.585176<br />

F/S#10 81188 138 10.5 200 52.5 19 25 34 0.202861<br />

F/S#11 81496 90 14 150 93.33333 0 0 0 0<br />

F/S#12 76846 468 15.5 175 88.57143 5 6 11 0.057217<br />

F/S#13 81517 427 32.7 675 48.44444 19 47 39 0.273082<br />

F/S#14 81528 28 44 400 110 6 7 3 0.041613<br />

Key:<br />

Groups<br />

f = female <strong>in</strong>tact<br />

fs = female spayed<br />

m = male <strong>in</strong>tact<br />

mc = male castrated<br />

Sample = Dog number<br />

Pt # – Louisiana State University Veter<strong>in</strong>ary Teach<strong>in</strong>g Hospital <strong>and</strong> Cl<strong>in</strong>ic patient<br />

number<br />

Creat – Ur<strong>in</strong>e creat<strong>in</strong><strong>in</strong>e mg/dl<br />

Fluoro 1, 2 <strong>and</strong> 3 – Values of Fluorescence read<strong>in</strong>gs for each sample corrected<br />

for background<br />

uPA concentration fluoro – Concentrations of uPA <strong>in</strong> each samples as compared<br />

to st<strong>and</strong>ard dilutions of uPA <strong>and</strong> a global fit st<strong>and</strong>ard curve extrapolated from <strong>the</strong><br />

st<strong>and</strong>ard curves run with each plate. Values are <strong>in</strong> ng/ml<br />

