01.10.2013 Views

Kompletní sborník ke stažení (60 MB) - Fakulta chemická - Vysoké ...

Kompletní sborník ke stažení (60 MB) - Fakulta chemická - Vysoké ...

Kompletní sborník ke stažení (60 MB) - Fakulta chemická - Vysoké ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Vysoké</strong> učení technické v Brně<br />

<strong>Fakulta</strong> <strong>chemická</strong><br />

Sborník příspěvků<br />

soutěže Studentské tvůrčí činnosti „STUDENT 2006”<br />

a doktorské soutěže „O cenu děkana 2005 a 2006”<br />

Brno 2006


© <strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>, 2006<br />

ISBN: 80-214-3321-3<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

strana 2


OBSAH:<br />

Předmluva...........................................................................................................................................................7<br />

PRÁCE STUDENTŮ MAGISTERSKÝCH STUDIJNÍCH PROGRAMŮ<br />

SOUTĚŽE STUDENTSKÉ TVŮRČÍ ČINNOSTI<br />

SEKCE STČ 2006<br />

VLIV PROVOZNÍCH PARAMETRŮ FLOTACE NA SEPARAČNÍ ÚČINNOST ÚPRAVNY VODY MOSTIŠTĚ<br />

Jana Burianová..................................................................................................................................................9<br />

SYNTHESIS, CHARACTERIZATION AND ECOTOXICOLOGICAL ASSESSMENT OF NEW FLEXIBLE<br />

POLYURETHANE FOAMS WITH BIODEGRADABLE FILLERS<br />

Jan David..........................................................................................................................................................15<br />

NOVÝ SORPČNÍ GEL NA BÁZI SPHERON-OXINU PRO UŽITÍ V TECHNICE DGT<br />

Michaela Gregušová.........................................................................................................................................20<br />

MOLECULAR DYNAMICS SIMULATION OF POLYMER CHAIN IN THE VICINITY OF<br />

NANOPARTICLE<br />

Kateřina Hynštová............................................................................................................................................24<br />

APPLIKÁCIA NOVEJ EURÓPSKEJ NORNY NA STANOVENIE Cr(VI) V CEMENTE<br />

Tomáš Ifka.........................................................................................................................................................28<br />

DISSOLUTION OF HUMIC SUBSTANCES IN UREA IN LIGHT OF SUPRAMOLECULAR THEORY<br />

Jiří Kislinger.....................................................................................................................................................34<br />

WETTABILITY OF PLASMA POLYMERIZED VINYLTRIETHOXYSILANE FILM<br />

Soňa Lichovníková............................................................................................................................................39<br />

URČOVANIE DISTRIBÚCIE DOMÉN V SPIN CROSSOVER SYSTÉMOCH POMOCOU ANALYTIC-<br />

KEJ FUNKCIE<br />

Ján Pavlik.........................................................................................................................................................44<br />

A STUDY OF INTERFACIAL ASPECTS OF EPOXY-BASED HYBRID COMPOSITES REINFORCED<br />

WITH BASALT, CARBON AND CERAMIC FIBRES BY DMA ANALYZIS<br />

Lukáš Recman...................................................................................................................................................48<br />

ŠTÚDIUM ANTIOXIDANTOV A ICH ÚČINKOV PRI STABILIZÁCII POLYMÉROV<br />

Ján Rimarčík.....................................................................................................................................................54<br />

HOŘLAVOST A MECHANICKÉ VLASNOTSTI NANOKOMPOZITŮ EVA/Mg(OH) 2<br />

Jiří Sadílek........................................................................................................................................................59<br />

STUDIUM MECHANISMU KOORDINAČNÍ POLYMERACE HEXA-1,5-DIENU KATALYZOVANÉ<br />

FENOXYIMINOVÝM KOMPLEXEM TITANU A METHYLALUMINOXANEM<br />

Jan Ševčík.........................................................................................................................................................64<br />

MOLEKULOVÁ DYNAMIKA C-GLYKOZYLNITROMETÁNOV<br />

Stanislava Šoralová..........................................................................................................................................67<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

strana 3


STUDIUM DEGRADACE TISKU NA TENKÝCH POLYMERNÍCH VRSTVÁCH<br />

Jiří Stančík.......................................................................................................................................................71<br />

ZMĚNY OBSAHU AMINOKYSELIN V BRA<strong>MB</strong>ORÁCH V ZÁVISLOSTI NA HNOJENÍ DUSÍKEM<br />

Petra Valová.....................................................................................................................................................77<br />

PRECIPITATION OF DL – VALINE FROM AQUEOUS ISOPROPANOL SOLUTIONS<br />

Miroslav Variny................................................................................................................................................81<br />

VÝVOJ MIKROŠTRUKTÚRY SODNO-BORITO-KREMIČITÝCH SKIEL S PRÍDAVKOM TIO 2<br />

Oto Vojtechovský..............................................................................................................................................86<br />

VÝZNAM VOĽNÝCH RADIKÁLOV PRI POŠKODENÍ PAPIERA (EPR ŠTÚDIUM)<br />

Zuzana Vrecková..............................................................................................................................................91<br />

PRÁCE STUDENTŮ DOKTORSKÝCH STUDIJNÍCH PROGRAMŮ<br />

SOUTĚŽE O CENU DĚKANA 2005<br />

SEKCE DSP 2005<br />

CHITOSAN - A NEW TYPE OF POLYMER COAGULANT<br />

Marcela Borovičková.......................................................................................................................................97<br />

PREPARATION OF SELF-CLEANING PHOTOCATALYTICALLY ACTIVE SURFACES<br />

Jana Chomoucká............................................................................................................................................101<br />

RHEOLOGICAL, VISCOUS, AND SURFACE AACTIVE BEHAVIOR OF POLYSACCHARIDES IN<br />

AQUEOUS SOLUTIONS<br />

Martin Chytil..................................................................................................................................................106<br />

STUDY OF PHYSICOCHEMICAL AND ANTIOXIDATIVE PROPERTIES OF YEAST ME<strong>MB</strong>RANE<br />

COMPONENTS<br />

Michaela Drabkova........................................................................................................................................112<br />

DETERMINATION OF YEAST VIABILITY BY MEANS OF FLUORESCENCE MICROSCOPY AND<br />

IMAGE ANALYSIS<br />

Petra Jeřábková..............................................................................................................................................115<br />

FLOW BEHAVIOUR OF DILUTED SUSPENSIONS IN CARBOXYMETHYLCELLULOSE-WATER<br />

SOLUTION<br />

Michal Klimovič.............................................................................................................................................119<br />

USE OF VARIOUS POLYACRYLAMIDE DIFFUSIVE GELS FOR ASSESSMENT OF METAL AVAIL-<br />

ABILITY IN SOILS<br />

Vladěna Kovaříková.......................................................................................................................................123<br />

SPECTROPHOTOMETRIC STUDY OF SOME BIOLOGICALBUFFERS SOLUTIONS<br />

Miroslava Krčmová........................................................................................................................................128<br />

PHYSIOLOGICAL CHARACTERISATION OF XYLOSE-UTILISING SACCHAROMYCES CEREVI-<br />

SIAE STRAINS<br />

Jitka Kubešová................................................................................................................................................133<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

strana 4


THE EFFECT OF STERILIZATION HEATING ON NUTRITION QUALITY OF PROCESSED CHEESE<br />

Blanka Loupancová........................................................................................................................................137<br />

INVESTIGATION OF ENVIRONMENTAL AND VARIETAL INFLUENCES ON DISTRIBUTION OF<br />

STARCH GRANULES IN BARLEY KERNELS BY GFFF AND LASER PARTICLE SIZE ANALYSIS<br />

Karel Mazanec................................................................................................................................................142<br />

FIBER ASPECT RATIO INFLUENCE ON FRACTURE IMPACT TOUGNESS OF POLYMETHYL<br />

METHACRYLATE/POLYVINYL ALCOHOL COMPOSITES<br />

Vladimír Pavelka............................................................................................................................................147<br />

DIAGNOSTIC OF THE DIAPHRAGM DISCHARGE IN WATER SOLUTIONS BY OPTICAL<br />

EMISSION SPECTROSCOPY<br />

Jana Procházková..........................................................................................................................................151<br />

SENSORIC PROPERTIES OF SOLUBLE PHTHALOCYANINES<br />

Kateřina Severová..........................................................................................................................................155<br />

INFLUENCE OF TRIETHYLALUMINIUM COCATALYST ON INITIAL KINETIC OF PROPENE<br />

POLYMERIZATION<br />

Miroslav Skoumal..........................................................................................................................................159<br />

PHYSICO-CHEMICAL PROPERTIES OF PLASMA-POLYMERIZED TETRAVINYLSILANE<br />

Jan Studýnka...................................................................................................................................................164<br />

PULSED 1 H-NMR OF IMPACT COPOLYMERS OF PROPYLENE (ICP)<br />

Ladislav Vilč...................................................................................................................................................169<br />

SPECIATION OF FIVE SELENIUM COMPOUNDS BY HPLC-HEATING-UV-HG-AFS<br />

Eva Vitoulová.................................................................................................................................................175<br />

EPITAXIAL GROWTH OF Ni AND Co ON (111) METALLIC SUBSTRATES<br />

Martin Zelený.................................................................................................................................................182<br />

ACETYLCHOLINESTERASE INHIBITOR FROM NOSTOC SLIZ. KOL.<br />

Petr Zelík........................................................................................................................................................187<br />

HUMIC ACIDS IDENTIFICATION BY PY-GCMS TECHNIQUE<br />

Pavla Žbánková..............................................................................................................................................191<br />

PRÁCE STUDENTŮ DOKTORSKÝCH STUDIJNÍCH PROGRAMŮ<br />

SOUTĚŽE O CENU DĚKANA 2006<br />

SEKCE DSP 2006<br />

PRODUCTION OF SELECTED SECONDARY METABOLITES IN TRANSFORMED BACTERIAL<br />

CELLS<br />

Jana Hrdličková.............................................................................................................................................197<br />

THE SIMPLE METHOD FOR THE RECOGNITION OF REDUCING AND NONREDUCING NEUTRAL<br />

CARBOHYDRATES BY MALDI-TOF MS<br />

Markéta Laštovičková....................................................................................................................................201<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

strana 5


MINIATURE METALLIC DEVICE FOR COLLECTION OF HYDRIDE FORMING ELEMENTS<br />

Pavel Krejčí....................................................................................................................................................206<br />

INFLUENCE OF POLYUNSATURATED FATTY ACIDS INTAKE ON LIPID METABOLISM IN<br />

PATIENTS WITH HYPERLIPIDAEMIA<br />

Simona Macuchová........................................................................................................................................210<br />

HYDROPHOBIZED SODIUM HYALURONATE IN AQUEOUS SOLUTION - A FLUORESCENCE<br />

STUDY<br />

Filip Mravec...................................................................................................................................................213<br />

CHARACTERIZATION AND DEGRADATION BEHAVIOUR OF TRIBLOCK COPOLYMER<br />

Ludmila Nová.................................................................................................................................................218<br />

STUDY OF THE COPPER(II) IONS NON–STATIONARY DIFFUSION IN HUMIC GEL<br />

Petr Sedláček..................................................................................................................................................223<br />

LIVING RADICAL POLYMERIZATIONS INITIATED WITH SILSESQUIOXANES<br />

Ondřej Smrtka................................................................................................................................................228<br />

MEASUREMENT OF THERMOPHYSICAL PROPERTIES OF PMMA BY PULSE TRANSIENT METHOD<br />

Pavla Štefková................................................................................................................................................233<br />

THE ANALYSIS OF GAMMA LINOLENIC ACID IN EVENING PRIMROSE OIL<br />

Hana Štoudková.............................................................................................................................................238<br />

IMPROVED FLUORIMETRIC DETERMINATION OF Al, Ga AND In BY MICELLE ENHANCED<br />

8-HYDROXYQUINOLINE -5-SULPHONIC ACID COMPLEX<br />

Šimon Vojta.....................................................................................................................................................243<br />

PHYSICAL-CHEMICAL ASPECTS OF PAINT FILMS DEGRADATION<br />

Lucie Wolfová.................................................................................................................................................249<br />

USING LOW-MOLECULAR MASS PI MARKERS IN PROTEOMIC STAINING-FREE METHOD<br />

FOR STUDY OF POSTTRANSLATIONALLY MODIFIED PROTEINS<br />

Karel Mazanec, Karel Šlais and Josef Chmelík............................................................................................254<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

strana 6


PŘEDMLUVA<br />

Tak jako v minulých letech, i letos se v měsíci říjnu na půdě Fakulty chemické VUT uskutečnila<br />

soutěž posluchačů bakalářských a magisterských studijních programů Student 2006, jakož<br />

i soutěž posluchačů doktorských studijních programů. V doktorských studijních programech<br />

proběhla tato soutěž již po deváté, soutěž Student 2006 se konala po šesté. Jako člen hodnotících<br />

komisí soutěže doktorandů v posledních letech mohu konstatovat významný kvalitativní růst<br />

její úrovně nejen po stránce odborné, ale také po stránce kvality prezentace příspěvků v anglickém<br />

jazyku. Rovněž hodnotící komise soutěže Student FCH 2006 konstatovala velmi dobrou<br />

úroveň prezentovaných prací. Předkládaný soubor příspěvků, zaslaných do obou soutěží,<br />

doplněný o některé příspěvky ze soutěže v minulém roce, dokumentuje tento trend. Stává se<br />

již tradicí, že se do studentské soutěže přihlašují také posluchači mimobrněnských chemických<br />

fakult, především Fakulty chemické a potravinářské technologie STU v Bratislavě. V tomto<br />

roce se však poprvé představil také zástupce UTB ve Zlíně. I v příštích ročnících bychom v této<br />

tradici chtěli pokračovat. Předpokládá se, že nejlepší účastníci soutěže z FCH VUT budou<br />

naši fakultu reprezentovat na podobných soutěžích v Bratislavě a Zlíně. Právě ve výsledcích<br />

vzájemné konfrontace s posluchači jiných fakult spatřuje vedení Fakulty chemické důležitý<br />

prvek, směřující <strong>ke</strong> zvýšení kvality pedagogického a vědecko-výzkumného procesu. Proto<br />

bude akce podobného typu i v budoucnosti všestranně podporovat.<br />

prof. Ing. Ladislav Omelka, DrSc.<br />

proděkan pro tvůrčí činnost<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

strana 7


Příspěvky soutěže<br />

Studentské tvůrčí činnosti<br />

„STUDENT 2006”<br />

(Sekce STČ 2006)


VLIV PROVOZNÍCH PARAMETRŮ FLOTACE NA SEPARAČNÍ<br />

ÚČINNOST ÚPRAVNY VODY MOSTIŠTĚ<br />

Jana Burianová, 5.ročník<br />

vedoucí práce: doc. Ing. Petr Dolejš, CSc.<br />

konzultant práce: Ing. Pavel Dobiáš<br />

<strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>,<br />

Ústav chemie a technologie ochrany životního prostředí, Purkyňova 118, 612 00 Brno,<br />

e-mail: xcburianova@fch.vutbr.cz<br />

ÚVOD<br />

Práce se zabývá vlivem intenzity míchání v agregačním reaktoru flotace a délky a<br />

frekvence intervalu shrabování kalu na kvalitu upravené vody vycházející ze zařízení flotace<br />

rozpuštěným vzduchem (DAF - dissolved air flotation) na úpravně vody Mostiště. Tyto dvě<br />

studované proměnné mohou mít vliv jak na kvalitu upravené vody a také na ekonomiku<br />

provozu flotační jednotky a je proto nezbytné zjistit jejich optimální nastavení v provozu.<br />

TEORETICKÁ ČÁST<br />

Flotace rozpuštěným vzduchem je založena na snížení specifické hmotnosti vloček vzniklé<br />

suspenze vytvořením agregátů mezi vločkami a vzduchovými mikrobublinkami. Pak je<br />

hustota těchto agregátů nižší než vody. Agregáty tedy překonávají gravitaci a stoupají ve vodě<br />

směrem k hladině.<br />

Vlastní reaktor DAF se skládá ze dvou částí, ve kterých probíhají dva základní procesy<br />

(obr. 1). Do první části, zvané kontaktní zóna, vstupuje voda obsahující vyvločkované<br />

nečistoty. Do této vody je zaváděn proud kapaliny nasycené pod tla<strong>ke</strong>m rozpuštěným<br />

vzduchem a z něj vzniká velké množství vzduchových mikrobublin. Mikrobublinky vznikají<br />

při vstupu nasycené recirkulační vody ve speciálně upravených tryskách. Poté dochází<br />

k agregaci vloček a těchto mikrobublin. Kontaktní zóna tedy zajišťuje kontakt a připoutání<br />

mikrobublin a vloček [1]. Náhlým snížením tlaku dochází k uvolnění vzduchových<br />

mikrobublin a jejich proud je míchán s hlavním proudem vody. Vyloučené mikrobublinky<br />

vzduchu způsobují „mléčný zákal“ vody, a proto se této vodě také říká „bílá voda“ („white<br />

water“). Vzduchem nasycená recirkulační voda je vytvářena v saturátoru, do kterého proudí<br />

část již upravené vody. Obvykle to bývá 6 – 12 % upravovaného proudu vody. Voda je<br />

sycena pod tla<strong>ke</strong>m 0,5 – 0,6 MPa.<br />

Suspenze agregátů vločka-mikrobublina vytvořená v kontaktní zóně pak vstupuje do druhé<br />

části reaktoru, zvané separační zóna. Zde dochází k dalšímu růstu agregátů vločka-bublina a<br />

jejich pohybu k hladině. Tam tvoří souvislou vrstvu kalu, která je z hladiny shrabována<br />

mechanickým zařízením a odchází do kanálu pro odtah kalu. Upravená voda je odváděna ze<br />

dna separační zóny nádrže na další stupeň úpravny vody - filtraci.<br />

ÚPRAVNA VODY MOSTIŠTĚ<br />

Úpravna vody (ÚV) Mostiště má kapacitu 220 l/s a je z ní zásobován skupinový vodovod<br />

pro oblast Velké Meziříčí, Velká Bíteš, Olší nad Oslavou a Měřín, přivaděč do Třebíče a<br />

přivaděč do Žďáru nad Sázavou. Zásobováno je cca 75 000 obyvatel.<br />

Z vodní nádrže Mostiště je surová voda přiváděna na provzdušňovací kaskádu. Do odtoku<br />

z kaskády je dávkován koagulant. Na ÚV Mostiště se používá jako koagulant 41% roztok<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 9


Fe2(SO4)3. Dále následuje hydraulický mísič. Odtud vzniklá suspenze pokračuje do DAF<br />

zařízení s celkovou kapacitou 110 l/s. DAF zařízení je tvořeno dvěma flotačními jednotkami.<br />

Souběžně s DAF zařízením mohou ještě fungovat dvě jednotky původních čiřičů v případě<br />

potřeby vyšší produkce upravené vody. Voda je dále vedena na pískové filtry. Desinfekce<br />

vody je prováděna pomocí Cl2 a ClO2 a pH je upraveno vápennou vodou.<br />

Flotace rozpuštěným vzduchem je na ÚV Mostiště novou technologií. Zařízení bylo<br />

uvedeno do provozu 28.11.2005. Důvodem zařazení nové technologie do procesu úpravy<br />

vody bylo zhoršení kvality surové vody vlivem havarijního stavu zdroje surové vody<br />

(přehrady nádrže Mostiště) a následných stavebních prací a s tím spojené nevyhovující jakosti<br />

surové vody. Stalo se prvním procesem flotace v zemích střední a východní Evropy [2,3].<br />

Obr. 1. Schematické znázornění úpravy vody flotací rozpuštěným vzduchem<br />

EXPERIMENTÁLNÍ ČÁST<br />

Jako ukazatele kvality vody byla brána velikostní distribuce částic měřená pomocí<br />

analyzátoru velikostní distribuce částic (Water Particle Counter WPC-21), hmotnostní<br />

koncentrace Fe 3+ stanovovaná rhodanidem a absorbance při vlnové délce 387 nm měřené na<br />

spektrometru SPEKOL 11. Dále byly zaznamenávány hodnoty pH, absorbance při vlnové<br />

délce 254 nm a teplota vody měřené provozními měřícími přístroji ÚV Mostiště.<br />

Analyzátor částic: voda z výtoku flotace je přiváděna do analyzátoru z odtoku upravené<br />

vody na konci flotační jednotky. Analyzátor počítá částice o velikosti 2, 5, 7, 10, 15, 25, 50 a<br />

100 μm. Neustále je měřen počet částic o velikosti 2 μm, druhá hodnota udává postupně<br />

v určených intervalech počet částic ostatních velikostí.<br />

Použité metody stanovení a materiály<br />

Stanovení hmotnostní koncentrace Fe 3+ : připraví se zásobní roztok (NH4)2Fe(SO4)2.6H2O<br />

(0,7022 g do 1000 ml) okyselený 2 ml koncentrované H2SO4. Z něho se připraví pracovní<br />

roztok I (0,01 mg/ml) a roztok II (0,001 mg/ml). Z nich se připraví série roztoků pro sestrojení<br />

kalibrační křivky. Pracovní roztok se pipetuje do 25 ml odměrné baňky, přidá se 0,5 ml HCl<br />

(1:1) a 0,5 ml 3% H2O2. Po 5 min. se vzorek doplní asi na 15 – 20 ml, přidá se 2,5 ml KSCN a<br />

doplní se po rysku. Stejně se připraví roztoky neznámých vzorků. Absorbance se měří při<br />

vlnové délce 480 nm.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 10


Obr.2. Analyzátor částic<br />

VÝSLEDKY MĚŘENÍ A DISKUSE<br />

Změna intenzity míchání<br />

Výsledky jsou uvedeny pouze pro nádrž 2, ve které byla intenzita míchání měněna. Nádrž<br />

1 fungovala jako referenční, tj. se stálým provozním nastavením a výsledky naměřené pro<br />

nádrž 2 byly srovnány s hodnotami pro nádrž 1. Podmínky a výsledky měření při různé<br />

rychlosti míchání znázorňuje tabulka 1. Ve dvou případech byla použita stejná rychlost<br />

míchání, ale došlo <strong>ke</strong> změně průtoku.<br />

Tabulka 1. Podmínky a výsledky měření při různé rychlosti míchání<br />

č. měř.<br />

doba<br />

t (°C)<br />

intenzita<br />

míchání %<br />

rychlost míchání<br />

ot./min.<br />

D (mg/l) zbyková koncentrace Fe (mg/l)<br />

měření<br />

(2<br />

hod.)<br />

teplota<br />

vody<br />

M1 M2 M1 M2<br />

dávka<br />

síranu<br />

zákal<br />

(NTU)<br />

nádrž<br />

1<br />

nádrž<br />

2<br />

rozdíl<br />

koncentrací<br />

1 17,10 <strong>60</strong> 40 4,25 2,67 38,87 0,301 0,328<br />

2 17,10 <strong>60</strong> 0 4,25 0,00 38,87 0,317 0,401 0,321 0,080<br />

3 17,10 100 80 7,08 5,33 38,87 0,361 0,344 0,191 0,153<br />

4 17,00 100 <strong>60</strong> 7,08 4,00 38,81 0,335 0,486 0,234 0,252<br />

5 17,10 100 <strong>60</strong> 7,08 4,00 39,70 0,243 0,108 0,281 0,141<br />

6 17,20 100 40 7,08 2,67 38,64 0,247 0,449 0,362 0,087<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 11


počet částic/ml<br />

120<br />

100<br />

80<br />

<strong>60</strong><br />

40<br />

20<br />

0<br />

Porovnání počtu částic/ml při různé rychlosti míchání<br />

2 5 7 10 15 25 50 100<br />

rozmezí velikosti částic (μm)<br />

4,25; 2,67<br />

4,25; 0,00<br />

7,08; 5,33<br />

7,08; 4,00<br />

7,08; 4,00<br />

7,08; 2,67<br />

Obr. 3. výsledky měření analyzátorem částic při různé rychlosti míchání<br />

V legendě je vždy nejprve rychlost pro první míchadlo ve flotaci, kde je míchání rychlé a<br />

poté následuje rychlost pro druhé míchadlo, kde je míchání pomalé. Z porovnání počtu<br />

částic/ml je vidět, že nejvhodnější nastavení intenzity míchání, z těch, které jsem použila, je<br />

nastavení 7,08 ot/min (100 %) pro první míchadlo a 2,67 ot/min (40 %) pro druhé míchadlo.<br />

Změna intervalu shrabování kalu<br />

Podmínky a výsledky měření pro různé intervaly shrabování jsou uvedeny v tabulce 2. I<br />

v tomto případě je nádrž 1 referenční.<br />

Tabulka 2. Podmínky a výsledky měření při různých intervalech shrabování kalu<br />

č.měř. t ( °C) shrabování<br />

doba<br />

měření<br />

(2<br />

hod.)<br />

teplota<br />

vody<br />

prodleva<br />

(min.)<br />

hrabání<br />

(min.)<br />

rychlost<br />

shrabování<br />

%<br />

rychlost<br />

(cm/min.)<br />

D<br />

(mg/l)<br />

dávka<br />

síranu<br />

zákal<br />

(NTU)<br />

zbyková koncentrace Fe<br />

nádrž<br />

1<br />

(mg/l)<br />

nádrž<br />

2<br />

rozdíl<br />

koncentrací<br />

1 17,00 20 1 30 61,0 37,41 0,247 0,524 0,373 0,151<br />

2 17,00 15 1 30 61,0 37,41 0,250 0,424 0,363 0,061<br />

3 17,00 10 1 30 61,0 38,33 0,237 0,405 0,356 0,049<br />

4 17,00 5 1 30 61,0 37,65 0,249 0,539 0,490 0,049<br />

5 17,00 2 1 30 61,0 37,65 0,251 0,586 0,574 0,012<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 12


počet částic/ml<br />

<strong>60</strong><br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Porovnání počtu částic/ml pro různé intervaly shrabování<br />

2 5 7 10 15 25 50 100<br />

rozmezí velikosti částic (μm)<br />

20 + 1 min.<br />

15 + 1 min.<br />

10 + 1 min.<br />

5 + 1 min.<br />

2 + 1 min.<br />

Obr. 4. výsledky měření analyzátorem částic při různých intervalech shrabování kalu<br />

Při porovnání výsledků analyzátoru částic pro různé intervaly shrabování jsem zjistila, že<br />

nejvhodnější by byl interval 10 min. stání a 1 min. hrabání. Při nižších intervalech se počet<br />

částic zvýšil. To platí i pro zákal. Opět je tomu jinak pro koncentraci zbytkového železa, kde<br />

nejvhodnější interval je 20 min. + 1 min. Jako vhodný interval bych tedy zvolila 10 min. + 1<br />

min., protože stanovení ukázala dobrou kvalitu vody. Při nižších intervalech došlo pouze k<br />

nepatrnému zhoršení, ale zvýšila by se spotřeba energie. Při vyšších intervalech není také<br />

zhoršení příliš velké, ale později docházelo <strong>ke</strong> vzniku vrstvy kalu vysoké asi 20 cm, která byla<br />

velmi hustá a její váha způsobovala prohýbání lopatek hrabáku a nakonec jeho úplné<br />

zastavení. Kal musel být shrábnut ručně. Na intervalu 10 min. + 1 min. jsem se shodla i s<br />

obsluhou zařízení.<br />

ZÁVĚR<br />

Vlivy rychlosti míchání, délky intervalu a frekvence shrabování se projevily na kvalitě<br />

upravené vody. Větší vliv má změna intenzity míchání. Jako nejvhodnější se ukázalo<br />

nastavení, kdy první míchadlo má se otáčí rychlostí 7,08 ot./min. a druhé míchadlo 2,67<br />

ot./min. Při změně intervalu shrabování se ukázalo nejlepší nastavení 10 min. stání a 1 min.<br />

shrabování. Přihlédnutím k těmto výsledkům při provozu úpravny by tedy mohla být zvýšena<br />

kvalita upravené vod vycházející z flotace a tedy i vody dodávané <strong>ke</strong> spotřebiteli.<br />

Optimalizací studovaných provozních parametrů dochází především <strong>ke</strong> snížení počtu částic<br />

obsažených ve vodě z flotace, což má příznivý vliv na další stupně úpravy. Prodlužuje se doba<br />

provozu pískových filtrů, které nevyžadují tak časté praní a snižuje se i možnost průniku<br />

částic filtrem.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 13


CITOVANÁ LITERATURA<br />

[1] Haarhoff, J. and Edzwald, J.K.: Dissolved air flotation modelling: insights and<br />

shortcomings. Journal of Water Supply: Reseach and Technology-AQUA, 2004, vol. 53, pp.<br />

127-150.<br />

[2] Dolejš P., Dobiáš P., Mazel L.: Provozní výsledky první vodárenské flotace v ČR<br />

realizované na ÚV Mostiště. Sborník konference Vodárenská biologie 2006, s. 92-97. Praha<br />

31.1.-2.2.2006. VŠCHT Praha a Ekomonitor, s.r.o. Chrudim, Praha 2006.<br />

[3] Dolejš P.: Flotace rozpuštěným vzduchem (DAF) pro úpravu pitné vody a její první<br />

provozní realizace v ČR. Vodní hospodářství 56, č. 4, s. 99-101 (2006).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 14


SYNTHESIS, CHARACTERIZATION AND ECOTOXICOLOGICAL<br />

ASSESSMENT OF NEW FLEXIBLE POLYURETHANE FOAMS WITH<br />

BIODEGRADABLE FILLERS<br />

Jan DAVID 1 , 5. year<br />

Advisor: Prof. Milada VÁVROVÁ 1 ; Consultant: Dr. Lucy VOJTOVÁ 2<br />

1 Institute of Chemistry and Technology of Environmental Protection<br />

2 Institute of Materials Science<br />

Faculty of Chemistry, Brno University of Technology, Faculty of Chemistry,<br />

Purkynova 118, 612 00 Brno<br />

e-mail: xcdavid@fch.vutbr.cz<br />

ABSTRACT<br />

This work deals with the synthesis of new flexible biodegradable polyurethane foams<br />

(BIO-PU), in which non-degradable polyol polyether was partly substituted by bio-polyol,<br />

mainly the cellulose or starch derivatives. The bio-polyol replacements are expected to<br />

provide the PU foam cheaper, easily biodegradable and less toxic.<br />

Samples of the BIO-PU foams were characterized by means of Fourier Transform – Infra<br />

Red Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) methods and consequently<br />

hydrolyzed under reflux in freshwater. The ecotoxicological aspects of the foam leaches were<br />

determined by microbiotest screening toxkit „Thamnotoxkit F TM “. Values of toxicity were<br />

expressed as percentage mortality of the II-III larvae instars hatched from the cysts of<br />

freshwater fairy shrimps Thamnocephalus platyurus dependence on the effect criterion of the<br />

respective assay.<br />

INTRODUCTION<br />

Polyurethanes (PU) are polymers made by addition polymerizations of multi-functional<br />

isocyanates and multi-functional alcohols (polyols), e.g. polyether or polyester 1 , which<br />

functionality determine on linear or cross-lin<strong>ke</strong>d structure. Various methods can be used to<br />

produce polyurethanes but for the PU foam production is often used the one-shot process,<br />

where direct mixing of polyols, catalysts, blowing agent and isocyanates are used. Foams<br />

(expanded plastics) are microcellular structures produced by gas (CO2) bubbles during the<br />

polyurethane preparation. PU foams properties are affected mainly by the raw materials and<br />

can be modified by a wide variety of additives, such as stabilizers, fillers, cross-linking agents<br />

and chain extenders 2,3 . PU foams are materials with a broad variety of applications li<strong>ke</strong><br />

furniture, automotive and shoe industry, building construction and packaging, agriculture and<br />

medicine. Due to the recycling complications the PU foams are discarded after use, which<br />

represents contamination problems because of their difficult disintegration and incorporation<br />

to the environment. 2 Solution of this problem is including a natural material in the PU foam<br />

network in order to evo<strong>ke</strong> easier biodegradation and lower ecotoxicity. Degradable natural<br />

additives containing –OH groups might be used as –OH providers to modify the PU<br />

properties and structure. 4 Various compounds of natural origin can be used instead of<br />

commercial polyol polyethers li<strong>ke</strong> starches, celluloses and their derivatives, soy flour, bark,<br />

castor oil and palm oil, wattle tannin or oil palm empty fruit bunch 2,3,4,5,6,7,8 .<br />

This work is focused on the use of carboxymethyl cellulose sodium salt (CMC-Na),<br />

acetylated potato starch (AS), cellulose acetate (CA), 2-hydroxyethyl cellulose (2-HEC) and<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 15


wheat protein /gluten/ (WP-G) as bio polyols. Recently, the biodegradation of these flexible<br />

modified PU foams by thermophille bacteria Thermophillus sp. was published by our group of<br />

researchers from FCH BUT 9 . However, the levels of toxic substances must not exceed the<br />

permissible limit.<br />

The interest in biological testing is growing rapidly and toxicity testing is now gradually<br />

incorporated in environmental legislation in many countries. The most worldwide known and<br />

useful alternative toxicity biotests are Toxkits owing to their miniaturization, simplicity, quick<br />

availability, high sensitivity and reproducibility and low cost. The Toxkits tests are<br />

particularly suited for routine toxicity testing of chemicals, solid waste leaches or effluents<br />

released in aquatic environment 10 . The sensitivity of these microbiotests is equal to that of<br />

conventional bioassays, and the new alternative assays have already been validated in various<br />

studies 11,12,13,14 .<br />

In this proposed work, BIO-PU foams modified by AS, AC, CMC-Na,2-HEC and WP-G<br />

were characterized by FTIR, TGA, extracted in freshwater and used for ecotoxicological<br />

evaluation via Thamnotoxkit F.<br />

EXPERIMENTAL<br />

Raw materials<br />

Polyol polyether (hydroxyl number OH = 47) (PEP), tolylene diisocyanate 80/20 (TDI),<br />

tin-bis(2-ethylhexanoate) surfactant, and mixed catalyst were obtained from Gumotex, a.s.,<br />

carboxymethyl cellulose sodium salt (CMC-Na), Mn = 250 000, cellulose acetate (CA),<br />

Mn = 30 000, and 2-hydroxyethyl cellulose (2-HEC), Mn = 90 000 were purchased from<br />

Aldrich, acetylated starch AMISOL HS (AS) was obtained from Starch and Potato Products<br />

Research Laboratory, Poland and wheat protein (gluten) (WP-G) was received from<br />

Amylon, a.s.<br />

Synthesis of BIO-PU foams and preparation of leaches<br />

The foams were synthesized according to a standard industrial recipe for furniture industry<br />

flexible foams, except of the partial PEP substitution (from 1 up to 30 w%) by starch or<br />

cellulose derivates or gluten, which were pre-mixed with the original PEP. Consequently the<br />

catalyst, surfactant and TDI were added, mixed up to cream time and quickly poured into a<br />

mould. BIO-PU foams were cured for 48 hours.<br />

0,5 g pieces of cured PU foams were cut to a smaller pieces and boiled under reflux with<br />

25 ml of standard freshwater (for Thamnocephalus platyurus) for 8 hours.<br />

Ecotoxicological assessment<br />

Alternative crustacean toxicity screening test Thamnotoxkit F based on the mortality of<br />

the instars II-III larvae of freshwater fairy shrimps Thamnocephalus platyurus hatched from<br />

the cysts after 24 hours exposure was applied to different concentrations of the PU foams<br />

freshwater leaches. Standard freshwater was prepared from solutions supplied with<br />

Thamnotoxkit F. The toxicity tests were performed according to the standard operational<br />

procedure manual of the Thamnotoxkit F producer 15 Shortly, cysts of Thamnocephalus<br />

platyurus were hatched for 23 hours before the use by pre-hydrating with diluted freshwater<br />

for 30 minutes and incubating at 25°C for 22 hours under continuous illumination. Then the<br />

hatched larvae were transferred to the test wells containing the toxicant dilution and incubated<br />

at 25°C in darkness for 24 hours. Then the immobilized/dead individuals of larvae were<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 16


counted and toxicity data were expressed as percentage mortality of Thamnocephalus<br />

platyurus depending on the effect criterion of the respective assay.<br />

Characterization of foams<br />

Small pieces of cured PU foams were frozen by liquid N2 and pulverized. FTIR spectra<br />

were measured using Nicolet Impact 400D FTIR spectrometer with common KBr technique.<br />

The spectra analyses were performed on Omnic and MS Excel software.<br />

Thermogravimetric analyses were carried out via Perkin Elmer TGA 6, where 7 mg of<br />

samples were heated from 100°C to 500°C at a heating rate of 10°C.min −1 under N2<br />

atmosphere. The curve analyses were performed on PE Pyris 6 and MS Excel software.<br />

RESULTS AND DISCUSSION<br />

Synthesis and characterization of PU foams<br />

Five types of bio-polyols AS, AC, 2-HEC, CMC-Na and WP-G were successfully included<br />

in the 3D PU network in order to substitute as much of commercial polyether polyol as<br />

possible. It was found to substitute only 10 % of PEP by AC and 2-HEC, but 20 % by AS and<br />

even 30 % by CMC-Na. Resulting modified flexible foams were not distinguished at first<br />

sight from the respective CONTROL PU foam as for the size, shape, color, polymer network<br />

and flexibility, except the WP-G foam, where the wheat protein replaced only 5 % of<br />

commercial PEP. It was probably caused due to the side reactions of amino acids with the raw<br />

materials during the PU foam preparation resulting in collapsed hard foam.<br />

The chemical structure of the modified PU foams was characterized in terms of FTIR<br />

proving the natural polymers incorporation into the modified PU foam network (see Fig.1).<br />

The interesting point of view is shown at the FTIR spectra in the range of 2250 – 2400 cm −1<br />

where the peak at 23<strong>60</strong> cm −1 was suppressed and on the other hand the peak at 2280 cm −1 was<br />

highlighted at modified PU foams evidential of forming new bonds between the filler and PU<br />

network. Other peaks corresponded to the urethane linkages.<br />

From the literature and previous experiments 2,3 it is known that modifying of PU foam<br />

with bio-polymer filler up to 10 % has no significant influence on thermal properties of the<br />

modified foam, which was confirmed. The TGA showed that the influence rises with the<br />

increasing bio-polymer filler amount in the foam when is higher than 10 %.<br />

Ecotoxicology<br />

Ecotoxicity of modified and control PU foams leaches was evaluated using alternative<br />

crustacean toxicity test Thamnotoxkit F. Values of toxicity were expressed as percentage<br />

mortality of Thamnocephalus platyurus dependence on the effect criterion of the respective<br />

assay. Dilution series of 100 %, 80 %, <strong>60</strong> %, 40 % and 20 % of the leaches were prepared<br />

according to the procedure of Thamnotoxkit F manual 15 . As for 100 % (non-diluted)<br />

leaches made of 10 % substituted foams, the lowest toxicity (80 %) performed the PU foam<br />

with 10 % CMC-Na. All <strong>60</strong> % diluted leaches showed lower toxicity than the CONTROL PU<br />

foam, except the leach made of 5 % WP-G PU foam. As for other dilution series, also the<br />

most toxic leaches were the CONTROL PU and 2-HEC leaches (see Fig.2).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 17


% of mortality<br />

4000,0<br />

120,00<br />

100,00<br />

80,00<br />

<strong>60</strong>,00<br />

40,00<br />

20,00<br />

0,00<br />

3500,0<br />

46,67<br />

3000,0<br />

SUBSTITUTED FOAMS - COMPARE ALL<br />

2500,0<br />

Control PUR<br />

10 % CMC-Na<br />

10 % ACS<br />

10 % CA<br />

10 % 2-HEC<br />

1 % WP(G)<br />

2000,0<br />

wavenumber [cm –1 ]<br />

1500,0<br />

Fig.1: FTIR spectra of modified PU foams.<br />

1000,0<br />

500,0<br />

Mortality graph - <strong>60</strong> % (diluted) leachates of various PU foams<br />

43,33<br />

50,00<br />

23,33<br />

56,67<br />

100,00<br />

10 % CMC-Na PU 10 % AS PU 10 % CA PU 10 % 2-HEC PU CONTROL PU 5 % WP-G PU<br />

foam sample<br />

Fig. 2: Percentage mortality graphs of diluted leaches of various modified PU foams.<br />

100,0<br />

95,0<br />

90,0<br />

85,0<br />

80,0<br />

75,0<br />

70,0<br />

65,0<br />

<strong>60</strong>,0<br />

0,0<br />

CONCLUSION<br />

Flexible modified PU foams with 10 % of PEP substituted by CMC-Na, AS, CA and<br />

2-HEC were successfully synthesized. The most suitable bio-polymer fillers for both physical<br />

and ecotoxicological properties were found to be CMC-Na and AS, which wor<strong>ke</strong>d up to 30 %<br />

and 20 % of substitution, respectively. The worst properties presented the PU foam filled with<br />

WP-G.<br />

Moreover, based on our last research 9 the AS PU foam indicates also good<br />

biodegradability.<br />

Further ecotoxicological assessments and new TGA experiments of the modified PU foams<br />

are needed and planned as well as the analysis of the PU foams leaches on Gel Permeation<br />

Chromatography and High Pressure Liquid Chromatography in order to identify the products<br />

of hydrolysis of the foams for better understanding the ecotoxicological assessment.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 18<br />

transmittance [1]


ACKNOWLEDGEMENT<br />

I would li<strong>ke</strong> to thank to both of my tutors, Dr. Lucy Vojtová and Prof. Milada Vávrová.<br />

Special thanks are going to Dr. Karel Bednařík who gave me good advice and also to the<br />

manager of this research project Prof. Josef Jančář.<br />

This research was supported by the Ministry of Education, Youth and Physical Training of<br />

the Czech Republic under the research project MSM 0021630501.<br />

REFERENCES<br />

1<br />

Schyzer, M.: Schyzer's Handbook of Polyurethanes. CRC Press.<br />

2<br />

Vojtová, L., Zdilna, P., Jancar, J.: Degradace a recyklace polyuretanovych pen.[.doc<br />

document]. Brno: FCH Brno University of Technology, 2004 [cited 07.10.2006].<br />

3<br />

Rivera-Armenta, J. L., Heinze, T., Mendoza-Martínez, A. M.: New polyurethane foams modified with<br />

cellulose derivatives. European Polymer Journal, 2004, vol. 40, pp. 2803-2812. ISSN 0014-3057/$<br />

4<br />

Chang, L.-C., Xue, Y., Hsieh F.-H.: Comparative study of physical properties of water-blown rigid<br />

polyurethane foams with commercial soy flours. Journal of Apllied Polymer Science, 2001, vol. 80 (2001), pp.<br />

10-19.<br />

5<br />

Ge, J., Zhong, W., Guo, Z., Li, W., Sakai, K. : Biodegradable polyurethane materials from bark and starch I.<br />

Highly resilient foams. Journal of Applied Polymer Science, 2000, vol. 77 (2000), pp. 2575-2580.<br />

6<br />

Ge, J., Shi, X., Cai, M., Wu, R., Wang, M.: A novel biodegradable antimicrobial PU foam from wattle<br />

tannin. Journal of Applied Polymer Science, 2003, vol. 90, pp. 2756-2763.<br />

7<br />

Alfani, R., Iannace, S., Nicolais, L.: Synthesis and characterization of Starch-Based Polyurethane Foams.<br />

Journal of Applied Polymer Science, 1998, vol. 78, pp. 739-745.<br />

8<br />

Badri, K. H., Othman, Z. B., Razali I. M.: Mechanical properties of polyurethane composites from oil palm<br />

resources. Iranian Polymer Journal, 2005, vol. 14, no. 5, pp. 441-448.<br />

9<br />

Marova, I., Babak, L., Vavrova, M., Vojtova, L., Jancar, J.: Use of thermophillic bacteria to biodegradation<br />

of modified polyurethane foams, paper presented at The Sixth European Meeting on Environmental Chemistry,<br />

Belgrade, 6.-9. December (2005).<br />

10 th<br />

MicroBioTests Inc.: Background and general information [online]. Last update 30 of March 2006 [cited<br />

2006-10-07]. Available online at: .<br />

11<br />

Persoone, G., Van de Vel, A.: Report EUR 11342 EN, Commission of the European Communities (1987).<br />

12<br />

Latif, M., Licek, E.: Environmental toxicology, 19, 302 (2004).<br />

13 th<br />

MicroBioTests Inc.: Publications about microbiotests [online]. Last update 30 of March 2006<br />

[cited 2006-10-07]. Available online at: .<br />

14<br />

Torokne, A.: Sensitivity evaluation of the Daphtoxkit and Thamnotoxkit microbiotests on blind samples.<br />

Journal of Applied Toxicology, 2004, vol. 24, no. 5, pp. 323-326.<br />

15 TM<br />

MicroBioTests Inc., Belgium. (Ed.): Thamnotoxkit F . Standard Operation Procedure V310303.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 19


NOVÝ SORPČNÍ GEL NA BÁZI SPHERON-OXINU PRO UŽITÍ<br />

V TECHNICE DGT<br />

Michaela Gregušová, 5. ročník<br />

Vedoucí práce: prof. RNDr. Hana Dočekalová, CSc.<br />

<strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>, ústav chemie a technologie ochrany<br />

životního prostředí, Purkyňova 118, 612 00 Brno, e-mail: xcgregusova@fch.vutbr.cz<br />

ÚVOD<br />

Kvantitativní stanovení chemických forem kovů (specií) přítomných v přírodních vodních<br />

systémech je stále nedořešeným problémem environmentálních chemiků. V průběhu odběru<br />

vzorku a jeho zpracování dochází k fyzikálně-chemickým dějům, které mají za následek<br />

změny v rozdělení specií. Skutečnou situaci odráží některé in situ prekoncentrační postupy.<br />

Mezi tyto postupy patří technika difúzního gradientu v tenkém filmu (DGT), která byla<br />

poprvé popsána v roce 1994 [1]. Technika DGT umožňuje stanovení stopových koncentrací<br />

kovů, radionuklidů a rovněž některých anionů (fosfátů, sulfidů) [2,3] ve vodném prostředí,<br />

půdách a sedimentech. Technika DGT využívá vzorkovací jednotku tvaru pístu, ve které jsou<br />

uzavřeny dvě vrstvy polyakrylamidového gelu (APA) a membránový filtr (obr.1). Horní<br />

vrstvu tvoří polyakrylamidový hydrogel, přes který difundují ionty analytu. Ve spodní vrstvě<br />

PAM gelu se zakomponovaným iontoměničem se sorbuje analyt.<br />

Obr.1 Řez vzorkovací jednotkou DGT<br />

Technika DGT je založena na Fickových zákonech difúze. Po ponoření vzorkovací<br />

jednotky difundují mobilní ionty kovů přes difúzní gel známé tloušťky Δg k sorpčnímu gelu,<br />

kde se zachytávají na specifických funkčních skupinách sorbentu. V difúzním gelu se ve<br />

velmi krátké době ustaví lineární koncentrační gradient. Jestliže koncentrační gradient zůstává<br />

během měření konstantní (míchané vodné systémy), lze dle prvního Fickova zákona difúze<br />

vypočítat tok analytu F vrstvou Δg dle vztahu:<br />

M D ⋅ c<br />

F = =<br />

(1)<br />

A ⋅ t Δg<br />

kde M je množství kovu navázané na iontoměnič, A je plocha difúzního gelu, D je difúzní<br />

koeficient kovu a c je koncentrace kovu v měřeném roztoku.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 20


Kovy zachycené na sorbentu jsou eluovány kyselinou dusičnou a stanoveny metodami<br />

atomové spektrometrie. Při stanovení specií kovů technikou DGT je klíčové nalézt vhodný<br />

sorbent a difúzní gel. Technika DGT nejčastěji využívá iontoměnič Chelex 100 s vázanými<br />

funkčními skupinami kyseliny iminodioctové a polyakrylamidový difúzní gel.<br />

Tato práce se zabývá studiem vlastností nového sorpčního gelu s navázanými skupinami<br />

8-hydroxychinolinu (Spheron-Oxin) [4], které mají silné chelatační schopnosti. Sorpční gel<br />

se Spheron-Oxinem přináší nové možnosti pro speciaci labilních i méně labilních komplexů<br />

technikou DGT.<br />

EXPERIMENTÁLNÍ ČÁST<br />

Příprava gelů a jednotky DGT. Difúzní gel i sorpční gel se Spheron-Oxinem byly<br />

připraveny z gelového roztoku, který obsahoval 15%obj akrylamidu (Merck), 0,3%obj<br />

agarosového síťovadla (DGT Research Ltd., Lancaster) v ultračisté vodě. Směs 10 μl<br />

katalyzátoru polymerace TEMED (tetramethylendiamin) zředěného 1:1 ultračistou vodou,<br />

20 μl čerstvě připraveného 8%-ního roztoku peroxosíranu amonného, iniciátoru polymerace, a<br />

2 ml gelového roztoku byla promíchána a nadávkována mezi dvě skla oddělená distanční<br />

teflonovou fólií. Do směsi na přípravu sorpčního gelu s menším obsahem katalyzátoru a<br />

iniciátoru polymerace bylo přidáno 0,4 g Spheron-Oxinu 1000 (Lachema Brno, 40–63 μm).<br />

Směs byla ponechána mezi skly v sušárně po dobu 45 min, kde při teplotě 42 ± 2 °C<br />

zpolymerovala. Sesítěné gely byly hydratovány v ultračisté vodě 24 hodin, kde nabobtnaly<br />

do stabilní tloušťky 0,8 mm u difúzního gelu a 0,4 mm u sorpčního gelu. Několikanásobná<br />

výměna ultračisté vody během hydratace zajišťuje odstranění zbytků polymeračních činidel<br />

z gelů. Po nabobtnání byly z gelů vykrájeny disky o průměru 25 mm. Disky pak byly<br />

uchovávány v ledničce v roztoku 0,01M dusičnanu sodného v případě difúzního gelu<br />

a v ultračisté vodě v případě sorpčního gelu.<br />

Při sestavování jednotky DGT se na píst (obr.1) vložil sorpční gel, který byl pak překryt<br />

difúzním gelem, a nakonec membránovým filtrem (Supor®-450) k ochraně gelů.<br />

Příprava roztoků, testování DGT. Pro přípravu modelových roztoků byly použity<br />

standardní roztoky kovů Astasol®-Pb, Cd, Cu, Ni (Analytika, Praha), dusičnan sodný p.a.<br />

99,8% (Lachema Brno), hydroxid sodný čistý (Onex Rožnov p. R.) a ultračistá voda<br />

připravená přístrojem Milli-Q Academic firmy Millipore. Roztoky byly připraveny zředěním<br />

standardů na příslušné koncentrace. Do plastové nádoby s 2 L ultračisté vody bylo přidáno<br />

20 ml 1M dusičnanu sodného a příslušné množství standardů kovů. Roztok byl neutralizován<br />

0,1M hydroxidem sodným a následně 24 hodin míchán, aby se ustavila rovnováha v roztoku.<br />

Po vnoření DGT jednotek do modelového roztoku bylo odebráno malé množství roztoku<br />

k analýze. Po uplynutí doby expozice byl opět odebrán vzorek roztoku, vyjmuty jednotky<br />

DGT a rozebrány. Sorpční gel byl loužen v 1M kyselině dusičné (Suprapur® Merck) po dobu<br />

24 hodin. Metodou atomové absorpční spektrometrie s elektrotermickou atomizací<br />

(AAnalyst <strong>60</strong>0, Perkin Elmer Analytical Instruments, USA) byly v eluátu, vstupním a<br />

konečném roztoku stanoveny Cd, Cu, Ni, Pb při vlnových délkách 228,8; 324,8; 232,0<br />

a 283,3 nm za teplotního programu doporučeného výrobcem.<br />

Rychlost ustanovení rovnováhy eluce. DGT jednotky byly exponovány 6 hodin v roztoku<br />

o koncentraci 40 ppb každého z kovů Cd, Cu, Ni, Pb. Sorpční gely se Spheron-Oxinem byly<br />

eluovány 1ml 1M kyseliny dusičné v časových intervalech 0,5; 1; 2; 4; 8 a 16 hod.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 21


Eluční faktor. Ionty kovů byly opakovaně eluovány 1M kyselinou dusičnou ze sorpčních<br />

gelů z jednotek DGT exponovaných po dobu 24 h v roztoku kovů o koncentraci 10 ppb. Mezi<br />

jednotlivými po sobě následujícími elucemi byly gely pro odstranění vnitřního roztoku<br />

louženy ultračistou vodou.<br />

Sorpční kapacita. Z pentahydrátu síranu měďnatého p.a., Lachema Brno byly připraveny<br />

roztoky o koncentraci 25, 51, 146, 279 a 787 mg/l odpovídající 10, 20, <strong>60</strong>, 100 a 300%<br />

teoretické kapacity. Do 2 ml roztoků mědi byly vloženy gely se Spheron-Oxinem po dobu<br />

24 hodin a občas promíchány. Sorbované množství mědi bylo určeno z rozdílů koncentrace<br />

připravených roztoků a roztoků s exponovanými sorpčními gely. Koncentrace mědi byla<br />

stanovena plamenovou atomovou absorpční spektrometrií na přístroji Perkin Elmer 3110 AA.<br />

Vliv pH. V plastové nádobě s 2 L ultračisté vody, dusičnanem sodným a 30 ppb kovů bylo<br />

upravováno pH pomocí kyseliny octové Suprapur® 96% (Merck) a hydroxidu sodného<br />