128


Figure 1 Sample St<strong>and</strong>ard Curve for Fluorescence Data<br />

Table 3 ELISA assay data<br />

Cr Start End uPA<br />

ng/mg<br />

Grp N Case Sample mg/dl Vol ml Vol ul ng/ml volcorr Cr/ml ng/mg Cr/ul<br />

f 1 80735 1 123 52 450 32.693 0.28292019 0.02300164 23.0016417<br />

f 1 80735 2 123 52 450 . . . .<br />

f 2 79737 1 159 11 150 . . . .<br />

f 2 79737 2 159 11 150 . . . .<br />

f 3 80810 1 176 17 150 22.634 0.19971176 0.01134726 11.3472594<br />

f 3 80810 2 176 17 150 . . . .<br />

f 4 74708 1 380 48 755 19.4 0.30514583 0.00803015 8.03015351<br />

f 4 74708 2 380 48 755 15.089 0.2373374 0.00624572 6.24572094<br />

f 5 81588 1 223 10.5 175 8.622 0.1437 0.00644395 6.44394619<br />

f 5 81588 2 223 10.5 175 -3.233 -0.0538833 -0.0024163 -2.416293<br />

f 6 81020 1 95 30 275 35.926 0.32932167 0.03466544 34.6654386<br />

f 6 81020 2 95 30 275 . . . .<br />

f 7 81038 1 415 49 475 74.009 0.71743418 0.01728757 17.2875707<br />

f 7 81038 2 415 49 475 85.146 0.8253949 0.01988903 19.8890337<br />

f 8 81833 1 393 50 450 65.745 0.591705 0.01505611 15.0561069<br />

f 8 81833 2 393 50 450 68.62 0.61758 0.0157145 15.7145038<br />

fs 1 62001 1 192 13.5 175 35.926 0.46570741 0.02425559 24.2555941<br />

fs 1 62001 2 192 13.5 175 . . . .<br />

fs 2 81144 1 218 50 350 34.849 0.243943 0.01119005 11.1900459<br />

fs 2 81144 2 218 50 350 37.723 0.264061 0.01211289 12.1128899<br />

fs 3 81357 1 152 21.5 275 8.982 0.11488605 0.00755829 7.55829253<br />

fs 3 81357 2 152 21.5 275 12.215 0.15623837 0.01027884 10.2788403<br />

fs 4 76045 1 228 4.5 150 26.226 0.8742 0.03834211 38.3421053<br />

fs 4 76045 2 228 4.5 150 . . . .<br />

fs 5 81337 1 114 44 300 . . . .<br />

129


fs 5 81337 2 114 44 300 . . . .<br />

fs 6 81375 1 179 3.5 125 51.375 1.83482143 0.10250399 102.50399<br />

fs 6 81375 2 179 3.5 125 . . . .<br />

fs 7 81414 1 283 6.5 350 27.304 1.47021538 0.05195107 51.9510737<br />

fs 7 81414 2 283 6.5 350 34.13 1.83776923 0.06493884 64.9388421<br />

fs 8 81441 1 173 45 450 39.519 0.39519 0.02284335 22.8433526<br />

fs 8 81441 2 173 45 450 . . . .<br />

fs 9 81188 1 138 10.5 200 24.789 0.47217143 0.03421532 34.2153209<br />

fs 9 81188 2 138 10.5 200 48.86 0.93066667 0.06743961 67.4396135<br />

fs 10 81496 1 90 14 150 . . . .<br />

fs 10 81496 2 90 14 150 . . . .<br />

fs 11 76846 1 468 15.5 175 . . . .<br />

fs 11 76846 2 468 15.5 175 . . . .<br />

fs 12 81517 1 427 32.7 675 139.754 2.88483028 0.06756043 67.560428<br />

fs 12 81517 2 427 32.7 675 142.628 2.94415596 0.06894979 68.9497884<br />

fs 13 81528 1 28 44 400 69.697 0.63360909 0.22628896 226.288961<br />

fs 13 81528 2 28 44 400 65.027 0.59115455 0.21112662 211.126623<br />

m 1 81252 1 57 50 450 10.419 0.093771 0.01645105 16.4510526<br />

m 1 81252 2 57 50 450 20.837 0.187533 0.03290053 32.9005263<br />

m 2 67922 1 234 12.9 400 67.542 2.09432558 0.08950109 89.5010932<br />

m 2 67922 2 234 12.9 400 70.416 2.18344186 0.09330948 93.3094812<br />

m 3 80982 1 103 45 410 20.119 0.18330644 0.01779674 17.7967422<br />

m 3 80982 2 103 45 410 26.226 0.238948 0.02319883 23.198835<br />

m 4 81451 1 356 19 150 18.682 0.14748947 0.00414296 4.14296274<br />

m 4 81451 2 356 19 150 . . . .<br />

m 5 81460 1 410 13.5 225 20.837 0.34728333 0.00847033 8.4703252<br />

m 5 81460 2 410 13.5 225 26.586 0.4431 0.01080732 10.8073171<br />

m 6 81419 1 65 16.2 525 18.682 0.60543519 0.09314387 93.1438746<br />

m 6 81419 2 65 16.2 525 77.601 2.51484722 0.38689957 386.899573<br />

m 7 81440 1 87 2 150 26.226 1.96695 0.22608621 226.086207<br />

m 7 81440 2 87 2 150 . . . .<br />

m 8 81482 1 89 48 350 . . . .<br />

m 8 81482 2 89 48 350 . . . .<br />

m 9 54704 1 213 6.5 200 . . . .<br />

m 9 54704 2 213 6.5 200 . . . .<br />

m 10 81610 1 150 4.5 150 16.526 0.55086667 0.03672444 36.7244444<br />

m 10 81610 2 150 4.5 150 . . . .<br />

m 11 81618 1 435 13.5 175 68.979 0.89417222 0.02055568 20.5556833<br />

m 11 81618 2 435 13.5 175 . . . .<br />

m 12 81748 1 466 47 300 26.945 0.17198936 0.00369076 3.69075883<br />

m 12 81748 2 466 47 300 29.46 0.18804255 0.00403525 4.03524792<br />

m 13 81892 1 109 45 300 12.215 0.08143333 0.00747095 7.47094801<br />

m 13 81892 2 109 45 300 43.471 0.28980667 0.02658777 26.5877676<br />

m 14 81913 1 261 42 275 . . . .<br />

m 14 81913 2 261 42 275 . . . .<br />

m 15 81108 1 514 5.5 225 61.705 2.52429545 0.04911081 49.1108065<br />

m 15 81108 2 514 5.5 225 51.375 2.10170455 0.04088919 40.8891935<br />

m 16 81962 1 127 11 160 . . . .<br />

m 16 81962 2 127 11 160 . . . .<br />

mc 1 78717 1 86 56 725 14.011 0.18139241 0.02109214 21.0921408<br />

mc 1 78717 2 86 56 725 8.622 0.11162411 0.01297955 12.9795473<br />

130


mc 2 72533 1 128 19 140 1.437 0.01058842 0.00082722 0.82722039<br />

mc 2 72533 2 128 19 140 -2.874 -0.0211768 -0.0016544 -1.6544408<br />

mc 3 81360 1 166 41 250 59.279 0.36145732 0.02177454 21.7745372<br />

mc 3 81360 2 166 41 250 66.464 0.40526829 0.02441375 24.4137526<br />

mc 4 81380 1 44 22 150 . . . .<br />

mc 4 81380 2 44 22 150 . . . .<br />

mc 5 81356 1 213 42 450 . . . .<br />

mc 5 81356 2 213 42 450 . . . .<br />

mc 6 78701 1 553 20 160 93.409 0.747272 0.01351306 13.5130561<br />

mc 6 78701 2 553 20 160 . . . .<br />

mc 7 81445 1 621 50.5 300 66.823 0.39696832 0.0063924 6.39240446<br />

mc 7 81445 2 621 50.5 300 86.583 0.51435446 0.00828268 8.28268044<br />

mc 8 78785 1 52 24 160 . . . .<br />

mc 8 78785 2 52 24 160 . . . .<br />

mc 9 81494 1 213 32.5 175 . . . .<br />

mc 9 81494 2 213 32.5 175 . . . .<br />

mc 10 81511 1 98 7.5 150 36.645 0.7329 0.07478571 74.7857143<br />

mc 10 81511 2 98 7.5 150 . . . .<br />

mc 11 48505 1 134 36 450 54.608 0.6826 0.0509403 50.9402985<br />

mc 11 48505 2 134 36 450 63.949 0.7993625 0.05965392 59.6539179<br />

mc 12 81635 1 27 29 275 10.419 0.09880086 0.03659291 36.5929119<br />

mc 12 81635 2 27 29 275 10.778 0.10220517 0.03785377 37.8537676<br />

mc 13 81688 1 49 50 550 38.441 0.422851 0.08629612 86.2961224<br />

mc 13 81688 2 49 50 550 28.741 0.316151 0.06452061 64.5206122<br />

Key:<br />

Groups<br />

f = female <strong>in</strong>tact<br />

fs = female spayed<br />

m = male <strong>in</strong>tact<br />

mc = male castrated<br />

N = Dog number<br />

Case – Louisiana State University veter<strong>in</strong>ary Teach<strong>in</strong>g Hospital <strong>and</strong> Cl<strong>in</strong>ic patient<br />

number<br />

Sample – denotes duplicate wells for samples, 1 or 2<br />

Cr mg/dl – Creat<strong>in</strong><strong>in</strong>e value for each ur<strong>in</strong>e sample<br />

Start Vol ml – Initial volume <strong>in</strong> milliliters of ur<strong>in</strong>e collected prior to filtration<br />

End Vol ul – F<strong>in</strong>al volume of ur<strong>in</strong>e <strong>in</strong> microliters after filtration.<br />

uPA ng/ml – Concentration of uPA <strong>in</strong> each well <strong>in</strong> ng/ml<br />

volcorr – concentration factor for each ur<strong>in</strong>e sample based on<br />

start volume µl / end volume µl<br />

ng/mg Cr/ml – (concentration of uPA <strong>in</strong> each sample / creat<strong>in</strong><strong>in</strong>e mg/dl)<br />

corrected volume of ur<strong>in</strong>e<br />

131


Absorbance<br />

3.000<br />

2.500<br />

2.000<br />

1.500<br />

1.000<br />

0.500<br />

0.000<br />

std curve #1<br />

0 10 31 63 125 250 500 1000<br />

Concentration (ng/ml)<br />

Figure 2 St<strong>and</strong>ard Curve for ELISA assay<br />

Table 4 Immunohistochemistry results for uPA <strong>and</strong> uPAR <strong>in</strong> Kidney Sections<br />

Sample Urok<strong>in</strong>ase Urok<strong>in</strong>ase Receptor<br />

Male #1<br />

Sta<strong>in</strong><strong>in</strong>g <strong>in</strong> all tubular Sta<strong>in</strong><strong>in</strong>g <strong>in</strong> proximal <strong>and</strong><br />

epi<strong>the</strong>lial cells, proximal medullary tubules along<br />

HWD<br />

smooth muscle <strong>in</strong> basement membrane,<br />

arteries, occasional along basilar edge of<br />

plasma cell<br />

tubular epi<strong>the</strong>lial cells,<br />

macrophages<br />

Male #2 Good sta<strong>in</strong><strong>in</strong>g <strong>in</strong> all Granular sta<strong>in</strong><strong>in</strong>g along<br />

tubular epi<strong>the</strong>lium, slight <strong>the</strong> basement membrane,<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> glomeruli, <strong>in</strong>creased <strong>in</strong> medullary<br />

sectional sta<strong>in</strong><strong>in</strong>g <strong>in</strong> tubules. Intense <strong>in</strong> LOH<br />

transitional epi<strong>the</strong>lium <strong>and</strong> some collect<strong>in</strong>g<br />

ducts. Sta<strong>in</strong><strong>in</strong>g<br />

throughout transitional<br />

epi<strong>the</strong>lium on surface<br />

<strong>and</strong> <strong>in</strong> cytoplasm<br />

Male #3 Good sta<strong>in</strong><strong>in</strong>g <strong>in</strong> tubular Slight sta<strong>in</strong><strong>in</strong>g on surface<br />

epi<strong>the</strong>lial cells, cortical of transitional epi<strong>the</strong>lium.<br />

<strong>and</strong> medullary. Positive Light, granular sta<strong>in</strong><strong>in</strong>g<br />

sta<strong>in</strong><strong>in</strong>g along transitional along <strong>the</strong> basement<br />

epi<strong>the</strong>lium. Some membrane of all tubules.<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> glomeruli. Small amt sta<strong>in</strong><strong>in</strong>g on<br />

apical membrane of <strong>the</strong><br />

ureter. Glomeruli<br />

negative<br />

Male #4 Positive sta<strong>in</strong><strong>in</strong>g on Surface sta<strong>in</strong><strong>in</strong>g on<br />

132<br />

std curve #1


tubular epi<strong>the</strong>lial cells.<br />

Diffuse pale sta<strong>in</strong><strong>in</strong>g of<br />

<strong>the</strong> glomeruli. Fa<strong>in</strong>t<br />

sta<strong>in</strong><strong>in</strong>g on <strong>the</strong> surface of<br />

<strong>the</strong> transitional epi<strong>the</strong>lium<br />

Male #5 Diffuse cytoplasmic<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> tubular<br />

cells. Glomeruli negative.<br />

Positive sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

plasma cells<br />

Male #6 Diffuse sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

tubules. Medullary ray<br />

tubules sta<strong>in</strong><strong>in</strong>g more<br />

<strong>in</strong>tently than proximal<br />

convoluted tubules.<br />

Transitional epi<strong>the</strong>lium<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> sections along<br />

<strong>the</strong> surface.<br />

Male #7 Intense sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

medullary <strong>and</strong> cortical<br />

tubules. More <strong>in</strong>tense <strong>in</strong><br />

medullary. Good<br />

variability <strong>in</strong> sta<strong>in</strong><strong>in</strong>g of<br />

<strong>the</strong> transitional<br />

epi<strong>the</strong>lium. Slight sta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> glomeruli<br />

Female #1 Good sta<strong>in</strong><strong>in</strong>g of all<br />

tubular epi<strong>the</strong>lial cells. A<br />

few medullary ray tubules<br />

sta<strong>in</strong><strong>in</strong>g brighter than<br />

proximal tubules.<br />

Transitional epi<strong>the</strong>lium<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> alternat<strong>in</strong>g<br />

regions.<br />

Female #2<br />

Female #3 Transitional sta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>consistently. Maybe<br />

positive <strong>in</strong> recesses of<br />

133<br />

transitional epi<strong>the</strong>lial<br />

membrane. Granular<br />

sta<strong>in</strong><strong>in</strong>g along <strong>the</strong><br />

basement membrane of<br />

<strong>the</strong> medullary tubules<br />

<strong>and</strong> proximal tubules.<br />

Some sta<strong>in</strong><strong>in</strong>g n apical<br />

membrane of <strong>the</strong><br />

proximal tubules<br />

Fa<strong>in</strong>t sta<strong>in</strong><strong>in</strong>g along<br />

basement membranes <strong>in</strong><br />

<strong>the</strong> tubules, some on<br />

apical membrane as well.<br />

Fa<strong>in</strong>t cytoplasmic<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> proximal<br />

tubules<br />

Granular basement<br />

membrane sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

proximal <strong>and</strong> medullary<br />

tubules.<br />

Very slight sta<strong>in</strong><strong>in</strong>g of<br />

basement membranes of<br />

cortical tubules. Nice<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> medullary<br />

tubules. Negative<br />

glomeruli. Sta<strong>in</strong><strong>in</strong>g of<br />

transitional epi<strong>the</strong>lium on<br />

surface <strong>and</strong> with<strong>in</strong><br />

cytoplasm of cells<br />

Fa<strong>in</strong>t granular sta<strong>in</strong><strong>in</strong>g<br />

along basement<br />

membrane. Most<br />

prom<strong>in</strong>ent <strong>in</strong> medullar<br />

tubules <strong>and</strong> loops of<br />

henle <strong>and</strong> collect<strong>in</strong>g<br />

ducts. Transitional<br />

epi<strong>the</strong>lium showed<br />

sta<strong>in</strong><strong>in</strong>g along <strong>the</strong><br />

surface.<br />

Very fa<strong>in</strong>t granular<br />

sta<strong>in</strong><strong>in</strong>g along tubular<br />

basement membrane.