Suprapur® 30% (Merck). Nejprve bylo pH roztoku sníženo kyselinou, ustalováno po dobu<br />

24 h a nakonec měřeno. V následující periodě 22 h byly v roztoku exponovány jednotky<br />

DGT. Po jejich vyjmutí bylo pH roztoku změřeno a dále postupně zvyšováno přídav<strong>ke</strong>m<br />

hydroxidu sodného a celý proces záchytu kovů v jednotkách DGT byl opakován.<br />

VÝSLEDKY<br />

Při přípravě sorpčního gelu se Spheron-Oxinem bylo nejprve optimalizováno množství<br />

sorbentu v gelovém roztoku. Ideální množství Spheron-Oxinu mělo být co největší z důvodu<br />

dostatečné kapacity disků, ale zároveň takové aby byla možná příprava homogenního gelu.<br />

Nalezené optimální množství činilo 0,4 g Spheron-Oxinu na 2 ml gelového roztoku.<br />

Při přípravě sorpčního gelu se částice Spheron-Oxinu usazovaly <strong>ke</strong> spodní straně odlévací<br />

skleněné formy, což vedlo k nehomogennímu rozdělení sorbentu v gelu. Bobtnání<br />

Spheron-Oxinu v gelovém roztoku po dobu minimálně tří dnů před přípravou gelu vedlo<br />

k potlačení tohoto negativního jevu. Pro přípravu homogenního gelu je rovněž důležitá<br />

důkladná homogenizace gelu po přidání iniciátoru polymerace a rychlé vlití polymerující<br />

směsi mezi skla formy.<br />

Pro vysoký obsah mědi a niklu v sorbentu bylo nutné Spheron-Oxin před použitím<br />

přečistit. Z důvodu možné kontaminace gelů během jejich přípravy byly proto vykrájené<br />

disky sorpčního gelu opakovaně několikrát eluovány v 1M kyselině dusičné (Suprapur®<br />

Merck) a následně několikrát hydratovány v ultračisté vodě, aby se zbytky kyseliny odstranily<br />

z vnitřního roztoku gelu.<br />

U připravených disků sorpčního gelu byl stanoven mrtvý objem a zároveň tloušťka gelu<br />

dvěma způsoby. Z úbytku hmotnosti gelů při sušení, který činil 0,19 g, a z průměru disků gelu<br />

25 mm byla odvozena tloušťka 0,4 mm. Přímo byla mikrometrem změřena tloušťka gelu,<br />

vloženého mezi dvě mikroskopická sklíčka. Přímé odečítání tloušťky bylo však<br />

komplikováno obtížností nastavení příslušného přítlaku na hlavičkách mikrometrického<br />

šroubu, při kterém již nedocházelo k nežádoucí deformaci (stlačování) gelu. Mikrometrem<br />

byla odečtena tloušťka 0,4 mm.<br />

Dalším zkoumaným parametrem byla rychlost ustanovení rovnováhy při eluci. Kinetika<br />

eluce kovů kyselinou dusičnou je procesem velmi rychlým. Během půl hodiny dochází<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 22


k vyloužení cca 90% nasorbovaných kovů. Z toho vyplývá, že i velmi krátká doba eluce<br />

30 min postačuje k ustanovení rovnováhy.<br />

Eluční faktor vyjadřuje jaké množství (M1) z celkového sorbovaného množství (ΣM) se<br />

vyluhuje v jednom elučním kroku do roztoku 1M kyseliny dusičné:<br />

M1<br />

fe = (2)<br />

M + M + M + M<br />

1<br />

2<br />

3<br />

4<br />

Stanovení elučního faktoru bylo nezbytné pro následné ověření funkce techniky DGT<br />

s novým sorpčním gelem. Eluční faktor nabývá hodnot pro Ni 0,86; Cd 0,98; Pb 0,93 a Cu<br />

0,71.<br />

Sorpční kapacita má spíše informační charakter pro analytickou praxi. Slouží k odhadu<br />

přípustného zatížení a doby expozice. Sorpční kapacita disků Spheron-Oxinu pro měď činila<br />

3,2 μmol/disk. Tato hodnota je nižší oproti teoretické hodnotě 8 μmol/disk. Kapacita je však<br />

dostatečně vysoká pro několikatýdenní až několikaměsíční vystavení sorpčního gelu do<br />

přírodních vodních systémů.<br />

Vliv kyselosti vnějšího roztoku na záchyt Cd, Ni a Cu byl sledován v rozsahu hodnot<br />

pH 3-8. Z výsledků vyplývá, že sorpční gel se Spheron-Oxinem váže silně sledované kovy,<br />

což může být při srovnání s tradičním sorpčním gelem Chelex 100 s výhodou využito<br />

k charakterizaci labilních a méně labilních komplexů kovů v přírodních vodních systémech.<br />

Po nalezení všech pomocných parametrů jako jsou tloušťka sorpčního gelu, eluční faktor,<br />

sorpční kapacita a vliv pH mohla být ověřena funkce nového sorpčního gelu pro techniku<br />

DGT výpočtem koncentrace vnějšího roztoku z množství kovů získaných elucí sorpčního<br />

gelu. Nalezené hodnoty technikou DGT odpovídaly pro Ni 92 ± 4 % a pro Cd 98 ± 4 %<br />

očekávaných hodnot. Z toho lze usoudit, že technika DGT s využitím sorpčního gelu na bázi<br />

sorbentu Spheron-Oxin může poskytovat spolehlivé výsledky.<br />

LITERATURA<br />

Davison W., Zhang H., Nature 367, 546 (1994)<br />

Zhang H., Davison W., Gadi R., Kobayashi T., Anal. Chim. Acta, 370, 29-38 (1998)<br />

Teasdale, Hayward S., Davison W., Anal. Chem. 71, 2186-2191 (1999)<br />

Slovák Z., Bulletin n.p. Lachema Brno, 30-34 (1979)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 23


MOLECULAR DYNAMICS SIMULATION OF POLYMER CHAIN<br />

IN THE VICINITY OF NANOPARTICLE<br />

Kateřina Hynštová 1<br />

Advisor: prof. RNDr. Josef Jančář, CSc. 1 , Consultant: Mgr. Jan Žídek, Ph.D. 1<br />

1 Institute of Materials Science, School of Chemistry, Brno University of Technology,<br />

Purkynova 118, Brno, Czech Republic, e-mail: xchynstova@fch.vutbr.cz<br />

KEYWORDS Molecular dynamics, Rouse, Smoluchowski equation, viscoelasticity, model.<br />

ABSTRACT<br />

Molecular simulation of single chain in the vicinity of nanoparticle in comparison with pure<br />

system is presented. According to the Rouse theory, chains were considered as a sequence of<br />

beads connected together by harmonic springs. The motion of atoms was supported by thermal<br />

energy and retarded by the resistance of surrounding. New atom position, in given time, was<br />

determined by the Smoluchowski equation, that consists of two terms: first one includes the<br />

influence of the inter-atomic collisions, the sterical obstacles and the strong intermolecular<br />

interactions in friction coefficient, second one express the energy field aggregated from<br />

potentials of all atoms. Sinusoidal shear stress was applied to the chain. The output of the model<br />

was energy as a function of time. The energy course was also sinusoidal but shifted according<br />

to the deformation. The amplitudes and phase shifts were analyzed for the chains under<br />

different conditions .The chains were subjected to the model first as the standalone objects.<br />

Then, barrier was defined and chains placed in the vicinity of it. The barrier acted as a volume<br />

excluded hindrance. This type of chain molecular dynamics could be used as a stand-alone<br />

model or it could be suitable component for complex models, for example network model of<br />

polymer nanocomposite.<br />

INTRODUCTION<br />

The need for new materials has driven an increased interest in understanding the changes in<br />

structural, dynamic and melt properties caused by fillers and more recently, nanofillers. A<br />

considerable effort was devoted to understanding of viscoelastic properties of the materials.<br />

Phenomenological approach is not sufficient any longer; therefore the studying of the materials<br />

on multiple length scales is useful [1].<br />

Many efforts have been made on description of polymer behavior at a molecular level. Even<br />

though instrumental methods have improved, there are still problems with exact measurement<br />

of the structural and mechanical properties at this level. Hence, computer simulations ta<strong>ke</strong><br />

place in this area being very powerful tool that enable direct insight into investigated system<br />

[2].<br />

To define single chain motion in viscous surrounding the Rouse model is widely used [3,4].<br />

Atoms or atom groups are considered as rigid beads connected together by harmonic springs.<br />

The diffusion coefficient of surroundings and the potential of the atom group determine its<br />

position.<br />

The simulation progressed from chains in polymer melt that are sufficiently far from filler<br />

across the glassy polymer to the chains in the interphase layer vicinity of particle. Two factors<br />

influenced the relation between the particle and chain. The first factor was excluded volume<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 24


which caused immobilization of chain. This factor was observed rather in nanocomposites than<br />

in the microcomposites. For example, adding 1% by weight of ultra-fine, synthetic mica<br />

(30-nm diameter disks) to nylon gave super tough nylon, while adding the same amount of<br />

traditional mica (micron sized talc) gave only a slight improvement in toughness over unfilled<br />

polymer. Second factor was an acting of interactions, which were based on both physical and<br />

chemical mechanisms and their presence could cause diametrically different polymer response<br />

[5].<br />

SIMULATION<br />

An application of ROUSE model was used to model viscoelastic response of the polymer<br />

chain. The chain was composed of single atoms which are distributed in space. Each atom<br />

position was limited by position of the neighbor atoms. System tried to achieve thermodynamic<br />

equilibrium, but its motion was retarded. To trace the position of atoms in time the Newtonian<br />

and Smoluchowski equations were solved. For non-interacting particle undergoing the thermal<br />

motion, the probability for finding the particle at x and t as ψ ( x, t)<br />

follows from<br />

∂ψ<br />

∂ 1 ⎛ ∂ψ<br />

∂V<br />

⎞<br />

= ⎜kT<br />

+ ψ ⎟<br />

(1)<br />

∂t<br />

∂x<br />

ς ⎝ ∂x<br />

∂x<br />

⎠<br />

where resistance of surroundings is expressed in first member, energy influence including<br />

dihedral, bending and bond stretch potential are involved by latter one[8]. Potential functions<br />

and parameters adopted are proposed by Ryckaert-Bellemans for 4-body dihedral (torsion)<br />

potential V(φ) [6] and by by for 2-body bond length potential V(b) and 3-body bond angle<br />

potential V(θ), respectively [7], as shown in equations with parameters listed below in Table 1.<br />

5<br />

1<br />

2<br />

1<br />

2<br />

i<br />

V ( b)<br />

= kb<br />

( b − b0<br />

) V ( θ ) = kθ<br />

( θ −θ<br />

0 ) V ( ϕ)<br />

= Ci<br />

cos ( ϕ)<br />

(2,3,4)<br />

2<br />

2<br />

Table 1: Parameters of Ryckaert-Bellemans multinominal [6] and Smit, Karaborni and<br />

Siepmann equations [7] for the polyethylene chain<br />

Parameter Value Units<br />

kb (bond) 3.3475 10 5 kJmol -1<br />

nm -2<br />

b0 0.153 Nm<br />

kθ(bending) 519.6 kJ mol -1 rad -2<br />

θ0 114 Deg<br />

C0(torsion) 9.2789 kJ mol -1<br />

C1<br />

C2<br />

C3<br />

C4<br />

C5<br />

RESULTS AND DISCUSSION<br />

12.156<br />

-13.120<br />

-3.0597<br />

26.24<br />

-31.495<br />

A set of 10 polyethylene chains with 50 segments was generated. A sinusoidal shear<br />

deformation was applied to each chain and its energy response was analyzed. The amplitude of<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 25<br />

∑<br />

i=<br />

0


the deformation was 5% of the chain length and the frequency was 1,5,10 and 20 Hz<br />

respectively. Temperature was 298.15 K. The friction coefficient was 0.05. Parameters of the<br />

polymer chain were ta<strong>ke</strong>n from Table 1. Deformation response is shown in the Figure 1. The<br />

amplitudes were ta<strong>ke</strong>n as the height of energy peak and the phase shift was a shift between<br />

course of deformation and the energy. The results are shown in Table 2. In the second part, the<br />

half space barrier was defined. The chains were set in the vicinity of the barrier so its centers of<br />

gravity were in the distance 0.2, 0.3, and 0.4 nm from the surface (Figure 2). The chains were<br />

deformed with frequency 5 Hz. The calculated data were compared with measured data for the<br />

polyethylene and polyethylene/starch composites [8].<br />

Deformation(nm)<br />

1,0640<br />

1,0635<br />

1,0630<br />

1,0625<br />

1,0620<br />

1,0615<br />

1,0610<br />

1,0<strong>60</strong>5<br />

0,0 0,1 0,2 0,3 0,4<br />

Time(s)<br />

0,0045<br />

0,0040<br />

0,0035<br />

0,0030<br />

0,0025<br />

Figure 1: Deformation and energy course of sinusoidal deformation of set of 50 segments<br />

chains with frequency 5Hz, amplitude 0.05, T=298,15K, friction 0.05<br />

Amplitude of Energy (10 -15 J)<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,2 0,3 0,4 0,5 0,6<br />

Distance of chain from barrier (nm)<br />

Figure 2: Influence of barrier on the mechanical response of single chain. The<br />

mechanical response was represented by energy amplitude and phase shift.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 26<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

tg(δ)<br />

Energy(pJ)


Table 2: Amplitudes and phase shifts of the energy course for different frequencies;<br />

M – results from our model; E – experimental values from the ref [9].<br />

Frequency (Hz) Amplitude E (pJ) Phase shift: tg δ<br />

1 M– 50 segment PE chain 0.00150 ± 0.00002 0.063 ± 0.006<br />

5 M 0.00085 ± 0.00002 0.161 ± 0.01<br />

10 M 0.00139 ± 0.00004 0.203 ± 0.012<br />

20 M 0.00109 ± 0.00001 0.042 ± 0.002<br />

1 E- (LLDPE) - 0.126<br />

1 E- (composite LLDPE/Starch <strong>60</strong>/40 wt) - 0.100<br />

CONCLUSIONS<br />

Sinusoidal deformation of single chain was modeled. Energy response of the model was<br />

analyzed. Amplitudes of the energy and phase shifts were ta<strong>ke</strong>n from average energy course of<br />

ten chains ensemble. We found that the energy was shifted to the deformation of the model<br />

chain, as it was observed in real polymer. In comparison to real polyethylene, our calculated<br />

phase shift by the same frequency was still slightly small, but comparable. The phase shift<br />

increased by the frequencies 5-10 Hz. It was because not all of many parameters were in their<br />

confidence intervals. The correct viscoelastic response might be in a short interval of each<br />

parameter and its right combination should be determined.<br />

The impact of barrier in the vicinity of the chain was detectable. The energy amplitude in the<br />

vicinity of barrier increased by 50 percent from the amplitude of untreated chain, but in reality<br />

the modulus of the polymer increases orderly when it is adsorbed on the solid surface. The<br />

calculated phase shift of one sample increased and of another sample it decreased in<br />

comparison to the chain without the barrier. In reality, the phase shift of the composite is<br />

slightly lower than the phase shift of the pure polymer. The models reasonably described the<br />

behavior of real polymer chain. However, further improvement has been desirable. Moreover,<br />

the properties depend on the supermolecular structure, which would be introduced to the<br />

model.<br />

ACKNOWLEDGEMENT<br />

This research was supported by Ministry of Education of the Czech Republic under research<br />

project MSM 0021630501<br />

REFERENCES<br />

[1] F.W. Starr and S. C. Glotzer: Mat. Res. Soc. Symp. Proc. 661 (2001), p. KK4.1.1.<br />

[2] D. Fren<strong>ke</strong>l, B. Smit: Understanding Molecular Simulation (Computational Science Series,<br />

Vol 1) Academic Press; 2 nd edition, USA (2001).<br />

[3] P.E. Rouse: J. Chem. Phys. 21 (1953) p.1273.<br />

[4] Yn-Hwang L.: Polymer viscoelasticity: Basics, molecular theories and experiments,<br />

World Scientific Publishing Co. Pte. Ltd., Singapore (2003).<br />

[5] F.W. Starr, T.B. Schrødr and S. C. Glotzer: Macromolecules 35 (2002), p. 4481.<br />

[6] J.P. Ryckaert and A. Bellemans: Mol. Phys. 44 (2001) p. 68.<br />

[7] B. Smit, S. Karaborni and J. I. Siepmann: J. Chem. Phys. 2126 (1995) p. 102.<br />

[8] A.G. Pedroso and D.S. Rosa: Carbohydrate Polymers 59 (2005) p. 1.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 27


APPLIKÁCIA NOVEJ EURÓPSKEJ NORNY NA STANOVENIE Cr(VI)<br />

V CEMENTE<br />

Tomáš Ifka, 4. ročník<br />

Vedúci práce: Doc. Dr. Ing. Martin Palou<br />

Oddelenie <strong>ke</strong>ramiky, skla a cementu, Ústav anorganic<strong>ke</strong>j chémie, technológie a materiálov,<br />

FCHPT STU Bratislava, Radlinského 9, 812 37 Bratislava, Slovenská Republika,<br />

e-mail: ifkatomas@centrum.sk<br />

ÚVOD<br />

Chróm je neodstrániteľný stopový prvok surovinového materiálu používaného vo výrobe<br />

cementárs<strong>ke</strong>ho slinku. Vyskytuje sa v prírodných surovinách (íloch, vápencoch a najmä<br />

železitých prísadách) vo forme Cr(III) a vo vymurovkách cementárs<strong>ke</strong>j rotačnej pece. V<br />

cementárskych peciach sa však pri vyso<strong>ke</strong>j teplote, pri oxidačnej atmosfére a alkalic<strong>ke</strong>j<br />

podmien<strong>ke</strong> mení neškodný trojmocný chróm na šesťmocnú formu.<br />

Problematika obsahu chrómu v cemente je dnes vysoko aktuálna. Mnohé štáty, ako napríklad<br />

Nemecko či škandinávs<strong>ke</strong> krajiny, sprísňujú hygienické požiadavky na cementy najmä z<br />

hľadiska obsahu vodorozpustného chrómu. Škandinávska receptúra a Nemecké pravidlá pre<br />

nebezpečné materiály považujú 2 ppm Cr VI za maximálnu bezpečnú hodnotu na zabránenie<br />

výskytu ekzémov u murárov.<br />

Vedecké štúdie taktiež ukázali, že zlúčeniny Cr VI v cemente majú vysokú rozpustnosť vo<br />

vode a tak môžu ľahko prísť do kontaktu s pokožkou murárov. V samotnom Nemecku, 400<br />

murárov malo poškodenú pokožku zapríčinenú chrómanom (1997). Šesťmocný chróm, v<br />

podobe vodorozpustných chrómanov, môže spôsobiť precitlivené reakcie a alergické ekzémy<br />

pri priamom kontakte s pokožkou ľudí. Nebezpečenstvo hrozí aj z ich toxických a potenciálne<br />

karcinogénnych účinkov. Každé použitie cementu so sebou nesie riziko priameho dlhšieho<br />

styku s ľudskou pokožkou s výnimkou kontrolovaných uzatvorených a úplne<br />

automatizovaných procesov. Na predchádzanie kontaktu cementu s pokožkou sú potrebné, ale<br />

nie postačujúce, individuálne ochranné opatrenia. Z toho vyplýva, že na ochranu zdravia ľudí<br />

je potrebné obmedziť používanie cementu s vysokým obsahom vodorozpustného Cr(VI).<br />

Malo by sa obmedziť najmä uvádzanie na trh a používanie cementu alebo cementových<br />

stavebných materiáloch, ktoré obsahujú viac ako 2 ppm šesťmocného chrómu v prípade<br />

činností, kde existuje možnosť kontaktu s pokožkou. Preto podľa nariadenia Európs<strong>ke</strong>ho<br />

parlamentu platného od septembra 2001 je nevyhnutné označením na obale výrobku<br />

upozorniť zákazníkov kupujúcich cementy, resp. cement obsahujúce výrobky (suché<br />

omietkové zmesi, malty, betónové zmesi, cementové lepidlá, tmely a podobne) s obsahom<br />

vodorozpustného Cr(VI) nad 2 ppm, že ide o zdraviu škodlivý výrobok. Pri kontrolovaných<br />

uzavretých alebo úplne automatizovaných procesoch to nie je potrebné a preto im môže byť<br />

udelená výnimka.<br />

V rámci opatrení mnohé cementárs<strong>ke</strong> firmy vyvíjali a používajú činidlá na redukciu<br />

Cr(VI) v cemente. Medzi ne patria heptahydrát síranu železnatého, monosal, siderox alebo<br />

zlúčeniny na báze zeolitu. Cieľom použitia týchto činidiel je potlačiť obsah Cr(VI) na<br />

hodnotu pod 2 ppm. Intenzita redukcie môže závisieť od typu cementu, od činidla a jeho<br />

koncentrácií. Redukčné činidlá by sa mali použiť podľa možnosti čo najskôr, t.j. v mieste<br />

výroby cementu.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 28


Cieľom projektu je:<br />

• aplikovať nový harmonizovaný európsky postup na stanovenie Cr(VI) v cemente<br />

• skúmať účinok redukčných činidiel na cementoch pripravených v závode<br />

Rohožník (Holcim Slovensko a.s.)<br />

• dlhodobý monitoring obsahu Cr(VI) v cementoch (Rohožník Holcim Slovensko<br />

a.s.) pred a po použití redukčných činidiel<br />

• zistiť začiatok účinkovania redukčných činidiel<br />

• zistiť dobu starnutia redukčných činidiel.<br />

Na dosiahnutie vytýčených cieľov boli použité dve redukčné činidlá ( heptahydrát síranu<br />

železnatého a monohydrát síranu železnatého -monosal) a cementy pripravené v závode<br />

Rohožník Holcim Slovensko a. s. (CEM I 42, 5 R, CEM II 32,5/ B-S)<br />

Eliminácia toxických účinkov Cr (VI) obsiahnutých v cemente<br />

Problematikou imobilizácie toxických látok, zameranú na látky obsahujúce zlúčeniny<br />

Cr(VI) sa už dlhšiu dobu zaoberajú pracovníci OKSC FCHPT STU. Tieto látky sa považujú<br />

za príčinu kožných ekzémov a rozpustným zlúčeninám sa pripisujú aj karcinogénne účinky.<br />

Problematika zvýšeného obsahu Cr(VI) v cementoch sa rieši dvoma zásadnými<br />

postupmi<br />

1) je snaha znížiť celkový obsah chrómu už vo vstupnej surovinovej zmesi, čím sa<br />

dosiahne primárne zníženie obsahu chrómu vo výslednom produkte.<br />

2) sekundárne zníženie obsahu zlúčenín Cr(VI) v cemente možno dosiahnuť prídavkom<br />

aktivovaných železnatých solí, ktoré zabezpečujú redukciu vylúhovateľných škodlivých<br />

zlúčenín Cr(VI) na prakticky vo vode nerozpustné a zdraviu neškodné zlúčeniny Cr(III),<br />

pevne zabudované do matrice zhydratovaného cementu.<br />

Síran železnatý ako redukčné činidlo Cr VI<br />

Síran železnatý kryštalizuje z vodných roztokov zvyčajne so siedmimi molekulami vody<br />

ako ,,zelená skalica“ - FeSO4 . 7 H2O . Tvorí svetlozelené jednoklonné kryštály hustoty 1,88<br />

g.cm -3 , ktoré na vzduchu pomaly zvetrávajú a súčasne podliehajú oxidácii na žltohnedý<br />

zásaditý síran železitý. Pri zahrievaní ľahko stráca zelená skalica šesť molekúl vody; omnoho<br />

ťažšie sa oddeľuje posledná molekula. Pri ešte väčšom zahrievaní dochádza k rozkladu s<br />

odštepovaním oxidu siričitého:<br />

2Fe II SO4 = (Fe III O)2SO4 + SO2<br />

Technicky sa pripravuje zelená skalica buď rozpúšťaním železa v zriedenej kyseline<br />

sírovej alebo sa železný kyz nechá vetrať na vzduchu za častého vlhčenia.<br />

Zelená skalica sa získava ako vedľajší produkt pri výrobe kremenca chromitého. Používa<br />

sa pri výrobe atramentu, berlíns<strong>ke</strong>j modrej, vo farbiarstve, na konzervovanie dreva, na ničenie<br />

buriny, tiež príležitostne v lekárstve. Čistí sa zrážaním z vodných roztokov liehom.<br />

V prírode sa zelená skalica vyskytuje v malých množstvách v podobe výkvetu na železnej<br />

rude (pyrite).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 29


Princíp redukcie<br />

Cr 6+ + Fe 2+ → Cr 3+ + Fe 3+ .<br />

Cr 6+ + 3e - → Cr 3+<br />

3Fe 2+ - 3e - → 3Fe 3+<br />

Cr 6+ + 3Fe 2+ → Cr 3+ + 3Fe 3+<br />

EXPERIMENTÁLNA ČASŤ<br />

Príprava vzoriek<br />

- Priemyselné vzorky. Vzorky boli pripravené v závode s prídavkom 0,3 %<br />

heptahydrátu síranu železnatého.<br />

- Laboratórne vzorky. Vzorky boli pripravené prídavkom redukčných činidiel – monosal<br />

a heptahydrát síranu železnatého v koncentráciách uvedených v tabuľ<strong>ke</strong> 1. 500g vzorky<br />

s príslušnou koncentráciou boli dokonale homogenizované.<br />

- Príprava vzoriek na stanovenie Cr(VI):<br />

Na stanovenie vodorozpustného Cr(VI) v cemente sme postupovali podľa Európs<strong>ke</strong>j normy<br />

prEN196-10:2004. Paralelne sme pripravovali vzorky bez štandardného piesku.<br />

Stanovenie bolo realizované pomocou UV – VIS Spektrofometer HEλIOS.<br />

VÝSLEDKY A DISKUSIA<br />

1. Účinok monosalu a heptahydrátu síranu železnatého pri rôznych koncentráciách na<br />

CEM I 42,5 R.<br />

Hlavným cieľom je, aby obsah vodorozpustného Cr(VI) v cemente bol pod 2ppm. Ak<br />

porovnáme účinok monosalu a heptahydrátu síranu železnatého pri rovna<strong>ke</strong>j koncentrácii (tab.<br />

č.1), zistíme že s použitím heptahydrátu síranu železnatého je obsah Cr (VI) vo vzor<strong>ke</strong><br />

cementu nižší ako v prípade monosalu. Pri koncentrácii 0,1 hm. % monosalu bol obsah Cr<br />

(VI) v danej vzor<strong>ke</strong> takmer ekvivalentný množstvu Cr(VI) stanovenému vo vzor<strong>ke</strong> bez<br />

redukčného činidla. Účinok monosalu po týždni pri tejto koncentrácii je zanedbateľný.<br />

Z hľadiska dlhodobého účinku redukčného činidla ako aj z ekonomického hľadiska je podľa<br />

uvedených výsledkov (tab. č.1) vhodné používať na redukciu vodorozpustného Cr (VI)<br />

heptahydrát síranu železnatého pri koncentrácii 0,3 hm. %.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 30


Tab. č.1: Výsledky analýzy Cr(VI) v CEM 42,5 R pri aplikácii redukčných činidiel s rôznou<br />

koncentráciou<br />

CEM I 42,5R<br />

Chemické zloženie [ hm. %]<br />

CaO SiO2 Al2O3 Fe2O3 MgO SO3 Na2O K2O Troska<br />

62,52 22,01 4,95 2,96 2,48 2,74 0,4 0,75 6,6<br />

Stanovenie → 1 týždeň od prípravy vzoriek<br />

pH1 pH2 c [mg/l] A K [ppm] Kkor [ppm]<br />

Neredukovaný 12,92 2,39 0,4782 0,377 2,3910 2,5<strong>60</strong>0<br />

Red. 0,1% FeSO4.7H2O 12,94 2,29 0,3292 0,259 1,64<strong>60</strong> 1,7623<br />

Red. 0,3% FeSO4.7H2O 12,63 2,29 0,0801 0,063 0,4005 0,4288<br />

Red. 0,5% FeSO4.7H2O 12,86 2,28 - - - -<br />

Red. 0,1% monosal 12,70 2,49 0,4187 0,330 2,0935 2,2414<br />

Red. 0,3% monosal 13,20 2,42 0,2139 0,169 1,0695 1,1451<br />

Red. 0,5% monosal 13,02 2,37 0,1413 0,111 0,7065 0,7564<br />

pH1 - pred prídavkom HCl, pH2 - po prídavku HCl, c - koncentrácia Cr(VI) z kalibračnej<br />

krivky v mg/l, A – absorbancia, K - obsah vodorozpustného Cr(VI) v cemente s obsahom<br />

trosky, Kkor - obsah vodorozpustného Cr(VI) v čistom cemente<br />

2. Začiatok pôsobenia redukčného činidla na Cr(VI)<br />

Na zistenie začiatku účinkovania redukčného činidla bol použitý heptahydrát síranu<br />

železnatého pri dvoch koncentráciách 0,3 a 0,5 hm. %. Stanovoval som obsah<br />

vodorozpustného Cr(VI) po dobu 1, 4 a 24 hodinách. Výsledky sú uvedené v grafe č.1, kde je<br />

evidentné, že po 1 jednej hodine sa obsah Cr(VI) redukoval na minimálnu hodnotu. To<br />

znamená, že heptahydrát síranu železnatého pri koncentrácii 0, 3 a 0,5 hm. % začína pôsobiť<br />

už po jednej hodine aplikácie.<br />

Tab. č.2: Chemické zloženie vzorky CEM II/ B-S 32,5R<br />

CEM II/ B-S 32,5R<br />

Chemické zloženie [ hm.%]<br />

CaO SiO2 Al2O3 Fe2O3 MgO SO3 Na2O K2O Troska<br />

56,20 27,44 6,02 2,57 3,64 2,77 0,45 0,77 28,1<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 31


K [ppm]<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

CEM II / B-S 32,5R<br />

1 4 24<br />

t [hod]<br />

nered.<br />

red. 0,3% hepta<br />

red. 0,5% hepta<br />

Graf č.1: Začiatok pôsobenia redukčného činidla na Cr(VI)<br />

3 Doba starnutia redukčného činidla<br />

Na určenie doby pôsobenia redukčného činidla som použil cement CEM II/B-S 32,5R, do<br />

ktorého som pridal 0,5 hm. % heptahydrátu síranu železnatého. Po stanovení<br />

vodorozpustného Cr (VI) v tejto vzor<strong>ke</strong> cementu som zistil, že pri danej koncentrácii<br />

redukčného činidla je obsah Cr (VI) vo vzor<strong>ke</strong> veľmi nízky a to aj po 65. dňoch. Pretože<br />

obsah stanoveného Cr(VI) v cemente je veľmi nízky, kolísanie výsledkov je pravdepodobne<br />

spôsobené chybou pri meraní. 44 dní od prípravy danej vzorky sa začína Cr (III) spätne<br />

oxidovať na Cr(VI).<br />

Tab. č.3: Chemické zloženie vzorky cementu CEM I 42,5R<br />

CEM II/ B-S 32,5R<br />

Chemické zloženie [ hm. %]<br />

CaO SiO2 Al2O3 Fe2O3 MgO SO3 Na2O K2O Troska<br />

55,98 27,16 5,82 2,32 4,27 2,55 0,44 0,78 29,4<br />

K [ppm]<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

CEM II / B-S 32,5R<br />

9 16 44<br />

t[dni]<br />

51 65<br />

nered.<br />

red. 0,5% hepta<br />

Graf č.2: Monitorovanie doby starnutia redukčného činidla za obdobie 65 dní<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 32


ZÁVER<br />

Podľa smernice 76/769/EHS Európs<strong>ke</strong>j Rady, každý balený cement musí obsahovať<br />

Cr(VI) pod 2 ppm. Z toho vyplýva, že cementársky priemysel musí vyvíjať metódy redukcie<br />

a kontroly obsahu Cr(VI) vo svojich výrobkoch. Aplikácia novej normy na stanovenie<br />

Cr(VI) v cemente bola na konktrétnych cementoch vyrábaných v závode Rohožník Holcim<br />

Slovensko, a.s. V práci som použil dve redukčné činidlá (heptahydrát a monohydrát síranu<br />

železnatého) a sledoval som ich účinok na Cr(VI) podľa koncentrácie (0,1; 0,3; 0,5 hm. %)<br />

a doby starnutia do troch mesiacov.<br />

Z laboratórnych výsledkov stanovenia Cr(VI) v cemente vyplýva:<br />

- Monosal začína účinkovať až pri (redukovať Cr(VI) pod 2 ppm) koncentrácii 0,3 hm. %.<br />

Pri koncentrácii 0,1 hm. % očakávaný efekt nebol dosiahnutý.<br />

- Heptahydrát síranu železnatého účinkuje už pri koncentrácii 0,1 hm. %<br />

- Výrazný účinok obidvoch redukčných činidiel je pri koncentrácii 0,5 hm. %<br />

- Redukčné činidlo začína pôsobiť už do jednej hodiny.<br />

- Po 45. dňoch začína spätná oxidácia redukovaného Cr(III) na Cr(VI). Obsah<br />

vodorozpustného Cr(VI) rastie s časom veľmi pomaly, takže sa nepredpokladá<br />

dosiahnutie kritic<strong>ke</strong>j hodnoty 2 ppm.<br />

- Monitorovanie obsahu Cr(VI) v cemente pred a po pridaní redukčného činidla prinieslo<br />

tieto výsledky:<br />

- Obsah Cr(VI) v cemente sa bez redukčného činidla menil podľa dátumu výroby.<br />

- Účinky redukčného činidla neboli v niektorých prípadoch uspokojivé, lebo obsah Cr(VI)<br />

nebol pod 2 ppm.<br />

- Aj v prípade vzoriek cementov zo závodu som zistil starnutie redukčného činidla<br />

(spätná oxidácia Cr(III) na Cr(VI)).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 33


DISSOLUTION OF HUMIC SUBSTANCES IN UREA IN LIGHT OF<br />

SUPRAMOLECULAR THEORY<br />

Jiří Kislinger, 5 th year<br />

Supervisor: Prof. Alessandro Piccolo*<br />

Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied<br />

Chemistry, Purkyňova 118, 612 00, Brno, e-mail: xckislinger@fch.vutbr.cz<br />

* Università degli Studi di Napoli Federico II, Facoltà di Agraria, Dipartimento di Scienze del<br />

Suolo, della Pianta e dell’Ambiente, Via Università 100, 800 55, Portici, Italy<br />

INTRODUCTION<br />

Humic substances (HS) are natural organic compounds present in all terrestrial and aquatic<br />

systems. Processes of their accumulation and decomposition in different environmental<br />

domains are still largely unclear [1]. Nevertheless, the characteristics and quantity of HS<br />

greatly affect the environmental fate of organic pollutants in soils and natural waters [2].<br />

Molecular properties of dissolved HS have recently been recognized to influence removal of<br />

synthetic organic compounds from municipal and industrial wastewaters [3], and give rise to<br />

binding and environmental transport of both nonpolar and slightly polar organic contaminants<br />

[4].<br />

Despite their prominent environmental role, the chemical structure of HS is still far from<br />

clear mainly because of their chemical heterogeneities and spatial variabilities. As a<br />

consequence the conformational structures of HS are also ill-defined. There is a general<br />

acceptance of the concept that HS are polydisperse, long-chain, randomly coiled molecules<br />

that may have a slight degree of crosslinking [5]. Negative charges arising from ionization of<br />

carboxyl groups are responsible for mutual repulsion and expansion of the coils [6]. The<br />

random coil model depicts HS as most densely coiled at high concentrations, low pH and high<br />

ionic strength, and as linear colloids at neutral pH, low ionic strength and low concentrations<br />

[7]. This model has helped several investigators to explain results obtained by gel permeation<br />

chromatography [8], or by diffusion through ultrafiltration membranes [9]. A common<br />

observation was that elution at larger permeation volumes was retarded considerably when the<br />

ionic strength of the mobile phase was increased. The changes were attributed to coiling of<br />

humic molecules with consequent decrease of hydrodynamic radius and enhanced diffusion<br />

through smaller gel pores. The same phenomenon was also observed by varying the ionic<br />

strength of the mobile phase in High Pressure Size Exclusion Chromatography (HPSEC)<br />

experiments with organic colloids from natural waters [10]. Another conformational model<br />

still represents humic materials as polymers but aggregated in micelle-li<strong>ke</strong> or membrane-li<strong>ke</strong><br />

structures [11]. In this description, humic molecules would have inner hydrophobic domains<br />

with structural voids that could entrap hydrophobic organic compounds [12] and quench their<br />

fluorescence activity [13].<br />

Recent results, mainly from low-pressure size-exclusion chromatography experiments,<br />

have indicated that humic aggregates are composed of relatively small subunits weakly held<br />

together by hydrophobic forces [4, 14]. The aggregation of humic material in high molecular<br />

dimensions is considered not to be permanent but found to be able to be reversibly disrupted<br />

by the presence of an organic acid in a rapid change from acidic to alkaline pH. These<br />

findings have suggested that HS in solution would appear to consist of randomly selfassembling<br />

supramolecular associations rather than polymeric coils, as in biological<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 34


macromolecules [15]. This innovative explanation of the conformational behavior of HS had<br />

to be verified in other experimental conditions and HPSEC was utilized for further<br />

investigations. For a number of reasons, HPSEC is more valid chromatographic system than<br />

low-pressure gel permeation [16].<br />

The evidence that humic molecules are suprastructural associations in aqueous solutions is<br />

given by the elution patterns of HS in HPSEC experiments in 8 M urea. Concentrated urea<br />

was successfully employed to disrupt protein-protein interactions and to solubilize<br />

aggregating hydrophobic proteins for their further separation [17]. Thus the aim of this work<br />

was to confirm and deepen the knowledge of behavior of HS in solutions in the term of<br />

supramolecular approach.<br />

EXPERIMENTAL PART<br />

Humic acids were obtained from 3 agricultural soils from: Denmark (Haplic Luvisol,<br />

Roskilde) – DK; Germany (Eutric Luvisol, Munich) – DE; and Italy (Eutric Regosol, Caserta)<br />

– IT. These humic acids were extracted by standard procedures [5] and were subsequently<br />

suspended in distilled water and titrated for 3 hours to pH 7 using CO2–free solution of 0.5 M<br />

NaOH in an atmosphere of N2. The resulting sodium-humates were than filtered through a<br />

Millipore 0.45 μm membrane, and freeze-dried.<br />

The HPSEC system used consists of a Shimadzu LC–10ADVP solvent pump and two<br />

detectors in series, a Perkin–Elmer LC–295 UV/VIS detector set at 280 nm and a refractive<br />

index (RI) detector (Refractomonitor IV, Fisons Instruments). A Rheodyne rotary injector<br />

equipped with a 100 μL sample loop was used to charge the humic solutions. A Biosep SEC–<br />

S–2000 column (300 by 7.8 mm i.d.) was adopted in these experiments. Humate solutions for<br />

HPSEC analysis were prepared by dissolving 15 mg of each sample in 25 mL of the eluent<br />

(8 M urea) to reach concentration 0.6 g×L –1 .<br />

In the UV/VIS spectroscopy experiments the Na-humates were redissolved in 8 M urea to<br />

reach concentration 0.2 g×L –1 . Such solutions were diluted 20 times in 8 M urea. These were<br />

scanned for the light absorbance from 200 to 800 nm in a Perkin–Elmer Lambda 25 UV/VIS<br />

spectrophotometer using quartz cuvettes of 1 cm pathlength against the solvent. Two<br />

replicates for each sample were run to obtain absorbance curves.<br />

RESULTS AND DISCUSSION<br />

The elution profiles of three different purified HS dissolved in 8 M urea and eluted in the<br />

same solution are shown in Figs. 1, 2, and 3. The experiment is illustrative of the capacity of<br />

urea to separate the hydrophobic from the hydrophilic components of HS. The<br />

chromatograms show a net separation of humic matter: a high-molecular-size fraction at the<br />

void volume visible only by the UV detector and a low-molecular-size fraction eluting at the<br />

total volume detected only by the RI detector. The humic hydrophobic molecules are strongly<br />

associated through a hydrophobic effect induced by the highly concentrated urea that interacts<br />

more favorably than hydrophobic molecules with the network of the water structure.<br />

Differences among HS can also be noted. The humic acid from Italian soil was the only<br />

one to show two well-separated peaks at the RI detector system, whereas only one very<br />

intense peak (>1000 mV) at the column void volume was shown by the UV detector (Fig. 1).<br />

This indicates that while light-absorbing chromophores (280 nm) with a high molar<br />

absorptivity were excluded rapidly from the column, their concentration in the humic sample<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 35


was relevant and of similar order of magnitude to the nonabsorbing hydrophilic, probably<br />

ionized, compounds detected by the RI detector at the total exclusion volume.<br />

Fig. 1: UV- and RI-detected HPSEC chromatogram of humic acid from the Italian soil<br />

The HA from the Danish soil gave similar complete separation between the large-size<br />

hydrophobic chromophore fraction and the small-size ionized and hydrophilic components<br />

shown by the RI detector (Fig. 2). However, while the molar absorptivity of the excluding<br />

chromophores was still high (as suggested by an absorption intensity >500 mV), the lack of<br />

corresponding peaks at the RI detector indicated that their concentration in the sample was<br />

much less than that in the hydrophilic components excluded at large elution volumes.<br />

Fig. 2: UV- and RI-detected HPSEC chromatogram of humic acid from the Danish soil<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 36


Identical behavior was shown by the humic acid extracted from the German soil (Fig. 3).<br />

Also for this sample, the chromophore association excluded at the column void volume was<br />

hardly representative of the mass of humic sample since the corresponding peak at the RI<br />

detector was almost irrelevant in comparison to the signal of the small-sized nonabsorbing<br />

hydrophilic constituents.<br />

Fig. 3: UV- and RI-detected HPSEC chromatogram of humic acid from the German soil<br />

All 3 HA samples diluted in 8 M urea were scanned for the light absorbance to gain some<br />

information about the optical properties. In all cases the absorption spectra (Fig. 4) decreased<br />

in an approximately exponential fashion with increasing wavelength and exhibited no distinct<br />

absorption bands. The differences in light absorption of HAs are related to their specific<br />

molecular composition. For the preceding HPSEC experiments the wavelength 280 nm has<br />

verified to be the optimal to monitor the separation of humic matter to excluding moieties.<br />

Fig. 4: Absorbance curves of soil humic acids dissolved in 8 M urea<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 37


CONCLUSION<br />

These findings indicate that humic substances, rather than being polymeric macromolecules,<br />

may be more simply regarded as supramolecular associations of relatively small<br />

heterogeneous molecules stabilized mainly by dispersive forces. The model of dissolved<br />

humic substances based on the self-association of small components rather than on the<br />

polymeric random coil model should contribute to further understanding of the reactivity of<br />

humic substances in many ecological and environmental processes in which they are<br />

involved.<br />

ACKNOWLEDGEMENT<br />

Encouragement for work, help and useful comments of Prof. A. Piccolo and my Italian<br />

friends and colleagues Drs. P. Conte and R. Spaccini during my residence in Naples are<br />

gratefully acknowledged. Great thanks go also to Dr. Jiří Kučerík for his everlasting support.<br />

REFERENCES<br />

[1] Piccolo, A. 1996. Humus and soil conservation, p. 225-264 in Humic substances in<br />

terrestrial ecosystems. Elsevier, Amsterdam.<br />

[2] Carter, C.W., Suffet, I.H. 1982. Environ. Sci. Technol. 16: 735-740<br />

[3] Karanfil, T., Kilduff, J.E., Schlautman, J.A., Weber, W.J. Jr. 1996. Environ. Sci.<br />

Technol. 30: 2187-2201<br />

[4] Piccolo, A., Nardi, S., Concheri, G. 1996. Chemosphere 33: 595-<strong>60</strong>2<br />

[5] Stevenson, F.J. 1994. Humus chemistry: Genesis, Composition, Reactions. 2 nd ed.<br />

Wiley-Intersci., New York.<br />

[6] Cameron, R.S., Swift, R.S., Thornton, B.K., Posner, A.M. 1972. J. Soil Sci. 23: 395-408<br />

[7] Ghosh, K., Schnitzer, M. 1980. Soil Sci. 129: 266-276<br />

[8] De Haan, H., Jones, R.I., Salonen, K. 1987. Freshwater Biol. 17: 453-459<br />

[9] Cornel, P.K., Summers, S.R., Roberts, P.V. 1986. J. Colloid Interface Sci. 110: 149-163<br />

[10] Chin, Yu-P., Gschwend, P.M. 1991. Geochim. Cosmochim. Acta 55: 1309-1317<br />

[11] Wershaw, R.L. 1993. Environ. Sci. Technol. 27: 814-816<br />

[12] Schlautman, M.A., Morgan, J.J. 1993. Environ. Sci. Technol. 27: 961-969<br />

[13] Engebretson, R., von Wandruszka, R. 1997. Org. Geochem. 26: 759-767<br />

[14] Piccolo, A., Conte, P. 2000. Adv. Environ. Res. 3: 508-521<br />

[15] Cantor, C.R., Schimmel, P.R. 1980. Biophysical chemistry, Part I: The conformation of<br />

biological macromolecules. Freeman, New York.<br />

[16] Conte, P., Piccolo, A. 1999. Chemosphere 38: 517-528<br />

[17] Hjelmeland, L.M. 1990. Solubilization of native membrane proteins. In Guide to<br />

Protein Purification. Methods of Enzymology, Vol. 182: 253-264. Academic Press, San<br />

Diego.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 38


WETTABILITY OF PLASMA POLYMERIZED<br />

VINYLTRIETHOXYSILANE FILM<br />

Soňa Lichovníková, 5 nd year<br />

Supervisor: Doc. RNDr. Vladimír Čech, PhD.<br />

Institute of Material Science, Faculty of Chemistry, Brno University of Technology,<br />

Purkyňova 118, 612 00 Brno, Czech Republic, e-mail: xclichovnikova@fch.vutbr.cz<br />

INTRODUCTION<br />

This paper deals with wettability of thin polymer films prepared by Plasma Enhanced<br />

Chemical Vapor Deposition (PE CVD) from vinyltriethoxysilane (VTES) monomer deposited<br />

on planar substrates. The sessile drop method was used to measure the contact angles and the<br />

surface free energy was evaluated using the approach of Owens-Wendt geometrical mean<br />

method, Wu harmonic mean method and the acid-base method. Changes in the surface<br />

structure were investigated by Fourier Transform Infrared Spectroscopy (FTIR) measurement,<br />

X-Ray Photoelectron Spectroscopy (XPS) measurement and Rutherford Backscattering<br />

Spectrometry (RBS). A relation between wettability and process parameters of the plasma<br />

deposition were discussed as well. [1]<br />

EXPERIMENTAL<br />

PLASMA POLYMERIZATION<br />

Plasma polymer films of VTES CH2-CH-Si(-O-CH2-CH3)3 (purity ≥ 98 %, Fluka) were<br />

deposited on glass substrates (special microscope slides without flaws, 1.0 × 26 × 76 mm 3 ,<br />

Knittel Gläser, Germany, for surface free energy determination) and on infrared-transparent<br />

silicon wafers (0.8 × 10 × 10 mm 3 , Terosil Co., for film analyses by FTIR, XPS and RBS),<br />

using a helical coupling plasma system (13.56 MHz) in a vacuum tubular chamber (40 mm in<br />

diameter, made of Pyrex glass). Details of the apparatus are described in Ref. [2].<br />

The vacuum system was evacuated to a pressure of 5 × 10 -3 Pa and then flushed with argon<br />

gas (10 sccm) for 10 min. A basic pressure of 2 × 10 -3 Pa was established in the deposition<br />

chamber after flushing. Monomer vapor at a mass flow rate of 0.45 sccm was introduced into<br />

the deposition chamber using a dose valve and the plasma then was ignited at a selected<br />

effective power of 0.1, 0.5, 2.5, 5.0, 10.0 and 25 W, using pulsed plasma with ton= 1 ms and a<br />

total power of 50 W. Deposition pressure was about 1.3 Pa and the film thickness (about 400<br />

nm) was controlled by deposition time ranging from 5-100 min. When the deposition process<br />

was finished, all the apparatus was flushed with argon gas and after 30 min the chamber was<br />

flooded by air to atmospheric pressure. Prepared samples were transported from the chamber<br />

into a desiccator to avoid contamination before measurements. [3]<br />

THIN FILM ANALYSIS<br />

The sessile drop method (tangent method) employing an OCA 10 goniometer<br />

(DataPhysics) with Software SCA 20 for Windows 9x/NT was used to measure the contact<br />

angles. The surface free energy was evaluated using the approach of Owens-Wendt<br />

geometrical mean method, Wu harmonic mean method and acid-base method [1]. The surface<br />

free energy, as well as the dispersive and polar components, the Lewis electron acceptor (γs (+) )<br />

and Lewis electron donor (γs (-) ) components of VTES film were evaluated from contact angle<br />

measurements using distilled water, ethylene glycol, glycerol and methylene iodide. A small<br />

drop of liquid was carefully placed on the surface of substrate (glass slide). The contact angle<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 39


is obtained by measuring the angle between the tangent to the profile at the point of contact<br />

with the solid surface. Software SCA 20 offers the calculation of the surface free energy of<br />

solids and their components. It also contains database of liquids and their necessary<br />

parameters. Owens-Wendt and Wu methods express the surface tension as a sum of<br />

components based on dispersion forces (γ d ) and polar forces (γ p ): γ=γ d +γ p . Van Oss, Good<br />

and Chaudhury´s acid-base theory is more detailed in the surface free energy specification and<br />

leads from Lewis theory, where Lewis acid is an electron-pair acceptor, Lewis base is an<br />

electron-pair donor. The surface tension is a sum of two components: the Lifshitz-van der<br />

Waals component (γs LW ) and acid-base component (γs AB ),<br />

γ +<br />

LW AB<br />

= γ γ . γs LW reflects the<br />

long-range interactions (to 100 Å), including dispersive interaction, the dipole-dipole and the<br />

dipole induced dipole interaction and it influences the total surface free energy at most. γs AB is<br />

associated with the transfer of electrons between an electron donor (γs (-) ) and an electron<br />

acceptor (γs (+) AB + −<br />

) in short range of < 3 Å and γ s = 2 γ s γ s . γs AB is relatively small and not so<br />

important when compared to γs LW . Values of the surface free energy parameters of probe<br />

liquids were ta<strong>ke</strong>n according to different authors. Distilled water and diiodomethane were<br />

ta<strong>ke</strong>n according to Erbil, formamide and glycerol according to Van Oss et al. Three different<br />

probe liquids have to be used for calculation by acid-base approach, averaged results of the<br />

surface tension calculation from the water-diiodomethane-formamide and waterdiiodomethane-glycerol<br />

triplets were used. The contact angle data of two different testing<br />

liquids are needed for the determination of γ d and γ p components according Owens-Wendt<br />

and Wu methods: water (author Strom et al.) and diiodomethane (author Janczuk et.al.).<br />

Several standard conditions have to be met to measure reproducible contact angles: drop<br />

volume (chec<strong>ke</strong>d by micrometer screw), time (10 seconds) and laboratory temperature. More<br />

information about equations for surface tension calculation and contact angle measurements<br />

can be found in Ref. [1,6]<br />

The elemental composition (C, Si, O) in the surface region (top 6-8 nm) of the deposited<br />

layers was determined by XPS on an ADES 400 VG Scientific photoelectron spectrometer<br />

using MgKα (1253.6 eV) photon beams. XPS is sensitive surface selective method which<br />

provides information about chemical composition and electron structure of the surface of<br />

solids. The elemental composition has been also studied by conventional and resonant RBS<br />

and Elastic Recoil Detection Analysis (ERDA) methods using Van de Graaf generator with a<br />

linear electrostatic accelerator. The RBS spectrum contains information about elemental<br />

composition in depth levels of sample. [4,5]<br />

Infrared measurements were carried out using a Nicolet Impact 400 Fourier transform<br />

infrared (FTIR) spectrophotometer and the chemical bonds in thin films were determined by<br />

interpreting the infrared absorption spectrum. Samples were measured without the protective<br />

atmosphere.<br />

RESULTS AND DISCUSSION<br />

Plasma-polymerized VTES films were deposited on planar glass substrates at different<br />

effective powers (0.1-25 W) at conditions described above. Sessile drop measurements were<br />

employed to analyze the surface free energy of the film. Measured contact angles of the probe<br />

liquids (water, diiodomethane, formamide, glycerol) were changed according to various<br />

effective power (W). In Figure 1, trend of decreasing contact angles with the magnitude of the<br />

input RF power can be seen. Contact angles of all liquids are slightly decreasing before<br />

reaching 5 W effective power. Maximum decrement of contact angle can be seen between 2.5<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 40


W and 5 W. The wettability of liquids generally increases with increasing effective power,<br />

except diiodomethane, where the maximum wettability is during 5 W effective power. In<br />