pelvis <strong>and</strong> negative <strong>in</strong> <strong>the</strong><br />

crest. Diffuse proximal<br />

<strong>and</strong> medullary epi<strong>the</strong>lium.<br />

Fa<strong>in</strong>t glomerular sta<strong>in</strong><strong>in</strong>g.<br />

Diffuse <strong>in</strong>terstitial sta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> medulla<br />

Female #4 Good sta<strong>in</strong><strong>in</strong>g <strong>in</strong> tubular<br />

epi<strong>the</strong>lial cells. Collect<strong>in</strong>g<br />

ducts sta<strong>in</strong><strong>in</strong>g better than<br />

loop of henle. Glomeruli<br />

negative.<br />

Key:<br />

Males 1,2,3,4 <strong>and</strong> 5 – <strong>in</strong>tact males<br />

Males 6 <strong>and</strong> 7 – castrated males<br />

Females – <strong>in</strong>tact females<br />

134<br />

Membrane associated<br />

surface sta<strong>in</strong><strong>in</strong>g on<br />

transitional epi<strong>the</strong>lium<br />

Granular sta<strong>in</strong><strong>in</strong>g along<br />

<strong>the</strong> basement membrane<br />

of tubular cells.<br />

Table 5 Immunohistochemistry Results for uPA <strong>and</strong> uPAR <strong>in</strong> Ureter Sections<br />

Sample Urok<strong>in</strong>ase Urok<strong>in</strong>ase Receptor<br />

Male #1 Uniform positive sta<strong>in</strong><strong>in</strong>g Small amount of granular<br />

of transitional epi<strong>the</strong>lial sta<strong>in</strong><strong>in</strong>g on <strong>the</strong> surface of<br />

cells on <strong>the</strong> surface <strong>and</strong> <strong>the</strong> transitional cells <strong>and</strong><br />

<strong>in</strong> <strong>the</strong> cytoplasm to <strong>the</strong> <strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong><br />

basal cell layers. cells with<strong>in</strong> <strong>the</strong> lum<strong>in</strong>al<br />

Inflammatory cells region. Inflammatory cells<br />

Male #2<br />

sta<strong>in</strong>ed positive<br />

sta<strong>in</strong>ed positive<br />

Male #3 Uniform positive sta<strong>in</strong><strong>in</strong>g Mucosa not present on<br />

of transitional epi<strong>the</strong>lial<br />

cells on <strong>the</strong> surface <strong>and</strong><br />

<strong>in</strong> <strong>the</strong> cytoplasm to <strong>the</strong><br />

basal cell layers.<br />

Inflammatory cells<br />

sta<strong>in</strong>ed positive<br />

sample<br />

Male #4 Uniform positive sta<strong>in</strong><strong>in</strong>g Nice gra<strong>in</strong>y sta<strong>in</strong><strong>in</strong>g all<br />

of transitional epi<strong>the</strong>lial along <strong>the</strong> surface of <strong>the</strong><br />

cells on <strong>the</strong> surface <strong>and</strong> transitional epi<strong>the</strong>lium<br />

<strong>in</strong> <strong>the</strong> cytoplasm to <strong>the</strong> <strong>and</strong> <strong>in</strong>to <strong>the</strong> cytoplasm of<br />

basal cell layers. <strong>the</strong> first 2 cell layers<br />

Male #5 Uniform positive sta<strong>in</strong><strong>in</strong>g Very slight granular<br />

of transitional epi<strong>the</strong>lial sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> cytoplasm<br />

cells on <strong>the</strong> surface <strong>and</strong> of <strong>the</strong> superficial cell<br />

<strong>in</strong> <strong>the</strong> cytoplasm to <strong>the</strong> layer <strong>in</strong> <strong>the</strong> transitional<br />

basal cell layers. epi<strong>the</strong>lium. Resident<br />

Inflammatory cells <strong>in</strong>flammatory cells<br />

sta<strong>in</strong>ed positive<br />

sta<strong>in</strong>ed positive.<br />

Male #6 Uniform positive sta<strong>in</strong><strong>in</strong>g Small amount of granular


of transitional epi<strong>the</strong>lial<br />

cells on <strong>the</strong> surface <strong>and</strong><br />

<strong>in</strong> <strong>the</strong> cytoplasm to <strong>the</strong><br />

basal cell layers.<br />

Male #7 Uniform positive sta<strong>in</strong><strong>in</strong>g<br />

of transitional epi<strong>the</strong>lial<br />

cells on <strong>the</strong> surface <strong>and</strong><br />

<strong>in</strong> <strong>the</strong> cytoplasm to <strong>the</strong><br />

basal cell layers.<br />

Female #1<br />

Female #2<br />

Female #3<br />

Female #4 Uniform positive sta<strong>in</strong><strong>in</strong>g<br />

of transitional epi<strong>the</strong>lial<br />

cells on <strong>the</strong> surface <strong>and</strong><br />

<strong>in</strong> <strong>the</strong> cytoplasm to <strong>the</strong><br />

basal cell layers.<br />

Key:<br />

Males 1,2,3,4 <strong>and</strong> 5 – <strong>in</strong>tact males<br />

Males 6 <strong>and</strong> 7 – castrated males<br />

Females – <strong>in</strong>tact females<br />

135<br />

sta<strong>in</strong><strong>in</strong>g on <strong>the</strong> surface of<br />