Figure 2, there can be seen the trend of increasing surface free energy (mJ.m -2 , average of<br />

both triplets) with the magnitude of the input RF power. The largest increase is during 5 W<br />

effective power. When the surface free energy increases, wettability is also increased. Total<br />

surface free energy has maximum during 25 W. As can be seen, the most important<br />

component which influences the total surface free energy is γs LW . The other part of the surface<br />

free energy is the γs AB divided in electron acceptor γs (+) (acid) and donor γs (-) (basic)<br />

components. The γs AB component is in comparison with the γs LW component small. γs (-)<br />

component is much higher than γs (+) with values near zero.<br />

Contact angle [deg.]<br />

90<br />

80<br />

70<br />

<strong>60</strong><br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

water<br />

diiodomethane<br />

formamide<br />

glycerol<br />

0,1 1 10<br />

W eff [Watt]<br />

Surface free energy [mJ/m 2 ]<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0,1 1 10<br />

W eff [Watt]<br />

Figure 1, 2: Dependence of the contact angle of all testing liquids and dependence of the<br />

surface free energy components (acid-base approach) on the magnitude of the input RF<br />

power<br />

In Figure 3 can be seen calculated total surface free energy and its components (in mJ.m -2 )<br />

for set of samples, by Owens-Wendt geometric mean (O-W) and Wu harmonic mean (Wu)<br />

methods, depending on the effective<br />

Surface free energy [mJ/m 2 ]<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0,1 1 10<br />

W eff [Watt]<br />

γ TOT (O-W)<br />

γ TOT (Wu)<br />

(d) (O-W)<br />

γ<br />

s<br />

(d)<br />

γ (Wu)<br />

s<br />

(p)<br />

γ (O-W)<br />

s<br />

(p)<br />

γ (Wu)<br />

s<br />

Figure 3: Dependence of the surface free<br />

energy components (Owen-Wendt and Wu<br />

approach) on effective power<br />

γ TOT<br />

γ LW<br />

γ +<br />

γ −<br />

power. Total surface free energy is sum<br />

of γ d and γ p components. Values<br />

obtained by Wu method are not exactly<br />

equal to the values obtained by O-W<br />

method. It is caused by different γ d and<br />

γ p values of probe liquid diiodomethane.<br />

Total surface free energy (of both<br />

methods) and wettability increase with<br />

increasing effective power. The largest<br />

increase of surface free energy is during<br />

5 W. Surface free energy can be<br />

considered almost constant during higher<br />

effective powers. Dispersion component<br />

influences the total surface free energy at<br />

most, but influence of polar component<br />

can’t be neglected. Both components increase with increasing effective power. Total surface<br />

free energy of O-W, Wu and acid-base approaches is quite the same. The difference is caused<br />

by interpretation of the surface free energy components. Surface free energy values obtained<br />

by acid-base approach are closer to values at O-W method than Wu method. Wettability of<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 41


pp-VTES thin films could be well controlled by process parameters, especially effective<br />

powers.<br />

To investigate relationship between wettability and chemical status of the thin VTES films,<br />

the data from FTIR, XPS and RBS measurements were used. In Figure 4 and 5 can be seen<br />

comparison of FTIR spectra of three samples with different effective powers. We can see<br />

some changes in chemical structure between the high-power and low-power deposited<br />

polymers. The absorption bands at 2973 cm -1 and 2924 cm -1 were assigned to CH3 and CH2<br />

stretching vibrations. With increasing of effective power, intensity of bands decreases as well<br />

as bands 1070 cm -1 assigned to Si-O-C stretching vibrations, 885 cm -1 assigned to Si-C, 790<br />

cm -1 assigned to Si-O, 11<strong>60</strong> cm -1 and 965 cm -1 assigned to Si-O-C2H5. The dominant<br />

absorption bands in all spectra can be found at a range 1000-1200 cm -1 because the plasma<br />

polymer of VTES was formed by the Si-O-C network. The greatest decrease of peak area was<br />

measured in Si-O-C group. This group is only one from Si-groups which is apparent at 25 W<br />

effective power. The pp-VTES films seemed to be free of vinyl groups as there were no<br />

absorption bands at positions mar<strong>ke</strong>d by dashed line (Fig. 4). With increasing power a new<br />

absorption band can be seen at 3480 cm -1 assigned to the OH stretching vibrations (strong<br />

polar group) and also at 1700 cm -1 corresponding to the C=O carbonyl stretching vibrations<br />

(medium polar group), so the presence of polar substances on the surface increases. It comes<br />

to that wettability also increases with increasing power which can be also connected with<br />

decreasing of stretch band intensity of apolar substances (especially CH3) and decreasing of<br />

inorganic Si-O-C substances. At lower effective powers (under 5 W), it seems that apolar<br />

groups (CH3, Si-Et, Si-C, Si-H) are lin<strong>ke</strong>d to Si-O-C network and create more apolar surface<br />

in comparison with samples at higher effective powers where polar groups li<strong>ke</strong> OH and C=O<br />

are lin<strong>ke</strong>d to the carbon network.<br />

Absorbance (a.u.)<br />

OH<br />

CH 3<br />

CH 2<br />

CH 2<br />

CH 3<br />

Si-H<br />

0.05 W<br />

5 W<br />

25 W<br />

Si-O-C<br />

Si-Et<br />

C=O CH2 Si-Et<br />

vinyl vinyl vinyl<br />

Si-O<br />

Si-C<br />

4000 3500 3000 2500 2000 1500 1000 500<br />

Wavenumber (cm -1 )<br />

Figure 4, 5: Comparison of VTES FTIR spectra of three different effective powers (W)<br />

and dependence of the peak area (a.u.) from VTES FTIR spectra on the effective power (W)<br />

In Figure 6 and 7 can be seen the results from XPS and RBS measurements – element<br />

abundances of C, O, Si (at. %) and elements ratio which also depend on effective power. With<br />

increasing of effective power, C concentration increases, O and Si concentration decrease.<br />

Ratios C/Si, O/Si, C/O at a higher power of 25 W are very similar to those of the monomer<br />

molecule. As can be seen, dependences of atomic concentration and element ratio on film<br />

thickness could be neglected. C concentration increases with increasing power but it seems<br />

that in high powers C create cage and polar groups OH, C=O are lin<strong>ke</strong>d to cage and stick out.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 42


Hence wettability is higher. O and Si concentrations decrease with increasing power, but in<br />

lower powers Si-O-C groups created polymer network, apolar groups are lin<strong>ke</strong>d to network<br />

and stick out. Wettability is than smaller. This implies that wettability of VTES is influenced<br />

especially by groups which stick out the network and it depends if groups are polar or apolar.<br />

This conclusion corresponds to investigation in Ref. [7].<br />

Atomic concentration (at%)<br />

80<br />

70<br />

<strong>60</strong><br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Film thickness: ~400 nm<br />

XPS<br />

RBS<br />

Carbon<br />

Oxygen<br />

Silicon<br />

0,1 1 10<br />

Effective power (W)<br />

Effective power: 5 W<br />

Carbon<br />

Oxygen<br />

Silicon<br />

XPS<br />

RBS<br />

200 500 1000<br />

Film thickness (nm)<br />

80<br />

70<br />

<strong>60</strong><br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Element ratio<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Film thickness: ~400 nm<br />

C/Si (monomer)<br />

C/Si<br />

O/Si (monomer)<br />

O/Si C/O<br />

C/O (monomer)<br />

0<br />

0,1 1 10<br />

Effective power (W)<br />

Effective power: 5 W<br />

200 500 1000<br />

Film thickness (nm)<br />

Figure 6, 7: Comparison of RBS and XPS measurements: dependence of the atomic<br />

concentration (at %) on effective power (W) and dependence of the elements ratio on effective<br />

power (W)<br />

CONCLUSION<br />

Plasma-polymerized thin films of VTES were deposited on planar glass substrates and<br />

silicon wafers and investigated by contact angle measurements, FTIR, XPS and RBS<br />

methods. Process parameters, especially effective power can influence/control the chemical<br />

structure, elemental composition and wettability. Wettability increases with increasing<br />

effective power and it seems that wettability is influenced mainly by groups sticking out of<br />

the network and by polar groups.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by the Czech Science Foundation, grant no.104/06/0437, and the<br />

Czech Ministry of Education, grant no. 1P05OC087 (COSTP12). The author would li<strong>ke</strong> to<br />

thank Dr. J. Zemek (XPS), Dr. V. Perina (RBS/ERDA) and J. Studynka (FTIR) for<br />

spectroscopic measurements and analyses.<br />

REFERENCES<br />

[1] F. Garbassi, M. Morra, E. Occhiello, Polymer Surfaces, John Wiley & Sons Ltd, New<br />

York, 1998.<br />

[2] R. Prikryl, O. Salyk, J. Vanek, V. Cech, Czech. J. Phys. 52 (2002), D816.<br />

[3] V. Cech, N. Inagaki, J. Vanek, R. Prikryl, A. Grycova, J. Zemek, Thin Solid Films 502<br />

(2006) 181-187.<br />

[4] Jiří Sova, Diploma Thesis, Brno University of Technology, Brno, 2005.<br />

[5] J.F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, John<br />

Wiley & Sons Ltd, London, 2003.<br />

[6] S. Wu, Polymer Interface and Adhesion, Marcel Dek<strong>ke</strong>r, Inc., New York, 1982.<br />

[7] V. Cech, J. Vanek, V. Perina, J. Zemek, Chemical properties of plasma-polymerized<br />

vinyltriethoxysilane, ISPC-17, Toronto, August 7-12, 2005, p.1-5.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 43<br />

C/Si<br />

C/O<br />

O/Si<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0


URČOVANIE DISTRIBÚCIE DOMÉN V SPIN CROSSOVER<br />

SYSTÉMOCH POMOCOU ANALYTICKEJ FUNKCIE<br />

Ján Pavlik, 4. ročník<br />

vedúci práce: Prof. Ing. Roman Boča, DrSc.<br />

Slovenská technická univerzita v Bratislave, <strong>Fakulta</strong> chemic<strong>ke</strong>j a potravinárs<strong>ke</strong>j technológie,<br />

Oddelenie anorganic<strong>ke</strong>j chémie, Radlinského 9, 812 37 Bratislava,<br />

email: jan.pavlyk@gmail.com<br />

ÚVOD<br />

Niektoré komplexy prechodných kovov sa môžu predovšetkým v závislosti od teploty (ale<br />

napríklad aj tlaku, magnetického poľa a pôsobenia svetla) vyskytovať buď v nízkospinovom<br />

(LS) alebo vysokospinovom (HS) stave. Tieto dva stavy majú rozdielne optické, magnetické a<br />

objemové vlastnosti. Jav prechodu medzi týmito stavmi sa označuje ako spin crossover. Jeho<br />

možnosť je nutne podmienená tým, aby základným energetickým stavom molekuly v kryštáli<br />

bol nízkospinový. Ďalšou podmienkou je, aby entropia HS stavu bola vyššia ako LS. Pri<br />

splnení týchto podmienok bude existovať teplota (tzv. teplota prechodu), pri ktorej bude<br />

pozorovateľný prechod medzi nimi [6]. Spin crossover sa zaznamenáva najčastejšie formou<br />

závislosti zastúpenia HS molekúl od teploty.<br />

MODELY ISINGOVHO TYPU (MIKROSKOPICKÉ MODELY)<br />

Spoločnou črtou týchto modelov je predpoklad nerovnakého vzájomného pôsobenia<br />

susediacich molekúl, ktoré sú v rôznom spinovom stave a parametrizovanie tejto interakcie<br />

empirickou konštantou. Konkrétne sa pre spin crossover systém predpokladá hamiltonián<br />

nasledujúceho typu [9]:<br />

Hˆ= ( Δ ˆ ˆ<br />

0 /2) σ − J σ σ<br />

(1.1)<br />

kde Δ0 je energetický rozdiel molekuly v stave HS a LS, J je konštanta kooperativity, teda<br />

miera vplyvu stavov okolitých molekúl na stav sledovanej molekuly a ˆ σ je operátor tzv.<br />

fiktívneho spinu, ktorý rozlišuje medzi LS a HS stavom definičným vzťahom:<br />

ˆ σ LS = -1 LS (1.2)<br />

ˆ σ HS = +1 HS (1.3)<br />

Ďalej σ značí teplotný priemer fiktívneho spinu, teda<br />

∑<br />

( E kT )<br />

( −E<br />

kT )<br />

σ =<br />

σ iexp − i /<br />

i<br />

∑ exp i /<br />

i<br />

(1.4)<br />

Tento model sa nazýva aj dvojhladinový model Isingovho typu, pretože hovorí o dvoch<br />

energetických stavoch molekuly, ktoré sú ďalej modulované priemerným stavom okolitých<br />

molekúl. Vlastné energie molekuly budú<br />

E ( σ =− 1) =− Δ 2+<br />

J σ<br />

(1.5 a)<br />

1 0<br />

E2( σ =+ 1) = Δ0 2−<br />

J σ<br />

(1.5 b)<br />

Fyzikálne oprávnenejšie modely Isingovho typu sa získajú predstavou kryštálu zloženého z<br />

oblastí, v ktorých sa nachádzajú iba molekuly jedného stavu tzv. domény [2].<br />

FORC A FORC DISTRIBÚCIA<br />

Jednou z novších perspektívnych metód umožňujúcich stanoviť niektoré parametre<br />

spomínaných modelov je meranie tzv. FORC (first-order reversal curve). Postup merania je<br />

nasledujúci: vzorka pri teplote kde je úplne v HS stave sa pomaly ochladzuje a stanovuje sa<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 44


zastúpenie molekúl alebo domén v tomto stave. Pri určitej teplote (teplote obratu TA) sa<br />

ochladzovanie zastaví a začne sa znova s ohrevom až kým nie je vzorka opäť kompletne v<br />

pôvodnom stave. Zastúpenie HS stavu sa posudzuje ako funkcia TA a aktuálnej teploty TB.<br />

Vychádzať sa môže aj z LS stavu, <strong>ke</strong>dy hovoríme o ohrevnom móde narozdiel od skôr<br />

uvedeného postupu, ktorý sa označuje ako chladiaci mód. Príklad typic<strong>ke</strong>j FORC v<br />

chladiacom móde uvádza obr. 1.<br />

Obr. 1. FORC v ohrevnom móde pre [Fe0.6Zn0.4(btr)2(NCS)2]H2O získaná<br />

pomocou optických metód.<br />

Dôležitý pojem spájajúci sa s FORC je tzv. FORC distribúcia [4] definovaná vzťahom<br />

2<br />

1 ∂ nHS( TA, TB)<br />

ρ(<br />

TA, TB)<br />

=−<br />

(2.1)<br />

2 ∂TA∂TB Existujú pádne dôvody pre stotožnenie takto definovanej veličiny s distribúciou domén v<br />

kryštáli.<br />

URČOVANIE FORC DISTRIBÚCIE<br />

V súčasnosti sa FORC distribúcia určuje numericky, čo znamená, že diferencie vo vzťahu<br />

(2.1) sa nahradia malými zmenami daných veličín. Ich hodnoty sú samozrejme determinované<br />

hustotou bodov v skúmanej FORC a presnosť takto určenej distribúcie je teda veľmi závislá<br />

na hustote merania. Ako alternatíva sa ponúka možnosť aproximovať namerané FORC<br />

vhodne zvolenou funkciou derivovateľnou do druhého stupňa a FORC distribúciu získať jej<br />

analytickým derivovaním, čím sa aj pri redších meraniach dosiahne interpolácia chýbajúcich<br />

bodov a hladšia FORC distribúcia.<br />

Obr. 2. FORC s rôznymi osami pre TA resp. TB<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 45


Obr. 2. názorne uvádza FORC vo vyobrazení vhodnom pre predstavu o tvare ta<strong>ke</strong>jto funkcie.<br />

Ako vidieť, závislosť je vzhľadom na TB v celom rozsahu TA približne sigmoidálna, čo sa dá<br />

vystihnúť všeobecným vzťahom<br />

1<br />

xHS = f ( TA, TB) + g( TA, T<br />

C<br />

B)<br />

(3.1)<br />

⎛ ⎛ TB−a ⎞⎞<br />

1<br />

⎜1+ exp⎜−<br />

⎟⎟<br />

⎝ ⎝ b1<br />

⎠⎠<br />

kde a1, b1 a c sú parametre. Závislosť však bolo možné opísať tým lepšie, čím viac<br />

susediacich sigmoíd bolo použitých, v takom prípade vzťah (3.1) má tvar<br />

n 1 n<br />

xHS = f ( TA, TB) ∑ + g( TA, T<br />

C<br />

B)<br />

(3.2)<br />

i=<br />

1 ⎛ ⎛ TB − a ⎞⎞<br />

1i<br />

⎜1+ exp⎜−<br />

⎟⎟<br />

⎝ ⎝ b1<br />

⎠⎠<br />

Priebeh funkcie pri konštantnom TB sa ukázalo výhodné opisovať závislosťou gaussovského<br />

typu, čo viedlo k nasledujúcim výrazom<br />

( )<br />

( )<br />

2. D<br />

⎛ TA−a ⎞<br />

2<br />

f TA, TB<br />

= exp⎜−<br />

⎟<br />

(3.3)<br />

⎜ b ⎟<br />

⎝ 2 ⎠<br />

( )<br />

( )<br />

2. D<br />

⎛ TA−a ⎞<br />

2<br />

g TA, TB<br />

= 1−exp⎜− ⎟<br />

(3.4)<br />

⎜ b ⎟<br />

⎝ 2 ⎠<br />

a výsledná závislosť nadobudla tvar<br />

( ) 2.<br />

⎧ ⎫<br />

⎪ ⎪<br />

D<br />

n ⎪ 1 n<br />

⎪ ⎛ TA−a ⎞<br />

2<br />

xHS<br />

= 1+ ⎨∑ −1 exp<br />

C ⎬ ⎜− ⎟ (3.5)<br />

⎪ i=<br />

1 ⎛ ⎛ T b2<br />

B − a ⎞⎞<br />

⎜ ⎟<br />

1i<br />

⎪<br />

1+ exp −<br />

⎝ ⎠<br />

⎪ ⎜ ⎜ ⎟⎟<br />

b<br />

⎪<br />

⎩ ⎝ ⎝ 1 ⎠⎠<br />

⎭<br />

s voľnými parametrami a2, b1, b2, C, Da n parametrami a 1i , pričom D je celé číslo. Použitím<br />

vzťahu (3.2.6) dostávame pre FORC distribúciu analytický vzťah<br />

2D<br />

−C−1 ⎛ ( TA−a2) TB −a ⎞⎛ ⎛ 1i TB −a<br />

⎞⎞<br />

1i<br />

2D−1 CDexp⎜− − ⎟⎜1+ exp<br />

( TA−a2) n ⎜ b2 b ⎟ ⎜ ⎟⎟<br />

1 ⎝ ⎝ b1<br />

⎠⎠<br />

ρ ( TA, TB)<br />

=<br />

⎝ ⎠<br />

∑ (3.6)<br />

i=<br />

1 nb1b2 kde symboly majú už uvedený význam.<br />

ZÁVER<br />

Ako vidieť na obr. 3., existuje stále kvalitatívny rozdiel medzi navrhovanou analytickou<br />

závislosťou (3.6) a simulačne získanou FORC. V tomto ohľade tu zostáva priestor na vývoj<br />

uvedených vzťahov. FORC distribúcia získaná výpočtom zo vzťahu (3.6) však nadobúda tvar<br />

blízky očakávanému (obr. 4.). Na tomto mieste treba upozorniť na obmedzenú univerzálnosť<br />

navrhovaných vzťahov, nakoľko boli vyvíjané na základe dát získaných simuláciou správania<br />

sa Isingovho modelu pre jednojadrové komplexy, ktorý dobre opisuje síce podstatnú, nie však<br />

úplnú časť pozorovaných typov závislostí [7].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 46


Obr. 3. Rozdiel hodnôt navrhovanej funkcie a FORC v percentách<br />

Obr. 4. Experimentálna FORC distribúcia k obr. 1 (vľavo) a vypočítaná podľa vzťahu (3.6)<br />

(vpravo)<br />

LITERATÚRA<br />

[1] Slichter CP, Drickamer HG (1972) J Chem Phys 56: 2142<br />

[2] Sorai M, Seki S. (1974) J Phys Chem Solids 35: 555<br />

[3] Boča R, Boča M, Dlháň Ľ, Fakl K, Fuess H, Haase H, Jaroščiak R, Papánková B, Renz F,<br />

Vrbová M, Werner R (2000) Inorg Chem 40: 3025<br />

[4] Enachescu C, Tanasa R, Stancu A, Codjovi E, Linares J, Varret F (2004) Physica B 343:<br />

15<br />

[5] Cambi L, Cagnaso A (1931) Atti Accad Naz Lintei 13: 809<br />

[6] Kahn O (1993) Molecular Magnetism. VCH, New York<br />

[7] Boča R, Linert W (2003) Monats Chem 134: 199<br />

[8] Zimmermann R, König E (1977) J Chem Phys Solids 38: 779<br />

[9] Boča R (1999) Theoretical Foundations of Molecular Magnetism. Elsevier, Amsterdam<br />

[10] Real J, Bolvin H, Bousseksou A, Dworkin A, Kahn O, Varret F, Zarembowitch J (1992)<br />

J Am Chem Soc 114: 4650<br />

[11] Nasser JA, Boukheddaden K, Linares J (2004) Eur Phys J B 39: 219<br />

[12] Herchel R, Boča R, Gembický M, Kožíšek J, Renz F (2004) Inorg Chem 43: 4103<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 47


A STUDY OF INTERFACIAL ASPECTS OF EPOXY-BASED<br />

HYBRID COMPOSITES REINFORCED WITH BASALT,<br />

CARBON AND CERAMIC FIBRES BY DMA ANALYZIS.<br />

Lukáš Recman, 5. ročník<br />

Vedoucí práce prof. RNDr. Josef Jančář, CSc.<br />

Konzultant ing. Petr Poláček<br />

<strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>, ústav chemie materiálů,<br />

Purkyňova118, 612 00 Brno, e-mail: xcrecman@fch.vutbr.cz<br />

ABSTRACT<br />

This article introduces the recent knowledge on continious fibre reinforced epoxy<br />

based composites. The following topics are included: (i) theoretical and experimental<br />

studies of continious fibers – epoxy matrix interphase (ii) preparation of dual-fiber<br />

hybrid composites DFHC (iii) DMA measurement of DFHC.<br />

INTRODUCTION<br />

Interfacial properties and matrix-reinforcement (communication) adhesion plays a<br />

vital role in composite´s aplications, properties and his behaviour under stress<br />

conditions. According to this expression it is usefull to ensure carefull interphase<br />

connection hence the expression about the wea<strong>ke</strong>st link. The appropriate adhesion is<br />

defined by various physical and chemical parameters. [1-2] But it will be unreliable<br />

ma<strong>ke</strong> ourselves satisfied that strong bonds between matrix and the reinforcement<br />

conquer all. So let discuss this phenomon detaily.<br />

Matrix and reinforcement can be connected by several types of bonding li<strong>ke</strong><br />

mechanical bonding also known as <strong>ke</strong>ying, electrostatic bonding, interdiffusion<br />

bonding and finally chemical bonding. [1] When none of this types of connection can<br />

be established another parameter rises – a wettability. Wettability is the ability of a<br />

liquid to be spread over a solid surface. But for an epoxy based composites this is the<br />

<strong>ke</strong>y-word, the stumbling block of this phenomon. The epoxy resins are extremely<br />

viscous and hydrofobic liquids. It is not easy to ensure the appropriate connection<br />

between epoxy matrix and the reinforcement.<br />

Matrix transmits the applied load from its surface to its volume and then to the<br />

reinforcement. [2] Therefor a well-calculated and right connection has to be made. This<br />

matrix-fibre bond transmit the applied load to the stiffer and stronger reinforcement<br />

where is being gathered. After reaching a critical value of absorbed energy a several<br />

modes of its dissipation occures: Reinforcement breakage, pull out, interphacial<br />

debonding and reinforcement „elongation“. The better the connection is the advanced<br />

material properties are.<br />

Matrix – reinforcement adhesion is a complicated manner, which can not be<br />

designed and described easily. It depends on wide physical and chemical parameters.<br />

But also another parameters play vital role: li<strong>ke</strong> homogenity, uniderectional<br />

orientation, avoiding fibre – fibre contact. All these parameters mentioned above<br />

influence composite´s parameters.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 48


Let answer the question from the beginning of the chapter. Is strong bond always a<br />

desired manner? Sometimes yes and sometimes no. First it is necessary to know that<br />

the bond breakage serves as an energy dissipating process. Second it all depends on the<br />

applied stress. When the material is being stressed with increasing force during a long<br />

time period it retains a greather value of the force, then stress during a short time<br />

interval. A strong bonding for this case is a mortal habit. So the conclusion is materials<br />

are designed for one purpose only. When designing material for concrete purpose then<br />

confining his field of application! It is called tailor-made or tailoring.<br />

EXPERIMENTAL<br />

Materials<br />

Basalt, Carbon and Ceramic fibres.<br />

The basalt fibre was made from naturally occuring basalt rock from Charberec<br />

location. The chemical composition of the fibre is determinated by the native basalt<br />

rock, which was used as a raw material. The main composition is SiO2 43%, Al2O3<br />

14%, CaO 10%, MgO 9%, Na2O 4%, TiO2 2%, Fe2O3/FeO 12%, K2O 1%. Material<br />

was melted in alumina-mullite crucialbe at 1400 °C.<br />

The HS Carbon Celion fibres were obtrained form Union Carbide Company.<br />

The Nextel 440 and Nextel 550 fibres were obtained form 3MNextelIndustrial<br />

fibers & 3MNextelComposite fibres. The composition and mechanical data are<br />

included in table 1.<br />

Table 1. Composition and selected properties of used fibres and resin<br />

Property Units Nextel Nextel HS- Basalt Atlac 430<br />

440 550 Carbon<br />

composition % Al2O3 Al2O3 - -<br />

SiO2 (28)<br />

B2O3 (2)<br />

SiO2 (27)<br />

diameter μm 10-12 10-12 - - -<br />

Young´s<br />

modulus (E)<br />

GPa 190 193 230 89 2<br />

Density (ρ) g.cm -3 3.05 3,03 1,75 2,7 10<strong>60</strong><br />

Tensile<br />

strenght (σ)<br />

GPa 2 2 3,4 4,8 2<br />

Polymer matrix<br />

An epoxy resin ATLAC 430 was obtained from DSM corporate. It is based on<br />

unsaturated polyesters. It is a solution of linear unsaturated polyesters, containing a<br />

reactive doble-bond in polymerizable solution – styrene. Some useful data are<br />

mentioned in table 1.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 49


METHODS<br />

DMA measurement<br />

To gain detailed informations about DFHC properties a complex DMA<br />

measurement on Dynamic Mechanical Analyser 2980 (TA Instruments) was designed.<br />

From a wide range of DMA modes a DMA single-cantilever multifrequency mode was<br />

selected (DMA-SC-MF). DMA-SC-MF is an application of a constant amplitude as a<br />

function of time, temperature and frequency of oscillation. The set parameters:<br />

Frequency 10Hz, equilibrate at 40 °C, ramp 3 °C/min to 180 °C and amplitude 2μm.<br />

Loss modulus storage modulus and their mutual ration tanδ were obtained.<br />

Preparation of dual-fibre hybrid composites (DFHC) specimens.<br />

The dimensions of the specimen was 2mm thick, 40mm long and 10mm wide. The<br />

fibres were embedded in flexibilized epoxy resin in a rectangular-shaped (Lukopren)<br />

silicon-rubber mold. They were than heated at 65 °C for 2h, because of gasses and as a<br />

bubbles prevention. The specimens were than post-cured at 90 °C for 6h in a kiln.<br />

To obtain rigid epoxy specimens with DBP, the resin and curing agent 1wt% DBP<br />

was thoroughly mixed and degassed in a vacuum oven to remove air. The mixture was<br />

poured slowly in the mold and first continious fibres were put in, then another layer of<br />

resin was appplied and so the fibres until complete amount of fibres has been used.<br />

After taking the specimens out of the mold (when finished curing process) a standard<br />

metallographic techniques were used to obtain a smooth surface, when necessary. The<br />

two best specimens of each species and ratios were chosen and performed a<br />

measurement. Finaly pure Nextel 440, Nextel 440 – Basalt in three different ratios and<br />

pure basalt has been measured and so Nextel 550 – Carbon. See table 2.<br />

Table 2. Prepared composites Nextel 440 – Basalt, Nextel 550 – Carbon<br />

Nextel 440 Basalt Nextel 550 Carbon<br />

% Strand % Strand % Strand % Strand<br />

10 66 0 0 10 54 0 0<br />

8 53 2 11 8 43 2 2<br />

5 33 5 28 5 27 5 5<br />

2 13 8 44 2 11 8 8<br />

0 0 10 55 0 0 10 10<br />

RESULTS AND DISCUSSION<br />

DMA-SC-MF analyzis of DFHC<br />

To obtain the data sheet of mechanical properties a three values were gathered. The<br />

storage modulus, loss modulus and tanδ was gathered. For each type of manufactured<br />

DFHC and resin a two figures were constructed.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 50


Storage modulus<br />

(MPa)<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Storage modulus comparison<br />

40 65 90 115 140 165<br />

Temperature (°C)<br />

N440 N4B1 N1B1 N1B4 Basalt Resin<br />

Figure 1. DMA-SC-MF analyzis of composites Nextel 440 – Basalt<br />

Storage modulus (MPa)<br />

<strong>60</strong>00<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Storage modulus comparison<br />

40 <strong>60</strong> 80 100 120 140 1<strong>60</strong> 180 200<br />

Temperature (°C)<br />

C C4N1 C1N1 C1N4 N550 Resin<br />

Figure 2. DMA-SC-MF analyzis of composites Nextel 550 – Carbon<br />

Law of mixtures assessement<br />

Composite´s features must obey a law of mixtures (see equation 1), where E<br />

represents an appropriate property of composit, ν volume fraction and subscripts 1, f1,<br />

2 refers to each type of reinforcement (1 for Nextel 440, 550 and 2 for basalt and<br />

carbon respectively) and m to the matrix respectively. η represents a parametr of<br />

ideality of adhesion between matrix and reinforcement. Varying this parameters allowe<br />

us tailoring the material properties.<br />

Equation 1.<br />

E = η1νf1E1 + η2(1-νf1)E2 + νmEm<br />

η1 = η2 = 0,8<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 51


The following figures represents the corelation between theoretical prediction<br />

represented by equation 1 and DMA-SC-MF measurement of each composite. (see<br />

figure 3 and 4). By varying the η1, η2 parameter the equation 1 can be fit to the DMA-<br />

SC-MF (45 °C) dependence. Practicaly it means changing the matrix-reinforcement<br />

interphase features! (see introduction for further informations and conclusion).<br />

E (GPa)<br />

20,00<br />

15,00<br />

10,00<br />

5,00<br />

0,00<br />

Composite Nextel 440/Basalt<br />

0 0,25 0,5 0,75 1<br />

v f1 0,75 0,5 0,25 v f2<br />

Equation 1 DMA-SC-MF (45°C)<br />

Figure 3. Equation 1 vs. DMA-SC-MF (45 °C) Nextel 440 – Basalt composite<br />

E (GPa)<br />

20,00<br />

15,00<br />

10,00<br />

5,00<br />

0,00<br />

Composite Nextel 550/Carbon<br />

0 0,25 0,5 0,75 1<br />

vf2 0,75 0,5 0,25 vf1<br />

Equation 1 DMA-SC-MF (45°C)<br />

Figure 4. Equation 1 vs. DMA-SC-MF (45 °C) Nextel 550 – Carbon composite<br />

Epoxy matrix properties.<br />

The DMA-SC-MF measurement was performed for pure ATLAC 430 resin to<br />

receive the same data sheet as for the DFHC. But another measurement was performed<br />

to gain resin´s curing point – DSC. This was done to get know the safe temperature<br />

interval for heating the resin as a bubbles prevention (see also chapter Preparation of<br />

dual-fibre hybrid composites DFHC specimens).<br />

CONCLUSIONS<br />

DMA-SC-MF analyzis of Nextel 440 – Basalt composites indicates a<br />

correlation between increasing basalt content and decreasing Nextel 440 fibres content.<br />

The prediction of storage modulus was not fulfilled. It should be truly opposite.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 52


DMA-SC-MF of Nextel 550 – Carbon displays a correlation between increase<br />

in Nextel 550 content and dicrease of carbon fibres. The theoretical prediction prevails<br />

the best mechanical data for carbon reinforced composites.<br />

The explanation of non-corresponding data can be found in the following<br />

sentences. First inhomogenity. It is no easy to ensure an appropriate playcement of<br />

fibres hence they are well sized and <strong>ke</strong>ep their manufactured strand well. Also the<br />

mutual distribution between ceramic basalt or ceramic-carbon fibres wasn´t ideal and it<br />

is one of important assignment that has to be solved in industry too. And third reason<br />

lies with the wettability basalt fibres interact with resin better than the other ones so the<br />

connection between matrix and reinforcement occurs frequently than for carbon or<br />

ceramic fibres where occurs rarely. The non-connected fibres does not sustain any<br />

stress or energy.<br />

The corresponding data between theoretical prediction and practical realization<br />

(figure 3,4) lies with more careful preparation of composites and as well as with<br />

increasing the wettability by varying η. This could be done by a sizing agent, which<br />

permanently binds matrix and the reinforcement, or increasing the time period of<br />

contact between reinforcement and resin befor curing it.<br />

REFERENCES<br />

[1] Composite materials: Engineering and science /F. L. Matthews and R. D.<br />

Rawlings, 1995. p. 1-72, 168-219,251-282.<br />

[2] Introduciton to physical polymer science L. H. Sperling, 2001. <strong>60</strong>4-612.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 53


ŠTÚDIUM ANTIOXIDANTOV A ICH ÚČINKOV PRI STABILIZÁCII<br />

POLYMÉROV<br />

Bc. Ján Rimarčík, 5. ročník<br />

Vedúci práce: Ing. Erik Klein, PhD<br />

Ústav fyzikálnej chémie a chemic<strong>ke</strong>j fyziky, <strong>Fakulta</strong> chemic<strong>ke</strong>j a potravinárs<strong>ke</strong>j technológie,<br />

Slovenská technická univezita v Bratislave, Radlinského 9, SK-812 37 Bratislava,<br />

Slovenská republika, e-mail: hadica@gmail.com<br />

ÚVOD<br />

Problematika spojená s negatívnym vplyvom prostredia na životnosť polymérov sa<br />

študuje od začiatku ich komerčného využívania. Životnosť polymérov determinuje oxidácia<br />

a mechanická degradácia. Zlúčeniny redukujúce alebo inhibujúce termickú oxidáciu sú<br />

všeobecne nazývané antioxidantmi. Ako špeciálny typ aditív sa pridávajú do polymérov<br />

individuálne alebo ako súčasť kompozitného stabilizačného systému. Cieľom tejto práce bolo<br />

overiť vhodnosť semiempirických kvantovochemických metód AM1 a PM3 na výpočty<br />

disociačných entalpií väzieb N–H, O–H, S–H v molekulách substituovaných anilínov, fenolov<br />

a tiofenolov. Tie slúžia ako modelové štruktúry antioxidantov. Predpoveď vlastností<br />

potenciálnych antioxidantov, ktoré ešte neboli syntetizované, na základe kvantovochemických<br />

výpočtov dokáže ušetriť ekonomické i ľudské zdroje nevyhnutné na syntézu a testovanie<br />

týchto látok. Preto je dôležité zistiť, ako spoľahlivo jednotlivé výpočtové metódy reprodukujú<br />

dostupné experimentálne výsledky.<br />

STABILIZÁCIA – ANTIOXIDANTY<br />

Radikálový mechanizmus navrhnutý Bollandom a Geeom vysvetlil termickú oxidáciu<br />

mnohých polymérov [1]. Rýchlosť oxidácie závisí od najpomalšieho kroku – tvorby voľných<br />

radikálov. Oxidačné reakcie sa vo všeobecnosti uskutočňujú rôznymi spôsobmi. Sú zrýchlené<br />

tepelnou energiou a mechanickým namáhaním pri spracovaní. Často sú katalyzované<br />

prítomnými zvyškami katalyzátora polymerizácie a nečistotami. Využívajú sa 3 hlavné typy<br />

stabilizácie [1, 2]: predstabilizácia, stabilizácia počas procesu spracovania polyméru,<br />

dlhotrvajúca stabilizácia. Antioxidanty môžu ovplyvniť každý krok termic<strong>ke</strong>j oxidácie, čo<br />

záleží od ich zloženia a štruktúry. Pôsobenie stabilizátorov – antioxidantov (InH) počas<br />

radikálovej oxidácie možno opísať rovnicami (P – polymér) [1, 2]:<br />

•<br />

PO 2 + InH ⎯→ ⎯ POOH + In • (1)<br />

PO • + InH ⎯→ ⎯ POH + In • (2)<br />

Radikál na molekule antioxidantu je rezonančne stabilizovaný, čo v konečnom dôsledku<br />

znamená, že tieto radikály prakticky nie sú schopné uskutočniť prenosovú reakciu<br />

na polymér. Preto radikál obyčajne zaniká v terminačnej reakcii s ďalším oxy- alebo<br />

peroxylovým radikálom. Účinnosť antioxidantov sa zvyšuje so znižovaním disociačnej<br />

entalpie (BDE) väzby O–H vo fenolových, resp. N–H amínových antioxidantoch, <strong>ke</strong>ďže prvý<br />

krok terminácie reaktívnych radikálov vznikajúcich počas oxidácie polymérov predstavuje<br />

transfer vodíkového atómu z molekuly antioxidantu na reaktívny radikálový intermediát<br />

[1, 2]. Ďalšou dôležitou charakteristikou antioxidantov je ionizačný potenciál (IP). Níz<strong>ke</strong><br />

hodnoty IP prispievajú k zvýšeniu pravdepodobnosti prenosu elektrónu, čím sa zvyšuje riziko<br />

vzniku superoxidového anión-radikálu prenosom elektrónu priamo na molekulu O2 [1].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 54


ŠTUDOVANÉ MOLEKULY<br />

Vhodnosť semiempirických kvantovochemických metód AM1 a PM3 na výpočty<br />

disociačných entalpií väzieb (BDE) N–H, O–H, S–H budeme testovať na molekulách<br />

substituovaných anilínov, fenolov a tiofenolov (obr. 1) slúžiacich ako modelové štruktúry<br />

v praxi používaných antioxidantov. Tieto zlúčeniny boli vybrané nielen preto, že existujú<br />

pre ne experimentálne dáta, ale umožňujú nám aj preštudovať efekt substituentov v meta<br />

a para polohách na veľkosť BDE.<br />

X<br />

X<br />

NH 2<br />

NH 2<br />

X<br />

X<br />

SH<br />

SH<br />

X N H COMe X N H NH 2<br />

Obr. 1: Študované molekuly, X = NO2, CF3, CN, Cl, Br, MeCO, MeSO2, PhCO, Me, MeO,<br />

OH, MeO2C, CHO, NMe2, NH2.<br />

VÝSLEDKY A DISKUSIA<br />

Tabuľka 1 uvádza spracované výsledky pre tiofenoly. Hodnota ΔexpBDE je roziel medzi<br />

experimentom a vypočítanou hodnotou pre BDE. Ostatné série zlúčenín boli spracované<br />

analogicky.<br />

Tabuľka 1. Tiofenoly<br />

BDE [kJ/mol] ΔexpBDE [kJ/mol] IP [eV]<br />

názov exp PM3 AM1 PM3 AM1 PM3 AM1 σm, p<br />

p–NO2PhSH 341 394 381 –53 –40 9,53 9,20 0,78<br />

m–CF3PhSH 338 381 367 –43 –29 9,19 8,85 0,43<br />

p–BrPhSH 332 381 369 –49 –37 8,94 8,61 0,23<br />

p–ClPhSH 331 381 366 –50 –35 8,78 8,54 0,23<br />

m–MePhSH 330 378 363 –48 –33 8,75 8,40 –0,07<br />

p–MeO2CPhSH 329 385 375 –56 –46 9,06 8,79 0,45<br />

p–MePhSH 328 377 362 –49 –34 8,66 8,32 –0,17<br />

p–MeOPhSH 322 372 355 –50 –33 8,52 8,18 –0,27<br />

p–NH2PhSH 292 372 348 –80 –56 8,29 7,93 –0,66<br />

m–ClPhSH 335 380 366 –45 –31 8,92 8,63 0,37<br />

PhSH 331 377 363 –46 –32 8,78 8,43<br />

Hodnoty disociačných entalpií väzieb boli vypočítané pomocou programu HYPERCHEM [3].<br />

Experimentálne hodnoty týchto entalpií boli získané metódou termodynamického cyklu.<br />

Autori uvádzajú smerodajnú odchýlku určených hodnôt ±8,5 kJ/mol [4].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 55<br />

X<br />

X<br />

OH<br />

OH


Na základe experimentálnych údajov pre anilíny sme zistili, že PM3 metóda podhodnocuje<br />

BDE v priemere o 10 kJ/mol. Naopak metóda AM1 entalpie nadhodnocuje v priemere<br />

o 11 kJ/mol. V prípade fenolov obe metódy poskytujú nižšie hodnoty BDE než experiment<br />

pre väčšinu študovaných substituentov. Výnimkou sú meta –NH2, para –OH, para –NH2<br />

pre PM3 a v prípade AM1 aj para –MeO substituent. Priemerná odchýlka vypočítaných BDE<br />

od experimentu je 16 kJ/mol pre PM3 a 9 kJ/mol pre AM1 metódu. Pri substituovaných<br />

tiofenoloch obe metódy významne nadhodnocujú experimentálne entalpie – metóda PM3<br />

v rozmedzí 43–80 kJ/mol, AM1 29–56 kJ/mol. Priemerné odchýlky od experimentálne<br />

určených hodnôt BDE sú 52 a 37 kJ/mol pre PM3 a AM1. Príčinou nepresných výsledkov je<br />

zrejme atóm síry s vyšším počtom elektrónov oproti atómom H, N, alebo O a problémy<br />

súvisiace s výpočtom radikálu, <strong>ke</strong>ďže vypočítaná tvorná entalpia nesubstituovaného tiofenolu<br />

(115 kJ/mol – PM3, resp. 107 kJ/mol – AM1) dobre súhlasí s experimentálnou hodnotou<br />

112 kJ/mol [5].<br />

ZÁVISLOSŤ ΔBDE A ΔIP OD HAMMETTOVÝCH KONŠTÁNT<br />

L. P. Hammett zistil, že pre meta a para substituované deriváty existuje lineárna závislosť<br />

medzi disociačnou konštantou a rýchlosťou hydrolýzy esterov substituovaných benzoových<br />

kyselín [6]. Podobný vzťah platí aj pre rovnovážne konštanty a rýchlostné konštanty. Pratt,<br />

DiLabio a kol. zistili, že ΔBDE (kde ΔBDE = BDEsubstituovaná – BDEzákladná) hodnoty para<br />

substituovaných anilínov a fenolov [7] lineárne závisia od Hammettových konštánt. Všetky<br />

závislosti ΔBDE od σm, σp sú približne lineárne (obr. 2). Najlepšia lineárna korelácia sa<br />

získala pre fenoly a tiofenoly, kde korelačné koeficienty dosiahli hodnoty v rozmedzí 0,916 až<br />

0,954. V prípade substituovaných anilínov sú jednotlivé body rozptýlené okolo regresnej<br />

priamky viac (R=0,813 pre PM3, R=0,873 pre AM1). V prípade substituovaných anilínov<br />

a tiofenolov lepšie korelujú s Hammettovými konštantami výsledky AM1 metódy. Pre fenoly<br />

sú obe metódy rovnocenné – korelačné koeficienty sú zhodné. Podobne sme študovali aj série<br />

para substituovaných acetanilínov a fenylhydrazínov. Aj tu sa potvrdila lineárna závislosť<br />

ΔBDE od Hammettových konštánt. Parasubstituované acetanilíny korelujú lepšie ako<br />

fenylhydrazíny s korelačnými koeficientami podobnými ako pri substituovaných fenoloch<br />

a tiofenoloch. Okrem hodnôt ΔBDE sme korelovali s Hammettovými konštantami aj<br />

vypočítané hodnoty ΔIP. Ionizačné potenciály IP sa rovnajú zápornej hodnote energie<br />

najvyššieho obsadeného orbitálu (HOMO). Hodnoty ΔIP boli určené ako rozdiel IP<br />

substituovanej a nesubstituovanej zlúčeniny. Zistili sme, že tiež lineárne závisia od<br />

Hammettových konštánt. Hodnoty ΔIP korelujú s Hamettovými konštantami lepšie ako<br />

hodnoty ΔBDE (obr. 3). Potenciálnu nepresnosť oboch semiempirických metód možno<br />

pripísať problémom s výpočtom radikálov. Optimálna geometria nemusí zodpovedať<br />

geometrii s minimálnou energiou kvôli metóde polovičného elektrónu, ktorú používajú mnohé<br />

programy [8].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 56


ΔBDE/kJ mol -1<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8<br />

σp, σm<br />

Obr. 2: Závislosť ΔBDE substituovaných<br />

tiofenolov od Hammettových konštánt σm,<br />

σp pre AM1 metódu.<br />

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8<br />

ZÁVER<br />

Táto práca bola zameraná na posúdenie vhodnosti semiempirických kvantovochemických<br />

metód na predikciu vlastností hlavných skupín antioxidantov. Vypočítané hodnoty<br />

disociačných entalpií väzieb N–H, O–H a S–H sa porovnali s publikovanými<br />

experimentálnymi hodnotami. Odchýlky vypočítaných hodnôt BDE N–H (okrem p –CF3<br />

v prípade PM3) a O–H väzieb od experimentálnych sú blíz<strong>ke</strong> smerodajnej odchýl<strong>ke</strong> BDE<br />

z experimentov. Výpočty BDE S–H väzby v tiofenoloch ukázali, že obe metódy významne<br />

nadhodnocujú experimentálne hodnoty, hoci trendy vyplývajúce z efektu substituentov<br />

na BDE vystihujú uspokojivo. Hodnoty ΔBDE pre všetky série zlúčenín lineárne korelujú<br />

s Hammettovými konštantami σp, σm. Rozdiel medzi IP substituovaných zlúčenín a základnej<br />

tiež lineárne závisí od Hammettových konštánt.<br />

Možno teda konštatovať, že PM3 a AM1 semiempirické kvantovochemické metódy<br />

predstavujú vhodnú alternatívu k DFT (Density Functional Theorem) a ab-initio metódam,<br />

vhodnú predovšetkým pre výpočty molekúl amínových a fenolových antioxidantov s vyšším<br />

počtom atómov. Obe metódy poskytujú výsledky v signifikantne kratšom čase (trvanie<br />

výpočtu niekoľko minút na bežnom PC) ako DFT alebo ab-initio metódy.<br />

LITERATÚRA<br />

[1] Gugumus F.: Oxidation Inhibition in Organic Materials, Vol I, CRC Press, Boca Raton<br />

1990.<br />

[2] Wolf R., Kaul B. L., Plastics Additives, Ullman’s Encyclopedia of Industrial<br />

Chemistry, Vol. A20, VCH, Weinheim 1992.<br />

[3] HYPERCHEM, rel 7.5 for Windows, Hypercube, Inc., 2003.<br />

[4] Zhu Q., Zhang X. M., Fry A. J.: Polym. Degrad. Stab. 57, 43 (1997).<br />

[5] Scott D. W., McCullough J. P., Hubbard W. N., Messerly J. F., Hossenlopp I. A.,<br />

Frow F. R., Waddington G.: J. Am. Chem Soc. 78, 5463 (1956).<br />

[6] Hrnčiar P.: Organická chémia, SPN, Bratislava 1990, str. 110.<br />

[7] Pratt D. A., DiLabio G. A., Mulder P., Ingold K. U.: Acc. Chem. Res. 37, 334 (2004).<br />

ΔIP/eV<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

σp , σm<br />

Obr. 3: Závislosť ΔIP substituovaných<br />

tiofenolov od Hammettových konštánt σm, σp<br />

pre AM1 metódu.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 57


[8] Stewart J. J. P.: J. Comp-Aided Mol. Design 4, 1 (1990).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 58


HOŘLAVOST A MECHANICKÉ VLASNOTSTI NANOKOMPOZITŮ<br />

EVA/Mg(OH)2<br />

Sadílek Jiří, 5. ročník<br />

Vedoucí práce: prof. RNDr. Josef Jančář, CSc.<br />

<strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>, Chemie, technologie a vlastnosti<br />

materiálů, Purkyňova 118, 612 00 Brno, e-mail: xcsadilek@fch.vutbr.cz<br />

ÚVOD<br />

Práce se zabývá studiem vlivu velikosti částic hydroxidu hořečnatého (MH) na tepelnou<br />

stabilitu a mechanické vlastnosti poly(ethylen-co-vinyl acetátu), EVAc. Hlavní použití EVAc<br />

je v oblasti kabelové a elektroizolační techniky. Plniva na bázi hydroxidu hořečnatého<br />

představují způsob, jak snížit hořlavost a zároveň modifikovat mechanické vlastnosti EVAc<br />

kopolymeru.<br />

CÍL PRÁCE<br />

• příprava nanočástic Mg(OH)2<br />

• příprava kompozitů<br />

• stanovení tepelné stability, hořlavosti a mechanických vlastností<br />

• interpretace dat<br />

TEORETICKÁ ČÁST<br />

Proces hoření je souborem fyzikálních a chemických procesů, které působí ve třech<br />

rozdílných fázích: plynná (plamen), mezifáze a kondenzovaná (pevná) fáze. Mezifáze je<br />

fázovým rozhraním mezi plynnou a kondenzovanou fází. Plynnou fázi tvoří plynné produkty<br />

degradace polymeru spolu se vzduchem [2]. Kondenzovanou fází je degradující polymer,<br />

případně polymerní kompozit. Vedením tepla z plamene dochází k roztavení pevné fáze,<br />

degradaci kondenzované fáze a k vytvoření hořlavých plynných produktů.<br />

Tepelná degradace EVAc probíhá ve dvou krocích. První krok (300 – 400°C) zahrnuje<br />

odštěpení kyseliny octové a vznik ethylenové struktury na původním řetězci kopolymeru. V<br />

rozmezí teplot 425 – 470 °C nastává rozklad polyethylenového zbytku.<br />

Retardéry hoření lze rozdělit podle mechanismu, kterým působí, na fyzikální inhibitory a<br />

chemické inhibitory. Mg(OH)2 patří mezi fyzikální inhibitory hoření. Fyzikální inhibice<br />

v plynné fázi je založena na působení inertních plynů (H2O), které zřeďují hořlavé plyny a<br />

snižují jejich koncentraci v zóně hoření. Uvolnění H2O je spojeno s výrazným endotermickým<br />

účin<strong>ke</strong>m, který je schopen pohlcovat teplo vznikající v procesu hoření.<br />

Hydroxid hořečnatý se rozkládá na oxid hořečnatý a vodu. Endotermický rozklad<br />

(1450 J/g) začíná při teplotě 300°C a probíhá podle uvedené rovnice:<br />

Mg(OH) 2<br />

2<br />

→ MgO + H O<br />

(1)<br />

Na základě publikovaných výsledků [4] lze usuzovat, že v kompozitech s nanoplnivy<br />

dochází k výrazné imobilizaci polymerních řetězců v důsledku velkého specifického povrchu<br />

plniva. Tato imobilizace má přímý dopad na mechanické vlastnosti nanokompozitů.<br />

V případě tepelné stability a hořlavosti se ovšem mohou imobilizačním efektům konkurovat<br />

katalytické účinky velkého povrchu nanoplniva.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 59


PRAKTICKÁ ČÁST<br />

Hydroxid hořečnatý byl připraven precipitací síranu hořečnatého a vodného roztoku<br />

amoniaku:<br />

MgSO 4 + 2NH<br />

4OH<br />

→ Mg(OH) 2 + ( NH 4 ) 2SO<br />

4<br />

Kompozitní vzorky byly připraveny míšením kopolymeru EVAc a plniva v roztoku<br />

cykolhexanu. Byly připraveny vzorky s obsahem nanometrického MH připraveného<br />

laboratorně a s obsahem komerčního mikrometrického hydroxidu hořečnatého - FR–20<br />

(DEAD SEA PERICLASE Ltd., Israel). Obsah plniva v kompozitu byl 13obj.% (26hmot.%).<br />

Snímky plniv z transmisního elektronového mikroskopu jsou uvedeny v obr. 1. Snímky<br />

lomových ploch kompozitů připravených v tekutém dusíku jsou na obr. 2.<br />

Obr. 1: TEM použitých MH plniv, nano-MH (vlevo) a mikro-MH FR-20 (vpravo).<br />

Použitá plniva byla charakterizována pomocí následujících metod: (1) BET, (2) rozptyl<br />

světla, (3) transmisní elektronová mikroskopie (TEM), (4) pyknometrické stanovení hustoty,<br />

(5) rentgenová difrakce, (5) termogravimetrická analýza (TGA). Základní charakteristiky<br />

použitých plniv jsou v tab. 1.<br />

Tabulka 1: Charakterizace všech použitých plniv.<br />

Metody stanovení Nanoplnivo FR – 20<br />

TEM (nm) 32 – 34 800 – 900<br />

Spec. povrch (m 2 /g) změřený 43 – 48 5 – 6<br />

Spec. povrch (m 2 /g) počítaný 44 – 47 1 – 2<br />

Teplota rozkladu (°C) 336 – 433 310 - 430<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana <strong>60</strong><br />

(2)


Pro charakterizaci vlastností kopozitních vzorků byly použity následující metody: (1)<br />

termogravimetrická analýza, (2) stanovení kyslíkového čísla, (3) dynamicko-mechanická<br />

analýza, (4) tahové testy.<br />

Obr. 2: SEM snímky lomových ploch kompozitů s nano-MH (vpravo) a s mikro-MH FR-20<br />

(vlevo) .<br />

VÝSLEDKY A DISKUSE<br />

Z průběhu křivek izotermální degradace při 430°C, obr. 3 vlevo, je zřejmé, že vzorky<br />

EVAc plněné nanometrickým hydroxidem hořečnatým vykazovaly rychlejší pokles hmotnosti<br />

v porovnání se vzorky EVAc plněné mikrometrickým MH.<br />

Limitní kyslíkové číslo, kyslíkový index je stanovení relativní hořlavosti plastů podle ČSN<br />

EN ISO 4589-3. LOI je test zpětného hoření tenkých vzorků polymerních proužků v proudu<br />

plynu a vyjadřuje nejnižší koncentraci kyslíku ve směsi s dusí<strong>ke</strong>m (v %), která ještě stačí na<br />

to, aby materiál při podmínkách zkoušky hořel. Nízká hodnota LOI znamená, že materiál hoří<br />

i při malém podílu kyslíku ve směsi.<br />

Obr. 3: TGA s<strong>ke</strong>ny čisté matrice a obou kompozitů při konstantní teplotě 430°C a LOI test.<br />

Uvedené výsledky naznačují, že velký specifický povrch nanometrického MH vede k<br />

výraznému katalytickému působení a snížení retardační schopnosti MH.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 61


Výsledky tahových zkoušek jsou uvedeny na obr. 4. Z výsledků je patrné, že došlo<br />

k výraznému zvýšení modulu pružnosti (směrnice tahové křivky při hodnotě deformace 0,15<br />

%) u nanokompozitního vzorku ve srovnání s čistou matricí a EVAc plněného<br />

mikrometrickým MH. Na druhé straně, nedošlo k výrazné změně houževnatosti EVAc<br />

kopolymeru s přídav<strong>ke</strong>m MH plniv.<br />

Obr. 4: Mechanická tahová zkouška.<br />

ZÁVĚR<br />

Na základě termogravimetrické analýzy a stanovení limitního kyslíkového čísla bylo<br />

zjištěno, že v případě velký specifický povrch nanometrického hydroxidu hořečnatého může<br />

působit katalyticky na procesy termooxidační degradace. Tento jev je schopen efektivně<br />

snižovat endotermický efekt hydroxidu hořečnatého daný rozkladem na vodu a MgO.<br />

Z mechanických zkoušek vyplynulo, že použití nanometrického MH jako plniva vede<br />

k výraznému zvýšení modulu pružnosti ve srovnání s mikrometrickým hydroxidem<br />

hořečnatým. Tento jev je pravděpodobně dán výraznou imobilizací polymerních řetězců<br />

v přítomnosti velkého specifického povrchu plniva.<br />

LITERATURA<br />

[1] Rychlý, J., Veselý, K., Gál, E., Kummer, M., Jančář, J., Rychlá, L.: Use of Thermal<br />

Methods in the Chracterization of the High-Temperature decomposition and Ignition of<br />

Polyolefins and EVA Copolymers Filled with Mg(OH)2, Al(OH)3 and CaCO3. Polymer<br />

Degradation and Stability, 1990, 30, 57 – 72<br />

[2] Troitzsch, J.: Plastics Flammability Handbook: Principles, Regulations, Testing, and<br />

Approval. 3. vydání. Mnichov: Hanser, 2004. 748 s. ISBN: 1-56990-356-5<br />

[3] Halikia, I., Neou-Syngouna, P., Kolitsa, D.: Isothermal kinetic analysis of the thermal<br />

decomposition of magnesium hydroxide using thermogravimetric data determination of<br />

polymerization shrinkage kinetice in visible-light-cured materials: methods developement.<br />

Thermochimica Acta, 1998, 320, 75 – 88.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 62


[4] Kalfus, J.: Viscoelastic properties of polyvinylacetate-hydroxyapatite nanocomposites.<br />

Brno : <strong>Vysoké</strong> učení technické, 2005. 106 s.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 63


STUDIUM MECHANISMU KOORDINAČNÍ POLYMERACE HEXA-<br />

1,5-DIENU KATALYZOVANÉ FENOXYIMINOVÝM KOMPLEXEM<br />

TITANU A METHYLALUMINOXANEM<br />

Jan Ševčík, 4. ročník<br />

Vedoucí práce: Mgr. Soňa Hermanová, Ph.D.<br />

<strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>, ústav chemie a technologie materiálů,<br />

Purkyňova 118, 612 00 Brno, email: xcsevcikj@fch.vutbr.cz<br />

ÚVOD<br />

Koordinační polymerace dienů přitahují pozornost především z důvodu vzniku strukturně<br />

rozmanitých typů monomerních jednotek v polymerních řetězcích. Izolované dieny mohou<br />

podstoupit cyklopolymeraci, ve které je inzerce dvojné vazby monomeru do vazby Mt–C<br />

následována intramolekulární inzercí zbývající dvojné vazby za vzniku methylen-1,3cyklopentanové<br />

jednotky (MCP). 1 Doi a kol. polymerovali hexa-1,5-dien v toluenu pomocí<br />

V(acac)3 a Al(C2H5)2Cl při -78 °C za vzniku homopolymeru obsahujícího 46 mol % 1vinyltetramethylenových<br />

(VTM) jednotek a 54 mol % 1,3-cyklopentylenmethylenových<br />

(MCP) jednotek. 2<br />

Cílem této práce je studium mechanismu polymerace nekonjugovaného dienu<br />

katalyzované fenoxyiminovým komplexem titanu (FITi) a methylaluminoxanem (MAO) jako<br />

kokatalyzátorem. Uvažované způsoby zabudování molekul hexa-1,5-dienu do rostoucího<br />

řetězce jsou znázorněny na obr. 1. Adice dienu může probíhat buď 1,2-(primární) nebo 2,1-<br />

(sekundární) inzercí. Po 1,2-inzerci může následovat inzerce zbývající dvojné vazby v poloze<br />

1,2, čímž dojde k vytvoření cyklopentanového kruhu. Po inzerci dvojné vazby dienu v poloze<br />

2,1 může také následovat 1,2 inzerce zbývající dvojné vazby pří níž vzniká<br />

cyklobutylmethylový meziprodukt, který se β-alkyleliminací přemění na jednotku s boční<br />

vinylovou skupinou.<br />

monomer<br />

FITi<br />

Polymeračně aktivní centrum<br />

FITi<br />

P<br />

(1,2)<br />

MCP<br />

P<br />

P<br />

FITi<br />

+<br />

(2,1)<br />

hexa-1,5-dien<br />

FITi<br />

FITi<br />

cyklobutan<br />

VTM<br />

P<br />

β-alkyl elim.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 64<br />

P


Obr. 1 Navržené mechanismy inzerce hexa-1,5-dienu<br />

EXPERIMENTÁLNÍ ČÁST<br />

Všechny práce s látkami citlivými na vzduch a vlhkost byly prováděny pod inertní<br />

atmosférou, za použití standardních Schlenkových technik a vakuové linky pracující v režimu<br />

vakuum/inert. Dusík (99,999%, Siad) byl dočištěn pomocí sušících věží naplněných<br />

molekulovými síty (4 Å) a měďným katalyzátorem. Toluen (p.a., Lachema) byl před použitím<br />

sušen pomocí směsi sodík/benzofenon. Hexa-1,5-dien (99 %, Fluka) byl sušen na CaH2<br />

a čerstvě destilován. Kokatalyzátor methylaluminoxan (10 % wt. v toluenu, Crompton<br />

GmbH) byl před použitím zbaven volného trimethylaluminia (TMA) a znova rozpuštěn<br />

v toluenu. Bis[N-(3-terc-butylsalicylidene)-2,3,4,5,6-pentafluoroanilinato]titanium (IV)<br />

dichlorid byl syntetizován dle publikovaného postupu. 3<br />

Polymerace<br />

Polymerace byly prováděny v opláštěném reaktoru (250 ml) s magnetickým míchadlem.<br />

Jednotlivé komponenty byly přidávány v následujícím pořadí: toluen (50 ml), kokatalyzátor<br />

(6 mmol) a monomer (2 mmol). Reaktor byl temperován na příslušnou teplotu po dobu 20<br />

minut a poté byl dávkován roztok katalyzátoru (10 μmol) pro iniciaci polymerace.<br />

Polymerace byla ukončena za <strong>60</strong> min terminací ethanolem (10 ml), polymer byl vysrážen<br />

v roztoku methanolu okyseleném HCl, izolován filtrací a sušen za vakua do konstantní<br />

hmotnosti.<br />

Analýza polymeru<br />

GPC analýza byla provedena na SEC zařízení použitím Polymer Laboratories PL gel<br />

10 μm MIXED-8, 300×7,5 mm koloně, RI detektor RUBY 05. Analýza byla provedena při<br />

25 °C za použití THF jako rozpouštědla. Pro měření 1 H NMR spektra poly(hexa-1,5-dienu)<br />

byl připraven roztok rozpuštěním 20 mg polymeru v 0,5 cm 3 1,1,2,2,-tetrachlorethanu-d2 při<br />

120 °C, který byl následně při této teplotě homogenizován po dobu 8 hodin. Měření NMR<br />

spekter katalyzátorů bylo provedeno na přístroji Bru<strong>ke</strong>r Avance o pracovní frekvenci<br />

300 MHz.<br />

VÝSLEDKY A DISKUZE<br />

Polymerace hexa-1,5-dienu byla provedena v toluenu (50 ml) při teplotě 0 °C za katalýzy<br />

bis[N-(3-terc-butylsalicyliden)-2,3,4,5,6- pentafluoranilinato]titan (IV) dichloridem a MAO<br />

jako kokatalyzátorem. Vzniklý polymer (Mn = 41 kg·mol -1 , Mw/Mn = 1.5) byl po celou dobu<br />

polymerace rozpustný v polymeračním médiu, což indikuje absenci zesítěných struktur.<br />

K zesítění makromolekul by přispívaly nezreagované dvojné vazby monomerních jednotek ve<br />

formě butenylových postranních větví. Během polymerace bylo dosaženo vysokého stupně<br />

konverze (96 %). Počet vzniklých polymerních řetězců však neodpovídal počtu potenciálních<br />

aktivních center. Pouze 39 % aktivních center přispělo k propagaci řetězce, možným<br />

vysvětlením je nedostatečný přebytek kokatalyzátoru, jehož esenciální funkcí je aktivace<br />

katalytického prekurzoru a ochrana aktivního centra. Šířka distribuce molárních hmotností<br />

(Mw/Mn = 1.5) naznačuje, že v systému se uplatňují nežádoucí boční reakce (přenos).<br />

Mikrostruktura řetězce byla analyzována pomocí 1 H NMR spektroskopie. Procentuální<br />

zastoupení VTM jednotek ve vzorku polymeru bylo kvantifikováno na 36,5 % (Obr.2).<br />

Teplota s<strong>ke</strong>lného přechodu polymeru (Tg = -15,3 °C) byla stanovena pomocí DSC.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 65


Obr. 2 1 H NMR poly(hexa-1,5-dienu), zastoupení jednotek VTM/MCP = 36,5 % / 63,5 %<br />

ZÁVĚR<br />

Prvotní studie prokázala, že systém FITi/MAO je katalyticky aktivní pro polymeraci hexa-<br />

1,5-dienu. Větší podíl MCP jednotek v připraveném poly(hexa-1,5-dienu) při 0 °C naznačuje<br />

upřednostnění adice molekul monomeru na aktivní centrum mechanismem primární 1,2inzerce.<br />

Další výzkum bude zaměřen na studium mechanismu a kinetiky propagace hexa-1,5dienu<br />

za různých polymeračních podmínek (T, vliv koncentrace monomeru, vliv poměru<br />

katalyzátor/kokatalyzátor).<br />

LITERATURA<br />

1. Marvel C. S., Stille J. K.: J Am Chem Soc 80, 1740 (1957).<br />

2. Doi Y., Tokuhiro N., Soga K.: Makromol. Chem. 190, 643 (1989)<br />

3. Fujita T., Mitani M.: J. Am. Chem. Soc. 124, 3327 (2002)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 66


MOLEKULOVÁ DYNAMIKA C-GLYKOZYLNITROMETÁNOV<br />

Stanislava Šoralová, 5. ročník<br />

Vedúci práce: Mgr. Juraj Kóňa, PhD.*<br />

Ústav fyzikálnej chémie a chemic<strong>ke</strong>j fyziky, FCHPT STU, Radlinského 9, SK-812 37 Bratislava,<br />

Slovenská republika, e-mail: stanislava.soralova@gmail.com<br />

*Chemický ústav SAV, Dúbravská cesta 9, 845 38 Bratislava, SR<br />

ÚVOD<br />

Rezistencia patogénov na existujúce lieky sa stáva čoraz väčším problémom nie len pre<br />

medicínu. To zapríčinilo rozsiahly výskum nových inhibítorov. Pretože výskyt D-rabinofuranózy<br />

a D-galaktofuranózy je v prírode špecifický pre mykobaktérie, protozoa a huby, môžu zlúčeniny<br />

im podobné prekážať enzymaticky katalyzovaným cestám ich spracovania a vytvárať tak<br />

kompetetívnu inhibíciu. Preto sa stále viac stáva žiadanou syntéza C-glykofuranózových<br />

štruktúr.<br />

Monosacharidy v roztoku podliehajú vnútromolekulovej reakcii medzi karbonylovou<br />

skupinou a jednou z hydroxylových skupín. To dáva rôzne možnosti cyklických štruktúr. Ak<br />

daný monosacharid môže poskytovať päť i šesťčlánkové kruhy, sú v rovnovážnom roztoku<br />

zastúpené predovšetkým šesťčlánkové kruhy, relatívne zastúpenie päťčlánkových kruhov je<br />

veľmi níz<strong>ke</strong>, pretože šesťčlánkové kruhy sú oproti päťčlánkovým termodynamicky výhodnejšie<br />

[2].<br />

Napriek tomu bola ako pracovná hypotéza prijatá predstava, podľa ktorej ak má molekula<br />

schopnosť tvoriť oba kruhy, tvorba päťčlánkového cyklu prebieha s väčšou rýchlosťou ako<br />

šesťčlánkového, je kineticky preferovaná. Zrejmým dôvodom je vzdialenosť reakčných<br />

partnerov cyklizačnej reakcie, ktorá je pri tvorbe päťčlánkového kruhu asi o 20% kratšia a z toho<br />

vyplývajúca vyššia vnútromolekulová koncentrácia ako pri šesťčlánkovom cykle.<br />

Pravdepodobnosť cyklizácie klesá s rastúcou dĺžkou reťazca medzi reakčnými partnermi. Táto<br />

hypotéza sa samozrejme nedá aplikovať na menšie kruhy, pretože nárastajúce napätie väzbových<br />

uhlov vo vznikajúcom kruhu by výrazne zvýšilo aktivačnú energiu. [3]<br />

Pri cyklizácii 1,2-dideoxy-1-nitroalk-1-enitolu nie je možné zachytiť primárne vznikajúci<br />

kineticky preferovaný produkt päťčlánkový kruh C-glykozylnitrometánov, pretože sa v dôsledku<br />

rýchlej vratnej konverzie mení na termodynamicky výhodnejší šesťčlánkový kruh. Z tohoto<br />

dôvodu boli rozpracované metódy nerovnovážnej prípravy C-glykozylnitrometánov, ktoré môžu<br />

poskytovať netermodynamické C-glykofuranozyl-nitrometány. [3]<br />

Táto práca naväzuje na výskum prípravy anomérov C-L-arabinofuranozylnitro-metánov<br />

z dostupného 3,4,5,6-tetra-O-acetyl-1,2-dideoxy-1-nitro-L-arabino-1-enitolu 1. V prvom kroku<br />

O-deacetylácia látky 1 v kyslom metanole poskytuje nitroalkén 2, jeho cyklizácia prebieha ako<br />

1,4-adícia poskytujúca C-(L-arabinofuranozyl)-metylnitrónové kyseliny 5 a 6, ktoré po následnej<br />

protonizácii podliehajú novej modifikácii Nefovej reakcie. Táto reakcia zastaví ďalšie zmeny<br />

v cykle, čo umožňuje izolovať kineticky preferované päťčlánkové cykly. Výsledkom sú<br />

dimetylacetálovo chránené C-(L-arabinofuranozyl)metanaly 7, 8 a zmiešaný vnútro-metylový<br />

acetál 9. [3, 4]<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 67


AcO<br />

AcO<br />

Obr. 1<br />

1<br />

NO 2<br />

OAc<br />

OAc<br />

MeOH<br />

+<br />

H<br />

MeOH<br />

H+<br />

HO<br />

O<br />

H<br />

2b<br />

N<br />

OH<br />

OH<br />

HO<br />

O<br />

H<br />

HO OMe<br />

O<br />

OMe<br />

HO OH<br />

7<br />

O<br />

O<br />

2a<br />

NO 2<br />

OH<br />

OH<br />

+<br />

HO NO H 2<br />

O<br />

HO OH<br />

HO OMe<br />

O<br />

OMe<br />

HO OH<br />

HO NO2 O<br />

+<br />

+<br />

HO OH<br />

3<br />

HO NO2H O<br />

HO OH<br />

5 6<br />

H +<br />

MeOH<br />

O OMe<br />

O<br />

HO OH<br />

8 9<br />

+<br />

HO NO2 O<br />

HO OH<br />

METÓDA<br />

Pri voľbe teoretického prístupu bol použitý predpoklad, že aktivačné energie vzniku<br />

anomérov päťčlánkových a šesťčlánkových kruhov sú približne rovnaké a tak nemajú vplyv<br />

na experimentálne získané množstvá produktov. Takisto sa predpokladá, že kineticky<br />

preferované produkty budú mať za rovnaký časový interval menšiu priemernú vzdialenosť<br />

reakčných partnerov, a zároveň bude preferovaná hydroxylová skupina častejšie pod správnym<br />

uhlom k väzbe C=C. U preferovaného anoméru sa bude hydroxylová skupina častejšie<br />

približovať k elektrofilu zo strany typic<strong>ke</strong>j pre tento anomér, prípadne bude mať kratšiu<br />

priemernú vzdialenosť reakčných partnerov ako pri približobaní z opačnej strany.<br />

Vďaka týmto predpokladom bolo možné pre teoretickú analýzu použiť relatívne jednoduché<br />

a rýchle výpočty molekulovej dynamiky pre rôzne C-glykozylnitrometány v rôznych formách<br />

(1,2-dideoxy-1-nitroalk-1-enitolu s protonizovanou nitro skupinou, per-acetylovaný a pod.).<br />

Vzhľadom na nepoužiteľnosť parametrov programu Amber 8 SANDER v tomto prípade,<br />

bolo potrebné ich vyrobiť [1]. Geometrie molekúl boli zoptimalizované v programe<br />

HYPERCHEM, získané geometrie slúžili ako vstup do programu GAUSSIAN G03 verzia D1<br />

Windows. Výsledné geometrie a rozloženia nábojov boli po solvatácii metanolom podrobené<br />

minimalizácií energie počas 300 krokov. Výpočty molekulovej dynamiky boli robené pre čas<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 68<br />

4


10 ns, geometria systému sa zapisovala každé 2 fs. Použitá teplota pri výpočtoch bola 273 K a<br />

243 K.<br />

VÝSLEDKY A DISKUSIA<br />

Tab. 1<br />

Názov a forma<br />

Protonizovaný 1,2-dideoxy-<br />

1-nitro-L-arabino-1-enitol<br />

Protonizovaný 3,4,5,6-tetra-<br />

O-acetyl-1,2-dideoxy-1-nitro-<br />

L-arabino-1-enitol<br />

1,2-dideoxy-1-nitro-<br />

D-galakto-1-enitolu<br />

Protonizovaný 1,2-dideoxy-<br />

1-nitro-D-galakto-1-enitolu<br />

1,2-dideoxy-1-nitro-<br />

D-gluko-1-enitolu<br />

Päťčlánkový<br />

Teplota<br />

273 K 243 K<br />

Priemerná vzdialenosť reakčných<br />

partnerov pre vznik kruhu [Å]<br />

Šesťčlánkový <br />

Päťčlánkový <br />

Šesťčlánkový<br />

4.41 4.99 4.41 4.62<br />

3.76 5.09 4.26 6.34<br />

4.36 4.76 4.17 4.80<br />

4.95 5.05 4.95 5.04<br />

3.95 5.39 4.38 4.62<br />

Ako vidieť z Tab. 1 priemerné vzdialenosti reakčných partnerov sú za rovnakých podmienok<br />

menšie pri vzniku päťčlánkových cyklov. Nejedná sa len o priemerné vzdialenosti ale<br />

i o okamžité vzdialenosti, ktoré sú u päťčlánkových kruhov kratšie (Graf 1).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 69


vzdialenosť reakčných<br />

partnerov ( )<br />

6.4<br />

5.9<br />

5.4<br />

4.9<br />

4.4<br />

3.9<br />

3.4<br />

2.9<br />

2.4<br />

Protonizovaný 3,4,5,6-tetra-O-acetyl-1,2-dideoxy-1nitro-L-arabino-1-enitol<br />

päťčlánkový<br />

šesťčlánkový<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10<br />

čas (ns)<br />

Graf 1<br />

Tento výsledok podporuje pôvodnú predstavu kineticky preferovaných päťčlánkových kruhov,<br />

zároveň i vyhovuje experimentálnym poznatkom získaných z analýzy reakčných produktov<br />

metanolýzy 3,4,5,6-tetra-O-acetyl-1,2-dideoxy-1-nitro-L-arabino-1-enitolu, kde výťažky<br />

päťčlánkových kruhov 7-9 tvoril až 65-78%. Ďalší súhlas výpočtov s experimentom bol<br />

dosiahnutý v určení preferencie jedného anoméru za rôznych teplôt. Z experimentu i výpočtov<br />

vyplýva, že pri níz<strong>ke</strong>j teplote je u rôzne veľkých cyklov tendencia vytvárať len jeden anomér.<br />

Záverom môžeme tvrdiť, že použitá metóda je vhodná na opis kinetického správania<br />

C-glukozylnitrometánov.<br />

LITERATÚRA<br />

[1] T. M. Glennon, K. M. Merz Jr.: J. Mol. Struc. (Theochem), 395-396 (1997) 157-171.<br />

[2] G. Illuminati, L. Mandolini: Acc. Chem. Res. 14 (1981) 95-102.<br />

[3] M. Petrušová, M. Vojtech, Pribulová B., Lattová, E., Matulová M., Poláková M., BeMiller<br />

J. N., Kren V. Petruš L. Carbohydr Res. 341 (2006) 2019-2025.<br />

[4] Ballini R., Petrini M.: Tetraedron <strong>60</strong> (2004) 1017-1047.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 70


STUDIUM DEGRADACE TISKU NA TENKÝCH POLYMERNÍCH<br />

VRSTVÁCH<br />

Jiří Stančík, 5. ročník<br />

Vedoucí práce: doc. Ing. Michal Veselý, CSc.<br />

<strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>, ústav fyzikální a spotřební chemie,<br />

Purkyňova 118, 612 00 Brno, e-mail: xcstancik@fch.vutbr.cz<br />

ÚVOD<br />

Cílem práce bylo zkoumání vlastností potisků prováděných na polymerních vrstvách<br />

s anorganickými plnivy. Jako médium byl použit filtrační papír, polymerním nosičem byl<br />

modifikovaný polyvinylalkohol (dále jen PVAL). Do roztoku PVAL byl dispergován<br />

modifikovaný oxid titaničitý (TiO2). TiO2 je často používaným polymerním plnivem pro svou<br />

snadnou dostupnost a nízkou cenu. Zlepšuje vlastnosti polymerních vrstev při tisku, ale může<br />

urychlovat negativní vlivy, které způsobují degradaci použitých inkoustů vlivem slunečního<br />

záření.<br />

TEORETICKÁ ČÁST<br />

Na kvalitu výtisku mají vliv tři stěžejní faktory: tisk, skladování a potiskované médium<br />

(papír). Kvalita papírů používaných pro tisk je hodnocena hlavně z hlediska jejich textury,<br />

světlosti a opacity.<br />

• Textura: může být hrubá nebo hladká.<br />

• Světlost: vyjadřuje se v jednotkách od 1 do 100, přičemž hodnota 100 odpovídá<br />

nejsvětlejšímu papíru.<br />

• Opacita: je mírou neprůhlednosti či odrazivosti média. Vypočítá se jako poměr<br />

světelného toku dopadajícího na papír ku světelnému toku, který papírem projde<br />

(odrazí se). Čím je opacita vyšší, tím je papír neprůsvitnější (matnější), má lepší<br />

kvalitu.<br />

Opacitu lze zjistit pomocí veličiny průsvitnost (ν) podle vztahu 100 − ν. Průsvitnost lze<br />

vypočítat ze vztahu<br />

ν = 100<br />

Rb<br />

− Rč<br />

,<br />

R ´ −R<br />

´<br />

(1)<br />

b<br />

kde Rb´ a Rč´ jsou hodnoty reflektance pro referenční bílou a černou podložku a hodnoty Rb a<br />

Rč jsou hodnoty reflektancí vzorků měřených na těchto podložkách [1] . Použitý filtrační papír<br />

nelze nazvat kvalitním médiem pro inkoustový tisk, avšak pro studium procesu je výhodné<br />

použití nosiče složeného z čistých celulózových vlá<strong>ke</strong>n bez jakéhokoli přídavku plniv a<br />

aditiv.<br />

Kvalitu výtisku lze mimo jiné hodnotit podle optické hustoty a ostrosti vytištěných prvků<br />

(sledování nárůstu rastrového bodu). Vysoká optická hustota a ostrost jsou známkami<br />

kvalitního výtisku.<br />

Skladování je také velmi důležité. Blednutí výtisku může být způsobeno účin<strong>ke</strong>m<br />

chemických látek ze vzduchu (ozón), vlhkostí, ale převážně světlem. Největší podíl na<br />

degradaci barviv má přímé sluneční světlo, hlavně jeho UV složka. Podobný účinek, i když<br />

mnohem menších dopadů, má také umělé osvětlení (žárovka). Další negativní faktory<br />

představují teplo a vlhko. Žádné médium by se tedy nemělo vystavovat příliš vysokým<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 71<br />

č


teplotám a nebo nechávat na vlhkých místech Chyba! Nenalezen zdroj odkazů. . Všechny uvedené<br />

faktory způsobují blednutí, či nežádoucí změny odstínů vytištěných barev.<br />

Světlo odrážející se od pozorovaného objektu je modulované vlastnostmi tohoto objektu<br />

(schopnost povrchu pohlcovat či odrážet světlo určitých vlnových délek). Takto modulované<br />

světlo dopadá do oka a ve zrakovém systému vyvolává určitý barevný vjem. Mezinárodní<br />

komise pro osvětlení (Commision Internationale de l’Eclarage – CIE) v roce 1931<br />

standardizovala systém měření barev a definovala standardní zdroje osvětlení (definice<br />

spektrálních charakteristik sady světelných zdrojů, se kterými se nejčastěji pracuje, světelný<br />

zdroj A až F, kdy nejpoužívanější pro grafiku jsou D50 a D65), podmínky osvětlování vzorku<br />

a detekce odraženého světla. Definovala také spektrální citlivost detektorů zavedením funkcí<br />

standardního pozorovatele a doporučila způsob vyhodnocování získaných údajů.<br />

Standardní pozorovatel představuje spektrální citlivost průměrného zdravého lidského oka<br />

na tři základní barvy – červenou, zelenou a modrou. Funkce standardního pozorovatele se<br />

také označují jako CIE trichromatické členitelé x(λ), y(λ), z(λ) nebo 2° standardní<br />

pozorovatel CIE 1931, protože odpovídají pozorování barevného pole v úhlu 2°. V roce 1964<br />

CIE definovala a doporučila tzv. CIE 1964 doplňkové trichromatické členitele pro 10°<br />

standardního pozorovatele.<br />

Ve smyslu barevného vjemu je možné jednoznačně definovat barvu pomocí tří čísel –<br />

trichromatických složek X, Y a Z, vypočítaných z remisních křivek barevného vzorku R(λ),<br />

spektrální distribuce osvětlení Φ 0 (λ) a funkcí trichromatických členitelů x(λ), y(λ) a z(λ). Pro<br />

příklad bude uveden výpočet trichromatické složky X, přičemž dvě ostatní trichromatické<br />

složky se vypočtou podle stejného vzorce, pouze se zaměněním patřičného trichromatického<br />

členitele<br />

730nm<br />

380nm<br />

0<br />

X = K ∫ Φ ( λ) ⋅R( λ) ⋅x(<br />

λ)dλ, (2)<br />

kde konstanta K je dána vztahem<br />

100<br />

K =<br />

. (3)<br />

0<br />

∫Φ<br />

( λ) ⋅ y(<br />

λ)dλ Normováním těchto trichromatických složek lze získat trichromatické souřadnice x, y, z, ze<br />

kterých byl vytvořen barevný model CIE xyY. Mnohem důležitější pro tuto práci je barevný<br />

model, který CIE navrhla v roce 1976 a je označován jako barevný prostor CIE 1976 L*a*b*.<br />

Hodnoty souřadnic udávají polohu barvy v třírozměrném barevném prostoru a získají se<br />

přepočtem z trichromatických složek dle vzorců<br />

*<br />

1 3<br />

L = 116 ⋅ Y Y − , (4)<br />

( n ) 16<br />

( X<br />

1 3<br />

X n ) ( Y<br />

1<br />

n )<br />

1 3 ( Y Y ) ( Z<br />

1 )<br />

3<br />

[ ]<br />

3<br />

[ ]<br />

∗<br />

a = 500 ⋅ − Y<br />

*<br />

b ⋅ n −<br />

n<br />

, (5)<br />

= 200 Z , (6)<br />

kde Xn, Yn, Zn jsou trichromatické složky pro referenční bílou při zvoleném osvětlení a<br />

pozorovateli.<br />

Měrná světlost L* reprezentuje vertikální osu a osy a*, b* tvoří chromatickou rovinu.<br />

Prostor L*a*b* je téměř uniformní, a proto se používá hlavně k vyhodnocování barevných<br />

diferencí a tolerancí (Obr. 1).<br />

Barevnou odchylku ΔE*ab lze vypočítat ze souřadnic L*, a* a b* podle vzorce<br />

*<br />

Eab ( ) ( ) ( ) 2<br />

* 2 * 2 *<br />

ΔL<br />

+ Δa<br />

+ Δb<br />

Δ =<br />

. (7)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 72


Při měření barev prakticky všechny barevné prostory vycházejí při definici svých<br />

souřadnic z trichromatických složek X, Y a Z. Každý přístroj používaný pro měření barvy by<br />

měl zabezpečit: osvětlení měřeného povrchu zvoleným standardním osvětlením, detekci a<br />

měření změny vlastností odraženého světla od měřeného povrchu a samozřejmě vyhodnocení<br />

a vyčíslení trichromatických složek ve smyslu jejich definice [2] .<br />

−a<br />

zelená<br />

L = 100<br />

bílá<br />

−b<br />

modrá<br />

+b<br />

žlutá<br />

L = 0<br />

černá<br />

Obr. 1 Chromatická rovina barevného prostoru CIE 1976 L*a*b* a osa světlosti L.<br />

POUŽITÉ PŘÍSTROJE<br />

• Barvivová tiskárna Epson R220 obsahující cartridge: C, M, Y, K, LM, LC,<br />

• sonda Spectrolino využívající software Gretag Macbeth Measure Tool 4.1,<br />

• mikroskop Intrecomicro,<br />

• fotoaparát Nikon D70,<br />

• UV metr Lutron 340,<br />

• spektrofotometr Datacolor 3890.<br />

EXPERIMENTÁLNÍ ČÁST<br />

Připravený 5% roztok modifikovaného PVAL byl rozdělen na 5 dílů, do těchto 5 dílů byla<br />

dispergována různá množství modifikovaného TiO2 se sníženou fotokatalytickou účinností.<br />

K nanášení disperzí na filtrační papír byla použita metoda sítotisku. První vzorek byl ovrstven<br />

rozto<strong>ke</strong>m PVAL bez přídavku TiO2, u dalších vzorků byl poměr sušiny PVAL k TiO2 zvolen<br />

následovně: 1:1, 1:2, 1:4, 1:8 a 1:16. Připravené vzorky byly ponechány k volnému vysušení.<br />

U nepotištěných vzorků byla hodnocena světlost a opacita. Poté byla na vzorky vytištěna<br />

sada barevných škál obsahujících azurovou (C), purpurovou (M), žlutou (Y) a kompozitní<br />

černou barvu (K). Škály mají 11 políček na kterých klesá pokrytí inkoustem po 10 % od<br />

100 % po 0 % (Obr. 2). Neexponované vzorky byly vyfotografovány přes mikroskop, na<br />

výsledných snímcích byla hodnocena textura média a ostrost tisku.<br />

Obr. 2 Škála odstínů šedé, tištěná také v barvách C, M, a Y.<br />

+a<br />

červená<br />

Po proměření L*, a*, b* souřadnic a optických hustot (D65, 2° pozorovatel) pro jednotlivé<br />

barvy byly vzorky připevněny na podložku a umístěny na okno nacházející se na slunné<br />

straně budovy. Byly tedy vystaveny extrémním podmínkám pro degradaci potisku. Během 13<br />

dnů po které trvala expozice byla v okně se vzorky prováděna měření intenzity ozáření. Poté<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 73


yly u vzorků opět proměřeny L*, a*, b* souřadnice a optické hustoty. Z výsledků byla<br />

vypočítána barevná odchylka ΔE*ab po první expozici (7). Vzorky byly poté vystaveny druhé<br />

expozici a opět proměřeny.<br />

VÝSLEDKY A DISKUSE<br />

Pro fotografování přes mikroskop byla vybrána políčka s 20% krytím inkoustu, protože<br />

jednotlivé rastrové body jsou na nich snadno rozlišitelné (neslívají se). S rostoucí koncentrací<br />

TiO2 se zlepšuje ostrost tisku. Podrobnějším zkoumáním těchto fotografií bylo zjištěno, že ve<br />

stejném směru se zlepšuje také textura a světlost.<br />

Měření opacity bylo provedeno na přístroji Datacolor 3890 tak, že byla nejprve proměřena<br />

reflektance referenční bílé a černé podložky a poté byly proměřeny jednotlivé vzorky na<br />

těchto podložkách. Ze změřených reflektancí byla vypočítána průsvitnost dle vztahu (1),<br />

z této veličiny pak byla spočtena opacita. Vypočtené hodnoty opacity shrnuje Tabulka 1.<br />

Intenzita ozáření vzorků byla proměřována pravidelně ve stejnou dobu (13:00 SLČ)<br />

v období od 29. 5. do 10. 7. 06. V rámci jednoho dne v daném období byla navíc provedena<br />

měření intenzit ozáření každou hodinu, aby bylo možno udělat si představu o rozložení<br />

intenzit ozáření v průběhu celého dne. Výsledky těchto měření jsou zaznamenány na Obr. 3.<br />

Intenzita ozáření ( μW cm -2 )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

29.5 12.6 26.6 10.7<br />

Datum<br />

Obr. 3 Výsledky měření intenzit ozáření<br />

Intenzita ozáření ( μW cm -2 )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

a) intenzita ozáření vzorků ve dnech experimentu (13:00 SLČ)<br />

b) průměrná intenzita ozáření vzorku během jednoho dne<br />

50<br />

0<br />

7 9 11 13 15 17 19<br />

Čas (h)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 74


ΔE * ab<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1:0<br />

1. expozice 2. expozice<br />

Azurová<br />

1:1<br />

1:2<br />

1:4<br />

1:8<br />

PVAL:TiO2<br />

1:16<br />

ΔE * ab<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1:0<br />

1. expozice 2. expozice<br />

Purpurová<br />

1:1<br />

1:2<br />

1:4<br />

1:8<br />

PVAL:TiO2<br />

Obr. 4 Grafická znázornění barevných odchylek pro azurovou a purpurovou barvu.<br />

Z proměřených barevných škál byla vyhodnocována pouze políčka se 100% krytím<br />

inkoustem. Jejich barevné odchylky ΔE*ab po první i po druhé expozici byly graficky<br />

zaznamenány pro všechny koncentrace TiO2 (Obr. 4, Obr. 5).<br />

Tabulka 1 Nárůst hodnot opacity s koncentrací TiO2.<br />

Poměr PVAL:TiO2 1:0 1:1 1:2 1:4 1:8 1:16<br />

Opacita 57,6 69,4 72,6 74,3 81,8 85,9<br />

ΔE * ab<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1:0<br />

1. expozice 2. expozice<br />

Žlutá<br />

1:1<br />

1:2<br />

1:4<br />

1:8<br />

PVAL:TiO2<br />

1:16<br />

ΔE * ab<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1:0<br />

1. expozice 2. expozice<br />

Černá<br />

1:1<br />

1:2<br />

1:4<br />

1:8<br />

PVAL:TiO2<br />

Obr. 5 Grafická znázornění barevných odchylek pro žlutou a černou barvu.<br />

Bylo zjištěno, že TiO2 má jako plnivo do polymerních vrstev pozitivní vliv na kvalitu<br />

tisku. Nanášením disperzí na filtrační papíry byla zlepšována jeho textura a světlost, zároveň<br />

docházelo k nárůstu opacity. Všechny tyto faktory se podepsaly na zlepšení kvality výtisku<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 75<br />

1:16<br />

1:16


což bylo prokázáno pozorováním rastrových bodů a textury papíru pod mikroskopem a<br />

následným měřením opacity.<br />

ZÁVĚR<br />

Použitý TiO2 měl mít vlastnosti potlačující jeho fotokatalytické účinky, i přesto však<br />

výrazně přispíval k degradaci potisků což potvrdily vypočtené barevné odchylky. Barevné<br />

odchylky narůstaly s rostoucí koncentrací TiO2. Odchylky také narůstají s počtem expozic,<br />

proto byly po 2. expozici větší než po 1. expozici.<br />

Intenzita ozáření v měřeném období vzrůstala, <strong>ke</strong> konci období její nárůst poklesl.<br />

Průměrná hodnota intenzity ozáření byla 133 μW cm −2 . V průběhu jednoho dne intenzita<br />

ozáření vzrůstala až do 16 hodin, kdy dosáhla svého maxima.<br />

Polymerní vrstvy obsahující TiO2 vykazují zlepšené tiskové vlastnosti, zároveň však<br />

dochází k výrazné degradaci potisků. V další práci tedy bude věnována pozornost použití UV<br />

stabilizátorů za účelem zvýšení archivní stálosti výtisků.<br />

LITERATURA<br />

[1] Nároky na papír při tisku. Univerzita Pardubice [online]. [cit. 6. října 2006]. Dostupné<br />

na www: http://www.upce.cz/priloha/kpf-tiskovepapiry3<br />

[2] Hájek, M., Fade Resistance aneb blednout či neblednout? Fotografování [online]. 2005,<br />

[cit. 6. října 2006]. Dostupné na www:<br />

http://www.fotografovani.cz/art/fotech_fototisk/Fade-resistance-p.html<br />

[3] Veselý, M., Králová, I., Dzik, P., Zita, J., Vnímání barev a jejich měření, <strong>Vysoké</strong> učení<br />

technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>, Purkyňova 118, 612 00, Brno 2004<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 76


ZMĚNY OBSAHU AMINOKYSELIN V BRA<strong>MB</strong>ORÁCH<br />

V ZÁVISLOSTI NA HNOJENÍ DUSÍKEM<br />

Bc. Petra Valová, 5. ročník<br />

Vedoucí práce: Ing. Otakar Rop, Ph.D.<br />

Univerzita Tomáše Bati ve Zlíně, <strong>Fakulta</strong> technologická, Ústav potravinářského inženýrství<br />

a chemie, Náměstí T.G. Masaryka 275, 762 72 Zlín, e-mail: petra.flajsmanova@email.cz<br />

ÚVOD<br />

Dusík (N) je pro rostliny nejvýznamnější živinou (1). Po přihnojení dusíkatými hnojivy<br />

se zvyšuje intenzita tvorby organických sloučenin v rostlinném organismu. Příliš vysoké<br />

dávky dusíku však mohou inhibovat syntézu zásobních polysacharidů na úkor zvýšené tvorby<br />

některých jiných chemických sloučenin (2). Při hnojení dusí<strong>ke</strong>m se každopádně mění<br />

chemické složení rostlin v důsledku zvýšené schopnosti rostlin přijímat anorganické<br />

i organické složky půdního roztoku (3).<br />

Správně volené hnojení dusí<strong>ke</strong>m má kladný vliv na výnosy a kvalitu brambor. Se zvyšující<br />

se dávkou dusíku však jeho účinnost klesá. To znamená, že v rámci nízkých dávek N na 1<br />

hektar (50 kg) na 1 kg dusíku připadá přírůstek výnosu kolem 100 - 120 kg hlíz, ale u dávek<br />

nad 120 kg N.ha -1 již jenom 20 - 30 kg hlíz (4). Velmi vysoké dávky dusíku snižují obsah<br />

sušiny, škrobu a zhoršují chuť hlíz po uvaření. Existuje i nebezpečí zvýšeného obsahu<br />

dusičnanů v hlízách i když tento jev je více záležitostí průběhu počasí v ročníku a délky<br />

vegetační doby jednotlivých odrůd brambor (5).<br />

Jedním z nejzajímavějších důsledků aplikace dusíku k bramborám může být změna<br />

v obsahu aminokyselin v bramborové hlíze (6). Hnojení dusí<strong>ke</strong>m zvyšuje v bramborových<br />

hlízách obsah celkového dusíku a obsah bílkovinného dusíku i když při velmi vysokých<br />

dávkách N může dojít <strong>ke</strong> stresu rostliny, který má naopak za následek pokles množství<br />

bramborové bílkoviny (7). Přestože se u brambor rostoucích na pozemcích, kde byla<br />

aplikována dusíkatá výživa, většinou setkáváme s vyšším množstvím bílkovin, jejich<br />

výživová hodnota jednoznačně klesá. Tento fakt je zapříčiněn přednostním zabudováváním<br />

dusíku v neesenciálních aminokyselinách (8).<br />

METODIKA<br />

Cílem práce bylo sledovat vliv aplikace dusíku na obsah aminokyselin v dužnině<br />

bramborových hlíz. Pokus byl prováděn v plastových nádobách, do kterých bylo navažováno<br />

po 10 kg stejné zeminy. Nádoby byly umístěny na pokusném pracovišti Ústavu<br />

potravinářského inženýrství a chemie FT UTB ve Zlíně.<br />

Do pokusu byly zařazeny varianty v 8 opakováních, a to bez přídavku dusíku do půdy<br />

a s přihnojením dusí<strong>ke</strong>m na úrovni 20 mg N.kg -1 (odpovídá <strong>60</strong> kg N.ha -1 ) a 40 mg N.kg -1<br />

zeminy (odpovídá 120 kg N.ha -1 ). Dusík byl aplikován ve formě dusičnanu amonného.<br />

K výsadbě byly použity velmi rané brambory odrůdy KORUNA, jejichž hlízy byly pro<br />

analýzu sklízeny v 90 dnech vegetace, kdy jsou v konzumní zralosti.<br />

Pro stanovení celkového dusíku bylo využito metody podle Kjeldahla. Množství dusíku<br />

v hlízách bylo přepočteno na obsah hrubé bílkoviny. Hydrolýza vzorků pro stanovení<br />

aminokyselin byla provedena c (HCl) = 6 mol⋅dm -3 . Aminokyseliny methionin a cystein byly<br />

stanoveny pomocí oxidativně kyselé hydrolýzy ve směsi 85 % kyseliny mravenčí a 30 %<br />

peroxidu vodíku (9). Chromatografická analýza hydrolyzátu byla provedena na přístroji AAA<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 77


400 (INGOS Praha) pomocí sodnocitrátových pufrů a ninhydrinovou detekcí. Obsah<br />

aminokyselin byl vyjádřen a mezi variantami porovnán standardní hodnotou - v g<br />

aminokyseliny na 16g N (10).<br />

Výsledky chemických analýz byly zpracovány metodou analýzy variance.<br />

Pro vyhodnocení průkaznosti rozdílů byl použit Scheffého test při 95 % hladině významnosti<br />

(11).<br />

VÝSLEDKY<br />

Výnosové parametry a výsledky chemických analýz jsou uvedeny v tabulkách I – III.<br />

Se zvyšujícím se přídav<strong>ke</strong>m dusíku do půdy vrůstal výnos bramborových hlíz. U varianty<br />

s 40 mg N.kg -1 zeminy byl ve srovnání s kontrolní variantou výnos větší o 83 %. U této<br />

varianty bylo také množství hlíz získaných z jedné rostliny statisticky průkazně vyšší než<br />

u varianty kontrolní a varianty s 20 mg N.kg -1 zeminy. Naopak průměrná hmotnost 1 hlízy<br />

se snižovala (tab. I).<br />

Stupňované dávky dusíku snižovaly množství sušiny v bramborových hlízách (tab. I).<br />

Statisticky významně se snižovalo také celkové množství aminokyselin a hrubé bílkoviny<br />

(tab. II). Přihnojení dusí<strong>ke</strong>m na úrovni 20 mg N.kg -1 zeminy mělo za následek snížení obsahu<br />

všech aminokyselin v čerstvé hmotě bramborových hlíz ve srovnání s kontrolou (pokles<br />

o 27 %). Další přídavek dusíku (tj. 40 mg N.kg -1 zeminy) opět způsobil nižší obsah většiny<br />

aminokyselin s výjimkou histidinu a tyrosinu jejichž množství se mírně zvýšilo. Ve srovnání<br />

s variantou 20 mg N.kg -1 zeminy byl celkový obsah aminokyselin u varianty s vyšší dávkou<br />

dusíku snížen o 17 % (tab. II).<br />

Při vyjádření obsahu aminokyselin v bramborové hlíze standardní hodnotou v gramech<br />

aminokyseliny na 16 g hlízového dusíku je také patrný trend snižování obsahu všech<br />

aminokyselin v závislosti na stupňovaných dávkách dusíku v půdě (tab. III). Výjimkou je opět<br />

vyšší obsah histidinu a tyrosinu u varianty s vyšší dávkou dusíku v půdě ve srovnání<br />

s variantou s 20 mg N.kg -1 půdy. Zatímco u kontrolní varianty bylo zaznamenáno přibližně<br />

90 % aminokyselin vázaných v bílkovině, u brambor hnojených dusí<strong>ke</strong>m na úrovni<br />

20 mg N.kg -1 zeminy byl jejich obsah jen 67 % a v bramborových hlízách získaných z půdy<br />

s 40 mg N.kg -1 byl obsah aminokyselin v bílkovině pouze 65 % (tab. III).<br />

Tabulka I. Průměrná hmotnost bramborových hlíz v gramech, průměrný počet hlíz v kusech<br />

a průměrná hmotnost 1 hlízy v gramech připadající na 1 nádobu a průměrný obsah sušiny<br />

v bramborových hlízách (v hmotnostních %)<br />

Parametr Kontrolní varianta Varianta s 20 mg<br />

N.kg -1 zeminy<br />

Varianta s 40 mg<br />

N.kg -1 zeminy<br />

Výnos 118,33 g 168,33 g 217,50 g<br />

Počet hlíz 5,5 ks 6,33 ks 10,75 ks<br />

Hmotnost 1 hlízy 21,51 g 26,59 g 20,23 g<br />

Sušina 23,5 % 22,18 % 21,14 %<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 78


Tabulka II. Obsah aminokyselin a hrubé bílkoviny v bramborových hlízách (g.kg -1 čerstvé<br />

hmoty)<br />

Aminokyselina Obsah v kontrolní<br />

variantě<br />

Obsah u varianty s 20<br />

mg N.kg -1 zeminy<br />

Obsah u varianty<br />

s 40 mg N.kg -1<br />

zeminy<br />

Valin 0,84 0,68 0,55<br />

Leucin 1,06 0,88 0,72<br />

Isoleucin 0,63 0,53 0,45<br />

Threonin 0,70 0,57 0,45<br />

Methionin 0,33 0,31 0,26<br />

Lysin 1,01 0,81 0,66<br />

Fenylalanin 0,73 0,61 0,51<br />

Histidin 0,33 0,20 0,25<br />

Arginin 1,06 0,73 0,57<br />

Cystein 0,37 0,33 0,25<br />

Kyselina asparagová 2,23 1,84 1,32<br />

Kyselina glutamová 2,19 1,67 1,39<br />

Serin 0,69 0,<strong>60</strong> 0,48<br />

Prolin 0,96 0,75 0,59<br />

Glycin 0,65 0,52 0,43<br />

Alanin 0,62 0,47 0,43<br />

Tyrosin 2,02 1,41 1,72<br />

Celkové množství<br />

aminokyselin<br />

16,42 12,91 11,03<br />

Hrubá bílkovina 18,20 17,59 16,86<br />

Tabulka III. Obsah aminokyselin v bramborových hlízách (g.16 g -1 dusíku - vyjadřuje<br />

přibližně procentické zastoupení příslušné aminokyseliny v bílkovině)<br />

Aminokyselina Obsah v kontrolní Obsah u varianty s 20<br />

variantě mg N.kg -1 Obsah u varianty s 40<br />

zeminy mg N.kg -1 zeminy<br />

Valin 4,63 3,54 3,28<br />

Leucin 5,80 4,56 4,23<br />

Isoleucin 3,43 2,74 2,64<br />

Threonin 3,81 2,97 2,65<br />

Methionin 1,82 1,61 1,55<br />

Lysin 5,52 4,21 3,90<br />

Fenylalanin 3,99 3,19 3,00<br />

Histidin 1,82 1,06 1,47<br />

Arginin 5,84 3,81 3,37<br />

Cystein 2,06 1,69 1,48<br />

Kyselina asparagová 12,25 9,59 7,83<br />

Kyselina glutamová 12,04 8,69 8,27<br />

Serin 3,75 3,12 2,87<br />

Prolin 5,31 3,9 3,49<br />

Glycin 3,54 2,72 2,56<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 79


Alanin 3,47 2,45 2,54<br />

Tyrosin 11,07 7,36 10,20<br />

Celkové množství<br />

aminokyselin<br />

90,15 67,21 65,33<br />

REFERENCES<br />

1) PURVES W. et al., 2004. Life: The Science of Biology. Sunderland: Sinauer<br />

Associates:1121 p.<br />

2) WESTERMANN D. T. et al., 1994. Nitrogen and potassium fertilization on potatoes –<br />

sugars and starch. American Potato Journal, 71 (7): 433 - 453.<br />

3) LIN S. et al., 2004. Influence of nitrogen nutrition on tuber quality of potato with special<br />

reference to the pathway of nitrate transport into tubers. Journal of Plant Nutrition, 27 (2):<br />

341-350.<br />

4) ROP O., 1999: The toxic elements content in early potato varieties. Thesis. Brno, MZLU:<br />

77 p.<br />

5) VOKÁL B., RADIL B., 1996. Effects of row spacing on tuber yield, dry matter content<br />

and starch in potatoes. Rostlinna vyroba, 42 (1): 5 – 9.<br />

6) FRIEDMAN M., 2000. Nutritional value of proteins from different food sources.<br />

A Review. Journal of Agricultural and Food Chemistry, 70 (1): 6 – 29.<br />

7) TALAAT M., 2003. The effect of mineral and compost fertilization on the nitrogen content<br />

and amino acid composition of potato and oat grains. Thesis. Wien, Universität Wien: 154 p.<br />

8) MITRUS J. et al., 2003. The influence of selected cultivation on the content of total protein<br />

and amino acids in the potato tubers. Plant Soil and Environment, 49 (3): 131 – 134.<br />

9) JANDASEK J., KRÁČMAR S., MILERSKI M et al., 2003. Comparison of the contents<br />

of intramuscular amino acids in different lamb hybrids. Czech Journal of Animal Science, 48<br />

(7): 301 – 306.<br />

10) Official Journal L 206. Eighth Commission Directive 78/633/EEC of June 15, 1978.<br />

Establishing Community Methods of Analysis for the Official Control of Feeding Stuffs, July<br />

29, 1978, 0043 – 0055.<br />

11) UNISTAT : Statistical Package for Windows. London : Unistat House, 2002, s. 406 –<br />

419.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 80


PRECIPITATION OF DL – VALINE FROM AQUEOUS ISOPROPANOL<br />

SOLUTIONS<br />

Bc. Miroslav Variny, 5. ročník<br />

Vedúci práce: Ing. Ján Šefčík, PhD.<br />

Slovenská Technická Univerzita, <strong>Fakulta</strong> Chemic<strong>ke</strong>j a Potravinárs<strong>ke</strong>j Technológie, oddelenie<br />

chemického a biochemického inžinierstva, Radlinského 9, 812 37 Bratislava, Slovenská<br />