<strong>the</strong> transitional cells <strong>and</strong><br />

<strong>in</strong> <strong>the</strong> cytoplasm of <strong>the</strong><br />

cells with<strong>in</strong> <strong>the</strong> lum<strong>in</strong>al<br />

region. Inflammatory cells<br />

sta<strong>in</strong>ed positive<br />

Very slight granular<br />

sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> cytoplasm<br />

of <strong>the</strong> superficial cell<br />

layer <strong>in</strong> <strong>the</strong> transitional<br />

epi<strong>the</strong>lium. Resident<br />

<strong>in</strong>flammatory cells<br />

sta<strong>in</strong>ed positive.<br />

Very slight granular<br />

sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> cytoplasm<br />

of <strong>the</strong> superficial cell<br />

layer <strong>in</strong> <strong>the</strong> transitional<br />

epi<strong>the</strong>lium.<br />

Table 6 Immunohistochemistry Results for uPA <strong>and</strong> uPAR <strong>in</strong> Ur<strong>in</strong>ary Bladder<br />

Sample Urok<strong>in</strong>ase Urok<strong>in</strong>ase Receptor<br />

Male #1 Weak sta<strong>in</strong><strong>in</strong>g on <strong>the</strong> Very weak cytoplasmic<br />

surface of transitional sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>in</strong>vag<strong>in</strong>ations<br />

epi<strong>the</strong>lium. Resident of transitional epi<strong>the</strong>lium.<br />

<strong>in</strong>flammatory cells <strong>and</strong> Granular sta<strong>in</strong><strong>in</strong>g on<br />

muscle sta<strong>in</strong>ed positive. surface of transitional<br />

Vascular endo<strong>the</strong>lium epi<strong>the</strong>lium. Inflammatory<br />

sta<strong>in</strong>ed weakly positive cells sta<strong>in</strong>ed positive<br />

Male #2<br />

Transitional epi<strong>the</strong>lium<br />

sta<strong>in</strong>ed <strong>in</strong>tensely along<br />

No mucosa on sample<br />

Cystitis<br />

<strong>the</strong> superficial surface<br />

with cytoplasm sta<strong>in</strong><strong>in</strong>g of<br />

deeper cells.<br />

Inflammatory cells<br />

sta<strong>in</strong>ed positive.<br />

Male #3<br />

Good sta<strong>in</strong><strong>in</strong>g along Some sta<strong>in</strong><strong>in</strong>g on <strong>the</strong><br />

sections of <strong>the</strong><br />

apical surface of<br />

transitional epi<strong>the</strong>lium. transitional epi<strong>the</strong>lium.<br />

Sta<strong>in</strong><strong>in</strong>g is throughout all Some sta<strong>in</strong><strong>in</strong>g <strong>in</strong>


cells of <strong>the</strong> epi<strong>the</strong>lium.<br />

Sta<strong>in</strong><strong>in</strong>g is variable <strong>in</strong><br />

sections<br />

Male #4 Good sta<strong>in</strong><strong>in</strong>g along<br />

sections of <strong>the</strong><br />

transitional epi<strong>the</strong>lium.<br />

Vacuolated cytoplasm <strong>in</strong><br />

<strong>in</strong>vag<strong>in</strong>ated regions<br />

tended to sta<strong>in</strong><br />

throughout <strong>the</strong> cell<br />

layers. Surface sta<strong>in</strong><strong>in</strong>g<br />

was positive on<br />

rema<strong>in</strong><strong>in</strong>g transitional<br />

epi<strong>the</strong>lium.<br />

Male #5 Basal layer of transitional<br />

epi<strong>the</strong>lium sta<strong>in</strong>ed<br />

positive. The overly<strong>in</strong>g<br />

mucosa is miss<strong>in</strong>g from<br />

<strong>the</strong> sample. Smooth<br />

muscle is sta<strong>in</strong><strong>in</strong>g well<br />

136<br />

cytoplasm through outer<br />

layer of transitional<br />

epi<strong>the</strong>lium<br />

Granular sta<strong>in</strong><strong>in</strong>g on <strong>the</strong><br />

surface <strong>and</strong> cytoplasmic<br />

sta<strong>in</strong><strong>in</strong>g for 1 to 2 cell<br />

layers with<strong>in</strong> <strong>the</strong><br />

transitional epi<strong>the</strong>lium.<br />

No mucosa to evaluate<br />

Male #6 No mucosa to evaluate Granular sta<strong>in</strong><strong>in</strong>g on <strong>the</strong><br />

surface <strong>and</strong> cytoplasmic<br />

sta<strong>in</strong><strong>in</strong>g for 1 to 2 cell<br />

layers with<strong>in</strong> <strong>the</strong><br />

transitional epi<strong>the</strong>lium.<br />

Male #7 No mucosa to evaluate No mucosa to evaluate<br />

Female #1 Good sta<strong>in</strong><strong>in</strong>g along<br />

bladder mucosa aga<strong>in</strong> <strong>in</strong><br />

variable sections.<br />

Sta<strong>in</strong><strong>in</strong>g is apical <strong>and</strong><br />

cytoplasm sta<strong>in</strong>s better <strong>in</strong><br />

<strong>in</strong>vag<strong>in</strong>ations where cell<br />

cytoplasm is vacuolated.<br />

Granular sta<strong>in</strong><strong>in</strong>g on <strong>the</strong><br />

surface of <strong>the</strong> transitional<br />

epi<strong>the</strong>lium.<br />

Female #2 No mucosa to evaluate No mucosa to evaluate<br />

Female #3 Good sta<strong>in</strong><strong>in</strong>g along<br />

bladder mucosa <strong>in</strong><br />

variable sections.<br />

Sta<strong>in</strong><strong>in</strong>g is apical <strong>and</strong><br />

cytoplasm sta<strong>in</strong>s better <strong>in</strong><br />

<strong>in</strong>vag<strong>in</strong>ations where cell<br />

cytoplasm is vacuolated.<br />

Occasional <strong>in</strong>flammatory<br />

Female #4<br />

Mild <strong>in</strong>flammation<br />

cell sta<strong>in</strong><strong>in</strong>g positive<br />

Transitional epi<strong>the</strong>lium<br />

consistently sta<strong>in</strong>ed well<br />

on <strong>the</strong> surface <strong>and</strong> with<strong>in</strong><br />