Republika, e-mail: laurelindorenan@zoznam.sk<br />

INTRODUCTION<br />

Protein–coated microcrystals (PCMCs) 1,2 show potential in providing a novel, inexpensive<br />

method of administration of modern drugs. Their formation involves mixing of aqueous<br />

excipient and protein solution with excipient saturated solvent, miscible with water, in which<br />

both protein and excipient are less soluble. However, mechanism and kinetics of PCMC<br />

nucleation and growth are poorly understood. There are some preliminary indications from<br />

previous experimental work that the precipitation process does not proceed through classical<br />

nucleation/growth mechanism, but rather an intermediate liquid-liquid phase separation step<br />

was postulated 3,4 . In order to better design, scale-up and control PCMC formation processes,<br />

better understanding of underlying physico-chemical mechanisms is needed. Therefore, in this<br />

project I focussed on experimental studies of precipitation of a suitable excipient 3,4 , the amino<br />

acid DL–valine, from aqueous isopropanol solutions.<br />

EXPERIMENTAL PART<br />

Materials used in experiments were of laboratory reagent grade: 2-propanol (isopropanol),<br />

DL-valine, deionised water from in–house Millipore Water System and were used without<br />

further purification. Laboratory instruments used for measurements were DU 800<br />

Spectrophotometer (Beckmann Coulter) for turbidimetry and Malvern Mastersizer MS 2000<br />

(Malvern Instruments) for small angle static light scattering measurements. Procedure of<br />

solution preparation can be found elsewhere 3 .<br />

Standard operation procedure of a spectrophotometric measurement included using light<br />

of the wavelength <strong>60</strong>0 nm and manual control of cuvette placement. The experiment itself<br />

consisted of taking blank measurement, sample preparation, injecting a small volume of<br />

prepared sample in cuvette and measuring the sample sufficiently long to achieve a plateau in<br />

absorbance, or for at least <strong>60</strong>0 – 800s. Typical sample preparation included injecting small<br />

volume of valine solution in valine saturated isopropanol and mixing for 20 s on magnetic<br />

stirrer. Isopropanol solution volume ranged from 10 to 20 ml, volume of valine aqueous<br />

solution was between 30 and 100 μl. For one set of experimental conditions, at least five<br />

measurements were performed. In one set of experiments I deliberately changed the initial<br />

mixing time (leaving the mixing intensity unchanged). In dilution experiments, a 1–2 ml<br />

sample was diluted by dilution ratio from 1:1 to 1:4 after 20 s of mixing.<br />

Raw data from Mastersizer measurements were analyzed with standalone to obtain the<br />

mean radius of gyration. Radius of gyration is equal to the geometrical radius divided by 1,41<br />

(=2 1/2 ) for thin disks, which correspond to crystal shape of DL-valine observed in these<br />

experiments.<br />

In batch experiments, samples were prepared identically to those measured by the<br />

spectrophotometer. From samples mixed either for 20 s or all time, at certain times a small<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 81


sample was ta<strong>ke</strong>n. It was immediately injected in a glass bea<strong>ke</strong>r filled with bigger volume of<br />

quenching solution and well stirred for a couple of seconds. Small Volume Dispersion Unit,<br />

attached to measurement cell, had to be wetted with isopropanol, pumped through it for a<br />

couple of minutes, to ensure bubble removal from the cell window. Only after this procedure,<br />

the measurement itself could be started. Each measurement included also background scan.<br />

For the purpose of stopped flow experiments 5 , a complete apparatus has been kindly<br />

provided by XstalBio Inc. This apparatus is typically used to produce PCMCs in amounts of<br />

several hundreds of grams per hour. I managed to obtain a complete data set, having used 50<br />

mg/ml and 70 mg/ml valine aqueous solution, initial isopropanol flow rates 100, 200 and 400<br />

ml/min and resulting water content of 1 or 1,5%. In order to assess the effect of added protein<br />

on kinetics of the process and particle size, I repeated these measurements with addition of 5<br />

% w/w albumine in aqueous valine solution.<br />

RESULTS AND DISCUSSION<br />

Average absorbance<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

0 200 400 <strong>60</strong>0 800 1000<br />

Time (s)<br />

Fig. 1 Spectrometric data for samples with 100 μl of<br />

aqueous valine solution with valine concentration 50<br />

mg/ml added to a certain volume of saturated<br />

isopropanol solution (ml): solid – 10, dash – double<br />

dotted – 12, dotted – 15, dash - dotted – 17, dashed -<br />

20.<br />

Fig. 1 shows sensitivity of<br />

precipitation kinetics to the<br />

volume ratio of aqueous and<br />

isopropanol solutions. In terms<br />

of both initial absorbance<br />

increase as well as the final<br />

absorbance reached, it can be<br />

seen that even a small difference<br />

in the volume ratio has extensive<br />

effects. Absorbances for two of<br />

volume ratios of aqueous and<br />

isopropanol solutions are<br />

depicted separately in Fig. 2,<br />

together with the measured radii<br />

of gyration. In the case of<br />

classical nucleation and growth<br />

mechanism, many small nuclei<br />

would form in first moments of<br />

precipitation and in later stages<br />

only their size increase would<br />

contribute to absorbance increase.<br />

But while absorbance doubles or even triples, particle size grows only by 15 % (diamonds) or<br />

by <strong>60</strong> % (squares). Furthermore, absorbance dependence on particle size is of order 1/3 - 2/3<br />

(A ~ dp 0,33 - 0,67 ) so that it is not particle size growth, but particle number increase that is<br />

responsible for the observed absorbance increase. This confirms that non-trivial precipitation<br />

mechanism is present in this system.<br />

Spectrophotometric data were subjected to supersaturation analysis based on DL – valine<br />

solubility 4 data. In Fig. 3 data from several sets of experiments are shown. (S-1) equals to<br />

supersaturation driving force for crystal growth, where S=C/Cs, C is concentration of valine in<br />

supersaturated solution and Cs is its solubility in corresponding solution. “Seeded” data relate<br />

to solutions with addition of small amount of valine crystals, which resulted in higher<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 82


absorbance growth rate and its lesser sensitivity to amount of valine available in the<br />

supersaturated solution.<br />

Data from dilution experiments are included as well. Generally, tremendous change in<br />

Ln (Absorbance growth rate)<br />

-3<br />

0<br />

-4<br />

0,5 1 1,5 2 2,5<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

-11<br />

-12<br />

Ln (S - 1)<br />

Fig. 2 Average absorbance and radii of gyration vs.<br />

time for samples prepared batch wise on magnetic<br />

stirrer by injecting 100 μl of 50 mg/ml aqueous valine<br />

solution in: solid line, diamonds - 15 ml; dotted line,<br />

squares – 10 ml of valine saturated isopropanol.<br />

Average absorbance<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

0 100 200 300 400 500 <strong>60</strong>0<br />

Time (s)<br />

Fig. 3 Ln (Absorbance growth rate) vs. Ln (S – 1)<br />

analysis with linear regression of batch wise prepared<br />

samples by using aqueous solution with<br />

concentration: full diamonds – 50 mg/ml, empty<br />

circles – 50 mg/ml, seeded, empty diamonds – 70<br />

mg/ml, triangles – dilution of more supersaturated<br />

solution, squares – dilution of less supersaturated<br />

solution.<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Rg (um)<br />

absorbance growth rate<br />

dependence on (S-1) value can be<br />

seen. Slopes of linear regression<br />

fits in this chart give exponents x<br />

in the dependence of the<br />

absorbance growth rate on (S-1).<br />

The values of exponent x range<br />

from 6-7 (full and empty<br />

diamonds) through 4,5 (circles) to<br />

2-3 (triangles and squares). This<br />

observation is again inconsistent<br />

with simple nucleation and growth<br />

mechanism, where nucleation<br />

should cease or at least slow down<br />

after dilution, thus leaving the<br />

already formed nuclei to grow. In<br />

order to obey absorbance<br />

dependence on particle size<br />

(absorbance grew several times),<br />

nuclei would have to grow to tens<br />

or even to hundreds of μm size,<br />

which immediately would cause<br />

sedimentation. However, this was<br />

not observed. One can therefore<br />

conclude that nuclei formed even<br />

after dilution. Moreover, the<br />

absorbance growth rate after<br />

dilution was higher than the one<br />

for indiluted samples at the same<br />

supersaturation. Mechanism<br />

involving liquid-liquid phase<br />

separation of solution prior to<br />

nucleation and growth of solid<br />

particles would explain observed<br />

phenomena.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 83


Ln (time of clouding)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

1 2 3 4 5<br />

(Ln(S)) 2<br />

Fig. 4 Ln(Time of clouding) vs. (Ln(S)) 2<br />

analysis without and with linearization.<br />

Samples prepared by using aqueous<br />

solution with concentration (mg/ml):<br />

diamonds – 70, squares – <strong>60</strong>, triangles –<br />

50, full circles – 30, empty circles – 20.<br />

Concentration of valine in<br />

aqueous solution (mg/ml)<br />

A B<br />

70 -1,273 9,896<br />

<strong>60</strong> -1,230 9,630<br />

50 -1,650 10,345<br />

30 -1,957 10,624<br />

20 -2,973 11,643<br />

Tab. 1 Regression coefficients of<br />

linearization<br />

2<br />

Ln ( time of clouding)<br />

= A(<br />

Ln(<br />

S ) )<br />

ding to Fig. 4.<br />

+ B accor<br />

Fig. 4 provides further evidence for the<br />

role of liquid-liquid phase separation and<br />

related mixing effects in the precipitation<br />

mechanism. It shows the induction time<br />

(estimated as time of clouding of<br />

supersaturated solutions) dependence on<br />

squared logarithm of supersaturation. Data<br />

for valine concentration in aqueous solution<br />

<strong>60</strong>, 30 and 20 mg/ml can be found<br />

elsewhere 3 . In classical nucleation and growth theory, such chart should show a single line<br />

regardless what was valine concentration in the original aqueous solution before mixing with<br />

the isopropanol solution. Clearly, it is not the case here. Linearization 8,9 regression<br />

Rg (um)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 100 200 300<br />

Time (s)<br />

Fig. 5 Radii of gyration and laser obscuration as a function of elapsed time for samples<br />

prepared by stopped flow experiments, initial isopropanol solution flow rate 400 ml/min,<br />

aqueous solution with 5% w/w albumine First number – volume flow rate ratio (aqueous<br />

solution/isopropanol solution), second number – concentration of valine in aqueous<br />

solution: diamonds – 1 %, 50 mg/ml, big squares – 1,5 %, 50 mg/ml 1. Run, small squares<br />

– 1,5 %, 50 mg/ml 2. Run, triangles – 1 %, 70 mg/ml, circles – 1,5 %, 70 mg/ml.<br />

Laser obscuration (%)<br />

100<br />

80<br />

<strong>60</strong><br />

40<br />

20<br />

0<br />

0 100 200 300<br />

Time (s)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 84


coefficients, summed up in Tab. 1, show a clear trend of slope and intercept as valine<br />

concentration changes.<br />

In Fig. 5 clear evidence of precipitation rate dependence on solutions flow rate can be<br />

seen, which is caused by imperfect mixing in static mixer. No significant particle size changes<br />

can be observed with changing solutions flow rate or solutions flow rate ratio in this chart, but<br />

generally particles grow quic<strong>ke</strong>r as supersaturation increases. Albumine presence has only<br />

little influence on both particle size and precipitation rate, except an interesting effect that in<br />

some measurement particle size at first decreased. This happened entirely when using aqueous<br />

valine solution with concentration 70 mg/ml and, except one case, always in the presence of<br />

albumine. It remains an open question how did albumine presence modify the precipitation<br />

process. But regardless of albumine addition, valine particle sizes are much bigger than those<br />

seen in batch experiments (Fig. 2), their sizes being similar to those valine particles formed by<br />

mixing in the vortexer unit (without stirring bar present). This indicates existence of<br />

additional shear stress effects 10 on precipitation kinetics.<br />

CONCLUSIONS<br />

During this research project, I obtained a wide range of data characterising precipitation of<br />

DL – valine from aqueous isopropanol solutions under various conditions.<br />

The spectrophotometric data show that the precipitation process is very sensitive both in<br />

respect to supersaturation and to water content in final solution. Seeding the solution with<br />

valine crystals can further speed up the precipitation kinetics. Mixing and dilution<br />

experiments show different absorbance vs. time dependence, compared to standard samples<br />

with the same supersaturation. The conclusion from the spectrophotometric measurements<br />

and supersaturation analysis is that DL-valine precipitation is strongly mixing-dependent 6-8<br />

with indications pointing to intermediate liquid-liquid phase separation, confirming earlier<br />

preliminary experiments.<br />

Small angle static light scattering measurements and the following data analysis show<br />

particle size dependence on the type and length of mixing. Particle sizes from magnetic stirrer<br />

agitated batch experiments are smaller than those from either vortexer mixed batch<br />

experiments or stopped flow experiments. In some cases the visible particles (domains) at first<br />

decrease in size and after passing through a minimum, they start to grow, which is consistent<br />

with existence of liquid particles in precipitation process formed by liquid-liquid phase<br />

separation.<br />

REFERENCES<br />

(1) Kreiner, M.; Moore, B. D.; Par<strong>ke</strong>r, M. C. Chem. Commun. 2001, 1096 – 1097<br />

(2) Kreiner, M.; Moore, B. D.; Par<strong>ke</strong>r, M. C. J. Mol. Cat.B 2005, 65 – 72<br />

(3) De Miguel, S. A. Effects of composition and mixing on formation of valine microcrystals<br />

2006<br />

(4) Vos, J. Understanding the formation mechanism of protein coated microcrystals 2006<br />

(5) Roelands, C. P. M.; Roestenberg, R. R. W. Cryst. Growth Des. 2004, 4, 921 – 928<br />

(6) Vekilov, P. G. Cryst. Growth Des. 2004, 671 – 685<br />

(7) Laferrère, L.; Hoff, C.; Veesler, S. J. Cryst. Growth 2004, 550 – 557<br />

(8) Brick, M. C.; Plamer, H. J; Whitesides, T. H. Langmuir 2003, 19, 6367 – 6380<br />

(9) Mahajan, A. J.; Kirwan, D. J. J. Phys. D.: Appl. Phys. 1993, 26, B176 – B180<br />

(10) Kaneko, S.; Yamagami, Y.; Tochihara, H. J. Chem. Eng. Jpn. 2002, 35, 1219 – 1223<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 85


ÚVOD<br />

VÝVOJ MIKROŠTRUKTÚRY SODNO-BORITO-KREMIČITÝCH<br />

SKIEL S PRÍDAVKOM TIO 2<br />

Oto Vojtechovský, 5. ročník<br />

Vedúci práce: RNDr. Jana Kozánková<br />

FCHPT, Ústav anorganic<strong>ke</strong>j chémie, technológie a materiálov, STU Bratislava,<br />

Radlinského 9, 812 37 Bratislava, Slovenská Republika,<br />

e-mail: OtoVojtechovsky@zoznam.sk<br />

Sklo tvorí celý rad anorganických a organických látok, ktoré ochladzovaním z kvapalného<br />

stavu určitou rýchlosťou nestačia vytvoriť pravidelné štruktúry. Z anorganických látok<br />

môžeme uviesť:<br />

• prvky: S, Se, Te, P<br />

• oxidy: B2O3, SiO2, GeO2, P2O5, As2O3<br />

• boritany a kremičitany: Na2B4O7, Na2Si2O5<br />

• iné zlúčeniny: sulfidy, selenidy, teluridy [1]<br />

Makrolikvácia v magme<br />

Sklá boli považované za homogénne izotropné hmoty. Avšak s objavom sklokryštalických<br />

hmôt sa v súvislosti s cieľavedomým štúdiom nukleácie ukázalo, že mnoho skiel nemožno<br />

zďaleka považovať za skutočne homogénne, ale že sa u nich prejavujú mikrohomogenity,<br />

ktoré sa podarilo dokázať modernými výskumnými metódami. Zistené nehomogenity majú<br />

obdobné charakteristiky, aké sa prejavujú u nemiešateľných kvapalín. Na odmiešanie (tj. na<br />

likváciu) roztavenej lávy upozornili petrológovia Vogt a Levinson Lessing. Odmiešaním sa<br />

snažili vysvetliť mechanizmus magmatic<strong>ke</strong>j diferenciácie a petrogenézy. Okrem<br />

makrolikvácie poznáme aj mikrolikváciu. Obidva tieto pojmy úzko súvisia s teplotou liquidus.<br />

K makrolikvácii dochádza nad teplotou liquidus a k mikrolikvácii pod touto teplotou.<br />

Odmiešanie sa prejavuje aj u skiel typu Vycor.<br />

Teória micelárnej štruktúry skla<br />

Podľa Moriyovej teórie, teórie micelárnej štruktúry skla,sa sklo skladá z dvoch fáz: z<br />

vysoko molekulárnych buniek (mikromiciel) a početných iónov či molekúl, ktoré ich<br />

obklopujú. Táto kombinácia vysokomolekulárnych buniek a ďalších iónov či molekúl<br />

nevykazuje pravidelnosti kryštálov, pretože bunky sú amorfné alebo kvázikryštalické. Medzi<br />

týmito bunkami a obklopujúcimi iónmi existuje rovnováha za každej teploty. Za vysokých<br />

teplôt tavenia sa sklovina skladá z disociovaných iónov a molekúl, ktoré sa vyznačujú veľkou<br />

pohyblivosťou [2]. Pri znížení teploty takéto častice začínajú asociovať a tvoria sa zárodky<br />

mikrofázy. Množstvo a rozmery mikrofázy závisia na tepelnej histórii skla.Pri veľmi rýchlom<br />

ochladzovaní vznikajú pomerne malé zárodky mikrofázy, okolo nej zostáva veľa<br />

disociovaných iónov. Naproti tomu, u pomaly ochladzovaného skla sú rozmery mikrofázy<br />

značne väčšie, pretože je dostatok času k asociácii iónov do väčších útvarov. Za nižších teplôt<br />

sa kvapky navzájom zrážajú (kondenzujú) vo väčšie útvary a sklo tuhne.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 86


Spinodálny rozklad<br />

• metastabilná oblasť - a<br />

• metastabilná oblasť - b<br />

• nestabilná oblasť – c<br />

Základné charakteristiky Vycor skla<br />

Vycor sklo je zaradené medzi alkalickoboritokremičité sklá. V našom experimente sme<br />

sledovali sklo s prídavkom a bez prídavku TiO2 Toto sklo je zložené z B2O3, SiO2, Na2O.<br />

B2O3<br />

Oxid boritý je bezfarebná sklovitá látka, ktorá len veľmi obtiažne kryštalizuje. Topí sa pri<br />

teplote 450°C. Svoju vysokú sklovitosť a fluiditu si zachováva aj ako zložka viaczložkových<br />

skiel a zlepšuje ich taviteľnosť. Teplota liquidus vstupom oxidu boritého klesá. Skladá<br />

saz nepravidelne usporiadaných skupín BO3 trojuholníkového tvaru, spojených tak, že každý<br />

atóm kyslíka je viazaný s dvoma atómami bóru. V kryštalickom stave sa skladá z dvoch typov<br />

navzájom spojených reťazcov, tvorených tetraedrickými skupinami BO4[4].<br />

SiO2<br />

Oxid kremičitý je veľmi ťažko taviteľná látka. Je to podmienené tým ,že atómy kremíka<br />

a kyslíka tvoria v oxide kremičitom polymérne priestorové útvary. V oxide kremičitom je<br />

každý atóm kyslíka viazaný na dva atómy kremíka. V bežných podmienkach je každý atóm<br />

kremíka viazaný so štyrmi atómami kyslíka, ktoré sú okolo neho usporiadané tetraedricky.<br />

Vzájomné naviazanie tetraédrov umožňuje vznik rôznych modifikácií tuhého oxidu<br />

kremičitého.<br />

Obr. 1. Fázový diagram sústavy Na2O-<br />

B2O3-SiO2 [2].<br />

Obr. 2. Schematické znázornenie<br />

spinodálneho rozkladu pod teplotou<br />

liquidus u modelových sústav SiO2-R2O<br />

(R= Li, Na)[2]<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 87


Pri tepelnom spracovaní odmiešaných skiel dochádza ku zväčšovaniu odmiešaných častíc.<br />

Po počiatočnom stave odmiešania, ktorý môže byť buď nukleácia kvapiek a ich ďalší rast.,<br />

alebo spinodálny rozklad, sa sústava snaží zmenšiť svoje medzipovrchy zväčšovaním častíc.<br />

K tomu môže dôjsť zrážaním (koalescenciou) kvapôčok v dôsledku Brownovho pohybu,<br />

viskóznym tokom a pod. ďlší možný proces vedúci k rastu odmiešaných častíc, ktorý sa<br />

uplatňuje predovšetkým u tuhých skiel je Ostwaldov proces zrenia. Tento proces je založený<br />

na rozdielnej rozpustnosti malých a väčších častíc. Najmenšie častice majú snahu sa<br />

rozpúšťať a rozpustené ióny potom difundujú k väčším stabilnejším časticiam, ktoré rastú.<br />

K zhrubnutiu mechanizmom Ostwaldovho zrenia dochádza u sústavy SiO2 - B2O3<br />

EXPERIMENTÁLNA ČASŤ<br />

V náväznosti na výskum sodno-borito-kremičitého skla (NBS) a sodno-boritokremičitéhoskla<br />

s prídavkom TiO2 (NBST) sme sa podrobnejšie zamerali na sledovanie<br />

vývoja mikroštruktúry NBS a NBST skla v počiatočnom úseku oblasti fázovej separácie pri<br />

tepolte 700°C a teplotnej výdrži v intervale od 0 do 120 minút. Cieľom práce bolo štúdium<br />

zmien v mikroštruktúre NBS a NBST skla temperovaných na teplotu 700°C (pri ktorej<br />

dochádza k fázovej separácii) metódou rastrovacej elektrónovej mikroskopie (REM) .Cieľ<br />

práce bol zvolený na základe pozorovaných zmien optic<strong>ke</strong>j priepustnosti NBS skla v prvých<br />

hodinách výdrže pri 700°C.<br />

Zloženie sledovaných skiel v hmotnostných %:<br />

NBS: 9,09% Na 2O, 26,18% B 2O 3, 64,43 SiO 2 NBST: 9,09% Na 2O, 26,18% B 2O 3, <strong>60</strong>,43 SiO 2,<br />

4,00 TiO 2<br />

Vychladené sklo sme narezali na vzorky veľkosti 5x10x10mm na diamantovej píle. Vzorky<br />

utaveného skla sa fázovo separovali pri teplote 700°C po dobu: 0 min., 30 min., <strong>60</strong> min., 90<br />

min, 120 min. Zmeny v mikroštruktúre vzoriek sme sledovali v rastrovacom elektrónovom<br />

mikroskope REM - TESLA BS – 300. Vzorky skiel boli vodivo upravené naprášením vrstvy<br />

Au v naprašovacej aparatúre BALZERS SCD 050. Sledované boli neleptané a leptané (2,5%<br />

HF) lomové plochy skiel.<br />

Optická priepustnosť (a.u.)<br />

2000<br />

1<strong>60</strong>0<br />

1200<br />

800<br />

400<br />

0<br />

3<br />

2<br />

1<br />

0 5 10 15 20 25 30<br />

Čas (h)<br />

Obr. 3. Zmena optic<strong>ke</strong>j priepustnosti vzoriek NBS skla počas ich temperácie pri<br />

špecifikovaných teplotách: 1 – 700 °C, 2 – 720 °C, 3 – 740 °C [3].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 88


Obr. 3 poukazuje na pokles priepustnosti vzorky skla v intervale 0-120 min. Tento jav<br />

môžeme vysvetliť tým, že v priebehu spinodálneho odmiešania sa v pôvodnom skle<br />

vytvárajú dve vzájomne penetrujúce fázy s charakteristickou vermikulárnou mikroštruktúrou.<br />

Fázy sa líšia chemickým zložením, a teda aj veľkosťou indexu lomu. Svetelný lúč na každom<br />

fázovom rozhraní mení smer podľa veľkosti indexu lomu prostredia, do ktorého vstupuje.<br />

Opakovanými zmenami smeru lúčov sa časť z nich presmeruje takým spôsobom, že buď<br />

nedochádza k ich vyústeniu na spodnej ploche vzorky, alebo dochádza k ich vyústeniu pod<br />

uhlami divergentnými voči pôvodnému smeru prechádzajúceho žiarenia. Dôsledkom je<br />

zodpovedajúci pokles intenzity registrovaného žiarenia. Veľkosť poklesu žiarenia je úmerná<br />

počtu a veľkosti fázových domén, cez ktoré svetlo prechádza. To súhlasí s<br />

mikroštruktúrou vzoriek (obr. 4, 5) a počtom vytvorených domén (tab.1, 2).<br />

Tabuľka 1<br />

Leptaná vzorka NBS skla<br />

zahrievaná po dobu ( v min.)<br />

Celkový počet domén na ploche<br />

5 μm * 5 μm<br />

Tabuľka 2<br />

Leptaná vzorka NBS skla<br />

zahrievaná po dobu ( v min. )<br />

Celkový počet domén väčších<br />

jako 1 μm *1 μm na ploche<br />

5 μm * 5 μm<br />

Výsledky sledovania mikroštruktúry<br />

0 30 <strong>60</strong> 90 120<br />

140 47 3 ojedinelé Vermikulárna<br />

štruktúra<br />

0 30 <strong>60</strong> 90 120<br />

0 5 3 ojedinelé Vermikulárna<br />

štruktúra<br />

Vybrané obrázky z riadkovacej elektrónovej mikroskopie REM pri zväčšeniach 10000x a<br />

20000x dokumentujú mikroštruktúru skiel tak, ako bola pozorovaná na väčšine pripravených<br />

lomových plôch skiel.<br />

Obr.4. Mikroštruktúra NBS skla po fázovej separácii pri 700°C a) 0 min, b) 30 min, c) <strong>60</strong><br />

min, d) 120 min<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 89


Obr.5. Mikroštruktúra NBST skla po fázovej separácii pri 700°C a) 0 min, b) 30 min, c) <strong>60</strong><br />

min, d) 120 min<br />

ZÁVER<br />

Obrázky 4, 5 vývoja mikroštruktúry v sklách NBS a NBST poukazujú na výrazný vplyv<br />

prídavku TiO2 na rýchlosť fázového odmiešania a tvorby vermikulárnej mikroštruktúry.<br />

Vývoj mikroštruktúry NBS skla (obr. 4) je v súlade s Moriyovou teóriou micelárnej štruktúry<br />

skla. Fázové odmiešanie sledované v sodno-borito-kremičitých sklách umožňuje vylúhovaním<br />

boritanovej fázy pripraviť pórovitý materiál s riadenou veľkosťou pórov a značnou<br />

chemickou a tepelnou odolnosťou kremičitého s<strong>ke</strong>letu. Tento typ pórovitého skla má<br />

významné uplatnenie v oblasti membránových filmov aj pre biologické aplikácie a vzhľadom<br />

na sorpčné vlastnosti aj ako materiál vhodný pre oblasť mikroelektroniky.<br />

LITERATÚRA<br />

1. Hlaváč J., Základy technologie silikátů, str. 135-2712. Voldán J., Odmísení s<strong>ke</strong>l, str. 4-13,<br />

20-253. Mojumdar S. C., Kozankova J., Chocholusek J., Majling J. and Nemecek V., Jour. of<br />

Ther.<br />

Analysis and Calorimetry (2004) 145–152.<br />

4. Volf M. B., Technická skla a jejich vlastnosti, SNTL, Praha 1987, p. 214<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 90


VÝZNAM VOĽNÝCH RADIKÁLOV PRI POŠKODENÍ PAPIERA<br />

(EPR ŠTÚDIUM)<br />

Bc. Zuzana Vrecková, 5. ročník<br />

Vedúca práce: prof. Ing. Vlasta Brezová, DrSc.<br />

Ústav fyzikálnej chémie a chemic<strong>ke</strong>j fyziky, <strong>Fakulta</strong> chemic<strong>ke</strong>j a potravinárs<strong>ke</strong>j<br />

technológie, Slovenská technická univerzita v Bratislave, Radlinského 9, SK-812 37<br />

Bratislava, Slovenská republika, e-mail: zuvrro@gmail.com<br />

ÚVOD<br />

Historické dokumenty na papierových podložkách zahrňujú okrem archívnych a<br />

knižničných materiálov aj ostatné práce, ako sú obrazy, grafiky, kresby, plagáty, plány, mapy<br />

a pod., ktoré predstavujú súčasť kultúrneho dedičstva každého štátu. Veľká časť materiálov,<br />

ktoré boli napísané v posledných 150 rokoch trpí neustálym procesom poškodzovania, ktoré<br />

pri dlhodobom pôsobení môže viesť k úplnej strate tlačených a písaných textov v knižniciach<br />

a archívoch [1, 2].<br />

Pre hodnotenie stability vlastností papierových materiálov je definovaná stálosť<br />

(permanence), ktorá označuje zachovanie pôvodných vlastností papiera s dôrazom na<br />

chemickú stabilitu a jej zmeny sa opisujú chemickými parametrami. Z chemických<br />

parametrov sa sleduje povrchové pH, obsah α-, β-, γ-celulózy, rozpustnosť v zriedených<br />

alkáliách, stupeň polymerizácie, obsah redukujúcich látok (meďné číslo), číslo kappa, obsah<br />

karboxylových skupín, obsah síry resp. rozpustných síranov, obsah dusíkatých látok.<br />

Trvanlivosť (durability) označuje zachovanie mechanických a optických vlastností papiera,<br />

ktoré si uchováva napriek používaniu a pôsobeniu vonkajšieho prostredia. Monitorujú sa<br />

mechanické parametre ako odolnosť v prehýbaní, pevnosť v dotrhnutí, pevnosť v ťahu<br />

a v prietlaku, nulové tržné dĺžky. Z optických parametrov sa hodnotí belosť, špecifický<br />

koeficient svetelnej absorpcie, relatívne dekoloračné číslo, opacita alebo špecifický koeficient<br />

rozptylu svetla [1, 2].<br />

Keďže základný polymérny materiál tvoriaci papier predstavuje celulóza, je proces<br />

degradácie papiera determinovaný poškodením molekulovej a nadmolekulovej štruktúry<br />

celulózy (obr. 1). Poškodenie papiera pri starnutí je<br />

proces, <strong>ke</strong>dy dochádza k značnej zmene<br />

mechanických, optických, chemických a fyzikálnych<br />

vlastností. Proces starnutia papiera pri dlhodobom<br />

skladovaní je determinovaný rôznymi faktormi, ktoré<br />

môžeme rozdeliť na vnútorné (druh, kvalita, chemické<br />

zloženie vlákna, lepidlá, glejidlá, plnidlá, prítomnosť<br />

kyslých skupín a iónov kovov) a vonkajšie<br />

(podmienky uskladnenia, teplota, relatívna vlhkosť<br />

okolitého vzduchu, svetlo, atmosférické znečistenie<br />

Obr. 1.<br />

Štruktúra celulózy a vodíkových väzieb<br />

medzi polymérnymi vláknami [3]<br />

a biologická kontaminácia papiera), pričom počas<br />

dlhodobého skladovania môže dochádzať k vzájomnej<br />

interakcii ako je schematicky znázornené na obr. 2 [4].<br />

Pri laboratórnom hodnotení degradácie papiera je<br />

nevyhnutná simulácia podmienok prirodzeného starnutia metódami urýchleného starnutia, pri<br />

ktorých sa proces degradácie urýchľuje aplikáciou vyššej teploty a rôznej relatívnej vlhkosti<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 91


v klimatizačných komorách [5, 6]. Metódami urýchleného starnutia môžeme zmeny vlastností<br />

papiera zodpovedajúce niekoľkoročnému prirodzenému starnutiu pozorovať už po niekoľkých<br />

dňoch (napr. 3 dni umelého starnutia papiera pri 105 °C zodpovedajú 25 rokom prirodzeného<br />

starnutia [6]).<br />

ENDOGÉNNE FAKTORY<br />

pH<br />

Kovové ióny<br />

Lignín<br />

Produkty degradácie<br />

EMISIA<br />

Prchavé produkty degradácie<br />

ABSORPCIA<br />

Kyslé plyny (SO2, NOx)<br />

EXOGÉNNE FAKTORY<br />

Teplota<br />

Vlhkosť<br />

Kyslík<br />

Svetlo<br />

Znečistenie (prach)<br />

Obr. 2.<br />

Faktory a procesy ovlyvňujúce<br />

degradáciu papiera [4].<br />

Poškodenie polymérneho reťazca celulózy môže prebiehať rôznymi mechanizmami (kyslá<br />

hydrolýza, alkalická degradácia, oxidácia, autooxidácia iniciovaná iónmi kovov,<br />

fotodegradácia, mikrobiologická depolymerizácia), ktoré sa môžu vzájomne ovplyvňovať [4].<br />

Významnú úlohu pri procesoch oxidačného poškodenia papiera zohrávajú kyslíkomcentrované<br />

voľné radikály, ktorých tvorba je iniciovaná prítomnosťou iónov prechodných<br />

kovov a kyslíka (1–4) [7, 8]. Generované reaktívne hydroxylové radikály ( • OH) sú schopné<br />

iniciovať depolymerizáciu celulózy, ako aj neselektívne reakcie s ďalšími zložkami papiera,<br />

napr. s lignínom (5).<br />

Fe(II) + O2 ↔ Fe(III) + O2 •– (1)<br />

Fe(III) + O2 + RH → • R + HOO • + Fe(III) (2)<br />

Fe(II) + HOO • + H + → Fe(III) + H2O2 (3)<br />

Fe(II) + H2O2 → Fe(III) + HO • + OH – (4)<br />

ROH + • OH → RO • + H2O (5)<br />

Výsledkom interakcie reaktívnych radikálov s lignínovými zložkami papiera je vznik<br />

paramagnetických semichinoidných štruktúr, ktoré sa vyznačujú dostatočne dlhým časom<br />

života aj pri laboratórnej teplote a ich prítomnosť v papierovom materiáli je možné priamo<br />

monitorovať pomocou EPR spektroskopie. Predpokladá sa, že koncentrácia semichinoidných<br />

radikálových štruktúr môže reflektovať oxidačné poškodenie papiera [9].<br />

Naša práca je orientovaná na kvantitatívne EPR štúdium semichinoidných radikálových<br />

štruktúr v kyslom papieri, ktorý bol vystavený pôsobeniu urýchleného starnutia v rôznych<br />

experimentálnych podmienkach.<br />

EXPERIMENT<br />

Meranie EPR spektier sme realizovali pri teplote 22 °C na EPR spektrometri EMX<br />

(Bru<strong>ke</strong>r, SRN) s príslušným programovým vybavením. Do okrúhlej kremennej kyvety<br />

(vnútorný priemer 3 mm) na meranie v tuhej fáze sme umiestnili vzorku papiera so známou<br />

hmotnosťou nastrihanú na tenké pásiky (28 mm×1 mm). Kyvetu sme umiestnili do<br />

štandardnej dutiny TE102 (ER 4102 ST) a zmerali sme EPR spektrum. Pri meraniach všetkých<br />

vzoriek sme používali tú istú kyvetu, pričom sme ju vkladali do dutiny spektrometra vždy<br />

rovnakým spôsobom, aby sme zabezpečili reprodukovateľnosť meraní. Pri tejto manipulácii<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 92


s kyvetami je chyba pri určení relatívnej integrálnej intenzity EPR signálu približne 5 %.<br />

Hodnotu g-faktorov radikálov sme určili s presnosťou ±0,0001 simultánnym meraním EPR<br />

spektra semi-stabilného radikálu 1,1-difenyl-2-pikrylhydrazyl (DPPH, Sigma). Na určenie<br />

koncentrácie spinov v jednom grame vzorky sme použili pripravený štandard so známou<br />

koncentráciou DPPH v tuhom NaCl (0,0002 mg DPPH g –1 ).<br />

Na meranie sme použili čiastočne drevitý, kyslý písací papier (80 g m –2 , pH = 4,4);<br />

Slavošovské papierne, Slavošovce, Slovenská<br />

republika, ktorý sme získali z Oddelenia polygrafie<br />

a aplikovanej fotochémie ÚPM FCHPT STU. Papier<br />

bol vystavený pôsobeniu umelého starnutia v rôznych<br />

podmienkach (suché teplo pri teplotách 105 °C<br />

a 120 °C s; vlhké teplo pri teplote 80°C a relatívnej<br />

vlhkosti 25%, 45% a 65%) počas rôznych časových<br />

intervalov (0, 8, 24, 72, 168, 336 a 672 hodín). Reálny<br />

objekt poškodeného papierového materiálu<br />

predstavovala kniha (rok vydania 1977), ktorá bola<br />

v roku 1980 poškodená kyselinou sírovou a 26 rokov<br />

bola uložená v knižnici pri laboratórnej teplote<br />

Obr. 3.<br />

Kniha poškodená v roku 1980 kyselinou<br />

sírovou.<br />

(obr. 3). Z knihy sme odobrali vzorky s rôznym<br />

stupňom poškodenia a hore uvedeným spôsobom sme<br />

v nich určili koncentráciu spinov g –1 .<br />

VÝSLEDKY A DISKUSIA<br />

Obrázok 4 zobrazuje EPR spektrum namerané vo vzorkách papiera pri laboratórnej teplote,<br />

ktoré predstavuje singlet charakterizovaný parametrami gef = 2,0054; polšírkou ΔHpp = 0,85<br />

mT, ktorý je typický pre semichinoidné štruktúry<br />

nachádzajúce sa často v materiáloch rastlinného<br />

pôvodu [10]. Počas starnutia papiera sme<br />

Relatívna intenzita EPR signálu<br />

g ef =2,0054<br />

326 330 334 338 342<br />

Magnetické pole, mT<br />

Obr. 4.<br />

EPR spektrum vzorky papiera merané<br />

pri teplote 22 C.<br />

v podmienkach EPR experimentov nepozorovali vznik<br />

iných paramagnetických signálov. Problémom<br />

stanovenia koncentrácie semichinoidných<br />

paramagnetických štruktúr je stabilita EPR<br />

spektrometra a subjektívne chyby a nepresnosti pri<br />

nastavení EPR spektrometra, ktoré sme minimalizovali<br />

použitím identic<strong>ke</strong>j kyvety a jej rovnakého<br />

umiestnenia v dutine a EPR merania sme realizovali<br />

v čo najkratšom časovom úseku.<br />

Obrázok 5 vyjadruje závislosť koncentrácie spinov<br />

v jednom grame vzorky papiera od času urýchleného<br />

suchého starnutia pri teplote 120 °C () a pri teplote<br />

80°C s relatívnou vlhkosťou (RH) 45% (tzv. mokré<br />

starnutie) (). Už po 8 hodinách pozorujeme nárast<br />

koncentrácie spinov u oboch metód starnutia, ktorá<br />

dosahuje maximum po 336 hodinách (14 dní). Rozdiel v absolútnej koncentrácii spinov pri<br />

suchom (120°C) a mokrom (80°C/45% RH) starnutí dobre korešponduje s degradačným<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 93


efektom metódy starnutia. Pokles koncentrácie spinov pozorovaný po 672 hodinách (28 dní)<br />

starnutia je pravdepodobne spôsobený premenami paramagnetických semichinoidných<br />

štruktúr na diamagnetické produkty v súlade s predpokladaným 2-elektrónovým<br />

mechanizmom oxidácie fenolických zlúčenín [9].<br />

Spiny, g -1<br />

1.6x10 16<br />

1.4x10 16<br />

1.2x10 16<br />

1.0x10 16<br />

8.0x10 15<br />

6.0x10 15<br />

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672<br />

Urýchlené starnutie, hodiny<br />

Obr. 5.<br />

Závislosť koncentrácie spinov v jednom<br />

grame vzorky papiera od času urýchleného<br />

suchého starnutia pri teplote 120 °C ()<br />

a pri teplote 80 °C s relatívnou vlhkosťou<br />

45% ().<br />

Spiny, g –1<br />

1 2 2 6 7 8 10<br />

Stupeň poškodenia papiera<br />

EPR merania realizované na papieri získanom z knihy poškodenej kyselinou sírovou ukázali,<br />

že koncentrácia paramagnetických semichinoidných zlúčenín je približne 10-násobne vyššia<br />

(obr. 6), pričom najvyššiu koncentráciu vykazovali silne poškodené časti papiera, ktoré sa pri<br />

manipulácii rozpadali na prach. Stupeň poškodenia chápeme ako rozsah poliatia jednotlivej<br />

vzorky kyselinou. Je pravdepodobné, že koncentrácia semichinoidných štruktúr demonštruje<br />

komplexný mechanizmus poškodenia papiera kyslou hydrolýzou a radikálovými oxidačnými<br />

procesmi.<br />

ZÁVER<br />

EPR spektroskopiou sme monitorovali zmeny koncentrácie paramagnetických<br />

semichinoidných zlúčenín v drevitom papieri obsahujúcom lignín, ktorý bol vystavený<br />

pôsobeniu suchého a vlhkého tepla (120 °C a 80 °C/45% RH) alebo poškodený kyselinou<br />

sírovou. Predpokladáme, že plánovaná kombinácia EPR spektroskopie s inými technikami<br />

sledovania poškodenia papiera (meranie mechanických, optických a chemických vlastností)<br />

môže priniesť zaujímavé informácie o degradačných mechanizmoch a tým aj ich<br />

predchádzaniu.<br />

POĎAKOVANIE<br />

Predovšetkým chcem poďakovať prof. Ing. Vlaste Brezovej, DrSc. za odbornú<br />

a pedagogickú pomoc. Zároveň ďakujeme Slovens<strong>ke</strong>j grantovej agentúre za finančnú podporu<br />

EPR výskumu (projekt VEGA/1/3579/06) a RNDr. Bohuslave Havlínovej, CSc. za<br />

poskytnutie vzoriek papiera.<br />

1.2x10 17<br />

1.0x10 17<br />

8.0x10 16<br />

6.0x10 16<br />

4.0x10 16<br />

2.0x10 16<br />

Obr. 6.<br />

Závislosť koncentrácie spinov v jednom<br />

grame vzorky papiera od stupňa poškodenia<br />

papiera H2SO4.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 94


LITERATÚRA<br />

[1] B. Havlínová, V. Brezová, F. Belányi, G. Szeiffová, Papír a Celulóza 57 , 338-342<br />

(2002).<br />

[2] B. Havlínová, V. Brezová, Ľ. Horňáková, J. Mináriková, M. Čeppan, Journal of<br />

Materials Science 37, 303-308 (2002).<br />

[3] http://www.steve.gb.com/science/molecules.html<br />

[4] http://www.heritage.xtd.pl/pdf/full_strlic.pdf<br />

[5] ISO 5630. Paper and board – accelerated ageing. – Part 1: Dry heat treatment at 105° C.<br />

Last revision 1991 – Part 2: Moist heat treatment at 90° C and 25% RH. Last revision<br />

1985 – Part 3: Moist heat treatment at 80° C and 65% RH. Last revision 1986 – Part 4:<br />

Dry heat treatment at 120° or 150° C. Last revision 1986. Part 1 is equivalent to the US<br />

American Standard ASTM (1987). Standard Test Method for Determination of Effect of<br />

Dry Heat on Properties of Paper and Board. American Society for Testing and Materials<br />

(ASTM-D776-87; 72 hours at 105±2 °C).<br />

[6] http://www.uni-muenster.de/Forum-Bestandserhaltung/kons-restaurierung/agebansa.html<br />

[7] L. Botti, O. Mantovani, D. Ruggiero, Restaurator 26, 44-62 (2005).<br />

[8] D. F. Guay, B. J. W. Cole, R. C. Fort Jr., M. C. Hausman, J. M. Genco, T. J. Elder,<br />

Tappi Fall Conference & Trade Fair, 2002), http://www.umche.maine.edu/pilot/docs/<br />

2002%20TPC%20O2%20Delig%20Reactions.pdf.<br />

[9] C. Felby, B. R. Nielsen. P. O. Olesen, L. H. Skibsted, Appl. Microbiol. Biotechnol. 48,<br />

459-464 (1997).<br />

[10] M. Polovka, V. Brezová, A. Staško, Biophys. Chem. 106, 39-56 (2003).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce STČ 2006, strana 95


Příspěvky soutěže<br />

doktorských studijních programů<br />

„O cenu děkana 2005”<br />

(Sekce DSP 2005)


CHITOSAN - A NEW TYPE OF POLYMER COAGULANT<br />

Ing. Marcela Borovičková 1 , 3. DSP<br />

Supervisor: doc. Ing. Petr Dolejš, CSc. 1,2<br />

1 Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry,<br />

Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic,<br />

e-mail: borovickova@fch.vutbr.cz<br />

2 W&ET Team, box 27, Písecká 2, 370 11 České Budějovice, Czech Republic<br />

ABSTRACT<br />

Results of laboratory experiments into the removal of humic substances by cationic<br />

biopolymer chitosan are presented. Chitosan is a natural product derived from chitin, a<br />

polysaccharide found in the exos<strong>ke</strong>leton of shellfish li<strong>ke</strong> shrimp or crabs. The high content of<br />

amino groups provide to chitosan very interesting heavy metals chelating properties. Chitosan<br />

is partially soluble in dilute mineral acids such as HNO3, HCl, H3PO4. We have used 1%<br />

solutions of chitosan diluted in 0,05M; 0,1M and 0,15M HCl. Aggregates of humic<br />

substances after inorganic coagulant or chitosan addition were separated by centrifugation.<br />

Tests were made with two model humic waters having different concentration of humic<br />

substances. Residual concentration of coagulant (Fe and Al) and absorbance at 387 nm and<br />

254 nm were evaluated.<br />

INTRODUCTION<br />

Impurities present in raw water are in suspended, colloidal, and dissolved forms. These<br />

impurities are dissolved organic and inorganic substances, microscopic organisms, and<br />

various suspended inorganic materials. It is necessary to destabilize and bring together<br />

(coagulate) the suspended and colloidal material to form particles. Afterwards these particles<br />

are removed by filtration.<br />

Coagulation is accomplished by the addition of ions having the opposite charge to that of<br />

the colloidal particles. Since the colloidal particles are almost always negatively charged, the<br />

ions which are added should be cations or positively charged. Typically, two major types of<br />

coagulants are added to water. These are aluminium salts and iron salts. The most common<br />

aluminium salt is aluminium sulphate, the most comon iron salt is ferric sulphate.<br />

Iron and aluminium salts are used as primary coagulants and the reactions that occur after<br />

addition of these coagulants are fairly well elucidated. More recently, organic polyelectrolyte<br />

coagulants have become also used. Organic coagulants are sometimes used in combination<br />

with inorganic coagulants. Depending on the specific chemistry of the target water, polymer<br />

use can vary from as little as 5 % of the total coagulant dosage to as much as 100 % [1].<br />

Chitosan is a derivative of chitin, a polysaccharide that is the major component of the<br />

shells of crustaceans and insects. Chitin consists of long chains of acetylated D-glucosamine,<br />

that is, glucosamine with acetyl groups on the amino groups (N-acetylglucosamine). Chitosan<br />

is N-deacetylated chitin, although the deacetylation in most chitosan preparations is not<br />

complete (see Fig. 1). Chitin itself is usually prepared from crab or shrimp shells or fungal<br />

mycelia. Treatment with an alkali then produces chitosan with about 70% deacetylation.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 97


Fig. 1 Sructures of chitin and chitosan<br />

Chitosan has been widely used in vastly diverse fields, ranging from waste management to<br />

food processing, medicine and biotechnology. It becomes an interesting material in<br />

pharmaceutical applications due to its biodegradability and biocompatibility, and low toxicity.<br />

The protonization of amino groups in solution ma<strong>ke</strong>s chitosan positively charged, and<br />

thereby very attractive for flocculation and different kinds of binding applications. Since most<br />

natural colloidal particles, including bacteria and macromolecules, are negatively charged,<br />

attractive electrostatic interactions may lead to flocculation [2-5].<br />

EXPERIMENTAL<br />

Chitosan solutions<br />

Chitosan is partially soluble in dilute mineral acids such as HNO3, HCl, H3PO4. We have<br />

used 0,05M; 0,1M and 0,15M HCl solutions. Five hundred milligrams of chitosan powder<br />

was dissolved in a glass bea<strong>ke</strong>r and mixed with 30 mL of HCl solution. The dissolution of<br />

chitosan was slow. Afterwards, it was further diluted to 50 mL with HCl solution to obtain a<br />

solution containing 10,0 mg chitosan per mL of solution. The solutions were prepared fresh<br />

before each set of experiments for consistency.<br />

Metal-based coagulants<br />

Ferric sulphate [Fe2(SO4)3] and aluminium sulphate [Al2(SO4)3.18 H2O], supplied by<br />

Kemifloc a.s. (Přerov, Czech Republic) or Kemwater ProChemie s.r.o., (Bakov nad Jizerou,<br />

Czech Republic) respectively were used for the experiments.<br />

Model humic waters<br />

Tests were made with two model humic waters (A, B) having different concentration of<br />

humic substances. Model waters were mixtures of distilled water, tap water and natural<br />

concentrate of humic substances sampled from a peatbog near Radostín. Selected model<br />

humic water parameters are given in Table 1. Absorbance at 254 nm was measured in 1 cm<br />

cell and absorbance at 387 nm was measured in 5 cm cell. Absorbance at 387 nm is<br />

proportional to colour by multiplying by factor 255 [6].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 98


Table 1 Parameters of model humic waters<br />

Model<br />

water<br />

pH χ [mS/m] ANC4,5 A254 A387<br />

A 6,5 18,2 0,4 0,163 0,148<br />

B 6,5 13,8 0,4 0,307 0,295<br />

χ - conductivity; ANC4,5 – acidic neutralising capacity to pH 4,5; A254 – absorbance at 254<br />

nm; A387 - absorbance at 387 nm<br />

Coagulation tests<br />

Coagulation test using centrifugation as the separation method was employed. This test did<br />

allow us to study formation of NOM particles by Brownian motion (perikinetic coagulation)<br />

and has the highest possible degree of reproducibility (in any place in the world) as<br />

temperature is the only parameter influencing the kinetics of particles formation. Aggregation<br />

time was 10 and 40 minutes. Residual concentration of coagulant (Fe and Al) and absorbance<br />

at 387 nm and 254 nm were evaluated.<br />

RESULTS<br />

Fig. 2 shows comparison of removal of UV absorbance between ferric sulphate; aluminium<br />

sulphate and chitosan, which was dissolved in different concetrations of HCl. Optimum<br />

coagulant dose ranged in the order of several units of mg/l for chitosan, and tens of mg/l<br />

respectively for aluminium and ferric sulphate.<br />

Model water A: optimum dose was between 21 and 28 mg/l of Fe2(SO4)2, 25 - 35 mg/l<br />

of Al2(SO4)3 and about 5 mg/l of chitosan.<br />

Model water B: optimum dose ranged in interval 30 - 39 mg/l of Fe2(SO4)2,<br />

41 - 48 mg/l of Al2(SO4)3 and about 10 mg/l of chitosan.<br />

Generally, the results show relatively good removal of humic substances by chitosan,<br />

which is comparable with Al and Fe coagulants. Main disadvantage of chitosan is its price,<br />

which should be compensated by low dosage. The optimum pH value for chitosan coagulation<br />

was between 5 – 7.<br />

The results show that chitosan is a promising substitute of metal-based coagulants, which<br />

are traditionally applied in treatment of humic waters..<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 99


A254<br />

A254<br />

A254<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

Ferric sulphate versus Chitosan in 0,05 M HCl<br />

Fe(A)-10´ Fe(A)-40´ Fe(B)-10´ Fe(B)-40´<br />

Chit(A)-10´ Chit(A)-40´ Chit(B)-10´ Chit(B)-40´<br />

0,00<br />

0 10 20 30 40 50 <strong>60</strong><br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

Dose [mg/l]<br />

Ferric sulphate versus Chitosan in 0,1 M HCl<br />

0,00<br />

0 10 20 30 40 50 <strong>60</strong><br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

Fe(A)-10´ Fe(A)-40´ Fe(B)-10´ Fe(B)-40´<br />

Chit(A)-10´ Chit(A)-40´ Chit(B)-10´ Chit(B)-40´<br />

Dose [mg/l]<br />

Ferric sulphate versus Chitosan in 0,15 M HCl<br />

Fe(A)-10´ Fe(A)-40´ Fe(B)-10´ Fe(B)-40´<br />

Chit(A)-10´ Chit(A)-40´ Chit(B)-10´ Chit(B)-40´<br />

0,00<br />

0 10 20 30 40 50 <strong>60</strong><br />

Dose [mg/l]<br />

A254<br />

A254<br />

A254<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

Aluminium sulphate versus Chitosan in 0,05 M HCl<br />

Al(A)-10´ Al(A)-40´ Al(B)-10´ Al(B)-40´<br />

Chit(A)-10´ Chit(A)-40´ Chit(B)-10´ Chit(B)-40´<br />

0,00<br />

0 10 20 30 40 50 <strong>60</strong><br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

Dose [mg/l]<br />

Aluminium sulphate versus Chitosan in 0,1 M HCl<br />

Al(A)-10´ Al(A)-40´ Al(B)-10´ Al(B)-40´<br />

Chit(A)-10´ Chit(A)-40´ Chit(B)-10´ Chit(B)-40´<br />

0,00<br />

0 10 20 30 40 50 <strong>60</strong><br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

Dose [mg/l]<br />

Aluminium sulphate versus Chitosan in 0,15 M HCl<br />

Al(A)-10´ Al(A)-40´ Al(B)-10´ Al(B)-40´<br />

Chit(A)-10´ Chit(A)-40´ Chit(B)-10´ Chit(B)-40´<br />

0,00<br />

0 10 20 30 40 50 <strong>60</strong><br />

Dose [mg/l]<br />

Fig. 2 UV254 removal comparison between metal-based coagulants and chitosan (black<br />

curves for model water A, grey curves for model water B)<br />

REFERENCES<br />

1. Gulbrandsen: Organic polymers [online]. 2002 [cit. 2005-08-23].<br />

.<br />

2. Dalwoo Corporation: Chitin, chitosan and chitosan oligomer from Crab Shells. [online].<br />

Last updated April 12, 1999 [cit. 2005-07-31]. http://members.tripod.com/~dalwoo/.<br />

3. Beaulieu E.B.: Marinard Biotech [online]. [cit. 2005-07-31]. http://www.marinard.com/.<br />

4. Li J. et al.: Polymer Degradation and Stability, 87, 441, 2005.<br />

5. Vander P. et al: Plant Physiol., 118, 1353, 1998.<br />

6. Dolejš P.: Spektrofotometrické stanovení barvy huminových vod. In Sborník konference<br />

"Hydrochémia ‘83". Bratislava: ČSVTS VÚVH, 1983, s. 361-370.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 100


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 101


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 102


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 103


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 104


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 105


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 106


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 107


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 108


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 109


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 110


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 111


STUDY OF PHYSICOCHEMICAL AND ANTIOXIDATIVE<br />

PROPERTIES OF YEAST ME<strong>MB</strong>RANE COMPONENTS<br />

Michaela Drabkova, 3 rd year of PGS<br />

Supervisor: Prof. Ing. L. Omelka, DrSc.<br />

Doc. RNDr. I. Márová, Ph.D.<br />

Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of<br />

Technology, Purkynova 118, 612 00, Czech Republic, email: drabkova@fch.vutbr.cz<br />

INTRODUCTION<br />

Carotenoids are isoprenoid membrane-protective antioxidant pigments produced by plants, algae,<br />

bacteria and fungi. They belong to the most widespread natural pigments with many important<br />

biological activities. Production of carotenes, the great variety of natural carotenoids, is more than<br />

100 million tons per year. They are produced by specific branch of common isoprenoid biosynthetic<br />

pathway occuring in all types of organisms. With regard to different applications in food and feed<br />

industry most attention is now being focused on the natural production of carotenoids by microbial<br />

technology using yeast and/or bacteria.<br />

There are two major ways to influence the microbial production of carotenoids: i) by<br />

modification of cultivation conditions and ii) by construction of genetically modified<br />

overproducers. Qualitative and quantitative changes in a cell metabolite complement can be induced<br />

by environment, stress and other factors. Thus, identification of metabolic mar<strong>ke</strong>r characteristics for<br />

certain events provides important insight into the mechanisms of pathways occurring in the organism<br />

and can also lead to the regulation of production of industrially significant metabolites. Especially in<br />

microorganisms, production of metabolites is strongly influenced by various external factors.<br />

Environmental stress surrounding of yeast cells evo<strong>ke</strong>s various changes in their behaviour in order to<br />

survive under unfavourable conditions. Under stress, various specific compounds including lipidic<br />

substances are overproduced (e. g. glycerol, phospholipids, carotenoids, ergosterol etc.). However,<br />

more information is needed about regulation of production of these substances. Factors that influence<br />

efficiency of natural carotenoid biosynthesis are important for commercial applications.<br />

Carotenoids are membrane-bound lipid-soluble pigments, which can act as effective<br />

antioxidants and scavenge singlet oxygen. In red yeast they probably act as adaptive and/or<br />

protective mechanism against exogenous oxidative stress and UV-irradiation. Those compounds<br />

are accumulated in particular cell organelles. It is not clear so far, whether carotenoids are present<br />

in plasma membrane only or in other inner membrane systems as well as in cell wall. Also distribution<br />

of individual carotenoid derivatives in individual sub-cellular fractions has not been studied<br />

yet. Moreover, significant changes of these parameters under exogenous stress could occur, which<br />

could influence potential biotechnological use of red yeasts to industrial production of carotenoids.<br />

In this work some techniques for isolation and separation of sub-cellular fractions (cell wall,<br />

membrane fraction, cytosol) of red yeast cells grown in optimal conditions and under osmotic and<br />

oxidative stress were tested. Further, analysis of carotenoids in these fractions as well as in<br />

whole cells was done. Results of antioxidant properties of sub-cellular fractions were compared<br />

with carotenoid composition and antioxidant activity of some standard carotenoids. The aim of this<br />

work is to study, what is the distribution and trafficking of carotenoids in the cell and which<br />

carotenoids are the main contributors of antioxidant activity in individual cell compartments.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 112


MICROORGANISMS<br />

Yeast strains Rhodotorula glutinis CCY 20-2-26, Sporidiobolus salmonicolor CCY 19-4-8,<br />

Phaffia rhodozyma CCY 77-1-1 and Saccharomyces cerevisiae CCY 21-4-88 were used.<br />

Saccharomyces cerevisiae was used as comparative strain because of very high importance in<br />

genetic engineering.<br />

CULTIVATION CONDITIONS<br />

Yeasts were cultivated on glucose medium aerobically with light at 28 °C to the exponential phase<br />

of growth. Exogenous stress was induced by 2-5 % NaCl added into inoculation media and 2-5 mM<br />

H2O2 added into production media.<br />

Saccharomyces cerevisiae was cultivated on YPD medium anaerobicaly at 28 °C for 24 hours .<br />

PREPARATION OF SPHEROPLASTS<br />

Spheroplasts were prepared by incubation of yeast cells with some enzymes to softly disrupt<br />

plasmatic membrane. Different concentrations of lyticase and glucuronidase, other detergents (e.g.<br />

SDS, beta-merkaptoethanol, etc.) and osmotic lysis were used. Membrane fraction and cytosol were<br />

separated by ultracentrifugation. Spheroplasts were detected by light-microscopy and with addition of<br />

fluorescein dye by UV-microscopy. Further, spheroplasts were used for isolation of chromosomal<br />

DNA from red yeasts. Isolation was performed in 1% low melting agarose plugs and analyzed then<br />

by PFGE.<br />

a) Spheroplasts of R. glutinis – Light microscopy b) Bursting cells in isotonic environment<br />

ISOLATION OF SUB-CELLULAR FRACTION<br />

Sub-cellular fractions of cells were obtained by gradually separation using combination of<br />

enzymes and detergents. Cell wall fraction (surface layer) was obtained using sonification followed<br />

by ethanol precipitation. In selected fraction lipid profiles were analyzed using TLC. Levels of<br />

carotenoids - lycopene, alpha-carotene, beta-carotene, torulen and phytoene were obtained from yeast<br />

cells using acetone extraction and saponification by ethanolic KOH solution. The sample was<br />

repeatedly extracted by diethylether, evaporated and dissolved into ethanol for HPLC. We analyzed<br />

those samples using HPLC/MS. Antioxidant activity of individual sub-cellular fractions was tested<br />

using ABTS Metod (Randox kit). Protein profiles under stress conditions were compared too. Those<br />

were analyzed by PAGE-SDS.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 113


RESULTS AND DISCUSSION<br />

The most important industrial red yeast Rhodotorula glutinis was used as tested strain for<br />

identification of carotenoids and other membrane compounds. Dry biomass of these yeasts is used as<br />

feed complement for improvement of appearance and nutritional properties of animal products (e. g.<br />

the color of eggs and milk, the color of salmon meat).<br />

This microorganism was chosen based on results of previous screening study on selected yeast<br />

strains which produce carotenoids as natural pigments. Carotenogenic cultures were influenced by<br />

several exogenic chemical and physical stress factors added into cultivation media to clear the role of<br />

carotenoids in general stress response. We found that all types of stress conditions led to increased<br />

production of beta-carotene according to phase of application or concentration of stress factor. Crossprotection<br />

and production of similar metabolites in various types of stress conditions suggests the<br />

existence of an integrating mechanism that senses and responds to different forms of stress.<br />

Preparation of individual sub-cellular fractions from red yeast cells was strongly complicated by<br />

lipotrophic character of this strain. Especially preparation of spheroplasts was very difficult because of<br />

rigid character of cell wall membrane and yields of membrane fractions were therefore very low.<br />

Under stress conditions, about hundred proteins were overproduced by this strain. Expecting shock<br />

proteins, it could be some enzymes that catalyze overproduction of stress metabolites including<br />

carotenoids. Under both oxidative and osmotic stress pigments were overproduced, higher amount<br />

was detected in surface cell structures (cell wall and plasma membrane). Ergosterol was found both<br />

in cytosol and membrane lotions and its production under stress changed simultaneously with<br />

carotenoid formation. Glycerol was detected above all in cytosol fraction and its production under<br />

stress was inversely to carotenoid and ergosterol production.<br />

As surprising finding can be noted high content of carotenoids found in upper cell wall fraction.<br />

Presence of carotenoids, mainly beta-carotene, was detected in plasma membrane as well as in inner<br />

membrane fraction. The highest antioxidant activity was found in surface structures.<br />

This work was supported by project MSM 0021630501 H/'Czech Ministry of Education and by<br />

project IAA400310506 f Grant Agency of the Academy of Sciences of the Czech Republic.<br />

REFERENCES<br />

.l. Marova I., Breierova E., Koci R., Friedl Z., Slovak B., Pokorna J.: Annals Microbiol. 54, 73<br />

(2004).<br />

2. Farina J. I., Molina O. E., Figueroa L. I.. C.: Journal of Applied Microbiology 96, 254-262 (2004)<br />

3.Pardo M. Monteoliva L., Pla J. Sanchez M., Gil C. Nombela C.: Yeast 15, 459-472 (1999)<br />

4. Misawa N. Shimada H.: J. Biotechnol. 59, 169 (1997).<br />

5. Armstrong G. A., Hearst J. E.: FASEB J. 10, 228 (1996).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 114


DETERMINATION OF YEAST VIABILITY BY MEANS OF<br />

FLUORESCENCE MICROSCOPY AND IMAGE ANALYSIS<br />

Ing. Petra Jeřábková<br />

Supervisor: doc. Ing. Oldřich Zmeškal, CSc.<br />

Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of<br />

Technology, Purkyňova 118, 612 00 Brno, e-mail: jerabkova@fch.vutbr.cz<br />

1. INTRODUCTION<br />

In a condition assessment of microbiological populations, the important factor is a<br />

representation of live and dead individuals that it is possible to differentiate by means of<br />

fluorescent labelling. A direct microscopic count is usually used for direct determination of<br />

the cell number in counting chambers (by Thom, Bür<strong>ke</strong>r). The number of cells of microorganisms<br />

can frequently be determined indirectly with the assistance of cultivation when it is<br />

assumed that one colony will grow up from a viable cell and these colonies will be counted<br />

after that. It is possible to use an image analysis for the detection of defined objects<br />

(e.g. yeasts) without the necessity to count them.<br />

In this work, the wavelet transformation at a fractal analysis of an image, the so-called box<br />

counting method, was utilised. The wavelet transformation (or the Haar one) ma<strong>ke</strong>s the<br />

calculation of squares of different sizes of a laid mesh more effective with the box counting<br />

method provided that a square area is being analysed. An analysed image with a size that is<br />

given by the power of a definite number (2 i ) is transformed into the space of spectra. On this<br />

spectra, the filter of a low pass type with the size of square 2 i , where i = 1, 2, 4… n – 1 is<br />

gradually applied and the number of black, white and black and white squares is determined<br />

in images that arise from the inverse transformation in the same way as with a box counting<br />

method. It is possible to substitute the process of transformation and inverse transformations<br />

of an image by the addition of neighbouring foursome pixels and to analyse a relevant<br />

sequence of these pictures. Three fractal dimensions of the black and white area and their<br />

interface (DBBW, DBWB, DBW) and fractal measures (KBBW, KBWB, KBW) will again be the result.<br />

When analysing a black and white picture that may be obtained from a coloured picture by the<br />

process called thresholding, a method identical with a box counting method is described [1].<br />

With the assistance of the fractal analysis, characteristic data about an analysed structure,<br />

namely the fractal dimension D and the fractal measure K are determined. These parameters<br />

can be used for picture ordering evaluation as well as e.g. for specifying the number of<br />

defined objects or for specifying their radius [2].<br />

Pictures for the analysis were obtained by means of fluorescence microscopy because this<br />

method is quick and simple. Results are obtained within minutes, whereas classic cultivation<br />

methods require the minimum of 24 hours.<br />

2. EXPERIMENTAL PART<br />

The fractal analysis was used for specifying the number and dimension of images of live<br />

and heat-killed yeast cells. The fluorescent dye of acridine orange (AO) was used for the<br />

simultaneous distinction of live and dead cells (dead cells give out red or orange fluorescence<br />

and live cells yellow-green; 180 µM AO, pH 6). Fluorescein diacetate (FDA) was used for the<br />

distinction of live cells (greenish fluorescence; 6 mM FDA, pH 7.2). With the assistance of<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 115


fluorescent labelling it is possible to threshold either dead or live cells on a black colour in<br />

one picture. Images of cells were thresholded by the intensity or coloured components of the<br />

RGB space. To detect the convenient thresholding, it is possible to use the fractal spectrum,<br />

i.e. fractal dimension dependence on the intensity or selected RGB component, which is<br />

accessible in the HarFA software as a tool referred to as Fractal Analysis – Range [3]. The<br />

number of cells x and their radius r were determined provided that images of cells were of a<br />

circular shape, similar in size and distinguishable on the background according to relations<br />

x =<br />

4π<br />

N<br />

2<br />

( ) ,<br />

BW<br />

N + N<br />

B<br />

BW<br />

r =<br />

( N + N )<br />

B<br />

where NB is the number of black boxes, NBW is the number of black and white boxes with the<br />

size of ε × ε pixels. The resulting cell number x is derived from the value x, which is the<br />

maximum from the calculated values for different sizes of the mesh. The maximum value is<br />

selected because the fractal structure is bordered most conveniently for the given mesh size.<br />

Yeasts from Culture Collection of Yeasts – CCY, the Institute of Chemistry, Slovak<br />

Academy of Sciences in Bratislava and from the Faculty of Chemical and Food Technology<br />

of the Slovak University of Technology in Bratislava were used for the image analysis. Yeast<br />

Saccharomyces cerevisiae FV1 and yeast Saccharomyces cerevisiae subsp. cerevisiae CCY<br />

21-4-102 have ellipsoidal and spherical cells with width about 2.6–6.4 µm and with length of<br />

3.7–9.7 µm. Yeast Kloec<strong>ke</strong>ra apiculata CCY 25-6-22 has the shape of a lemon and size of<br />

(1.5–5) µm × (2.5–11) µm. Vegetative cells of yeast Hansenula anomala CCY 38-1-30 are<br />

spherical or ellipsoidal with size of 2–4 and 2–6 µm [4].<br />

Yeasts that were cultivated on an inclined agar by the room temperature were, then,<br />

inoculated into a liquid culture medium (glucose peptone yeast extract medium) where they<br />

were cultivated for a minimum of 24 hours again by the room temperature under aerobic<br />

conditions. After that, a half of the volume of the culture medium with cells was exposed to<br />

95°C for 3–6 hours (according to the yeast species). A drop of live and dead cells mixture was<br />

put on a slide and a drop of fluorescent dye was added. Microscopical preparation was<br />

observed immediately at staining by fluorescein diacetate and after 30 minutes at staining by<br />

acridine orange with 40× objective.<br />

The number of cells was evaluated in 35 visual fields. A suitable neutral density filter<br />

(ND4, ND8, ND16), which decreases the intensity of the excitation light, was inserted<br />

between the excitation light (mercury lamp) and excitation filter, when required. For the<br />

recording of pictures, the combination of the epifluorescence microscope Nikon Eclipse E200<br />

with the filter cube and a digital camera Nikon Coolpix5400 with the resolution of 2592 ×<br />

1944 was used. For the storage of pictures, the software Lucia Net 1.16.6. was used. The<br />

obtained pictures with the size of 1024 × 1024 were analysed by means of the software<br />

HarFA [3].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 116<br />

πx<br />

BW<br />

ε 2


Table 1<br />

Average numbers of cells from 35 pictures of sample of different yeast species that were<br />

obtained by fractal analysis<br />

AO FDA<br />

Yeast<br />

species<br />

Saccharomyces<br />

cerevisiae<br />

Saccharomyces<br />

cerevisiae FV1<br />

Kloec<strong>ke</strong>ra<br />

apiculata<br />

Hansenula<br />

anomala<br />

Dead<br />

cells<br />

number<br />

Average<br />

error<br />

(%)<br />

Live<br />

cells<br />

number<br />

Average<br />

error<br />

(%)<br />

Total<br />

number<br />

of cells<br />

Average<br />

error<br />

(%)<br />

Live cells<br />

number<br />

Average<br />

error<br />

5.42 8.05 6.<strong>60</strong> 8.66 11.97 6.10 11.40 4.02<br />

4.19 7.23 7.00 4.85 11.19 4.61 8.96 3.74<br />

4.94 6.61 10.34 6.94 14.90 5.66 10.53 5.93<br />

10.17 8.44 10.38 6.92 20.57 5.22 8.05 8.11<br />

Table 2<br />

Average radii of cells from 35 pictures of sample of different yeast species that were obtained<br />

by fractal analysis<br />

AO FDA<br />

Yeast<br />

Dead cells<br />

Live cells Live and dead cells Live cells<br />

species<br />

radius<br />

radius<br />

radius<br />

radius<br />

Saccharomyces<br />

cerevisiae<br />

Saccharomyces<br />

cerevisiae FV1<br />

Kloec<strong>ke</strong>ra<br />

apiculata<br />

Hansenula<br />

anomala<br />

3.25 4.12 3.74 3.78<br />

3.47 3.70 3.55 3.75<br />

2.88 2.72 2.96 2.62<br />

2.61 2.65 2.72 3.17<br />

3. CONCLUSION<br />

The fluorescence microscopy in the connection with the image analysis seems to be a<br />

suitable method for the counting of yeast cells. For the staining of dead and live cells<br />

simultaneously, the acridine orange dye is suitable, for the staining of live cells it is the<br />

fluorescein diacetate. When counting live and dead cells of different yeast species by means<br />

of the fractal analysis it was determined that the average error of determination of the yeast<br />

number from 35 pictures is less than 10 % with the number of cells up to 20 in a picture<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 117<br />

(%)


(Table 1). This error can also be caused by an unequal size of cells and shapes, differences in<br />

colouring of the individual cells and quality of the recorded picture. If cells are killed by heat,<br />

the cytoplasm is sometimes stained greenly as well, which complicates the thresholding<br />

process with cells that were stained by the acridine orange. Budding cells were counted as one<br />

cell identically as in the direct determination of the cell number whereas if a daughter cell<br />

carried another bud still not separated from a mother cell, it was counted as two.<br />

Obtained radiuses of cells image provided that they have a circular shape are listed in<br />

Table 2 and are within the range of 2.61–4.12 µm. The sizes of the radii fall within values that<br />

are listed in literature or, in some case, are slightly greater [4].<br />

4. REFERENCES<br />

[1] Tománková, K. Studium vlastností hrubě disperzních soustav pomocí metod obrazové<br />

analýzy. Brno, 2004, 42 s. Diploma thesis, Faculty of Chemistry, Brno University of<br />

Technology. Supervisor: Oldřich Zmeškal.<br />

[2] Zmeškal O., Sedlák O., Nežádal M.: Metody obrazové analýzy dat, Digital Imaging in<br />

Biology and Medicine, Czech Academy of Science České Budějovice: May 13., 2002, pp.<br />

34 - 43, ISBN 80-901250-8-5.<br />

[3] Zmeškal O., Nežádal M., Buchníček M., Bžatek T.: HarFA 5.0, Harmonic and Fractal<br />

Image Analyzer, http://www.fch.vutbr.cz/lectures/imagesci, Brno, 2003.<br />

[4] Kocková-Kratochvílová, A.: Taxonómia kvasinek a kvasinkovitých mikroorganizmov.<br />

1. vyd. Bratislava: Alfa, 1990. ISBN 80-05-00644-6.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 118


FLOW BEHAVIOUR OF DILUTED SUSPENSIONS IN<br />

CARBOXYMETHYLCELLULOSE-WATER SOLUTION<br />

MICHAL KLIMOVI<br />

Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied<br />

Chemistry, Purkyova 118, 612 00 Brno, Czech Republic, e-mail:<br />

klimovic@fch.vutbr.cz<br />

Introduction<br />

Recently we have reported on rheological problems in processing lignite pastes to form<br />

elements for lignite alternative applications outside the power generation industry [1, 2].<br />

We have also shown how these problems can be overcome using cellulosic derivative as<br />

a rheological aid [3]. Further our work was concerned with study of much more diluted<br />

suspensions of liquid-li<strong>ke</strong> appearance. We have found that small amount of lignite<br />

surprisingly lowered apparent viscosity of the solution comparing with the pure solvent.<br />

This work reports on flow behaviour of inorganic particle dispersions in the same<br />

medium. The aim was to find whether this thinning effect is specific to lignite or not.<br />

Experimental<br />

Carboxymethylcellulose (in the form of sodium salt; CMC) was supplied by Aldrich.<br />

Two preparations were used with following producer’s specifications: high molecular<br />

weight, Mw = 700 000 g mol -3 , degree of substitution 0.9; low molecular weight, Mw =<br />

90 000 g mol -3 , degree of substitution 0.7. Moisture content was determined as 8.2 and<br />

9.4 %.<br />

Two types of filler were used for preparation of dispersions, the foundry sand from<br />

laboratory of FSI VUT Brno and microsil from Silchem. The fraction of foundry sand<br />

captured between 0.15 and 0.30 mm sieves was used for subsequent experiments.<br />

Microsil is Silchem trademark of glass microspheres; type G080 was used.<br />

The peparation of suspensions consisted in suspending weighted amounts of filler and<br />

CMC in corresponding amount of warm (70 °C) deionized water. Mixture was stirred<br />

for one hour, temperature was maintained for the first 30 min only.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 119


Measurements of flow properties were carried out at 25 °C on Haa<strong>ke</strong> RS100 rheometer<br />

equipped with the double cylinder sensor Z20 DIN both in constant rate and in constant<br />

stress mode. All reported data points are averages from three replicates.<br />

Results and discussion<br />

Figure 1 shows flow curves for increasing sand contents measured immediately after<br />

preparation with suspensions based on the high molecular weight cellulose derivative.<br />

Higher sand loadings (7 % and more) shift flow curves up, to higher shear stress values,<br />

on increasing sand contents and also apparent viscosity rises. On contrary, flow curves<br />

for low sand loadings (5 %) lie bellow the curve of blank CMC solution giving also<br />

lower apparent viscosities. Thus, adding sand to the carboxymethylcellulose solution<br />

does not increase its (apparent) viscosity as expected, unless the sand concentration is<br />

sufficiently high. The same effect was observed for lignite as a filler.<br />

Suspensions prepared from the low molecular weight cellulose derivative did not show<br />

this untypical behaviour.<br />

The same behaviour of suspensions was observed at carboxymethylcellulose-microsilwater<br />

dispersions (Fig 2).<br />

Fig 1 The dependance of shear stress on shear rate for dispersions of pure CMC<br />

solution and different concentrations of sand in CMC solution (2 %, 5 %, 7 %, 10 %).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 120


Fig 2 The dependance of shear stress on shear rate for dispersions of pure CMC<br />

solution and different concentrations of microsil in CMC solution (0.5 %, 1 %, 3 %,<br />

5 %).<br />

Measured flow curves can be adequately fitted by the Ostwald-de Waele model<br />

n<br />

= K<br />

Model parameters reflected the influence of lignite on suspension flow behaviour.<br />

Results of this study indicate that lowering apparent viscosity of suspensions prepared<br />

from water solution of high molecular weight carboxymethylcellulose may be quite<br />

common phenomenon when concentration of dispersed particles is low (approximately<br />

in orders of tenths up to ten weight percent). The cause is probably in easier movement<br />

of particles entrapped within long biopolymer chains li<strong>ke</strong> balls in ball-bearing.<br />

Conclusion<br />

Flow curves determined in this study showed that lowering suspension apparent<br />

viscosity at moderate amount of particles suspended in high molecular weight<br />

carboxymethylcellulose solution is not specific effect of lignite particles. The same<br />

effect was observed also for sand and even for glass microspheres, which are usually<br />

used as thic<strong>ke</strong>ner. Results thus confirm our hypothesis on some “ball-bearing” effect,<br />

which enables easier flow of long macromolecular chains then when they are in closer<br />

contact in pure solution.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 121


References<br />

1. Lapík ., Lapíková B., Filgasová G.: Colloid Polym. Sci. 278, 65 (2000)<br />

2. Peka M.: Flow behaviour of concentrated lignite dispersions. In Proceedings of the<br />

XIIIth International Congress on Rheology, Cambridge, vol.4. British Society of<br />

Rheology, Glasgow, p.4, 105, 2000.<br />

3. Peka M., Diviová P., Klimovi M.: submitted to Colloid. Polym. Sci. (2005)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 122


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 123


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 124


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 125


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 126


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 127


SPECTROPHOTOMETRIC STUDY OF SOME BIOLOGICAL<br />

BUFFERS SOLUTIONS<br />

Ing. Miroslava Krčmová a , 3 rd year of DSP<br />

Supervisor: doc. Ing. Radim Vespalec, DrSc. b<br />

a Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied<br />

Chemistry, Purkyňova 118, CZ 612 00 Brno, Czech Republic,<br />

e-mail: xckrcmova@fch.vutbr.cz<br />

b Institute of Analytical Chemistry, Czech Academy of Science, Veveří 97, CZ 611 42 Brno,<br />

Czech Republic, e-mail: vespalec@iach.cz<br />

INTRODUCTION<br />

Biological buffers are predominantly synthetic compounds serving widely to the pH<br />

stabilization and for the pH control in the pH range of 5.5–11.4 1 . They are predominantly<br />

white crystallized powders that are good soluble in water and they have a high chemical<br />

stability and compatibility in various biological systems. Today, the biological buffers are<br />

predominantly utilized as chemical agents for analytical chemistry. They are used in buffer<br />

exchange processes and as mobile phases during some chromatography steps, too 2 . These<br />

buffer compounds provide alternate buffer compounds with pKa values near physiological<br />

conditions for biological applications 2, 3 . The biological buffers are free of chromophores<br />

absorbing light above 200 nm. In spite of this, it was reported recently that some of the<br />

buffers wea<strong>ke</strong>n mar<strong>ke</strong>dly the passing light at some experimental condition 4 .<br />

GOOD BUFFERS<br />

In the year 1966 discovered, developed and introduced Goods research team the special<br />

group of zwitterionic biological buffers, called Good buffers 2 . Later, in 1980, was patented<br />

and introduced a new generation of biological buffer compounds based on the zwitterionic<br />

character of Good buffers 5 . Good buffers stabilise pH of solution and they are used as protein<br />

solubilization agents in aqueous solutions 6 , too. The aforesaid buffers are non-toxic to cells,<br />

they are not interferenced through biological membranes (for example: penetration,<br />

adsorption surface, solubilization, etc.). The pKa values of these biological buffers lie at or<br />

near physiological pH area 2, 5 .<br />

Popularity of using of biological buffers in analytical chemistry follows from two<br />

phenomenons. At first it is a photometric detection that is accounted as a very frequently and<br />

popular in contemporary modern instrumental analytical methods. The second phenomenon is<br />

the fact that biological buffers are free of chromophores absorbing ultraviolet light above<br />

200 nm. Regardless it was detected modify of intensity of the passing UV-light beam that<br />

passed through aqueous solutions of same biological buffers in the short wavelength area 4, 7 .<br />

The strain of our study is the verification of this finding for three most frequently and popular<br />

used zwitterionic Good buffers, 3-(N-morpholino)propanesulfonic acid (MOPS), 2-(Nmorpholino)ethanesulfonic<br />

acid (MES), 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic<br />

acid (CAPSO), see Fig. 1 1, 7 and Table 1 1 .<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 128


A B C<br />

Fig. 1: The structure of research biological buffers: A) MOPS, B) MES and C) CAPSO 1 .<br />

Table 1: Inquired zwitterionic GOOD buffers 1 .<br />

Buffer Formula M W<br />

(g.mol -1 )<br />

pKa<br />

(25 °C)<br />

pH range<br />

MOPS C7H15NO4S 209.26 7.2 6.5 – 7.9<br />

MES C6H13NO4S 195.24 6.1 5.5 – 6.7<br />

CAPSO C9H19NO4S 237.32 9.6 8.9 – 10.3<br />

EXPERIMENTAL PART<br />

The UV-Vis spectrophotometer VARIAN – CARY 50 Probe (Varian BV, The<br />

Netherlands) equipped with the quartz cell of 1 cm optical path length served for photometric<br />

measurements in the range of 190-300 nm. The acquired experimental data were processed by<br />

the program Cary WinUV, the program equipment to the spectrometer Varian (Varian BV,<br />

The Netherlands). The examined buffers (MES, MOPS and CAPSO) are from Sigma-Aldrich<br />

(Prague, Czech Republic). The buffer solutions were prepared from redistilled water and<br />

theirs concentration was between the value 4 and 200 mmol.l -1 . The pH of researched<br />

solutions was adjusted with sodium hydroxide (Lachema, Brno, Czech Republic). The<br />

experimental temperature has the value 25 °C (common laboratory temperature).<br />

RESULTS<br />

Investigated zwitterionic biological Good buffers, MES, MOPS and CAPSO cover almost<br />

completely pH range of the Good buffers applicability. The investigated buffers are free of<br />

chromophores absorbing light above 190 nm disregarding their chemical identity and pH.<br />

Wea<strong>ke</strong>ning of a light beam passing through their aqueous solutions cannot be therefore<br />

classified the light absorption even if it is displayed in absorbance units by the used<br />

instrument. Three pH units below their pKa values, the buffers are only in the zwitterionic<br />

form considering the measurement precision. At pH = pKa, the concentration of the<br />

zwitterionic form and of the anionic form is identical. At pH = pKa + 3, practically only<br />

anions exist in solution.<br />

Experiments with purely zwitterionic solutions of MES, MOPS (Fig. 2) and CAPSO<br />

revealed that their formal absorbance increases with both increasing concentration and with<br />

the decreasing wavelength of the passing light. The maximum measured absorbance depended<br />

on the dissolved compound. In the range of usually utilized concentrations of Good buffers,<br />

ranging from 20 to <strong>60</strong> mmol.l -1 , the light absorption was acceptably low above 200 nm. Zero<br />

absorbance was obtained at the wavelength of 250 nm and higher disregarding the compound<br />

and its concentration.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 129


Fig. 2: Typical course of the dependence of the formal absorbance of dissolved<br />

zwitterionic buffers on the passing light wavelength documented on the example of MOPS.<br />

The MOPS concentration is given as a parameter: 1) 4.1 mmol.l -1 , 2) 50 mmol.l -1 , 3)<br />

100 mmol.l - 1 and 4) 200 mmol.l -1 .<br />

The (pH-pKa) difference affects the light beam wea<strong>ke</strong>ning dramaticly at concentrations up<br />

to pH = pKa (Fig. 3). At pH > pKa, the absorbance rises up much less. The dependences of<br />

formal absorbance at pH = pKa and pH = pKa + 3 on the light beam wavelength differ<br />

therefore only slightly (Fig. 4). The steepness of the concentration dependence of the apparent<br />

absorbance rises up with the decreasing wavelength (Fig. 5) as may be expected from<br />

previous experiments.<br />

Fig. 3: Typical course of the dependence of the formal absorbance of dissolved<br />

zwitterionic buffers on the buffer pH documented on the example of MOPS. The wavelength of<br />

the passing light is given as a parameter: (A) 1) 200 nm, 2) 220 nm and 3) 250 nm,<br />

(B) 1) 210 nm and 2) 230 nm.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 130


Fig. 4: Typical course of the dependence of the formal absorbance of dissolved<br />

zwitterionic buffers on the buffer pH at 1) pH = pKa and 2) pH = pKa + 3 documented on the<br />

example of MOPS.<br />

Fig. 5: Typical course of the dependence of the formal absorbance of dissolved<br />

zwitterionic buffers on their concentration documented on the example of MOPS. The<br />

wavelength of the passing light is given as a parameter: (A) 1) 200 nm, 2) 220 nm and 3)<br />

250 nm, (B) 1) 210 nm and 2) 230 nm.<br />

CONCLUSIONS<br />

Photometric experiments evidenced general aggregation capability of investigated<br />

zwitterionic Good buffers MES, MOPS and CAPSO and, in agreement with the previous<br />

communication 4 , dramatic increase of this capability in the pH range in which the<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 131


concentration of the anionic form of the buffer approaches 50 % of its total concentration.<br />

Formation of aggregates from dissolved MES, MOPS and CAPSO, which disperse the<br />

passing UV-light beam, is a possible interpretation of presented experiments. Conductivity<br />

measurements not presented here evidence that the aggregates are not micelles. This finding<br />

controverts the explanation proposed in the article 4 . Presented results of photometric<br />

experiments evidence correctness of experiments given in Ref. 4. The results also substantiate<br />

continuation of the presented research.<br />

REFERENCES<br />

1. Sigma-Aldrich catalogue 2000-2001.<br />

2. Accessible in the Internet: http://www.jtba<strong>ke</strong>r.com/biopharm/biopharm_buffer_bio.html<br />

[citation 22 February 2005].<br />

3. Ferguson, W.J., Braunschweiger, K.I., Braunschweiger, W.R., Smith, J.R., McCormick,<br />

J.J., Wasman, C.C., Jarvis, N.P., Bell, D.H. and Good, N.E.: Anal. Biochem. 104 (2), 300<br />

(1980).<br />

4. Vespalec, R., Vlčková, M., Horáková, H.: Aggregation and intermolecular interactions of<br />

biological buffers observed by capillary electrophoresis and UV photometry. Journal of<br />

Chromatography A, 2004, vol. 1051, p. 75 - 84.<br />

5. Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izana, K., Singh, R.M.M.:<br />

Biochemistry 5, 467 (1966).<br />

6. Hames, B.D., Rickwood, D.: Gel Electrophoresis of Proteins. 2-nd edition, p. 153, OIRL<br />

Press, Oxford, 1990.<br />

7. Beynon, R.J., Easterby, J.S.: Buffer Solutions: The basics. p. 48, 69 – 70, 74, 78, OIRL<br />

Press, Oxford, 1996.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 132


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 133


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 134


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 135


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 136


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 137


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 138


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 139


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 140


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 141


Investigation of environmental and varietal influences on distribution of<br />

starch granules in barley <strong>ke</strong>rnels by GFFF and laser particle size analysis<br />

Ing. Karel Mazanec<br />

Supervisor: RNDr. Josef Chmelík, CSc.<br />

Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology,<br />

Purkyňova 118, 612 00 Brno, Czech Republic, e-mail: mazanec@iach.cz<br />

INTRODUCTION<br />

The beer production has great tradition and is much extended in this country. Because the<br />

production of beer is very energy-consuming, any decrease of input and process loads <strong>ke</strong>eping<br />

taste and qualities of resulting product may play a significant role at volumes of production.<br />

Therefore understanding of processes joined with brewing and malting may give promising<br />

results.<br />

Starch is formed in green plants as the final product of photosynthesis. Starch is one of the<br />

barley components important for its malting quality. The starch present in barley <strong>ke</strong>rnels is in<br />

form of large (type A) and small (type B) granules [1]. Distribution of starch granules in<br />

barley <strong>ke</strong>rnels plays important role in technological processes of beer production. Because the<br />

small granules are less susceptible to enzymatic digestion and causing technological problems<br />

during brewing (they can form starch haze and can block filtration beds in lauter tuns) for a<br />

long time it was presumed that the malting varieties experimentally selected as<br />

technologically suitable for brewing should have only minimal content of small starch<br />

granules. The so-called malting varieties of spring barley have different distribution of size of<br />

starch granules in comparison to other varieties. Measurement of starch particles size<br />

distribution gives good idea of technological quality of individual malting varieties. Several<br />

techniques have been generally employed for this purpose. Nevertheless implementation of<br />

field-flow fractionation (FFF) fitted the needs of low cost and short separation time.<br />

MATERIALS AND METHODS<br />

Plant material and sample preparation<br />

Twelve spring and winter barley varieties (obtained from the testing stations of the Central<br />

Institute for Supervising and Testing in Agriculture (CISTA) of the Czech Republic) were<br />

used for isolation and size measurements. Each year the above given variety assortment was<br />

grown in three testing stations. External conditions influenced all varieties equally.<br />

Monitoring was conducted for three years (2001-2003) and thus 108 samples were processed<br />

during whole project. This work shows data from the last harvest of this three years project.<br />

Starch granules were isolated by way described in [2]. Barley grains were ground on the<br />

adjusted milling equipment, stirred with 0.02M HCl and refrigerated for 15 hours (4 °C).<br />

When ta<strong>ke</strong>n out pH was adjusted with 0.2M NaOH to 5.0 ± 0.2 and cellulase and β-glucanase<br />

were added, content was sha<strong>ke</strong>n in bath (30 °C for 3 hours), then pH was adjusted to<br />

11.0 ± 0.2 (50 °C for 90 minutes). After this pH was adjusted to 7.0 ± 0.2 and the content was<br />

filtered. Filtrate containing starch was poured into a storage pot. Obtained starch was<br />

repurified with an aqueous solution of CsCl (80%). Isolated starch was purged with acetone<br />

and dried out. Suspension of starch granules in solvent (10 -3 % SDS – sodium dodecyl sulfate)<br />

were measured on GFFF and with commercial particle size and shape analyzer.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 142


Gravitational Field-Flow Fractionation<br />

Gravitational FFF is the experimentally simplest and cheapest among the family of FFF<br />

techniques. Separation in GFFF is based on combination of gravitational field and a nonuniform<br />

flow velocity profile of carrier liquid in channel (fig 1). Gentle experimental<br />

conditions (low pressure and weak force field) and the possibility to use isotonic buffer<br />

solutions as carrier liquids ma<strong>ke</strong> GFFF unique possible also for separations and purifications<br />

of biological samples [3].<br />

Plexiglass<br />

Glass<br />

Detector<br />

Spectra 100<br />

(λ = 470 nm)<br />

Sample injection<br />

High-pressure<br />

pump<br />

HPP 4001<br />

Fig.1: Principe of Gravitational FFF Fig.2: Arrangement of GFFF channel<br />

The arrangement of GFFF channel is shown in the fig. 2. The separation channel was cut in<br />

0.150 mm thick foil and inserted between two glass plates. The channel dimensions were 3<strong>60</strong><br />

mm x 20 mm x 0.150 mm. The carrier liquid and the sample were introduced into the channel<br />

via an inlet capillary situated at the channel head, and ta<strong>ke</strong>n out via an outlet capillary located<br />

at the end of the channel. The high-pressure pump HPP 4001 (Laboratory Instruments,<br />

Prague, Czech Republic) was used to introduce the carrier liquid into the channel. As the<br />

detector the UV/VIS Spectra 100 (Development Workshop AS CR, Prague, Czech Republic)<br />

operating at 470 nm was used. Data were collected on 386’s (Intel, Santa Clara, CA, USA)<br />

PC equipped with digitalization card.<br />

Starch samples were suspended (the concentration of 10 mg/ml) in 10 -3 % SDS and soa<strong>ke</strong>d<br />

for at least 24 h. Then the sample was sonicated for 1h prior to the FFF experiment. Samples<br />

were injected during the stopped flow. Just after injection, a loading flow at rate 0.2 ml/min<br />

was applied for 10 s. Relaxation time period (stopped-flow period) was for 1.5 min. After this<br />

a linear flow rate of 0.8 ml/min was applied.<br />

CIS-100 Particle Size and Shape Analyzer<br />

The CIS-100 (An<strong>ke</strong>rsmid Ltd., Yokneam, Israel) is a Computerized Inspection System for<br />

Particle Size Analysis (PSA) in the range of 0.5-3<strong>60</strong>0 micron employing laser and video<br />

measurement channels. Together, both channels provide all necessary information to analyze<br />

and characterize spherical, non spherical and elongated particles of large variety of materials.<br />

A He-Ne laser beam in the first channel is scanned circularly by a rotating wedge prism and<br />

focused down to a 1.2 μm spot, which scans the sample measurement volume. As the particles<br />

(moving or stationery) within the sample volume are individually bisected by the laser spot,<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 143


interaction signals are generated. These signals are then detected by a PIN photodiode. Since<br />

the beam rotates at a constant speed, the duration of interaction provide a direct measurement<br />

of each particle's size. The interaction signals are collected by a data acquisition card and<br />

analyzed in <strong>60</strong>0 discrete size intervals. Pulse analysis algorithms are employed to reject outof-focus<br />

and off-center interactions.<br />

The shape analysis channel uses a CCD video camera microscope to provide an optimal<br />

image for processing. Illumination is provided by a synchronized strobe light. Acquired<br />

images are passed to a frame grabber card for analysis, and then displayed on a monitor for<br />

viewing.<br />

Samples were prepared at the concentration of 50 mg/ml in 10 -3 % SDS. In storing reservoir<br />

of instrument they were diluted to 0.5 l and were sonicated with nominal frequency 65 KHz<br />

during whole analysis. The stirring was set up to 226 rpm. The pump drove the suspension to<br />

the channel at flow rate 190 ml/min.<br />

RESULTS<br />

The results of both methods presented in this work give principally the same interval<br />

ranges of starch granule size in barley <strong>ke</strong>rnels as in the preceding works [4]. The main size<br />

fractions of starch granules were detected in the areas of 0-8 μm with peak around 3 μm (9<br />

min in case of GFFF) and 8-30 μm with maximum around 20 μm (4 min). This classification<br />

resulted from the natural bimodal distribution of starch granule size. The smallest amount of<br />

starch particles is among 7.5 and 8 μm, so 8 μm was ta<strong>ke</strong>n as a boundary between small (A)<br />

and large (B) particles. Due to the different principle of measurement of both methods, the<br />

results are not comparable in absolute values. Nevertheless the starch distributions of<br />

individual barley varieties obtained by both methods correspond well.<br />

Cultivar Winter/Spring Row Quality GFFF PSA<br />

CHT LIB STA CHT LIB STA<br />

Tolar Spring 2 VG 0,612 0,584 0,753 3,921 3,228 4,453<br />

Orthega Spring 2 Feed 0,503 0,5<strong>60</strong> 0,970 6,358 6,123 5,988<br />

Heris Spring 2 Feed 1,009 0,709 0,992 7,496 4,015 9,799<br />

Jersey Spring 2 VG 1,388 0,913 1,252 7,091 5,317 5,083<br />

Prestige Spring 2 VG 0,748 0,739 1,205 4,534 4,086 5,631<br />

Scarlett Spring 2 G 0,891 1,042 0,720 6,199 7,834 7,711<br />

Luran Winter 6 Feed 0,961 0,684 1,215 5,4<strong>60</strong> 5,277 5,911<br />

Luxor Winter 6 Feed 1,021 0,903 1,543 7,842 7,123 9,020<br />

Nelly Winter 6 Feed 1,089 1,098 1,328 8,328 7,354 7,150<br />

Vilna Winter 2 Feed 1,589 1,536 1,467 6,402 6,117 7,039<br />

Camera Winter 2 Feed 2,052 2,844 1,250 8,921 8,662 6,764<br />

Tiffany Winter 2 G 2,974 2,541 2,745 9,163 10,521 6,918<br />

Tab.: shows results of individual barley varieties. Quality means: Feed, good malting quality<br />

(G) and very good malting quality (VG). Values are A/B peaks areas from individual test<br />

stations.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 144


The set of the studied varieties was split into three groups according to the results obtained<br />

by the GFFF and PSA methods. Winter, two-row varieties Tiffany, Camera and Vilna<br />

belonged to a group of varieties with the smallest ratio of small starch granules. Conversely,<br />

the two-row varieties of spring barley Heris, Jersey, Tolar and Orthega formed a group with<br />

the largest ratio of small starch granules. This study did not confirm the assumption that the<br />

malting barley varieties in the studied set compared to the non-malting varieties had a lower<br />

number of small starch granules.<br />

The variety of barley affects the starch granule size distribution most significantly. Effect<br />

of locality and local environmental conditions in the testing stations during growing of the<br />

seeds and year is significantly lower.<br />

CONCLUSIONS<br />

The isolated starch granules from <strong>ke</strong>rnels of twelve barley varieties cultivated in three<br />

different regions were analyzed using gravitational FFF instrument and particle size and shape<br />

analyzer. Significant intervarietal and also some interregional and year differences were<br />

detected in starch granule size distribution. Because of different principle of both methods the<br />

results are not the same in absolute values, but show the same tendencies. This study did not<br />

confirm the assumption that the malting barley varieties in the set observed compared to the<br />

non-malting varieties had a smaller number of small starch granules.<br />

FUTURE WORK<br />

Because malting varieties of barley have other enzymatic apparatus quality, future work will<br />

be focused on characterization of enzymatic activity and starch degradation by defined<br />

enzymes by combination of separation techniques (IEF, GPC) with MALDI-TOF/TOF MS.<br />

REFERENCES<br />

[1] May L.H., Buttrose M.S.: Physiology of cereal grain. II. Starch formation in the<br />

developing barley <strong>ke</strong>rnel. Aust. J. Biol. Sci. 12, 146 - 159, 1959.<br />

[2] Psota V., Bohačenko I., Pytela J., Vydrová H., Chmelík J.: Determination of size<br />

distribution of size distribution of barley starch granules using low angle laser light scattering.<br />

Plant production 46 (10), 433-436, 2000.<br />

[3] Giddings J.C.:Field-Flow Fractionation – Analysis of macromolecular colloidal, and<br />

particulate materials. Science 2<strong>60</strong> (5113), 1456 – 1465, 1993.<br />

[4] MacGregor A.W., Fincher G.B.: Carbohydrates of the barley grain. MacGregor, A.W.,<br />

Bhatty, S.R. (eds.) Barley: Chemistry and Technology. AACC St.Paul, MN, USA. 1993.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 145


A granules<br />

(8 – 30 μm)<br />

0 5 10<br />

Fig.3: GFFF curves of a) Tiffany, b) Luxor and c) Tolar varieties<br />

a)<br />

b)<br />

0 10 20 30<br />

Size [μm]<br />

B granules<br />

(0 – 8 μm)<br />

Time [min]<br />

0 10 20 30<br />

Size [μm]<br />

Fig.4: Differential and integral PSA volume distribution curves of a) Tiffany, and b) Tolar<br />

varieties<br />

a)<br />

b)<br />

c)<br />

100%<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 146


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 147


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 148


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 149


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 150


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 151


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 152


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 153


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 154


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 155


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 156


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 157


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 158


INFLUENCE OF TRIETHYLALUMINIUM COCATALYST ON<br />

INITIAL KINETIC OF PROPENE POLYMERIZATION<br />

Ing. Miroslav Skoumal 1 , 3 th year Ph.D. student<br />

Supervisor: Ing. Jan Kratochvíla, CSc. 2<br />

1 Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology,<br />

Purkyňova 118, 612 00 Brno, Czech Republic, e-mail: skoumal@fch.vutbr.cz<br />

2 Polymer Institute Brno, Tkalcovská 2, 656 49 Brno, Czech Republic<br />

INTRODUCTION<br />

The triethylaluminium (TEA) influence on the initial stage of propene polymerization with<br />

heterogeneous TiCl4/MgCl2-supported Ziegler-Natta catalysts is presented in this study. It is<br />

generally known that alkylaluminium compound (TEA is the most common) plays the<br />

essential role in active center formation which is able to produce poly-α-olefins under the low<br />

temperature and pressure. A wide range of experimental studies, summarized in several<br />

reviews [1,2], was performed for the evaluation of the alkylaluminium role in Ziegler-Natta<br />

catalysts. It was defined that the activation of the catalyst proceeds in two steps. First,<br />

alkylaluminium reduces Ti (IV) to Ti (III). Then it alkylates the Ti (III) forming the first<br />

metal-polymer bond accessible for monomer insertion. Due to high reactivity of TEA, it was<br />

also found that a large number of side reactions with TEA proceeds during the polymerization<br />

such as transfer (broadening of MWD) or termination (further reduction to non-propagative<br />

Ti (II) species).<br />

The heterogeneous nature of MgCl2-supported catalyst, the presence of different types of<br />

active centers on its surface, the activity decay during the polymerization, influence of<br />

catalyst compounds and experimental conditions on the rate of polymerization ma<strong>ke</strong> difficult<br />

to study the polymerization kinetics with this catalysts. These problems are significant<br />

especially during the first seconds of polymerization, where the MgCl2-supported catalyst<br />

exhibits high activity. The investigations of the initial kinetics recently became a subject of<br />

intensive research, assuming that the catalyst behavior during the first seconds of<br />

polymerization determines its efficiency and consequent polymer particle morphology.<br />

For the better understanding of the reactions involved in the initial period, the novel<br />

method for the assessment of initial polymerization kinetic and determination of the number<br />

of active sites was developed [3]. This method allows us to evaluate the kinetic profiles from<br />

1 to 300 seconds with high accuracy and reproducibility.<br />

EXPERIMENTAL PART<br />

The presented study was performed with commercial high-activity TiCl4/MgCl2-supported<br />

Ziegler-Natta catalysts commonly used for polypropene production in industry. Catalyst was<br />

slurried in mineral oil and stored in glass vessels covered by a nitrogen flow. Polymerization<br />

grade propene originated from Chemopetrol Litvínov. Contents of critical impurities CO and<br />

COS were less than 10 ppb, water and oxygen levels were under 0.1 ppm. Triethylaluminum<br />

(TEA) originating from Witco, GmbH (Germany) was dissolved in heptane and <strong>ke</strong>pt in glass<br />

vessels similarly as the catalyst. n-Heptane used as the polymerization medium was purchased<br />

from Aldrich (99 % spectrophotometric grade). Prior to polymerization, removal of water and<br />

oxygen was conducted inside the reactor by stripping. About 10 % of heptane was stripped-<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 159


off by high-purity nitrogen (70°C, 40 min) to remove water and oxygen. The contents of O2<br />

and H2O in the nitrogen were under 0.5 ppm.<br />

The slurry polymerizations were carried out in a water-jac<strong>ke</strong>d glass reactor (240 ml). The<br />

reactor was equipped with magnetic stirrer and connected to a low-pressure polymerization<br />

apparatus. The apparatus was under the PC control, operating the thermostatic circuit,<br />

switching-on the magnetic stirrer, injection of a quenching agent and measuring the<br />

polymerization time.<br />

The PC control operates the automatic injection of a quenching agent into the reactor at a<br />

pre-set time. The main part of the injector was a syringe connected by tube to a solenoidoperated<br />

valve. Before the polymerization, the syringe was loaded with ca. 0.5 ml of a<br />

quenching agent (methanol, 2-propanol, and concentrated hydrochloric acid, volume ratio<br />

4:4:1) and connected to the neck of the glass reactor. After the preset polymerization time had<br />

elapsed, the solenoid valve was automatically opened. Water pressure pushed down the<br />

syringe piston and injected the quenching agent into the reactor. This ensured a fast and<br />

complete termination of the polymerization reaction.<br />

Polymerizations were carried out in ca. 180 ml of previously stripped and cooled heptane<br />

saturated with propene at 30°C (0.61 mol C3H6/l) under a propene flow blan<strong>ke</strong>t at<br />

atmospheric pressure. The defined amount of TEA was introduced via a syringe and the<br />

content of the reactor was homogenized by short stirring. Next, the stirrer was turned off and<br />

the appropriate amount of catalyst oil slurry was slowly dosed into the reactor by means of a<br />

syringe with a long metal injector leading close to the bottom of the reactor. The application<br />

of viscous mineral oil prevents sedimentation of homogenized catalyst slurry during the<br />

charging procedure. Thanks to a nearly zero mass transfer between the oil and the heptane<br />

phases, the catalyst remained separated from cocatalyst (TEA) dissolved in the heptane phase<br />

until the stirrer was turned on (Figure 1).<br />

Figure 1: Schematic drawing of the oil/heptane diffusion interface before the start of stirring.<br />

Typically, 10-15 s after the catalyst was dosed the magnetic stirrer was turned on. The<br />

stirrer speed was high enough to homogenize the oil/heptane mixture within ca. 0.2 s. The<br />

stirrer was operated at <strong>60</strong>0 rpm during polymerization and polymerization conversion<br />

corresponded to a max. 5 % of the monomer dissolved in the polymerization slurry; therefore<br />

the effect of mass transfer through the gas-liquid interface was negligible. It was proven that<br />

the reproducibility, in the range of polymer yields 10 – 300 mg and polymerization times<br />

1 − 300 s, was always within about 7 %. For more information see [3].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 1<strong>60</strong>


RESULTS AND DISCUSSION<br />

The presented study was focused on influence of starting TEA concentration on the<br />

catalyst behavior during first seconds of propene polymerization. Using the recently<br />

developed method for the initial kinetic determination, it was observed that the applied<br />

MgCl2-supported catalyst exhibits the decay kinetic profile with high initial activity followed<br />

by rapid deceleration to the level of 15% of starting value during 10 seconds<br />