<strong>the</strong> cytoplasm.<br />

Granular sta<strong>in</strong><strong>in</strong>g on <strong>the</strong><br />

surface of <strong>the</strong> transitional<br />

epi<strong>the</strong>lium. Granularity<br />

noted around vacuole or<br />

cell membranes at <strong>the</strong><br />

surface of <strong>the</strong> transitional<br />

epi<strong>the</strong>lium<br />

No mucosa to evaluate


Key:<br />

Males 1,2,3,4 <strong>and</strong> 5 – <strong>in</strong>tact males<br />

Males 6 <strong>and</strong> 7 – castrated males<br />

Females – <strong>in</strong>tact females<br />

Occasional regions<br />

without sta<strong>in</strong><strong>in</strong>g. Positive<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>in</strong>flammatory<br />

cells, smooth muscle <strong>and</strong><br />

vascular endo<strong>the</strong>lium.<br />

Table 7 Immunohistochemistry Results for uPA <strong>and</strong> uPAR <strong>in</strong> Urethra<br />

Sample Urok<strong>in</strong>ase Urok<strong>in</strong>ase Receptor<br />

Male #1<br />

Positive sta<strong>in</strong><strong>in</strong>g on <strong>the</strong> Concentration of granular<br />

surface of <strong>the</strong> transitional sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> superficial<br />

Prostatic urethra epi<strong>the</strong>lium, better <strong>in</strong> surface <strong>and</strong> cytoplasm of<br />

crypts <strong>and</strong> <strong>in</strong>vag<strong>in</strong>ations. cells of <strong>the</strong> transitional<br />

Prostatic epi<strong>the</strong>lial cells<br />

near <strong>the</strong> ureter sta<strong>in</strong> well.<br />

epi<strong>the</strong>lium.<br />

Male #2 Poor sample, mucosa Poor sample, mucosa<br />

sloughed<br />

sloughed<br />

Male #3 Very <strong>in</strong>tense cytoplasmic<br />

sta<strong>in</strong><strong>in</strong>g along sections of<br />

<strong>the</strong> transitional epi<strong>the</strong>lium<br />

to sections with no<br />

sta<strong>in</strong><strong>in</strong>g except for along<br />

<strong>the</strong> lum<strong>in</strong>al surface of <strong>the</strong><br />

cells.<br />

Male #4 Very <strong>in</strong>tense cytoplasmic Concentration of granular<br />

sta<strong>in</strong><strong>in</strong>g along sections of sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> superficial<br />

<strong>the</strong> transitional epi<strong>the</strong>lium cells of <strong>the</strong> transitional<br />

to sections with no<br />

sta<strong>in</strong><strong>in</strong>g except for along<br />

<strong>the</strong> lum<strong>in</strong>al surface of <strong>the</strong><br />

cells. Positive sta<strong>in</strong><strong>in</strong>g of<br />

<strong>in</strong>flammatory cells,<br />

vascular endo<strong>the</strong>lial cells<br />

<strong>and</strong> some fibroblasts<br />

epi<strong>the</strong>lium.<br />

Male #5 Diffuse sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> Intense granular sta<strong>in</strong><strong>in</strong>g<br />

transitional epi<strong>the</strong>lium <strong>in</strong> <strong>the</strong> superficial cells of<br />

from <strong>the</strong> surface<br />

<strong>the</strong> transitional<br />

throughout <strong>the</strong> cytoplasm epi<strong>the</strong>lium, extend<strong>in</strong>g <strong>in</strong>to<br />

of <strong>the</strong> entire layer. <strong>the</strong> cytoplasm of <strong>the</strong><br />

lum<strong>in</strong>al cell layers.<br />

Male #6 Diffuse light sta<strong>in</strong><strong>in</strong>g of Slight granular sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> transitional epi<strong>the</strong>lium <strong>the</strong> superficial cells of <strong>the</strong><br />

from <strong>the</strong> surface<br />

transitional epi<strong>the</strong>lium,<br />

137


throughout <strong>the</strong> cytoplasm<br />

of <strong>the</strong> entire layer.<br />

Male #7 Very <strong>in</strong>tense cytoplasmic<br />

sta<strong>in</strong><strong>in</strong>g along sections of<br />

<strong>the</strong> transitional epi<strong>the</strong>lium<br />

to one section with no<br />

sta<strong>in</strong><strong>in</strong>g except for along<br />

<strong>the</strong> lum<strong>in</strong>al surface of <strong>the</strong><br />

cells.<br />

Female #1 Muscle <strong>and</strong> endo<strong>the</strong>lial<br />

cells sta<strong>in</strong>ed well, no<br />

lumen <strong>in</strong> <strong>the</strong> tissue<br />

sample<br />

Female #2 Good sta<strong>in</strong><strong>in</strong>g of <strong>the</strong><br />

transitional epi<strong>the</strong>lium on<br />

surface <strong>and</strong> with<strong>in</strong> <strong>the</strong><br />

cytoplasm. Most regions<br />

are sta<strong>in</strong>ed with<br />

occasional areas<br />

unsta<strong>in</strong>ed through <strong>the</strong><br />

cytoplasm. Smoot<br />

muscle, skeletal muscle,<br />

fibroblasts <strong>and</strong> vascular<br />

endo<strong>the</strong>lial cells are<br />

sta<strong>in</strong><strong>in</strong>g.<br />

138<br />

extend<strong>in</strong>g <strong>in</strong>to <strong>the</strong><br />

cytoplasm of <strong>the</strong> lum<strong>in</strong>al<br />

cell layers. Some<br />

<strong>in</strong>flammatory cells<br />

sta<strong>in</strong><strong>in</strong>g positive<br />

Moderate granular<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> superficial<br />

cells of <strong>the</strong> prostatic<br />

urethral transitional<br />

epi<strong>the</strong>lium, extend<strong>in</strong>g <strong>in</strong>to<br />