([TEA] = 0.0092 mmol/ml). The high level of initial activity is a negative phenomenon,<br />

accompanied with intensive releasing of heat, which could cause an overheating of polymer<br />

particles and consequent adverse changes in particle morphology. Typical example is<br />

formation of solid polymer particle agglomerates dangerous mainly in industrial reactors.<br />

Yield [g-PP/mmol-Ti]<br />

Activity [g-PP/(mmol-Ti*h)]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

[TEA] = 0.0092 mmol/ml<br />

[TEA] = 0.0044 mmol/ml<br />

[TEA] = 0.0007 mmol/ml<br />

0 20 40 <strong>60</strong> 80 100 120<br />

Time [s]<br />

7000<br />

<strong>60</strong>00<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

[TEA] = 0.0092 mmol/ml<br />

[TEA] = 0.0044 mmol/ml<br />

[TEA] = 0.0007 mmol/ml<br />

0 20 40 <strong>60</strong> 80 100 120<br />

Time [s]<br />

Yield [g-PP/mmol-Ti]<br />

Activity [g-PP/(mmol-Ti*h)]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

7000<br />

<strong>60</strong>00<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

[TEA] = 0.0092 mmol/ml<br />

[TEA] = 0.0044 mmol/ml<br />

[TEA] = 0.0007 mmol/ml<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Time [s]<br />

0<br />

[TEA] = 0.0092 mmol/ml<br />

[TEA] = 0.0044 mmol/ml<br />

[TEA] = 0.0007 mmol/ml<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Time [s]<br />

Figure 2: Kinetic profiles for different starting TEA concentrations presented as dependence<br />

of the polymer yield and its derivative (activity) on polymerization time. Polymerization<br />

conditions: Atmospheric pressure, temperature 30°C, heptane 180 ml, propene: 0.61 mol/l.<br />

The kinetic profiles from the first 120 s of polymerization indicate that the initial activity<br />

directly depends on the starting TEA concentration in the solution. Changes in TEA<br />

concentration cause significant effect on the initial activity and the following deceleration<br />

period. The Figure 2 shows that the 50% decrease in TEA concentration reduces the initial<br />

activity to one-half while the activity after 120 s is comparable. It suggests that the<br />

unfavorable high initial activities of MgCl2-supported catalyst can be controlled by<br />

application of a suitable starting TEA concentration or by catalyst prepolymerization under<br />

the mild conditions. Further lowering of the cocatalyst concentration reduces the initial<br />

activity to 15%. However, such TEA lowering also causes more significant decrease in the<br />

catalyst productivity.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 161


Obtained polymer samples were utilized for the determination of molecular weight<br />

distribution by GPC (gel permeation chromatography) analyses. Then the number of active<br />

sites was evaluated from the number-average molecular mass values by a method based on<br />

the number of macromolecules [3-5]. The active sites are determined from the dependence of<br />

the number of macromolecules versus polymer yield (Figure 3), where the intercept of the<br />

linear extrapolation to zero corresponds to the number of propagative centers formed at the<br />

beginning of polymerization.<br />

N [mol/mol-Ti]<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

y = 0.0105x + 0.0259<br />

R 2 = 0.9977<br />

y = 0.0107x + 0.012<br />

R 2 = 0.9955<br />

y = 0.0102x + 0.0045<br />

R 2 = 0.9965<br />

[TEA] = 0.0092 mmol/ml<br />

[TEA] = 0.0044 mmol/ml<br />

[TEA] = 0.0007 mmol/ml<br />

0 5 10 15 20<br />

Yield [g-PP/mmol-Ti]<br />

Figure 3: Dependence of the number of macromolecules N versus polymer yield extrapolated<br />

to zero.<br />

It was found that the number of active sites decreases linearly in dependence on the<br />

starting TEA concentration. From the determined values of initial catalyst activity A(0) and<br />

number of active sites [C*] the propagation rate constant kp can be calculated for each TEA<br />

concentration. The equation for the kp evaluation follows from the expression [4]:<br />

( 0)<br />

= k ⋅[<br />

M]<br />

[ C*<br />

]<br />

A p ⋅<br />

where [M] is the monomer concentration.<br />

Table 1: Calculated values of propagation rate constant kp for each TEA concentration.<br />

[TEA]<br />

A(0)<br />

[C*]<br />

kp<br />

[mmol/ml] [mol-C3/(mol-Ti*s)] [mol-%]<br />

[l/(mol*s)]<br />

0.0092 47.8 2.6 3000<br />

0.0044 22.7 1.2 3100<br />

0.0007 7.2 0.5 2700<br />

The Table 1 shows that contrary to the number of active sites the kp value remains almost<br />

unchanged under the different cocatalyst concentrations. From the above-presented results are<br />

obvious that the TEA effect on the catalyst activity is more affected by the change of the<br />

number of active sites than by propagation rate constant. This finding is in a good agreement<br />

with results obtained by other researchers using different procedures [6].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 162


The slope of linear equation in Figure 3 depends on the intensity of transfer reactions<br />

during polymerization. The higher extent of the transfer reactions causes the increase of the<br />

slope value, at negligible level of the transfer reactions the linear dependency (N vs. yield)<br />

would be parallel with x-axis. The results in Figure 3 show that the TEA concentration did not<br />

affect the slope of the fitted lines. This observation suggests that TEA does not act as an<br />

active transfer agent during the polymerization under the mild conditions (atm. pressure,<br />

30°C). So, it could be assumed that the polymer chain transfer reaction proceeds mainly with<br />

monomer or solvent.<br />

LITERATURE<br />

[1] Dusseault J. J. A., Hsu Ch. C., J. Macromol. Sci., Rev. Macromol. Chem. Phys. C33, 103<br />

(1993)<br />

[2] Albizzati E., Giannini U., Collina G., Noristi L., Resconi L., Polypropylene Handbook<br />

Part I., ed. Moore E. P., p. 11, Hanser Publishers, Munich Vienna New York 1996<br />

[3] Skoumal M., Cejpek I., Cheng C. P., Macromol. Rapid Commun. 26, 357 (2005)<br />

[4] Kashiwa N., Yoshita<strong>ke</strong> J., Makromol. Chem., Rapid Commun. 3, 211 (1982)<br />

[5] Chu K.-J., Eur. Polym. J. 34, 577 (1998)<br />

[6] Liu B., Matsuoka H., Terano M., Macromol. Rapid Commun. 22, 1 (2001)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 163


PHYSICO-CHEMICAL PROPERTIES OF PLASMA-POLYMERIZED<br />

TETRAVINYLSILANE<br />

Mgr. Jan Studýnka<br />

Supervisor: doc.RNDr. Vladimír Čech, Ph.D.<br />

<strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>, Ústav chemie materiálů, Purkyňova<br />

118, 612 00 Brno, email: xcstudynka@fch.vutbr.cz<br />

INTRODUCTION<br />

Plasma-Enhanced Chemical Vapor Deposition (PE CVD) is a suitable technique for<br />

preparation of thin films on a basis of organosilicones [1,2]. The technique enables<br />

reproducible deposition of plasma polymer films with desired physico-chemical properties [3]<br />

by changing the deposition conditions (power, monomer flow rate, pressure).<br />

Tetravinylsilane (TVS) was used as a monomer for deposition of pp-TVS films for the<br />

first time.The helical coupling system [4] was applied to deposit single films using an RF<br />

glow discharge operated in pulsed mode. Various spectroscopic methods were used to<br />

evaluate atomic composition and content of the chemical bonds. Ellipometric measurements<br />

were employed to determine thicknesses of the films and optical constants of the layers.<br />

Selected mechanical properties of single films were determined from nanoindentation<br />

measurements.<br />

EXPERIMENTAL DETAILS<br />

Tetravinylsilane, Si–(CH=CH2)4<br />

(TVS), was used as the monomer. The<br />

silicon wafer was pretreated by O2<br />

plasma (5 sccm, 4 Pa, 25 W) for 10 min<br />

in order to improve the film adhesion.<br />

Pulsed plasma was operated at<br />

conditions given in Table 1.<br />

The elemental composition of thin<br />

films was studied by conventional and<br />

Table 1. Deposition conditions tested for preparation of<br />

pp-TVS films using a stable plasma.<br />

Frequency 13.56 MHz<br />

ton, toff<br />

1 ms, 1 – 999 ms<br />

Effective power 0.05 – 10 W<br />

Effective power density 8 ×10 -4 – 1 ×10 -1 W cm -3<br />

Basic pressure 2 × 10 -3 Pa<br />

Process gas pressure 0.1 – 4.4 Pa<br />

Monomer vapor flow rate 0.45 sccm<br />

resonant Rutherford Backscattering Spectrometry (RBS) and Elastic Recoil Detection<br />

Analysis (ERDA) methods. Chemical structure of plasma polymer was investigated using a<br />

NICOLET IMPACT 400 Fourier transform infrared (FTIR) spectrophotometer. Measuring<br />

range was from 400 to 4000 cm -1 . We employed a Nano Hardness Tester (NHT) by CMS<br />

Instruments in order to carry out nanoindentation tests. The Young’s modulus and hardness of<br />

films were determined from unload-displacement curves measured at 12% of the film<br />

thickness.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 164


RESULTS AND DISCUSSION<br />

A) Ellipsometry<br />

Ellipsometric measurements were performed in order to determine the film thickness and<br />

optical constants, i.e. refractive index and extinction coefficient, for pp-TVS films.<br />

Dispersions of refractive index and extinction coefficient for pp-TVS films deposited at<br />

different effective power are given in Fig. 1. The results correspond to pp-TVS films with a<br />

thickness about 400 nm deposited at the same deposition conditions but different power. The<br />

value of refractive index at the wavelength of 633 nm increased with power from 1.63<br />

(0.05 W) to 1.75 (10 W). There is a growth of the refractive index and extinction coefficient<br />

in ultraviolet region. A<br />

different shape of<br />

dispersion in ultraviolet<br />

region for the refractive<br />

index corresponding to a<br />

film deposited at higher<br />

power (10 W) may be<br />

caused by higher<br />

absorption in UV region.<br />

The extinction coefficient<br />

rose sharply with the<br />

power from 0.09<br />

(0.05 W) to 0.37 (10 W)<br />

at the wavelength of 240<br />

nm.<br />

300 400 500 <strong>60</strong>0 700 800<br />

B) Elemental composition and chemical structure of films<br />

Atomic concentration [at%]<br />

Refractive index<br />

1.95<br />

1.90<br />

1.85<br />

1.80<br />

1.75<br />

1.70<br />

1.65<br />

1.<strong>60</strong><br />

0.40 Film thickness: 0.4 μm<br />

0.35<br />

0.05 W<br />

0.5W<br />

0.30<br />

5 W<br />

0.25<br />

10 W<br />

300 400 500 <strong>60</strong>0 700 800<br />

Wavelenght<br />

Wavelenght<br />

Figure 1. Dispersions of refractive index and extinction coefficient<br />

for pp-TVS films deposited at different power.<br />

The pp-TVS films of a film thickness about 1 µm were used to characterize chemical<br />

70<br />

<strong>60</strong><br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

C<br />

O<br />

Si<br />

H<br />

C/Si<br />

O/Si<br />

0.1 1 10<br />

Effective power [W]<br />

Figure 2. Elemental composition of pp-TVS films deposited<br />

at different power.<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Extinction coefficient<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

properties of the plasma polymer.<br />

Elemental composition of films was<br />

determined from RBS and ERDA<br />

spectra. The RBS spectra were<br />

evaluated by computer code GISA 3<br />

[5] and the ERDA ones by<br />

SIMNRA code [6] both using crosssection<br />

values from SigmaBase. An<br />

estimated accuracy of evaluated<br />

concentration was up to 5 at%. A<br />

dependence of atomic<br />

concentrations on the effective<br />

power is given in Fig. 2. The<br />

concentration of hydrogen atoms<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 165


was about 56 at% and did not vary with the effective power. The same trend or a slight<br />

decrease was observed for the concentration of silicon atoms in plasma polymer deposited at<br />

different power. A mean concentration of silicon atoms was about 5 at%. However, the<br />

oxygen concentration decreased rapidly at the expense of carbon atoms with increasing<br />

power. The concentration of oxygen atoms descended from 13 at% (0.05 W) to 1 at% (10 W),<br />

while carbon concentration rose from 27 at% (0.05 W) to 42 at% (10 W). The C/Si ratio<br />

indicated great changes in organic/inorganic character of plasma polymer with enhanced<br />

power. The film deposited at a power of 10 W was hydrogenated amorphous carbon<br />

containing a small amount of silicon-carbide phase.<br />

Table 2. Assignment of IR absorption bands.<br />

Absorbance [a.u.]<br />

Adsorption<br />

band<br />

Wavenumber<br />

[cm -1 ]<br />

Assignment<br />

A 3650 – 3200 O–H stretching<br />

B 3000 – 2800 CH2, CH3 stretching<br />

C 2122 Si–H stretching<br />

D 1714 C=O stretching<br />

E 1591 C=C stretching in vinyl<br />

F 1461 CH2 scissoring<br />

G 1412 CH2 deformation in vinyl<br />

H 1255 CH2 waging in Si–CH2–R<br />

I 1100 – 1000 Si–O–C stretching<br />

J 1015 =CH wagging in vinyl<br />

K 959 =CH2 wagging in vinyl<br />

L 845 Si–H bending<br />

M 732 Si–C stretching<br />

A<br />

B<br />

0.1 W<br />

0.5 W<br />

2.5 W<br />

10 W<br />

C<br />

D<br />

G<br />

E<br />

F<br />

J<br />

L<br />

M<br />

I K<br />

3500 3000 2500 2000 1500 1000 500<br />

Wavenumber [cm -1 ]<br />

H<br />

TVS molecule does not contain<br />

any oxygen and thus, the oxygen<br />

atoms incorporated in plasma<br />

polymer could have their origin in<br />

pretreatment procedure using O2<br />

plasma. Most li<strong>ke</strong>ly, the residual<br />

oxygen was desorbed from the<br />

wall of plasma chamber during<br />

the deposition process and was<br />

incorporated in plasma polymer.<br />

We estimated the flow rate of<br />

desorbed oxygen at < 0.05 sccm<br />

from the pressure increase in<br />

separate deposition chamber. The<br />

results on elemental composition<br />

revealed that the residual oxygen<br />

was effectively built in plasma<br />

polymer only if a lower power (<<br />

5 W) was used. The lower power<br />

the higher oxygen concentration<br />

in pp-TVS film.<br />

Typical infrared spectra of pp-<br />

TVS films deposited at different<br />

power are given in Fig. 3.<br />

The assignment of IR<br />

absorption bands using Ref. 7 and<br />

8 was summarized in Table 2. One<br />

of the dominated peaks, the<br />

absorption band B, was assigned<br />

to CH2, CH3 stretching vibrations.<br />

However, both the species cannot<br />

be distinguished with respect to<br />

symmetric character of the band<br />

Figure 3. Infrared spectra of pp-TVS films prepared at<br />

Sborník different soutěže effective Studentské power. tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 166


Young's modulus [GPa]<br />

B. The intensity and area of absorption bands A, D, and I, corresponding to species such as<br />

OH, C=O, and Si–O–C, respectively, descended with increased power and the trend was in<br />

good agreement with a descent of oxygen concentration in plasma polymer revealed by RBS<br />

measurements. A decrease of bands C, H, L, and M assigned to species containing silicon<br />

atoms was observed as well and the trend corresponded to an increase of C/Si ratio with<br />

enhanced power. An occurrence of vinyl groups in plasma polymer was evident from<br />

IR spectra corresponding to pp-TVS films deposited at lower power (≤ 2.5 W). Quantity of<br />

vinyl groups decreased with enhanced power as a descent of bands E, J, and especially G, K<br />

indicated.<br />

C) Nanoindentation<br />

Load-displacement curves were measured at a depth of 50 nm for all the films with the<br />

film thickness about 400 nm. Five indents were produced on each sample with spacing<br />

between the indentations of 5 µm. Nanoindentation measurements were evaluated by Oliver<br />

& Pharr method [9] in order to determine the Young’s modulus and hardness of pp-TVS<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Film thickness: 0.4 μm<br />

0.1 1 10<br />

Effective power [W]<br />

films. The Poisson’s ratio used for<br />

plasma polymer was 0.3. The mean<br />

modulus and hardness was<br />

calculated from five values for each<br />

film. The results on mechanical<br />

properties of pp-TVS films are<br />

summarized as power dependence in<br />

Fig. 4. The modulus increased<br />

almost 3 times and the hardness<br />

increased almost 4 times with<br />

enhanced power. The increase of<br />

modulus could be related to a higher<br />

crosslinking and/or an alteration of<br />

microstructure with increasing<br />

organic character of plasma polymer.<br />

CONCLUSIONS<br />

Plasma polymer films of tetravinylsilane were deposited on silicon wafers by plasmaenhanced<br />

chemical vapor deposition. Pp-TVS films deposited at a flow rate of 0.45 sccm<br />

(process pressure 1.5 Pa), and an effective power of 0.05 – 10 W were analyzed by<br />

spectroscopic techniques extensively to elemental composition and chemical structure (RBS,<br />

ERDA, FTIR). A phase-modulated spectroscopic ellipsometer was employed to determine the<br />

film thickness and optical constants (refractive index, extinction coefficient) of deposited<br />

films. The refractive index increased by 7.4% at the wavelength of 633 nm when the power<br />

was enhanced from 0.05 to 10 W. The extinction coefficient in ultraviolet region (240 nm)<br />

rose sharply by 4 times with enhanced power (0.05 – 10 W). The results revealed that an<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Hardness [GPa]<br />

Figure 4. Power dependence of mechanical properties for pp-<br />

TVS films.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 167


organic/inorganic character (C/Si ratio) of films and a content of vinyl groups could be<br />

controlled by deposition conditions precisely. Nanoindentation measurements enabled us to<br />

evaluate the elastic modulus and hardness of films prepared at different power. The elastic<br />

modulus and hardness could be varied from 11 GPa (0.05 W) to 30 GPa (10 W) and from 1.4<br />

to 5.9 GPa for an increased power, respectively.<br />

Acknowledgements: This work was supported in part by the Czech Ministry of Education<br />

(contracts COST 527.110 and P12.001) and the Czech Science Foundation (contract<br />

104/03/0236).<br />

References<br />

1. A.M. Wrobel and M.R. Wertheimer, in Plasma Deposition, Treatment, and Etching of<br />

Polymers, (R. d’Agostino, Editor), Academic Press, New York (1990) p.163.<br />

2. Y. Segui, in Proceedings of NATO ASI Plasma Processing of Polymers (R. d’Agostino, P.<br />

Favia, F. Fracassi, Eds.). Acquafredda di Maratea, Kluwer Academic Publ. (1997) p.305.<br />

3. V. Cech, J. Vanek, J. Zemek, L. Zajickova, and R. Prikryl, Variety of functional<br />

interlayers utilizable for polymer composites, Proc. 11 th Int. Conf. on<br />

Composites/NanoEngineering, August 8-14, 2004, Marriott Hilton-Head Beach & Golf<br />

Resort, South Carolina, USA, pp. 2.<br />

4. V. Cech, R. Prikryl, R. Balkova, J. Vanek, and A.Grycova, J. Adhesion Sci. Technol. 17<br />

(2003) 1299.<br />

5. J. Saarilahti and E. Rauhala: Interactive personal-computer data analysis of ion<br />

backscattering spectra, Nucl. Instrum. and Methods in Physics Research B64, 734 (1992).<br />

6. M. Mayer, SIMNRA User`s Guide, Forschungscentrum Julich, Inst. fur Plasmaphysik,<br />

1998.<br />

7. D. Lin-Vein, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and<br />

Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, 1991.<br />

8. V.P. Tolstoy, I.V. Chernyshova, V.A. Skryshevsky, Handbook of Infrared Spectroscopy<br />

of Ultrathin Films, John Wiley & Sons, New Jersey, 2003.<br />

9. W. C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 168


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 169


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 170


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 171


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 172


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 173


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 174


SPECIATION OF FIVE SELENIUM COMPOUNDS BY<br />

HPLC-HEATING-UV-HG-AFS<br />

Ing. Eva Vitoulová<br />

Supervisor: doc. Ing. Miroslav Fišera, CSc.<br />

Brno University of Technology, Fakulty of Chemistry, Department of Food Chemistry and<br />

Biotechnology, Purkyňova 118, 612 00 Brno, e-mail: xcvitoulova@fch.vutbr.cz<br />

INTRODUCTION<br />

Selenium is an essential nutrient at low concentrations, but is toxic for humans and animals at<br />

high doses. It is a component of the enzyme glutathione peroxidase, which is one of the antioxidant<br />

defence systems of the body, catalyses intermediate metabolic reactions, and inhibits the toxicity of<br />

some heavy metals. 1<br />

The effect of the element on human health is highly dependent on the chemical species under<br />

which it is consumed. Selenium exists in different chemical forms, as inorganic (selenite, selenate)<br />

and as organic species (selenoaminoacids, selenoproteins), in environmental and biological<br />

matrices. The nutritional bioavailability and cancer chemoprotective activity of selenium depend on<br />

the concentration and the chemical form in which it is present. 2, 3<br />

The absorption of selenium is greater in the case of organic species and the possibility that the<br />

selenium supplementation of food might protect against the development of cancer in humans has<br />

generated great interest in the speciation of the various chemical forms in foodstuffs and in dietary<br />

supplements. 1 Each species adsorbed differently by the human body and has a different tendency to<br />

bioaccumulate in organisms. 4<br />

The availability of analytical techniques for the separation and determination of the compounds<br />

of an element at trace level has gained considerable importance. In this context, hyphenated<br />

techniques are those most frequently used. For selenium, speciation is necessary because of the<br />

differing mobilities, toxicities and bioavailabilities of its compounds. 5<br />

Analytical systems developed for the speciation of selenium species employ a powerful highperformance<br />

liquid chromatography (HPLC) coupled to a specific atomic detector with a high<br />

efficiency sample introduction system. 6 Spectrometry methods are those most widely used as a<br />

detection system. Atomic fluorescence spectrometry (AFS) and inductively coupled plasma - mass<br />

spectrometry (ICP-MS) have been incorporated with very good results. Atomic spectrometry<br />

methods are the most widely used because of their high selectivity and sensitivity. 5<br />

EXPERIMENTAL<br />

Instrumentation<br />

The HPLC system consisted of an HPLC pump Gynkotech P580 (Gynkotech, Softron, Germany)<br />

equipped with a six-port sample injection valve (C&D, Ecom, Prague, Czech Republic) and a 20 μl<br />

loop for sample introduction. The separation of the selenium species occurred in column Hamilton<br />

PRP X-100 (250 x 4.1 mm, 10 μm) strong anion exchange column.<br />

Hydride generation atomic fluorescence spectrometry (AFS) was performed using PSA<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 175


Millenium Excalibur continuous system (PS Analytical, Orpington, Kent, UK) with a PSA 10.570<br />

UV crac<strong>ke</strong>r and heating system (Chromspec, Czech Republic) (Fig. 1.). Measurements were carried<br />

out using a boosted discharge hollow cathode lamp for selenium (Photron, Pty. Ltd., Australia) at<br />

196,0 nm line, with a 20,0 mA primary current and 25,0 mA boost current.<br />

A Heidolph Instruments – Promax 1020 and a Heidolph Instruments – Incubator 1000<br />

(Germany) were used for extracting the Se-compounds from the samples. The samples were<br />

centrifuged in Boeco U 32 – R (Hettich zentrifugen, Germany).<br />

The supernatants were filtred through a 0,45 μm PTFE membrane Minisart SRP 15 (Sartorius,<br />

UK).<br />

Fig. 1 The scheme of interconection between HPLC-Heating-UV-HG-AFS<br />

Reagents and materials<br />

All the solutions were prepared with deionised water (18,2 MΩ.cm) purified through a Purelab<br />

Classic purification system (Elga LabWater, UK).<br />

Stock solutions of 100 μg.ml -1 were prepared by dissolving sodium selenite (Sigma-Aldrich,<br />

Germany), sodium selenate (Sigma-Aldrich, Germany), Seleno-DL-ethionine (Sigma-Aldrich,<br />

Germany), L-selenomethionine (Merck, KGaA, Germany) and Se-(methyl)-selenocystein (Sigma-<br />

Aldrich, Germany). Diluted solutions of concentration 500 ng.ml -1 for analysis of standard mixtures<br />

were prepared immediately before using.<br />

Protease from Bacillus licheniformis (13,1 units/mg) (Fluka, Denmark), Protease XIV from<br />

Streptomyces griseus (4,4 units/mg) (Sigma-Aldrich, Germany) and Subtilisin A, type VIII, from<br />

Bacillus licheniformis (8 units/mg) (Sigma-Aldrich, Germany) were used for enzymatic hydrolysis<br />

of the samples.<br />

Sodium tetrahydroborate solution (1%) was prepared by dissolving the solid product (Sigma-<br />

Aldrich, Germany) in 0,1M NaOH (Riedel de Haën, Germany). This reductive solution was<br />

prepared daily.<br />

The mobile phase was a 40 mmol.l -1 ammonium dihydrogenphosphate solution of pH 6.2<br />

prepared daily from the commercial product (Sigma-Aldrich, Germany) and pH was adjusted by<br />

adding dropwise 25 % ammonium hydroxide solution (Sigma-Aldrich, Germany).<br />

Hydrochloric acid 32% solution was prepared from 37% hydrochloric acid p.a. (Analytika,<br />

Prague, Czech Republic).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 176


Samples<br />

The samples were different nutritional selenium supplements, two of them were based on<br />

selenized yeast and one on the sodium selenite, all of which were commercially obtained. All the<br />

supplements were in tablets and labeled with the quantity of selenium in the each tablet.<br />

1. Sample was a nutritional suplement based on selenized yeast<br />

2. Sample was a nutritional suplement based on selenized yeast<br />

3. Sample was a nutritional suplement based on sodium selenite<br />

PROCEDURES<br />

Enzymatic hydrolysis<br />

Tablets of nutritional supplements were properly ground in a agate mortar. Approximately 0,5 g of<br />

the powdered sample and 20 mg of enzyme:<br />

1. Protease XIV from Streptomyces griseus (4,4 units/mg)<br />

2. Subtilisin A, type VIII, from Bacillus licheniformis (8 units/mg)<br />

3. Protease from Bacillus licheniformis (13,1 units/mg)<br />

4. Without enzyme<br />

were placed in a 25 ml polypropylene bottle. After addition of 5 ml of deionised water, the samples<br />

were sha<strong>ke</strong>n at 170 rpm for 24 hours using mechanical sha<strong>ke</strong>r at 37 °C.<br />

After extraction, the extracts were separated from the samples by centrifugation for 15 min at<br />

3000 rpm. The supernatants were filtered through 0,45 μm membrane to eliminate suspended<br />

solids. The clear filtrate was injected into the chromatograph.<br />

RESULTS AND DISCUSSION<br />

Optimisation of chromatographic separation of Se species<br />

For the separation of the five selenium species we used a polystyrene-divinylbenzene-based<br />

anion exchange column Hamilton PRP X-100.<br />

Firstly we studied the dependence of the retention time of the five species on the pH of the<br />

phosphate solution used as mobile phase. The flow of the mobile phase was 1 ml.min -1 . Inorganic<br />

species selenite and selenate required the use of an alkaline solution as mobile phase to obtain low<br />

retention times. Selenoaminoacids showed high retention times at alkaline pH, whereas at lower pH<br />

values retention times were shortened. We tried to change pH values between 5.5 to 7.5 and the best<br />

results were obtain by working at pH 6,2. The species were eluted in the following order: SeEt,<br />

SeCys, selenite, SeMet and selenate (Fig. 2.).<br />

Secondly we varied the concentration of the mobile phase. Several concentrations of the mobile<br />

phase were tested, ranging from the 20 mmol.l -1 to the 80 mmol.l -1 . The concentration 40 mmol.l -1<br />

was chosen as the best, because this concentration gave sufficient resolution.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 177


Thirdly we tried to change the composition of the mobile phase, by adding of the methanol to the<br />

mixture. This addition of methanol had no significant influence on the separation.<br />

Extraction of selenium species from nutritional supplements<br />

The common procedures used for the speciation of selenium in yeast, plants and vegetables have<br />

been hot water extraction, enzymatic hydrolysis, buffers, water-methanol and HCl extraction. 7 In<br />

this study, protease XIV, Subtilisin A and Protease from Bacillus licheniformis (13,1 units/mg) were<br />

used for enzymatic extraction to cleave peptide bonds in proteins. The examples of chromatograms<br />

obtained for the samples are given in Fig. 3 -5<br />

Fig. 2 The HPLC-Heating-UV-HG-AFS chromatogram of mixed selenium standard solution: (A)<br />

SelenoEthionine, (B) selenocysteine, (C) selenite, (D) selenomethionine, (E) selenate<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 178


Fig. 3 The HPLC-Heating-UV-HG-AFS chromatogram of selenium species after enzymatic<br />

extraction (Protease XIV) - Sample 1 : (A) selenocysteine, (B) selenite, (C) selenomethionine, (D)<br />

selenate<br />

Fig. 4 The HPLC-Heating-UV-HG-AFS chromatogram of selenium species after enzymatic<br />

extraction (Protease XIV) - Sample 2 : selenate<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 179


Fig. 5 The HPLC-Heating-UV-HG-AFS chromatogram of selenium species after non enzymatic<br />

extraction - Sample 3 : selenite.<br />

CONCLUSION<br />

The speciation of selenite, selenate, selenoethionine, selenocysteine and selenomethionine was<br />

satisfactory when using the combination HPLC-Heating-UV-HG-AFS. This method is relatively<br />

free of interferences, involving low cost and maintenance. The procedure was applied to the<br />

speciation of Se-species in nutritional supplements. In the sample number 1 (suplement contained<br />

selenised yeast) selenoethionine, selenocysteine, selenite, selenomethionine and selenate were<br />

identified. In the sample number 2 (suplement contained selenised yeast) only selenate was<br />

identified. In the sample number 3 (suplement contained sodium selenite) selenite was identified.<br />

Three different enzymes for enzymatic extraction were tested. The best results were obtained with<br />

Protease XIV from Streptomyces griseus (4,4 units/mg). Forthcoming work will be directed to the<br />

evaluation of selenium recoveries.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by Ministry of Education (MŠMT) of the Czech Republic (Project<br />

G4/1259/2005 FRVŠ).<br />

REFERENCES<br />

[1] Vińas P., López-García I., Merino-Merońo B., Campillo N., Hernández-Córdoba M.: Anal.<br />

Chim. Acta 535, 49 (2005).<br />

[2] Dumont E., De Cremer K., Van Hulle M., Chéry C., Vanhaec<strong>ke</strong> F., Cornelis R.: Journal of<br />

Chrom. A 1071, 191, (2005).<br />

[3] Gómez-Ariza J.L., Caro de la Torre M., Giraldez I., Sánchez-Rodaz D., Velasco A.,<br />

Morales E.: App. Organometallic Chem. 16, 265, (2002).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 180


[4] Tsopelas F. N., Ochsenkühn-Petropoulou M. T., Mergias I. G., Tsakanika L. V.: Analytica<br />

Chimica Acta 539, 327 (2005)<br />

[5] Vilanó M., Padró A., Rubio R., Rauret G.: Journal of Chrom. A 819, 211, (1998).<br />

[6] Ipolyi I., Stefánka Z., Forot P.: Anal. Chim. Acta 435, 367, (2001).<br />

[7] Kahakachchi Ch., Boakye H. T., Uden P.C., Tyson J. F.: Journal of Chrom. A 1054, 303,<br />

(2004)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 181


EPITAXIAL GROWTH OF Ni AND Co ON (111) METALLIC<br />

SUBSTRATES<br />

Ing. Martin Zelený, 2 nd year<br />

Supervisor: Prof. RNDr. Mojmír Šob, DrSc.<br />

Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno,<br />

Czech Republic, zeleny@fch.vutbr.cz<br />

INTRODUCTION<br />

Transition-metal thin films and multilayers have recently attracted a lot of interest because of<br />

their technological importance in data storage and sensor applications as well as in fundamental<br />

research of magnetism.<br />

Bulk Co exists in two ferromagnetic thermodynamically stable phases at ambient pressure:<br />

hcp α-Co below 388 °C and fcc β-Co above 450 °C. In case of Ni, only the fcc modification is<br />

known. It turns out that Ni and Co thin films exhibit similar structures as in the bulk. For<br />

example, only distorted fcc films of Ni have been observed [1, 2]. On the other hand, cobalt thin<br />

films with the hcp structure [3] as well as with a trigonally distorted fcc structure [4] were found<br />

on fcc (111) substrates. In some cases, both structures were reported [5].<br />

The goal of this contribution is to advance our fundamental understanding of epitaxial growth<br />

of Ni and Co thin films on various fcc(111) substrates. For this purpose, we employ ab initio<br />

electronic structure calculations based on fundamental quantum mechanics. Pseudomorphic<br />

overlayers adopt the lattice dimensions of the fcc substrate in the (111) plane and relax the<br />

interlayer distance. There is a stress in the (111) plane <strong>ke</strong>eping the structure of the film and of the<br />

substrate coherent, and the stress perpendicular to this plane vanishes due to relaxation (Fig. 1).<br />

On the (111) surface, there are two possible stackings of the layers in the film: ABABAB...,<br />

giving the hcp structure, and ABCABC..., providing the trigonally distorted fcc structure. The<br />

nearest-neighbor distance DNN in the plane of the substrate is equal to asub 2 /2, where asub is the<br />

lattice constant of the substrate. If there is a large difference between the lattice dimensions of the<br />

substrate and material of the film (lattice mismatch), the stress in the (111) plane is too large. As<br />

a consequence, the film becomes incoherent and has a structure similar to the ground state of the<br />

bulk of the film material.<br />

Our investigations allow us to understand, from the first principles, the structure of Ni and Co<br />

thin films on various fcc(111) substrates. In particular, we explain why some of those films<br />

exhibit the hcp structure and some of them the trigonally distorted fcc structure.<br />

METHOD<br />

To simulate the epitaxial growth, we first calculate the total energy of the film material (i. e.<br />

Ni or Co) in equilibrium hcp and fcc structures. Here a transformation of fcc cell to hexagonal<br />

coordinates is useful (Fig. 1). Then, in the second step, we apply some elongation of the bulk<br />

crystal along both crystallographic axes by a fixed amount ε that provides the same atomic<br />

spacing as in the (111) plane of substrate, DNN. For each ε, we minimize the total energy, relaxing<br />

the stress in the direction perpendicular to the loading axes. This is a very simple model, but it<br />

turns out that it is quite realistic.<br />

For the total-energy calculations, we employ the full-potential linearized augmented plane<br />

waves method incorporated in the WIEN2k code [6]. The calculations are performed using the<br />

generalized gradient approximation (GGA). The muffin-tin radius of atoms of 2.0 a.u. is <strong>ke</strong>pt<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 182


Figure 1. Epitaxial growth of thin films on the fcc(111) substrate. The fcc cell is characterized<br />

also by hexagonal coordinates (ahex, chex).<br />

constant for all calculations, the number of k-points in the whole Brillouin zone is equal to 8000,<br />

and the product of the muffin-tin radius and the maximum reciprocal space vector, RMTkmax, is<br />

equal to 9. For Ni, the maximum value of l for the waves inside the atomic spheres, lmax, and the<br />

size of the largest reciprocal vector G in the charge Fourier expansion, Gmax, is set to 9 and 16,<br />

respectively. For cobalt, lmax is set to 11 and Gmax is set to 16.<br />

RESULTS AND DISCUSSION<br />

The total energy of bulk Ni as a function of DNN is shown in Fig. 2(a). Triangles correspond<br />

to trigonally distorted fcc structures and circles to hcp structures. There are several interesting<br />

points on these dependences. Each curve has the global minimum, which corresponds to the<br />

equilibrium state. The equilibrium state with the lowest energy is the fcc ground state of Ni. The<br />

structural energy difference between the fcc and hcp structures at this point is 2.0 mRy/atom.<br />

Second interesting point on each curve is the inflexion point. The inflexion point with the lowest<br />

energy corresponds to the maximum strain in the (111) plane and to maximum DNN (5.31 a.u.),<br />

where the Ni film may be expected to be coherent. Next interesting point is a crossing point<br />

between the curves at 5.25 a.u. It represents the position where a phase transition between<br />

trigonally distorted fcc structures and hcp structures may ta<strong>ke</strong> place.<br />

It follows from the analysis of Fig. 2(a) that the fcc layer stacking (ABCABC...) is stable in<br />

the neighborhood of the ground state up to DNN equal to 5.25 a.u. This is in a good agreement<br />

with the experimental data for Ni film on Cu(111) [5] and on Pt(111) [7] substrates. If the<br />

substrates have the DNN larger than 5.25 a.u., the film should exhibit the hcp layer stacking<br />

(ABAB…). However, a maximum value of DNN, where the film is coherent, is equal to 5.31 a.u.<br />

(the inflexion point). The value of DNN for Pt of 5.24 a.u. is nearly equal to 5.25 a.u., so we can<br />

expect hcp islands in Ni films on Pt(111). Because Au and Ag substrates have larger DNN than the<br />

value corresponding to the inflexion point, the Ni thin films on these substrates have not the hcp<br />

structure, but are incoherent and have a structure similar to fcc Ni in the ground state [8].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 183


Figure 2. Total energy of Ni (a) and Co (b) as a function of nearest-neighbor distance DNN in the<br />

fcc(111) substrate. Full symbols denote our predictions of structures and coherence of Ni and Co<br />

thin films on different fcc(111) substrates. The inflexion point is shown only for the stable<br />

structures.<br />

Cobalt films behave differently (Fig. 2(b)). Total energies of hcp structures are lower than<br />

energies of trigonally distorted fcc structures, which means that hcp phases are energetically<br />

more favorable along the whole deformation curve. The structural energy difference between the<br />

fcc and hcp Co at the energy minimum is only 1.1 mRy/atom, which is half the value for Ni. Hcp<br />

structure is experimentally found in Co films on Cu(111) substrate [9], but islands with trigonally<br />

distorted fcc structures have also been reported [5]. This is due to a small structural energy<br />

difference between the hcp and fcc phases of Co, so that a transition between these phases is very<br />

easy. To the best of our knowledge, the only coherent films of cobalt were found on Cu(111)<br />

substrate. Our calculations predict also coherent Co layers on Pt(111) and Pd(111) substrates,<br />

because the DNN for these substrates is smaller than the value corresponding to the inflexion point<br />

(5.30 a.u.) – see Fig. 2(b). However, experimentally prepared films on these substrates are<br />

incoherent. Co thin films on Pd(111) substrate have the hcp structure [10], and the structure of Co<br />

thin films on Pt(111) strongly depends on the way of preparation [4, 11]. The difference between<br />

our prediction and experiment is probably due to the diffusion of Pt into the Co film and<br />

formation of alloys based on CoPt [12]. For Co on Au(111) substrate we predict incoherent film<br />

with the hcp structure, which is in agreement with available experimental data [3].<br />

The interlayer distance d in the film as a function of the nearest-neighbor distance DNN in the<br />

substrate is shown in Fig. 3 for Ni (a) and Co (b). Comparison of numerical values is given in<br />

Table 1. Our predictions are in a good agreement with the experimental data.<br />

CONCLUSIONS<br />

We have calculated the total energies of Ni and Co as a function of nearest-neighbor distance<br />

DNN in the fcc(111) substrate for two different structures – trigonally distorted fcc structure and<br />

hcp structure, and applied these results to understand the atomic configuration of Ni and Co thin<br />

films. We have found an inflexion point on the dependence of total energy on DNN. It corresponds<br />

to the maximum value of DNN, where the film <strong>ke</strong>eps to be coherent with the substrates.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 184


Figure 3. Interlayer distance d of Ni (a) and Co (b) as a function of nearest-neighbor distance<br />

DNN in the fcc(111) substrate. Full symbols represent the values from experimentally prepared<br />

thin films. The inflexion point is shown only for the stable structures.<br />

Our predictions for Ni films are in a good agreement with available experimental data. For<br />

Co films the agreement is not so good, because the structural energy difference between the hcp<br />

and fcc structures is too small and the structure of films strongly depends on the way of<br />

preparation. Some deviations may be also due to the simplicity of our model of epitaxial growth.<br />

Our investigations show that the results of ab initio calculations may be used to understand<br />

and predict the structure of nic<strong>ke</strong>l and cobalt overlayers on various fcc(111) substrates.<br />

ACKNOWLEDGEMENTS<br />

This research was supported by the Grant Agency of the Czech Republic (Projects No.<br />

202/03/1351 and 106/05/H008), by the Grant Agency of the Academy of Sciences of the Czech<br />

Republic (Projects No. IAA1041302 and S2041105), and by the Research Projects<br />

AV0Z20410507 and MSM0021622410. The use of the computer facilities at the MetaCenter of<br />

the Masaryk University, Brno, is acknowledged.<br />

Table 1. Comparison between theoretical results and experimental data. Predictions of interlayer<br />

distance d are shown only for coherent films.<br />

film/sub.<br />

Ni/Cu(111)<br />

asub<br />

[a.u.]<br />

DNN<br />

[a.u.] d [a.u.]<br />

theory<br />

struc. film<br />

experiment<br />

d [a.u.] struct. film<br />

a<br />

6.82 4.82 3.78 fcc coh. 3.82 fcc coh.<br />

Ni/Pt(111) b<br />

7.40 5.24 3.57 fcc/hcp coh. 3.61 fcc coh.<br />

Ni/Au(111) c<br />

7.69 5.44 - fcc incoh. 3.78 fcc incoh.<br />

Ni/Ag(111) c<br />

7.71 5.45 - fcc incoh. 3.78 fcc incoh.<br />

Co/Cu(111) d<br />

6.82 4.82 3.76 hcp coh. 3.82 hcp coh.<br />

Co/Pd(111) e<br />

7.34 5.19 3.57 hcp coh. 3.72 hcp incoh.<br />

Co/Pt(111) f<br />

7.40 5.24 3.52 hcp coh. 3.68 hcp/fcc incoh.<br />

Co/Au(111) g<br />

7.69 5.44 - hcp incoh. 3.84 hcp incoh.<br />

a b c d e f g<br />

Ref. [5], Ref. [7], Ref. [8], Ref. [9], Ref. [10], Ref. [4, 11], Ref. [3].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 185


REFERENCES<br />

1. D. W. Gidley, Phys. Rev. Lett. 62, 811, (1989).<br />

2. M. Sambi, E. Pin, G. Granozii, Surf. Sci. 340, 215 (1995).<br />

3. N. Marsot, R. Belkhou, H. Magnan, P. Le Fevre, C. Guillot, and D. Chandesris, Phys. Rev. B<br />

59, 3135 (1999).<br />

4. M. Galeotti, A. Atrei, U. Bardi, B. Cortigian, G. Rovida, and M. Torrini, Surf. Sci. 297, 202<br />

(1993).<br />

5. F. Huang, M. T. Kief, G. J. Man<strong>ke</strong>y, R. F. Willis, Phys. Rev. B 49, 3962 (1994).<br />

6. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz: WIEN2k, An<br />

Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties<br />

(Karlheinz Schwarz, Techn. Universität Wien, Austria), 2001.<br />

7. M. Sambi, G. Granozii, Surf. Sci. 400, 239 (1998).<br />

8. S. Morin, A. Lachenwitzer, F. A. Möller, O. M. Magnussen, and R. J. Behm, J. Electrochem.<br />

Soc. 146, 1013 (1999).<br />

9. P. Le Fevre, H. Magnam, O. Heckmann, V. Briois, and D. Chandesris, Phys. Rev. B 52,<br />

11 462 (1995).<br />

10. S. K. Kim, Y. M. Koo, V. A. Chernov, and H. Padmore, Phys. Rev. B. 55, 114 (1996).<br />

11. J. Thiele, R. Belkhou, H. Bulou, O. Heckmann, H. Magnam, P. Le Fevre, D. Chandesris,<br />

C. Guillot, Surf. Sci. 384, 120 (1997).<br />

12. S. Ferrer, J. Alvarez, E. Lundgren, X. Torrelles, P. Fajardo, and F. Boscherini, Phys. Rev. B<br />

56, 9848 (1997).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 186


ACETYLCHOLINESTERASE INHIBITOR FROM NOSTOC SLIZ. KOL.<br />

Ing. Petr Zelík<br />

Supervisor: Ing. Jiří Kopecký, CSc.<br />

Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of<br />

Technology, Purkyňova 118, 612 00 Brno, e-mail: zelik@fch.vutbr.cz<br />

INTRODUCTION<br />

Alzheimer´s disease is the most frequent dementia with progressive degeneration of central<br />

nervous system 1 . Selective decrease of nerve cells in the brain is associated with cognitive<br />

disorders and memory lost. There have been proposed several ways how to improve cognitive<br />

functions. Current symptomatic treatment use especially acetylcholinesterase (AChE)<br />

inhibitors, eg. donepezil, galanthamine and rivastigmine. Requirement for a new AChE<br />

inhibitors leads either to screening of natural sources, mainly higher plants, or modification of<br />

chemical structures of known AChE inhibitors via organic synthesis. Only a few works have<br />

been focused on screening of microorganisms (actinomycetes and fungi). Surprisingly, there<br />

isn´t any publication dealing with screening of autotrophic microorganisms – algae and<br />

cyanobacteria.<br />

About 250 species of algae and cyanobacteria have been tested for AChE inhibitory<br />

activity in attempt to find a new AChE inhibitors of nature origin. The most active strain,<br />

Nostoc sliz. kol., has been used for the next study. Fraction with AChE inhibitory activity was<br />

determined in the crude biomass extract of Nostoc sliz. kol. and subsequently isolated.<br />

Purified AChE inhibitor has been used in preliminary determination of the inhibition nature of<br />

AChE and for structure elucidation by IR, MS and NMR techniques.<br />

METHODS<br />

Assay of AChE activity<br />

Measuring of AChE activity was modified from the assay described by Ellman et. al. 2<br />

Method was optimized for microplate assay. Reaction mixutres containing 25 μl of 0,76 mM<br />

DNTB, 50 μl of 0,04 U/ml AChE, 20 μl of sample, and 125 μl of buffer were incubated for<br />

30 min at 30°C. After incubation, 30 μl of 6,22 mM ATCI (substrate) was added and the<br />

increase of absorbance was read at 412 nm every 18 s for twenty times. The results were<br />

corrected for spontaneous hydrolysis of the substrate. Enzyme activity were calculated as a<br />

percentege compared to an assay without any sample. Every experiment was done in<br />

triplicate.<br />

HPLC- MS analysis<br />

The active extracts were analysed by HPLC/ESI-MS/MS on Agilent 1100 MSD SL-Ion<br />

Trap mass spectrometer. The ZORBAX Eclipse XDB-C8 column (150x4,6 mm, 5 μm) was<br />

used for HPLC analyses. Elution was realized in gradient mode of methanol – water with<br />

addition of formic acid and UV detection was performed at 280 nm.<br />

Nostoc sliz. kol. – determination of active fraction (IN6)<br />

The crude methanolic extract was fractionated using HPLC and every fraction was tested<br />

for AChE inhibitory activity.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 187


Nostoc sliz. kol. – isolation of active fraction (IN6)<br />

The scheme of the isolation procedure is shown in Fig. 2. Freeze-dried biomass was<br />

desintegrated with sea sand and extracted with methanol. The crude extract was evaporated<br />

under reduced pressure to the dryness and dissolved in the mixture of acetone-hexane (3:7,<br />

V/V). This solution was chromatographed in the system of acetone-hexane (gradient mode;<br />

3:7→7:3, V/V) on silicagel. All fractions were analyzed by HPLC/MS. Middle fraction<br />

containing mainly AChE inhibitor was evaporated to the dryness at low pressure. Residue of<br />

evaporation was dissolved in the minimum volume of methanol. Final separation of the active<br />

compound was realised by preparative HPLC. Watrex Reprosil C8 column (250x10 mm,<br />

5 μm) and mobile phase of methanol-water in gradient mode were used. UV detection was<br />

performed at 280 nm. Peak belongs to active compound was collected manually.<br />

Determination of AChE inhibition nature by IN6<br />

Initial reaction velocities were measured at two fixed concentrations of ATCI (0,175 mM<br />

and 0,75 mM) and different IN6 concentrations (final range in reaction mixure was 0-30 μM).<br />

Data were graphically processed according to Dixon.<br />

RESULTS AND DISCUSSION<br />

Approximately 250 species of algae and cyanobacteria were screened in quest to find<br />

potential producers of new AChE inhibitors among autotrophic microorganisms. The<br />

dichloromethane extracts of cultural mediums, methanolic and methanolic-tetrahydrofuran<br />

biomass extracts were tested for AChE inhibitory activity. There was found out AChE<br />

inhibitory activity higher than 90 % in biomass extracts of Monodus subteratus, Nostoc sliz.<br />

kol. (SV-mol, ISB 93, tok Soj, 5/97, DE) and Nostoc ellipsosporum (2, GM, Štěbal). Extract<br />

from the biomass of Nostoc clipsespor proved 85 % AChE inhibitory activity. Geminella<br />

terricola and Monodopsis subterranea biomass extracts proved inhibitory activity of 50 –<br />

<strong>60</strong> %. The rest of biomass extracts and dichloromethane medium extracts showed AChE<br />

inhibitory activity either no or lower than 50 %.<br />

The crude extract of the most active strain Nostoc sliz. kol. (SV-mol, ISB 93, tok Soj, 5/97,<br />

DE) was analyzed by HPLC-MS and fraction proved anti-AChE activity was determined. The<br />

only fraction responsible for AChE inhibitory activity of the extract was the peak with<br />

retention time of 23,6 min (Fig. 1).<br />

Isolation of IN6 was developed (Fig. 2). At first, methanol extract of the freeze-dried<br />

biomass is prepared. Concentrate of IN6 is obtained in second isolation step, through the<br />

column chromatography of the crude extract in the system of acetone-hexane on silicagel.<br />

Thereafter is IN6 purified using preparative HPLC. Sufficient amount of IN6 (in 96% and<br />

higher purity) was isolated for structural analysis and determination of the inhibition nature in<br />

this way.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 188


mAU<br />

<strong>60</strong>0<br />

300<br />

0<br />

0 20 23,6<br />

min<br />

40<br />

Fig. 1: HPLC chromatogram of the crude methanolic extract from biomas of Nostoc sliz. kol.;<br />

I – fraction with AChE inhibitory activity<br />

Freeze-dried biomass of Nostoc sliz. kol.<br />

Crude methanolic extract<br />

Concentrate of IN6<br />

IN6 of > 96 purity<br />

Fig. 2: Scheme of IN6 isolation procedure.<br />

Isolated AChE inhibitor was analyzed by MS, IR and NMR but structure is still unknown.<br />

Nature of AChE inhibition by IN6 was also studied. Initial reaction velocities were<br />

measured at two fixed concentrations of substrate and different concentrations of IN6 (0-<br />

30μM). Data were graphically processed according to Dixon (Fig. 3). Two possible types of<br />

inhibition resulting from shapes of curves in Fig. 3 - either reaction of inhibitor with substrate<br />

or non-competitive inhibition with strongly bounded inhibitor to enzyme.<br />

Current interest is focused on more detailed kinetic study of IN6 and structure elucidation<br />

of IN6.<br />

I<br />

extraction with methanol<br />

column chromatography<br />

preparative HPLC<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 189


[v (μmol.l -1 .s -1 )] -1<br />

120<br />

100<br />

80<br />

<strong>60</strong><br />

40<br />

20<br />

0<br />

ATCI - 0,75 mM<br />

ATCI - 0,175 mM<br />

0,0E+00 5,0E-06 1,0E-05 1,5E-05 2,0E-05 2,5E-05 3,0E-05 3,5E-05<br />

IN6 [mol.l -1 ]<br />

Fig. 3: Dixon plot for AChE inhibition by IN6 at two substrate concentrations.<br />

REFERENCES<br />

1. Jirák, R., Obenberger, J., Preiss, M.: Alzheimerova choroba. 1998. 15. ISBN 80-85800-<br />

88-8.<br />

2. Ellman, G.L., Courtney, K.D., Andres, V., Featherstone: A new and rapid colorimetric<br />

determination of acetylcholinesterase activity. Biochem. Pharm., Vol. 7, 1961, 88-95.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 190


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 191


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 192


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 193


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 194


Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2005, strana 195


Příspěvky soutěže<br />

doktorských studijních programů<br />

„O cenu děkana 2006”<br />

(Sekce DSP 2006)


PRODUCTION OF SELECTED SECONDARY METABOLITES IN<br />

TRANSFORMED BACTERIAL CELLS<br />

Ing. Jana Hrdličková, 3. ročník DSP<br />

Vedoucí práce: Doc. RNDr. Ivana Márová, Csc.<br />

<strong>Vysoké</strong> učení technické v Brně, fakulta <strong>chemická</strong>, ústav chemie potravin a biotechnologií,<br />

Purkyňova 118, 612 00 Brno, e-mail: hrdlickova@fch.vutbr.cz<br />

INTRODUCTION<br />

Poly<strong>ke</strong>tides are a large group of secondary metabolites of varied structure. They exhibit<br />

many physiological actions on organisms. Some OF them are useful drugs for humans,<br />

including antibacterials (e.g. erythromycin, tetracycline), anticancer agents (e.g. daunomycin),<br />

antifungal agents (e.g. amphotericin), cholesterol-lowering agents (e.g. lovastatin),<br />

immunosuppressants (e.g. rapamycin) and veterinary products (e.g. the antiparasitic,<br />

avermectin; the feed additive, monensin), others can be allergenic, toxic, and in some cases<br />

carcinogenic. Genetic engineering may lead to new poly<strong>ke</strong>tide drugs.<br />