<strong>the</strong> cytoplasm of <strong>the</strong><br />

lum<strong>in</strong>al cell layers.<br />

Inflammatory cells<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong>tensely<br />

positive. Penile urethra<br />

showed granular sta<strong>in</strong><strong>in</strong>g<br />

along <strong>the</strong> surface of <strong>the</strong><br />

transitional epi<strong>the</strong>lium but<br />

not with<strong>in</strong> <strong>the</strong> cytoplasm<br />

Concentration of granular<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> superficial<br />

surface <strong>and</strong> cytoplasm of<br />

cells of <strong>the</strong> transitional<br />

epi<strong>the</strong>lium.<br />

Female #3 No lumen <strong>in</strong> section No lumen <strong>in</strong> section<br />

Female #4 Surface <strong>and</strong> cytoplasmic<br />

sta<strong>in</strong><strong>in</strong>g along sections of<br />

<strong>the</strong> transitional epi<strong>the</strong>lium<br />

to one section with no<br />

sta<strong>in</strong><strong>in</strong>g except for along<br />

<strong>the</strong> lum<strong>in</strong>al surface of <strong>the</strong><br />

cells<br />

Key:<br />

Males 1,2,3,4 <strong>and</strong> 5 – <strong>in</strong>tact males<br />

Males 6 <strong>and</strong> 7 – castrated males


Females – <strong>in</strong>tact females<br />

Table 8 Immunohistochemistry Results for uPA <strong>and</strong> uPAR <strong>in</strong> Prostate<br />

Sample Urok<strong>in</strong>ase Urok<strong>in</strong>ase Receptor<br />

Male #1<br />

Variable <strong>and</strong> light No sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> gl<strong>and</strong>ular gl<strong>and</strong>ular epi<strong>the</strong>lium.<br />

Normal, mature<br />

epi<strong>the</strong>lium, most of <strong>the</strong> Slight sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

gl<strong>and</strong>ular tissue is not ductular epi<strong>the</strong>lium which<br />

sta<strong>in</strong><strong>in</strong>g. Light to<br />

may be transitional<br />

<strong>in</strong>termediate sta<strong>in</strong><strong>in</strong>g of epi<strong>the</strong>lium of <strong>the</strong> prostatic<br />

<strong>the</strong> muscle. Ducts are not<br />

sta<strong>in</strong><strong>in</strong>g<br />

urethra.<br />

Male #2<br />

Gl<strong>and</strong>ular cells are Gl<strong>and</strong>ular cells are<br />

negative.<br />

negative. Positive<br />

Mature, hyperplastic<br />

sta<strong>in</strong><strong>in</strong>g of <strong>in</strong>flammatory<br />

cells.<br />

Male #3<br />

Mature, hyperplastic,<br />

poor tissue fixation<br />

Inflammatory cells<br />

sta<strong>in</strong><strong>in</strong>g well.<br />

Male #4<br />

Not much ac<strong>in</strong>ar<br />

Not much ac<strong>in</strong>ar<br />

development. Very development. Granular<br />

Juvenile<br />

positive sta<strong>in</strong><strong>in</strong>g <strong>in</strong> sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> epi<strong>the</strong>lial<br />

develop<strong>in</strong>g ducts. cells of <strong>the</strong> develop<strong>in</strong>g<br />

Sta<strong>in</strong><strong>in</strong>g still present but ducts <strong>and</strong> more<br />

slightly less <strong>in</strong>tense <strong>in</strong> differentiated ducts,<br />

more differentiated ducts. apical <strong>and</strong> cytoplasmic.<br />

Positive sta<strong>in</strong><strong>in</strong>g of Intensity of <strong>the</strong> sta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>flammatory cells, appeared equal. Prostatic<br />

smooth muscle cells <strong>and</strong> uro<strong>the</strong>lium showed<br />

vascular endo<strong>the</strong>lium. granular sta<strong>in</strong><strong>in</strong>g along<br />

Prostatic uro<strong>the</strong>lium <strong>the</strong> surface with some<br />

sta<strong>in</strong>ed <strong>in</strong> sections, more cytoplasmic sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

prom<strong>in</strong>ent <strong>in</strong> <strong>the</strong> folds. <strong>the</strong> superficial cells.<br />

Inflammatory cells<br />

sta<strong>in</strong>ed brightly<br />

Male #5<br />

Prostatic ducts are<br />

sta<strong>in</strong><strong>in</strong>g well. Very weak<br />

Mature, cystic<br />

to no sta<strong>in</strong><strong>in</strong>g of <strong>the</strong><br />

hyperplasia <strong>and</strong> atrophy gl<strong>and</strong>ular epi<strong>the</strong>lium.<br />

Increased sta<strong>in</strong><strong>in</strong>g of <strong>the</strong><br />

cystic gl<strong>and</strong>ular<br />

epi<strong>the</strong>lium. Positive<br />

sta<strong>in</strong><strong>in</strong>g of skeletal<br />

muscle.<br />

Male #6<br />

No sta<strong>in</strong><strong>in</strong>g of gl<strong>and</strong>s or No sta<strong>in</strong><strong>in</strong>g on gl<strong>and</strong>s or<br />

ducts.<br />

ducts. Inflammatory cells<br />

139


Mature are sta<strong>in</strong><strong>in</strong>g positive<br />

Male #7<br />

Positive sta<strong>in</strong><strong>in</strong>g of Small amount of positive<br />

prostatic epi<strong>the</strong>lial tissue sta<strong>in</strong><strong>in</strong>g around primitive<br />

Hypoplastic or atrophied <strong>and</strong> ducts, concentrated or poorly developed<br />

<strong>in</strong> <strong>the</strong> apical cytoplasm. ducts. Small amount of<br />

Positive sta<strong>in</strong><strong>in</strong>g of sta<strong>in</strong><strong>in</strong>g on prostatic<br />

<strong>in</strong>flammatory cells, uro<strong>the</strong>lium. Inflammatory<br />

vascular endo<strong>the</strong>lial cells<br />

<strong>and</strong> transitional<br />

epi<strong>the</strong>lium (<strong>in</strong> varied<br />

sections)<br />

cells sta<strong>in</strong>ed positive.<br />

Key:<br />

Males 1,2,3,4 <strong>and</strong> 5 – <strong>in</strong>tact males<br />

Males 6 <strong>and</strong> 7 – castrated males<br />

Table 9 Immunohistochemistry Results for uPA <strong>and</strong> uPAR <strong>in</strong> Testicle<br />

Sample Urok<strong>in</strong>ase Urok<strong>in</strong>ase Receptor<br />

Male #1 Good sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

Small amount of granular<br />

sem<strong>in</strong>iferous tubules <strong>and</strong> cytoplasmic sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

<strong>in</strong>terstitial cells<br />

some <strong>in</strong>terstitial cells <strong>and</strong><br />

fa<strong>in</strong>t sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

con<strong>tract</strong>ile myoid cells.<br />

Sem<strong>in</strong>iferous tubules<br />

negative<br />

Male #2 Good sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

Small amount of granular<br />

sem<strong>in</strong>iferous tubules <strong>and</strong> cytoplasmic sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

<strong>in</strong>terstitial cells. Fa<strong>in</strong>t some <strong>in</strong>terstitial cells <strong>and</strong><br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> vessel walls. fa<strong>in</strong>t sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

con<strong>tract</strong>ile myoid cells.<br />

Sem<strong>in</strong>iferous tubules<br />

negative<br />

Male #3 Good sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

Small amount of granular<br />

sem<strong>in</strong>iferous tubules <strong>and</strong> cytoplasmic sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

<strong>in</strong>terstitial cells. Sta<strong>in</strong><strong>in</strong>g some <strong>in</strong>terstitial cells <strong>and</strong><br />

not as <strong>in</strong>tense<br />

fa<strong>in</strong>t sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

con<strong>tract</strong>ile myoid cells.<br />

Sem<strong>in</strong>iferous tubules<br />

negative<br />

Male #4 Good sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

Questionable sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

sem<strong>in</strong>iferous tubules <strong>and</strong><br />

<strong>in</strong>terstitial cells. Fa<strong>in</strong>t<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> vessel walls.<br />

Tunic present <strong>and</strong> not<br />

sta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>terstitial cells.<br />

Male #5 Intense sta<strong>in</strong><strong>in</strong>g <strong>in</strong> Very mild sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

<strong>in</strong>terstitial cells (leydig <strong>in</strong>terstitial cells.<br />

140


cells). Sta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

sem<strong>in</strong>iferous tubules,<br />

maybe Sertoli cells.<br />

141<br />

Sem<strong>in</strong>iferous tubules<br />

negative.


VITA<br />

Tr<strong>in</strong>a Racquel Bailey was born <strong>in</strong> Corner Brook, Newfoundl<strong>and</strong>, Canada,<br />

<strong>in</strong> 1971. She graduated from Elwood Regional High School <strong>in</strong> 1989. She<br />

attended Dalhousie University <strong>in</strong> Halifax, Nova Scotia, Canada, from 1989 to<br />

1994. She obta<strong>in</strong>ed her Bachelor of Science with an Advanced Major <strong>in</strong> Biology<br />

<strong>in</strong> 1994.<br />

In 1996 Tr<strong>in</strong>a was accepted to The University of Pr<strong>in</strong>ce Edward Isl<strong>and</strong>,<br />

Atlantic Veter<strong>in</strong>ary College, <strong>in</strong> Charlottetown, Pr<strong>in</strong>ce Edward Isl<strong>and</strong>, Canada.<br />

Tr<strong>in</strong>a graduated with a Doctor of Veter<strong>in</strong>ary Medic<strong>in</strong>e Degree <strong>in</strong> 2000.<br />

Tr<strong>in</strong>a worked for a year <strong>in</strong> St. John’s, Newfoundl<strong>and</strong>, Canada, <strong>in</strong> general<br />

practice <strong>and</strong> <strong>the</strong>n returned <strong>in</strong> 2001 to <strong>the</strong> Atlantic Veter<strong>in</strong>ary College for a rotat<strong>in</strong>g<br />

<strong>in</strong>ternship <strong>in</strong> Companion Animal Medic<strong>in</strong>e <strong>and</strong> Surgery. In February of 2002 her<br />

son, Ewan, was born. In January of 2003, Tr<strong>in</strong>a began a residency <strong>in</strong> Small<br />

Animal Surgery at Louisiana State University School of Veter<strong>in</strong>ary Medic<strong>in</strong>e. She<br />

will be awarded <strong>the</strong> Degree of Master of Science <strong>in</strong> December 2005 as well as<br />

complet<strong>in</strong>g her residency.<br />

Tr<strong>in</strong>a, her husb<strong>and</strong> John MacKenzie, <strong>and</strong> <strong>the</strong>ir son Ewan are return<strong>in</strong>g to<br />

Charlottetown, Pr<strong>in</strong>ce Edward Isl<strong>and</strong>. Tr<strong>in</strong>a will beg<strong>in</strong> a tenure track faculty<br />

position as an assistant professor of Companion Animal Surgery at <strong>the</strong> Atlantic<br />

Veter<strong>in</strong>ary College <strong>in</strong> January, 2006.<br />

142

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!