The tetracyclines were the first major group of antimicrobial agents for which the term<br />

broad-spectrum was used, they exhibit activity against both gram-positive and gram-negative<br />

bacteria. Most natural tetracyclines have a common structure with the β-di<strong>ke</strong>tone system in<br />

rings B and C. Streptomyces rimosus is used for the production of natural tetracyclines by<br />

commercial fermentation. In S. rimosus a mixture of tetracycline and oxytetracycline is<br />

produced, but the 5-hydroxylase enzyme is extremely active, thus, the equilibrum is far in<br />

favor (>95%) of oxytetracycline production. Oxytetracycline (OTC) is a broad-spectrum<br />

antibiotic produced by S. rimosus. OTC is a member of the "poly<strong>ke</strong>tide" class of secondary<br />

metabolites biosynthesized by condensation of coenzyme A derivatives of metabolic<br />

precursors. The backbone of the antibiotic, consisting of 19 carbon atoms, is thought to be<br />

derived from an aminated starter unit (most li<strong>ke</strong>ly malonamyl-CoA), to which eight acetyl<br />

(malonyl-CoA) extender units are added sequentially.<br />

Streptomyces rimosus has a linear chromosome of about 8 Mb. The chromosome has<br />

inverted repeats of 550 kb, which are the longest yet reported for a Streptomyces species.The<br />

otc biosynthetic gene cluster is located about <strong>60</strong>0 kb from one of the chromosome ends, just<br />

outside the inverted repeat structure.<br />

Carotenoids are naturally occuring membrane-protective antioxidant pigments, that<br />

efficiently scavenge singlet oxygen and peroxyl radicals. Carotenoids are produced in higher<br />

plants, algae and phototrophic bacteria as well as in non-phototrophic bacteria, yeasts and<br />

fungi. In recent years, there is evidence that accumulating of carotenoids plays an important<br />

role in human health by preventing degenerative diseases. From a commercial point of view,<br />

there is an increasing demand of special carotenoids in nutrient supplementation, for<br />

pharmaceutical purposes, as food colorants and in animal feeds. Biotechnological production<br />

of carotenoids by exploiting the carotenoid genes cloned from different species is of<br />

increasing interest.<br />

Lutein, lycopene and beta-carotene belong to industrially important carotenoids, widely<br />

used in food and feed industry as natural pigments, provitamins and food/feed supplements.<br />

Carotenoids act as antioxidants and protect organism from photooxidative damage.<br />

Availability of carotenoids for industrial usage is limited by partial problems associated with<br />

their chemical synthesis as well as with isolation from natural sources. According to this fact,<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 197


in last years some ways for overproduction of carotenoids including modern methods of<br />

molecular cloning and genetic engineering are studied.<br />

Erwinia carotovora is nonphotosynthetic bacterium pathogenic for higher plants. Beside<br />

its agricultural significance, Erwinia strains are of increasing interest as industrial microbes<br />

producing pectinolytic, cellulolytic and proteolytic enzymes as well as antileukaemic<br />

asparaginase. Erwinia strains form carotenoids which cause yellow-orange coloured<br />

phenotype.<br />

METHODS<br />

Bacterial strains. For production of oxytetracyclines bacterium Streptomyces rimosus 4018<br />

was used. For production of carotenoids bacterium Erwinia carotovora CCM 1008 was used.<br />

For transformation DH5α, DH10β and ET 12567 Escherichia coli competent cells were<br />

prepared.<br />

Cultivation. Escherichia coli was cultivated in 2TY medium at 37ºC. 2TY medium<br />

contained, per litre: tryptone, 16 g; yeast extract, 10 g; NaCl, 5 g .<br />

Plasmids. pHSG298, pGEM-T (for PCR product), pSGset2 (containing Erm, OriC, Apr,<br />

OriT, attP, phi-C31 int), pTS55 (containing Amp, tsr, att, int, repSA) and pIJ 4026<br />

(containing Erm, bla) were used as transformation vectors.<br />

Isolation. Plasmid DNA isolation was performed using commercial kits (Gen Elute<br />

Plasmid Miniprep Kit).<br />

Transformation. Transformation of E. coli cells was done using electroporation by BioRad<br />

GENEPULSER apparatus at following conditions: voltage 2500 V, resistance 200 Ω,<br />

capacitance 25 μF.<br />

Electrophoresis. DNA was analysed using agarose electrophoresis and pulsed field gel<br />

electropohoresis (PFGE).<br />

Analysis of carotenoids. Production of carotenoids by transformants was analysed<br />

chromatographically. Carotenoids were extracted from E. coli transormant cells by ethanol.<br />

Individua pigments were separated and quantified by RP-HPLC using a Nucleosil 100 C18<br />

column and methanol (analysis of lycopene, lutein and carotenes) or mixture<br />

acetonitril:methanol 95:5 (phytoene analysis) as eluent.<br />

RESULTS<br />

Presented work was focused on production of selected secondary metabolites in<br />

transformed bacterial cells. First, regulation of poly<strong>ke</strong>tide antibiotik production in Escherichia<br />

coli cells transformed by otc genes from Streptomyces rimosus was studied. Further, isolation<br />

and cloning of crt gene cluster from bacteria Erwinia carotovora in E.coli DH5α cells was<br />

tested. Most OF experiments were performed in co-operation with Biotechnical Faculty,<br />

University of Ljubljana (Socrates/Erasmus exchange).<br />

The DNA sequence of Streptomyces rimosus was analysed by FramePlot (FramePlot is a<br />

web-based tool for predicting protein-coding regions in bacterial DNA with a high G+C<br />

content, such as Streptomyces). Primer structure was derived from sequence analysis results.<br />

The genes were amplified by PCR. Recommended sizes of PCR products were 714 bp and<br />

470 bp. The sequence of 714 bp was named CEL and the sequence of 470 bp was named<br />

MUT. After purification by Gen Elute PCR Clean-Up Kit the PCR products were ready to be<br />

cloned. CEL and MUT PCR products were ligated into the pGEM-T and introduced into<br />

E. coli competent cells. The cells with CEL or MUT were selected on LB agar plates<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 198


containing ampicillin, IPTG and x-gal (blue-white test). Plasmids incorporated into<br />

transformants were isolated by Gen Elute Plazmid Miniprep Kit. To confirm that genes CEL<br />

and MUT were successfully cloned into pGEM, CEL+pGEM and MUT+pGEM were<br />

digested with EcoRI. Electrophoretic separation showed that inserts CEL and MUT were<br />

present in transformed cells. Verification of CEL and MUT sequences was done in cooperation<br />

with Macrogen Inc. Company (Soul, Korea).<br />

The CEL gene was extracted from pGEM-T using Nde I. After electrophoretic separation<br />

and extraction from the gel genes were ligated into the pSGset2/Nde I-deP and introduced<br />

into Escherichia coli competent cells. The cells containing CEL+pSGset2/NdeI were selected<br />

on LB agar plates with apramycin.<br />

The MUT gene was extracted from pGEM-T using Eco RI and after electrophoretic<br />

separation and extraction from the gel. After ligation into the pIJ 4026/Eco RI-deP<br />

transformation vestors were introduced into ET 12567 Escherichia coli competent cells. The<br />

cells containing MUT+pIJ 4026/Eco RI were selected on LB agar plates with<br />

ampicillin+chloramphenicol.<br />

We can summarize, that in this part of work PCR amplification of obtainable sequence and<br />

cloning and incorporation to expression vector was performed. Further, target sequences were<br />

incorporated into transformation vectors and recombinant plasmids were then incorporated<br />

into Escherichia coli recipient cells. The presence of recombinant plasmids was verified at the<br />

level of genotype and phenotype. Transformation of Streptomyces rimosus recipient cells by<br />

recombinant plasmids will be conduct in the future.<br />

In second part of this work, regulation of carotenoid production using genetic<br />

engineering was tested. Several methods of isolation and transfer of crt genes from bacteria<br />

Erwinia carotovora to recipient strain Escherichia coli DH5α cells were tested and<br />

optimized. Identification of carotenoids produced by recombinant cells was verified by HPLC<br />

analysis.<br />

In individual Escherichia coli transformants production of lutein, lycopene and βcarotene<br />

was demonstrated. Production of carotenoids in Escherichia coli cells transformed<br />

by several recombinant vectors pHSG298/crt was substantially higher then those found in<br />

Erwinia carotovora cells. Further, the posibility of regulated high-yield carotenoid production<br />

in laboratory fermentor was tested. Production of lutein in Escherichia coli transformants was<br />

about 8x higher then amount of lutein found in Erwinia carotovora cells, which were<br />

cultivated in the same conditions.<br />

ACKNOWLEDGEMENTS<br />

I would li<strong>ke</strong> to thank Dr. Hrvoje Petkovič and Ms. Urška Lešnik for help and technical<br />

assistance. Both from Biotechnical Faculty, University of Ljubljana, Slovenia.<br />

REFERENCES<br />

1. Petkovič H., Thamchaipenet A., Zhou L-H., Hranueli D., Raspor P., Waterman P.G.,<br />

and Hunter I. S.: Disruption of an Aromatase/Cyclase from the Oxytetracycline<br />

Gene Cluster of Streptomyces rimosus Results in Production of Novel Poly<strong>ke</strong>tides<br />

with Shorter Chain Lengths. The Journal of Biological Chemistry 46, p.32829<br />

-32834, 1999.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 199


2. Pandza K., Pfalzer G., Cullum J. and Hranueli D.: Physical mapping shows that the<br />

unstable oxytetracycline gene cluster of Streptomyces rimosus lies close to one end<br />

of the linear chromosome. Microbiology, p.1493-1501, 1997.<br />

3. Bentley R.: Poly<strong>ke</strong>tides. Encyclopedia of life sciences, 2001.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 200


THE SIMPLE METHOD FOR THE RECOGNITION OF REDUCING AND<br />

NONREDUCING NEUTRAL CARBOHYDRATES BY MALDI-TOF MS<br />

Ing. Markéta Laštovičková a,b , 5. DSP<br />

Supervisor: RNDr. Josef Chmelík b<br />

a Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech<br />

Republic; e-mail: lastovickova@iach.cz<br />

b Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, 611 42 Brno,<br />

Czech Republic<br />

1. INTRODUCTION<br />

The Matrix-Assisted Laser Desorption/Ionization Time-of-Flight mass spectrometry<br />

(MALDI-TOF MS) can provide valuable information on several aspects of carbohydrate<br />

structural analysis, such as the determination of sequence, branching, and linkage. For the<br />

analyses of neutral oligosaccharides, more frequently the positive-ion MALDI-TOF mode has<br />

been performed. The negative-ion mode has been applied mainly in the analysis of charged<br />

carbohydrates that more simply form the deprotonated molecules ([M–H] – ) [1–4].<br />

Inulin and maltooligosaccharides (MOSs) are the representatives of neutral carbohydrates.<br />

Inulin belongs to the fructan group. It is a nonreducing polysaccharide containing Dfructofuranosyl<br />

units lin<strong>ke</strong>d by α–1–2 glycosidic bonds and ended with one glucose unit.<br />

MOSs are the linear glucose oligomers containing only 1–4 linkages. Glucose syrups are<br />

concentrated, aqueous solutions of reducing, low molecular mass oligosaccharides (containing<br />

1–4 and 1–6 glycosidic bonds) obtained by hydrolysis of starch. These starch hydrolysates<br />

can be trespassed as the cheap sweeteners at the adulteration of food, e.g., fruit juices,<br />

therefore they are important for food industry [5].<br />

This study demonstrates a great potential of the negative-ion mode MALDI-TOF MS for<br />

the characterization of underivatized neutral oligosaccharides.<br />

2. EXPERIMENTAL<br />

PREPARATION OF NEUTRAL CARBOHYDRATES STANDARD SAMPLES: Inulin from<br />

Dahlia tubers Mw 5000 (Fluka, Buchs, Switzerland) and MOSs G4-G10 (Sigma, St. Louis,<br />

MO) were prepared at concentrations of 1 mg/mL in deionized water.<br />

EXTRACTION OF NEUTRAL CARBOHYDRATES FROM REAL SAMPLES: Red onion and<br />

Jerusalem articho<strong>ke</strong>s were acquired from a private producer from the Czech Republic. A<br />

procedure for the carbohydrate extraction from fresh samples was described previously [4, 6]<br />

Low glucose syrup (LGS) from 80% wheat starch (w/v), obtained from Amylon Co.<br />

(Havlickuv Brod, Czech Republic), was used at a concentration of 4 mg/mL in deionized<br />

water.<br />

MALDI-TOF MS: The reflectron negative-ion mode experiments were performed with an<br />

Applied Biosystems 4700 Proteomics Analyzer (Applied Biosystems, Framingham, MA)<br />

utilizing a Nd:YAG laser (355 nm). The optimal laser power was selected from the relative<br />

scale 0-8800. 2,4,6-trihydroxyacetophenone (THAP; 100 mg/ml acetone) was used as a<br />

matrix.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 201


3. RESULTS AND DISCUSSION<br />

The main task of this study was the application of the negative-ion mode MALDI-TOF MS<br />

to the determination of a structure of storage oligosaccharides isolated from plants.<br />

The proper experimental conditions (the most convenient matrix, optimal concentrations of<br />

samples and matrix, optimal laser power etc.) were determined for inulin and MOSs standard<br />

samples (the details are not shown). Moreover, these initial experiments showed a potential of<br />

negative-ion mode MALDI-TOF MS for the differentiation of reducing (MOSs) and<br />

nonreducing (inulin) oligosaccharides, because of easy fragmentation of reducing end ring<br />

(the production of in-source fragment ions [M – H – 120] – ; see Figure 1). This in-source<br />

fragmentation has already been described for negative-ion mode MALDI-TOF mass spectra<br />

of dextrans (the polymer containing the main chain with 1–6 glycosidic bonds and different<br />

degree of branching) [7]. This information is very useful for the identification of storage<br />

carbohydrates isolated from plants as is shown below.<br />

All real samples (LGS and oligosaccharides isolated from Jerusalem articho<strong>ke</strong> and red<br />

onion) were analyzed with THAP that was selected as the most convenient matrix. While<br />

[M – H] – ions formed the dominant distribution for oligosaccharides from both vegetables, the<br />

main distribution of LGS was formed by the in-source fragment ions [M – H – 120] – (see<br />

Figure 2). LGS showed this fragmentation because of its structure that contains the main<br />

chain formed by 1–4 glycosidic bonds and branches with 1–6 glycosidic bonds and a reducing<br />

end group. The mass spectra differed in the quantity of the adducts which was dependent on<br />

the amount of ions in the samples.<br />

Thus there are some important conclusions on the mass spectrometric behavior of the<br />

neutral oligosaccharides. Although the negative-ion mode MALDI-TOF MS is ignored in<br />

connection with neutral carbohydrates it is possible to determine the main characteristics of<br />

their distribution without any carbohydrate derivatization (see Table 1). In addition, the<br />

negative-ion mode MALDI-TOF mass spectra is able to differentiate reducing<br />

maltooligosaccharides and nonreducing fructooligosaccharides extracted from real samples,<br />

because of easy fragmentation of reducing end ring, which is not evident in the positive-ion<br />

mode MALDI-TOF MS where both types of oligosaccharides form the alkali-ion adducts.<br />

REFERENCES<br />

[1] Harvey, D. J. Matrix-assisted laser desorption/ionization mass spectrometry of<br />

carbohydrates and glycoconjugates. Int. J. Mass Specrom. 2003, 226, 1-35.<br />

[2] Zaia, J. Mass spectrometry of oligosaccharides. Mass Spectrom. ReV. 2004, 23, 161-227.<br />

[3] Harvey, D. J. Mass Specrom. Reviews. 2006, 25, 595-662<br />

[4] Štikarovská, M.; Chmelík, J. Analytica Chimica Acta 2004, 520, 47–55<br />

[5] Robyt, J.D. Essentials of carbohydrate chemistry, Springer, New York, 1998<br />

[6] Laštovičkova,M; Chmelik, J. J. Agric. Food Chem. 2006, 54,5092-5097<br />

[7] Čmelík, R.; Štikarovská, M.; Chmelík, J. J. Mass Spectrom. 2004, 39, 1467-1473.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 202


Figure 1 Negative-ion mode MALDI-TOF mass spectra of standard oligosaccharides: inulin<br />

(A) and MOSs (B) where<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 203


Figure 2 Negative-ion mode MALDI-TOF mass spectra of oligosaccharides from the real<br />

samples: Jerusalem articho<strong>ke</strong> (A); red onion (B); and LGS (C).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 204


Table 1 Evaluation of negative-ion MALDI-TOF mass spectra of LGS and oligosaccharides<br />

isolated from red onion and Jerusalem articho<strong>ke</strong>; where the range between the shortest and<br />

highest detected oligomers = the range of the degree of polymerization (DP), the total<br />

number of detected oligomers = np, number-average molecular mass = Mn, weight-average<br />

molecular mass = Mw and polydispersity = δ.<br />

Jerusalem<br />

articho<strong>ke</strong><br />

Red onion LGS<br />

np 17 6 19<br />

DP 6–22 6–11 7–25<br />

Mn 1805 1392 1763<br />

Mw 1962 1426 1966<br />

δ 1.09 1.02 1.11<br />

Peak types<br />

[M–H] –<br />

[M+K–2H] –<br />

[M–H] –<br />

[M+K-2H] –<br />

[M–H–120] –<br />

[M+Na–2H–120] –<br />

[M+K–2H–120] –<br />

[M+HSO4] –<br />

The most abundant peak<br />

Mr 1313.06 1313.06 1193.31<br />

Intensity 471.2 mV 371.8 mV 534.5 mV<br />

DP 8 8 8<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 205


MINIATURE METALLIC DEVICE FOR COLLECTION OF HYDRIDE<br />

FORMING ELEMENTS<br />

Pavel Krejčí 1,2<br />

Bohumil Dočekal 2<br />

1 Department of Environmental Chemistry and Technology, Faculty of Chemistry,<br />

Brno University of Technology, Purkyňova 118, CZ-61200 Brno, Czech Republic,<br />

e-mail:krejci-p@fch.vutbr.cz<br />

2 Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, CZ-<strong>60</strong>200 Brno,<br />

Czech Republic, e-mail: docekal@iach.cz<br />

INTRODUCTION<br />

Collection of hydride forming elements (As, Bi, Ge, In, Pb, Sb, Se, Sn and Te) has become<br />

a simple and useful tool for pre-concentration and separation purposes in the trace and<br />

ultratrace analysis by atomic spectrometric methods [1,2]. It is typically performed "in situ"<br />

using conventional graphite (GF) or tungsten (WETA) heated atomizers with subsequent<br />

analyte detection by electrothermal atomic absorption spectrometry (ETAAS) method [1].<br />

Nevertheless, the trapping technique can also be applied in other spectrometry methods<br />

(atomic emission spectrometry, atomic fluorescence spectrometry and mass spectrometry).<br />

For this purpose, conventional electrothermal atomizers are modified and/or special, mostly<br />

laboratory made devices are designed [2-5].<br />

Capability of trapping of hydrides on a prototype of a miniature electrothermal<br />

vaporization (ETV) device was studied employing antimony, arsenic, bismuth and selenium<br />

hydrides as volatile species of analytes. This device is based on a strip of the molybdenum<br />

foil (which is typically used in production of "halogen" bulbs) and combined with miniature<br />

hydrogen diffusion flame for specific analyte detection in atomic absorption spectrometry.<br />

Influence of trapping temperature, modification of the molybdenum surface with noble metals<br />

– Ir, Pt and Rh, distance between the orifice of the injection capillary and the strip and<br />

composition of the gaseous phase (argon-hydrogen-oxygen) was studied in order to clarify the<br />

general hydride trapping mechanism.<br />

EXPERIMENTAL<br />

A Perkin–Elmer (Norwalk, USA) model 3110 atomic absorption spectrometer equipped<br />

with a deuterium background correction system was employed in this study. The Photron<br />

Super Lamps® (Photron, Victoria, Australia) of antimony, bismuth, arsenic and selenium<br />

were used as a specific radiation sources.<br />

The device for electrothermal induced collection of hydrides and their subsequent<br />

electrothermal release was based on a piece of the molybdenum foil (Metallwerk Plansee,<br />

Reutte, Austria), 85 µm thick, 2.15 mm wide and 56 mm long. It was bent to form a U–<br />

profile. Both ends of the strip were pressed between boron nitride cylindrical body (6 mm in<br />

diameter) and two brass contacts. A part of the bent strip (9 mm) remained free. Boron nitride<br />

electric insulation and the brass contacts maintained also an efficient cooling of the strip<br />

providing reproducible temperature setting in series of experiments. In this arrangement,<br />

maximum power of about 130 W was supplied at the highest temperature applicable<br />

(2<strong>60</strong>0°C).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 206


Fig. 1: Scheme of the hydride generation aparature coupled with the heated molybdenum-foil<br />

trap system and simple hydrogen diffusion flame atomic absorption system.<br />

The implementation of the electrothermal trapping/vaporisation (ETV) device in the<br />

instrumental arrangement is shown in Fig. 1. Only a very simple atomiser based on<br />

a miniature hydrogen diffusion flame was used for atomic absorption spectrometry detection<br />

in trapping experiments. The flame was supported by the gas mixture of hydrogen and argon<br />

at a flow rate of 215 ml min -1 and 800 ml min -1 , respectively. The injection capillary, made of<br />

a wide bore quartz GC–capillary (8 cm × 0.53 mm id), was inserted through the narrow hole,<br />

drilled in the axis of the boron nitride body. The tip of the capillary was precisely positioned<br />

by means of an adjusting screw made of PEEK. A laboratory made pulse-width modulation<br />

power supply was used for heating the molybdenum strip. It was based on a high power<br />

MOS-FET transistor and a car battery (12 V, <strong>60</strong> Ah). The power supply was controlled by<br />

a PC by using software created in Visual Basic ver.3. In trapping experiments, the actual<br />

temperature of the heated central part of the molybdenum strip was simultaneously measured<br />

by pyrometers.<br />

A laboratory made flow injection hydride generation system is depicted also in Fig. 1. The<br />

peristaltic pump (model 72624–71, Ismatec, Switzerland) was fitted with Tygon tubes. The<br />

generation system was based on 3-channel peristaltic pump, PTFE-reaction loop and gasliquid<br />

separator with a forced outlet for liquid phase and with a PTFE-filter in an outlet for<br />

gaseous phase. The flow rates were 1.1, 3.6 and 5.0 ml min -1 for 0.5% m/v NaBH4 solution,<br />

sample solution in 1 mol l -1 HCl and waste solution, respectively. The sample channel was<br />

equipped with a Knauer (Berlin, Germany) 6–port injection valve made of PEEK with<br />

a 100 μl sampling loop for performing flow injection of the sample solution. Argon was<br />

introduced in two channels, upstream of the reaction loop as reaction gas and into the gas–<br />

liquid separator as stripping gas at a flow rate of 55 ml min -1 and 10 ml min -1 , respectively.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 207


The gaseous hydrides were directed towards the center of the bent part of the molybdenum<br />

foil via a wide bore quartz GC–capillary. See Ref. [5] for more details.<br />

RESULTS<br />

The influence of the molybdenum foil temperature and concentration of hydrogen in the<br />

gaseous phase on trapping behavior of bismuth and antimony were investigated for a bare<br />

molybdenum surface and argon-hydrogen atmosphere of the flame supporting gas mixture.<br />

Maximum trapping efficiencies were found for antimony and bismuth in the temperature<br />

ranges of 650-750 °C and 500-<strong>60</strong>0 °C, respectively. These optimum temperatures are<br />

approximately 300-500 °C lower than those found for arsenic and selenium (1100-1200°C).<br />

Capability of trapping antimony and bismuth hydrides on a modified surface of the<br />

molybdenum trap was also investigated. Rhodium, platinum and iridium were chosen as<br />

permanent modifiers and were introduced stepwise on the surface in amounts of 10, 30, 100<br />

and 200 μg. Significant depletion of signals of collected antimony and bismuth was observed<br />

when the amount of any modifier used exceeded 30 μg. Evidently, all modifiers inhibit the<br />

interaction of both analytes with active sites on the molybdenum surface. In contrary, these<br />

modifiers do not significantly affect trapping of arsenic and selenium on the molybdenum<br />

surface. The maximum trapping efficiency of arsenic and selenium was independent of the<br />

modifier amount applied in the range from 0 to 200 μg. Their signal profiles were higher,<br />

more reproducible and symmetrical when increasing modifier amount.<br />

The overall efficiency of generation of hydrides and their transport into the trapping<br />

chamber is independent on the injection gas flow rate between the minimum and the<br />

maximum achievable rates of 40 ml min -1 and 2<strong>60</strong> ml min -1 , respectively. Maximum trapping<br />

efficiency was reached at a flow rate close to 70 ml min -1 , and at a distance of 2 mm between<br />

the tip of the introduction capillary and the foil surface. Obviously, aerodynamic conditions<br />

prevailing near the capillary orifice and the molybdenum foil during the trapping step play the<br />

same role in trapping of all analytes studied.<br />

Vaporization experiments showed that antimony, arsenic and selenium are strongly bonded<br />

to the molybdenum surface. Collected antimony is completely released at temperatures above<br />

2200 °C and arsenic and selenium at temperatures above 2400 °C. To the contrary, bismuth<br />

exhibits a different behavior. A relative low temperature of 1200 °C is sufficient for complete<br />

vaporization of trapped Bi. The heating vaporization pulse should be very short to prevent<br />

losses of analyte on the inner quartz wall of the trap chamber and to perform an efficient<br />

transport of the analyte into the diffusion flame. In the present experimental arrangement, the<br />

optimum heating pulse in duration of 0.4 s was found.<br />

ACKNOWLEDGEMENT<br />

This work was supported by The Grant Agency of the Czech Republic (Project<br />

No. 203/06/1441) and by Ministry of Education, Youth and Sports of the CZ<br />

(FRVS 1054/2006).<br />

REFERENCES<br />

[1] J. Dedina, D. L. Tsalev: Hydride Generation Atomic Absorption Spectrometry,<br />

Wiley & Sons, Inc., Chichester (1995).<br />

[2] H. Matusiewicz and R. E. Sturgeon, Spectrochim. Acta, Part B, 51 (1996) 377-397.<br />

[3] F. Barbosa Jr., S. Simiao de Souza, F.J. Krug, J. Anal. At. Spectrom., 17 (2002) 382-388.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 208


[4] H. Matusiewicz, M. Kopras, J. Anal. At. Spectrom., 18 (2003) 1415-1425.<br />

[5] P. Krejci, B. Docekal, Z. Hrusovska, Spectrochim. Acta, Part B, 61 (2006) 444-449.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 209


INFLUENCE OF POLYUNSATURATED FATTY ACIDS INTAKE<br />

ON LIPID METABOLISM IN PATIENTS WITH HYPERLIPIDAEMIA<br />

Simona Macuchová<br />

Mentor: Doc. RNDr. Ivana Márová, CSc.<br />

Brno University of Technology, Faculty of Chemistry, Department of Food Technology<br />

and Biotechnology, Purkyňova 118, 612 00, Brno, email: macuchova@fch.vutbr.cz<br />

INTRODUCION<br />

Cardiovascular diseases are the main cause of mortality in most of industrialized countries.<br />

Risk factors include smoking, diabetes, obesity, high level of blood cholesterol, a diet high in<br />

fats, and having a personal or family history of heart disease. Cerebrovascular disease,<br />

peripheral vascular disease, high blood pressure, and kidney disease involving dialysis are<br />

disorders that may also be associated with atherosclerosis (1).<br />

Atherosclerosis is characterized by deposition of cholesterol rich plaques in the<br />

endothelium. This observation stimulated research on the metabolism of cholesterol and<br />

revealed that cholesterol is transported in esterified form to cells by the low density<br />

lipoprotein (LDL). LDL is recognized by an endothelial cell receptor and introduced into the<br />

cell by endocytosis. There the esters are cleaved. The resulting free cholesterol is transferred<br />

to the cell walls. The process is strictly regulated. In atherosclerotic patients LDL is altered by<br />

oxidation. This altered LDL is ta<strong>ke</strong>n up in unlimited amounts by macrophages. Dead<br />

macrophages filled with cholesterol esters are finally deposited in arteries (1).<br />

The fact that LDL is rendered toxic by oxidation raises the question which constituents of<br />

LDL are prone to undergo oxidation. LDL consists of a core of cholesterol esters which is<br />

surrounded by a phospholipid membrane in which the protein is inbedded. The latter is<br />

required to recognize the LDL cell receptor.<br />

Polyunsaturated fatty acids (PUFAs) esterified to cholesterol or present as phospholipids<br />

represent the most oxygen sensitive compounds of all these LDL constituents.<br />

Dietary polyunsaturated fatty acids (PUFA) have effects on diverse physiological<br />

processes impacting normal health and chronic diseases, such as the regulation of plasma lipid<br />

levels, cardiovascular and immune function, insulin action, and neural development and<br />

visual function (1).<br />

Ingestion of PUFA would lead to their distribution to virtually every cell in the body with<br />

effects on membrane composition and function, eicosanoid synthesis, and signaling as well as<br />

the regulation of gene expression.<br />

Cell specific lipid metabolism, as well as the expression of fatty acid-regulated<br />

transcription factors li<strong>ke</strong>ly play an important role in determining how cells respond to changes<br />

in PUFA composition.<br />

Chemically, PUFA belong to the class of simple lipids, as are fatty acids with two or more<br />

double bonds in cis position. There are two main families of PUFA: n-3 and n-6. These fatty<br />

acids family are not convertible and have very different biochemical roles.<br />

Dietary n-3 PUFA have several beneficial properties:<br />

- act favorably on blood characteristics by reducing platelet aggregation and blood<br />

viscosity;<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 210


- are hypotriglyceridemic;<br />

- exhibit antithrombotic and fibrinolytic activities;<br />

- exhibit antiinflammatory action;<br />

- reduce ischemia/reperfusion-induced cellular damage. This effect is apparently due to the<br />

incorporation of eicosapentaenoic acid in membrane phospholipids.<br />

Linoleic acid (n-6) (LA) and alfa-linolenic acid (n-3) (LNA) are two of the main<br />

representative compounds, known as dietary essential fatty acids (EFA) because they prevent<br />

deficiency symptoms and cannot be synthesized by humans (1).<br />

Reduction of blood lipids and inhibition of LDL oxidation are the main therapeutic<br />

approaches to the treatment of atherosclerosis. Antioxidant agents, alone or in combination<br />

with hypolipidaemic drugs are considered useful for this treatment. Food supplements<br />

containing such substances can serve as additional therapeutical agents (1).<br />

CLINICAL EXPERIMENT<br />

The aim of this work was to contribute to current knowledge of the influence of an<br />

antioxidant supplement type on metabolic and antioxidant status in a group of hyperlipidemic<br />

patients. Influence of complex food supplement containing tocopherol as antioxidant<br />

component and polyunsaturatd fatty acids as hypolipidaemic component on antioxidant status<br />

and parameters of lipid metabolism in 30 patients with hyperlipidaemia was studied. Food<br />

supplement (180 mg of eicosapentaneic acid EPA, 120 mg of docosahexaneic acid DHA, 1.12<br />

mg of vitamin E in 1 tbl.) was ta<strong>ke</strong>n for 3 months, two tbl. daily; blood samples of each<br />

subject were ta<strong>ke</strong>n in regular intervals.<br />

METHODS<br />

Determination of antioxidant activity<br />

Total antioxidant status was determined using ABTS method (Randox Laboratories, USA).<br />

Serum AGE (Advanced Glycation End Products) were analysed fluorimetrically at<br />

350 nm/440 nm. Total amount of serum oxidation products „AOPP“ (Advanced Oxidation<br />

Protein Products) was analysed spectrophotometrically according to Witko-Sarsat et al. 1998<br />

(2), in Kalousová et al. 2001 modification (3).<br />

Biochemical parameters<br />

A set of biochemical parameters characterizing lipid metabolism was measured<br />

at Department of Clinical Biochemistry in the Kyjov Regional Hospital. Levels of total<br />

cholesterol, triacylglycerols, HDL and LDL – cholesterol, apolipoproteine A and B, urea,<br />

creatinine, uric acid, alaninaminotransferase, aspartataminotransferase, albumin and glycated<br />

haemoglobin were determined using automatically system HITACHI 717.<br />

HPLC analysis<br />

As parameters of antioxidant status levels of serum carotenoids, α-tocopherol and retinol<br />

were measured using HPLC method. Separation of carotenoids, retinol and α-tocopherol was<br />

carried out using the Biospher column C18 (4,6 mm × 150 mm, particulation size 7 μm),<br />

methanol as the mobile phase and flow rate 1.1 ml.min -1 . Content of trans-all-retinol was<br />

detected at 325 nm, α-tocopherol at 289 nm and carotenoids at 450 nm.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 211


Determination of fatty acids<br />

A simplified method for analysis of fatty acids in human serum was used according to<br />

Kang at al. 2005 (4). Fatty acids were methylated using BF3/methanol reagent and extracted<br />

to hexane phase. Fatty acids methyl esters were measured using GC-FID method. In each<br />

sample 30 different fatty acids were detected using external standards.<br />

RESULTS<br />

After 3-month inta<strong>ke</strong> OF PUFA/tocopherol supplemet a significant decrease of serum<br />

cholesterol, LDL-cholesterol (10-15%) and mainly triglycerides (about 35%) in<br />

hyperlipidaemic patients was observed. No similar changes in controls was shown. While the<br />

decrease of cholesterol as well as LDL-cholesterol levels was caused predominantly by<br />

tocopherol effect, TAG levels could be influenced by combined effect of PUFA and<br />

tocopherol. Further, PUFA/tocopherol inta<strong>ke</strong> led to a significant increase of tocopherol levels<br />

and TAS and, thus, to corresponding decrease of serum AGEs and AOPPs.<br />

The profiles of serum fatty acids (FA) shown also some changes after supplementation. A<br />

significant decrease of saturated FA (myristic, palmitic, stearic acid) was observed in all<br />

groups. Different changes of unsaturated FA were observed in hyperlipidaemics when<br />

compared with controls. A significant increase of PUFA mixture, EPA and DHA was found<br />

in controls, while no changes of PUFA, EPA and moderate changes of DHA were observed<br />

in hyperlipidaemics.<br />

The main problem with any epidemiological study is that correlation does not imply<br />

causation. There are many other factors, that could be responsible for biological effect.<br />

Additional problems are connected with group composition as well as with biomar<strong>ke</strong>r<br />

selection (1). Moreover, in Czech population basal levels of antioxidants were changing in<br />

the course of time.<br />

Despite these problems, our results indicated, that inta<strong>ke</strong> of food supplement containing<br />

PUFA and tocopherol can positively influence lipid metabolism and antioxidant status in<br />

patients with hyperlipidaemia. Very important is composition of vitamin preparative; many<br />

commercial PUFA are extensively oxidized and, thus, isoprostan formation can occur.<br />

Acknowledgements: This work was supported by project FRVS 3150/G1/2006 the Czech<br />

Ministry of Education, Youth and Sport.<br />

References:<br />

1. Halliwell B., Gutterdige J.M.C.: Free Radicals in Biology and Medicine. 3rd Edition,<br />

Oxford University Press, 1999<br />

2. Witko-Sarsat et al.: Advanced Oxidation Protein Products as Novel Mediators of<br />

Inflammation and Monocyte Activation in Chronic Renal Failure. The Journal of<br />

Immunology 2524-2532, 1998<br />

3. Kalousová M. et al.: Advanced Glycation End-Products and Advanced Oxidation<br />

Protein Products in Patients with Diabetes Mellitus. Physiol. Res. 51: 597-<strong>60</strong>4, 2002<br />

4. Kang J.X., Wang J.: A simplified method for analysis of polyunsaturated fatty acids.<br />

BMC Biochemistry 6:5, 2005<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 212


HYDROPHOBIZED SODIUM HYALURONATE IN AQUEOUS<br />

SOLUTION - A FLUORESCENCE STUDY<br />

Ing. Filip Mravec, 3 rd year PGS<br />

Supervisor: doc. Ing. Miloslav Pekař, CSc.<br />

Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied<br />

Chemistry, Purkyňova 118, 612 00 Brno, e-mail: mravec@fch.vutbr.cz<br />

INTRODUCTION<br />

Polysaccharides and their derivatives have become as major components for the<br />

development of biocompatible and biodegradable materials with many areas of interests (e.g.<br />

tissue engineering, drug delivery). Chemical modification, which no affected<br />

biodegradability, can lead to the expansions of medicine and engineering applications.<br />

Hyaluronan is major component of pericellular and extracellurar matrices. It is a linear<br />

polymer of the disaccharide D-glucuronic acid-1-β-3-N-acetylglukosamine (Figure 1a). It<br />

plays important role in stabilizing the extracellular matrix in many tissues by binding to<br />

specific proteins called hyaladherines. The main hyaluronan fraction is localized in skin<br />

tissue.<br />

The preparing of the hyaluronan derivatives are generally based on the esterifcation on the<br />

D-glucuronic subunit. Our derivatives were modified on the second carbon on the glucuronic<br />

subunit (Figure 1b). Because carboxylic groups are still free, we obtained the amphiphilic<br />

polyelectrolyte - hydrophobized hyaluronan (hHA). From its structure we predict in aqueous<br />

solution modified hyaluronan will aggregate to form micelle-li<strong>ke</strong> structures with non-polar<br />

core. This aggregation behavior can be study by non-polar fluorescence probes solubilized to<br />

H<br />

H<br />

O<br />

O<br />

HO<br />

a<br />

O<br />

O<br />

HO<br />

b<br />

O<br />

O -<br />

O -<br />

O<br />

OH<br />

O<br />

Na +<br />

Na +<br />

O<br />

NH<br />

R<br />

HO<br />

O<br />

HO<br />

O<br />

C<br />

H 3<br />

C<br />

H 3<br />

Figure 1 Structure of the native hyaluronan (a) and its hydrophobized derivative (b),<br />

R = C10.<br />

this core.<br />

Pyrene, benzo[d,e,f]fenanthrene is the even and alternating hydrocarbon (Figure 2a). The<br />

“Pyrene I1:I3 ratio method” is widely used method to determine the critical aggregation<br />

concentration (cac) for a lot of surfactant-based systems. Its unique response to the<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 213<br />

OH<br />

OH<br />

O<br />

NH<br />

O<br />

O<br />

NH<br />

O<br />

n<br />

n<br />

OH<br />

OH


microenvironment polarity is well known and described (Aguiar 2003). We evaluated<br />

experimental data using non-linear fitting with Boltzman’s curve with four parameters –<br />

maximum (a), minimum (b), inflex point (x0), and width of the gradient (Δx) (Equation 1).<br />

We voted and subsequently confirmed the “x-coordinate” of the inflex point as the cac value.<br />

For the confirmation we used the perylene’s fluorescence measurements.<br />

a − b<br />

y = + b<br />

1)<br />

( 0<br />

x − x )<br />

Δx<br />

1+<br />

e<br />

Perylene, dibenz[de,kl]anthracene, is also the even and alternating hydrocarbon (Figure<br />

2b). The perylene’s measurements are quite simple for evaluation. The fluorescence intensity<br />

of the perylene rise with the number of non-polar domains in the hHA’s solution. Earlier than<br />

domains are presented in solution no fluorescence is observed. When domains are formed we<br />

observe sharp increasing of the fluorescence. These two trends can be fitted by the linear<br />

curves and the x-coordinate from their point of intersection defines the cac value directly.<br />

a) b)<br />

Figure 2 Fluorescence probes - a) pyrene b) perylene<br />

MATERIALS AND METHOD<br />

The hyaluronan and its derivatives were obtained from CPN Ltd. (Dolní Dobrouč, Czech<br />

Republic). Hyaluronans were in these molecular weights: 97, 5<strong>60</strong>, and 1630 kg·mol -1 .<br />

Derivatives were in molecular weights 134, 183, 3<strong>60</strong>, and 1470 kg·mol -1 , respectively, and<br />

theirs substitution degrees were in range from 10 to 70 %. The substitution degree is defined<br />

as the ratio of the number of the monomer with and without the alkyl chain per polymer<br />

chain, and it was determined from 1 H NMR spectra. All molecular weights were determined<br />

by SEC-MALLS (Mlčochová, 2006). Pyrene and perylene were obtained both from Fluka<br />

GmbH. Acetone p.a. was obtained from Lachema Ltd.<br />

The samples were dissolved in doubly distilled water to the concentration 2 g l -1 . This<br />

stock solution was stabilized by addition sodium azide (NaN3) in final concentration 10 -3 M.<br />

Sample nomenclature. The samples are named in correspondence to their characteristics. The<br />

first come alkyl-type abbreviation, next are basic molecular weight (before derivatization),<br />

and after the solidus the substitution degree. For example D 134/10 means C10-derivate with<br />

the molecular weight 134 kg·mol -1 and the substitution degree 10 %.<br />

Fluorescence Method. The acetone stock solutions of the pyrene and perylene were prepared.<br />

Probes stock solution was introduced into a flask and acetone was evaporated. The stock<br />

solution of hHA was introduced into a flask with evaporating probe, it was diluted to the<br />

desirable concentration, and the resulting solution was sonificated during 4 hours and stored<br />

during next 20 hours. The fluorescence emission spectra were monitored with a luminiscence<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 214


spectrophotometer (AMINCO-Bowman, Series 2) at 293.15 ± 0.1 K. The excitation and<br />

emission slit widths were set to 4 nm, where for pyrene and perylene the excitation<br />

wavelength was 335 nm and 408 nm, respectively.<br />

By the pyrene way, the ratio of the fluorescence intensity at 373 nm (I1) and at 383 nm (I3)<br />

was plotted against the logarithm of the concentration. These data was fitted by sigmoid curve<br />

with the nonlinear curve fitting with Origin 75. From non-linear fitting we obtain two possible<br />

cac points - directly cac1-point as the inflex point. Second one, cac2-point, is defined as<br />

cac2 = x0 + 2Δx<br />

. 2)<br />

Perylene’s data evaluation was based on fit of two linear trends. From equations related to<br />

these linear curves was evaluated “x-coordinate”, cacPe, of the point of intersection.<br />

Fluorescence (a.u.)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Fluorescence (a.u.)<br />

RESULTS AND DISCUSSION<br />

It is useful to use only one probe for the CAC determination. Pyrene’s data contain not<br />

only information about aggregation but even polarity information. Because pyrene is partially<br />

water soluble, it is necessary to know exactly which cac-point is the right.<br />

F int. norm.<br />

250 300 350 400 450 500<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

I3<br />

a) Emission 0.8 b)<br />

Excitation<br />

0.6<br />

I1<br />

wavelength (nm)<br />

1<br />

0.4<br />

0.2<br />

0<br />

Excitation<br />

Emission<br />

320 370 420 470 520 570<br />

wavelength (nm)<br />

Figure 3 Spectral properties of the pyrene (a) and the perylene (b)<br />

Perylene<br />

Pyrene<br />

R 2 = 0.9702<br />

R 2 = 0.9998<br />

0.0<br />

0.8<br />

-3 -2 -1 0 1<br />

Log C<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

I 1 /I 3<br />

Figure 4 The plot of the normalized integral fluorescence and the I1/I3 vs. the Log C. The<br />

perylenes data are separate and fit with the linear curves. The pyrenes data are fit by sigmoid<br />

curve with mar<strong>ke</strong>d cac1 (×). The point of intersection (↑) from perylenes dependence(x-coordinate<br />

- 0.747) is identical with the pyrenes cac1 point (x-coordinate - 0.750).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 215


Table 1 Sum of the cac values for all samples<br />

sample SD cac<br />

- % x10 6 mol·l -1<br />

D 44<br />

D 134<br />

D 183<br />

D 3<strong>60</strong><br />

D 1470<br />

In Figure 4 there are typical<br />

dependencies of the pyrene and perylene<br />

in hydrophobized hyaluronan solution.<br />

Pyrene ratio shows typical decreasing Stype<br />

curve. Perylene, on the other hand,<br />

shows two line system. For pyrene it was<br />

used equations 1) and 2) to solve<br />

parameter cac1 and cac2, respectively.<br />

Perylene’s data, cacPe was solved by<br />

combination of two linear equations as<br />

point of intersection. Final values (in<br />

g·l -1 ) are: cac1 = 0.179, cacPe = 0.178,<br />

cac2 = 0.758. So it was established the<br />

best value for the cac determination is<br />

cac1 point, realized as the inflex point x0.<br />

The cac values are showing two<br />

trends. First, the cac values are<br />

decreasing with increasing SD (except for<br />

samples D 1470). Second, the cac values<br />

are decreasing with increasing M. These trends are obvious in Figure 5 and summarized in<br />

Table 1. The greatest decreasing of the cac values show D 44 samples. It is possible to relate<br />

this behavior to the fact that D 44 samples have the shortest chains and new types of<br />

interactions can be founding. On the other hand, heavy weighted chains show stable behavior<br />

against the SD changes. These results can be explained if we accept that next addition of the<br />

alkyls to the chain only fortify chain-chain interaction. And in fact, it does not lead to the<br />

formation of new hydrophobic cores.<br />

cac (10 -6 mol l -1 )<br />

100.00<br />

10.00<br />

1.00<br />

0.10<br />

0.01<br />

10<br />

30<br />

50<br />

10<br />

30<br />

50<br />

70<br />

10<br />

30<br />

50<br />

10<br />

30<br />

50<br />

30<br />

50<br />

70<br />

12.27<br />

1.02<br />

0.06<br />

4.35<br />

1.21<br />

0.76<br />

0.20<br />

0.99<br />

0.73<br />

0.47<br />

0.51<br />

0.19<br />

0.18<br />

0.15<br />

0.06<br />

0.10<br />

D 44 D 134<br />

D 183 D 3<strong>60</strong><br />

D 1,470<br />

0 20 40 <strong>60</strong> 80<br />

SD (%)<br />

Figure 5 The dependences of the cac values on the SD. Except for D 1470 all samples<br />

show the decreasing tendencies with increasing M and SD.<br />

CONCLUSION<br />

Fluorescence determination of cac for the novel hyaluronate derivatives was presented. It<br />

was showed cac1 as the best point for determination of the critical aggregation concentration.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 216


Hyaluronate derivatives showed with increasing SD decreasing tendency of the cac through<br />

the light weighted chains, and stable value for heavy weighted ones.<br />

REFERENCES<br />

Aguiar J. et al.: J. Colloid Interface Sci 2003, 258, 116-122<br />

Angelescu D., Vasilescu M.: J. Colloid Interface Sci 2001, 244, 139-144<br />

Dong, D. C.; Winnik, F.: Can. J. Chem. 1984, 62, 25<strong>60</strong>-2564<br />

Mlčochová P. et al.: Biopolymers 2006, 82, 74-79<br />

Molina-Bolívar J.A. et al.: J. Phys. Chem. B 2004, 108, 12813-12820<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 217


CHARACTERIZATION AND DEGRADATION BEHAVIOUR OF<br />

TRIBLOCK COPOLYMER<br />

Ing. Ludmila Nová<br />

Supervisor: Prof. RNDr. Milada Vávrová, CSc.<br />

Consultant: Ing. Lucy Vojtová, PhD.<br />

Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry,<br />

Brno University of Technology, Purkyňova 118, 612 00 Brno<br />

E-mail:nova@fch.vutbr.cz<br />

ABSTRACT<br />

This work is focused on the studying of the thermoreversible behaviors of two copolymers,<br />

PLGA-PEG-PLGA and the same but modified with itaconic acid (ITA-PLGA-PEG-<br />

PLGA-ITA). The critical gel concentrations (CGC) and the critical gel temperatures (CGT)<br />

were determined. As for PLGA-PEG-PLGA the CGC and CGT equal to 19,2 w% and 34,5<br />

°C, respectively, was observed. Second polymer of ITA-PLGA-PEG-PLGA indicated the<br />

shift of the sol-gel transition curve down to the lower values of both CGC (15,3 w%) and<br />

CGT (25 °C). The degradation behaviors of PLGA-PEG-PLGA in a phosphate buffer (pH<br />

7.4) at 37 °C were investigated. A significant decrease in the molecular weight and increase in<br />

the polydispersity within 10 days (until the samples have dissolved) was observed.<br />

INTRODUCTION<br />

Poly(lactic acid) and poly(glycolic acid) have been under extensive study since they were<br />

introduced as biodegradable polymers having hydrolytically unstable backbones. Therefore,<br />

these biopolymers can be used for a certain type of biomedical application such as injectable<br />

polymer drug delivery systems, tissue implants or resorbable bone adhesives. The prevailing<br />

mechanism for the biopolymer degradation is a simple random chemical hydrolysis [1]. The<br />

most common explanation for this heterogeneous degradation process comes from the<br />

absorption of water, followed by a hydrolytic cleavage of ester bonds, which generates chain<br />

fragments with the acidic groups (Fig. 1). This process is characterized by a decrease in<br />

molecular weight, an increase in polydispersity (PD = Mw/Mn) and polymer mass loss<br />

accompanied by an increase in low molecular chain compound concentration in the<br />

surrounding medium [2 – 7].<br />

H<br />

CH 3<br />

O<br />

O<br />

CH 3<br />

O<br />

O<br />

x<br />

O<br />

poly(lactic-co-glycolic acid)<br />

O<br />

O<br />

y<br />

OH<br />

CH<br />

H 3<br />

OH<br />

HO<br />

O<br />

lactic acid<br />

Fig. 1: Scheme of the PLGA degradation.<br />

+<br />

2x 2y<br />

H<br />

HO<br />

H<br />

O<br />

OH<br />

glycolic acid<br />

The injectable biodegradable thermosensitive ABA triblock copolymers consisting of<br />

hydrophobic biodegradable copolymer of poly(lactic acid-co-glycolic acid) (PLGA) and<br />

hydrophilic poly(ethylene glycol) (PEG) acting as A and B block, respectively, were<br />

synthesized via ring-opening polymerization method in a bulk at 155 °C. The ABA<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 218


copolymers were additionally functionalized by itaconic acid (ITA), which can be gained<br />

from renewable resources by pyrolysis of citric acid or by fermentation of polysaccharides.<br />

ITA brings reactive double bonds and functional carboxylic acid groups to the end of<br />

copolymer resulting in preparation of biodegradable ITA/PLGA-PEG-PLGA/ITA<br />

macromonomer. Successful end-capping of ITA to PLGA-PEG-PLGA copolymer was proved<br />

by 1H NMR and FT-IR analysis followed by characterization with GPC method. The above<br />

mentioned thermosensitive polymers are soluble in water forming free-flowing solution that<br />

spontaneously gels as the temperature increases generating a water-insoluble physical<br />

hydroge. The sol-gel transition behaviors were studied by the test tube inverting method. The<br />

tests of degradation behaviors of PLGA-PEG-PLGA copolymer were carried out in vitro in<br />

the phosphate buffer medium at 37 °C.<br />

EXPERIMENTAL WORK<br />

Materials<br />

The triblock copolymers of PLGA-PEG-PLGA and ITA- PLGA-PEG-PLGA-ITA were<br />

synthesized at our faculty by Dr. Lucy Vojtová.<br />

Tetrahydrofurane for GPC analyses (THF for HPLC, gradient grade, Merck, Germany),<br />

was used as received. Polystyrene standards (Mp= 316 500 – 162) were purchased from<br />

Polymer Laboratories, Germany. Milli-Q water, phosphoric acid (p.a., 85 %, Czech Republic<br />

and potassium phosphate dibasic (p.a., for HPLC, Fluka, USA) were used for the polymer<br />

degradation studies.<br />

Method<br />

The molecular weight and the molecular weight distribution of the copolymers were<br />

determined by GPC method using Agilent Technologies 1100 Series instrument equipped<br />

with a refractive index detector, PLgel Mixed C column of 300 x 7.5 mm with particle size 5<br />

μm, degasser, pump, auto sampler and fraction collector. Tetrahydrofurane was used as the<br />

mobile phase at a flow rate equal to 1 ml.min -1 . The average molecular weight was calculated<br />

using a series of polystyrene standards (Mp = 316 500 – 162). Samples of triblock copolymers<br />

were prepared in the concentration of 0.5 mg/ml in tetrahydrofurane for HPLC.<br />

The sol-gel transition was determined by the test tube inverting method. 4 ml vials<br />

containing 1 ml of the triblock copolymer were heated from 10 to <strong>60</strong> °C in a water bath. The<br />

transition temperatures were determined by a flow (sol) – no flow (gel) criterion when the vial<br />

was inverted with a temperature increment of 1 °C per step.<br />

The degradation behavior study was performed using 0.3 ml of 23 w% polymer aqueous<br />

solutions. The 1.8 ml vials with polymer solutions were put into an incubator at 37 °C (the<br />

temperature of a human body) to formed the hydrogels. Consequently, 0,5 ml of the<br />

phosphate buffer (pH 7.4, 37 °C) was added to the vials and the samples were placed into the<br />

incubator for 10 days with a view to degrade during this time. At regular intervals, the<br />

samples were withdrawn from of the incubator, lyophilized and analyzed.<br />

RESULTS AND DISCUSSION<br />

The sol-gel transition diagrams of the triblock copolymers (PLGA-PEG-PLGA, ITA-<br />

PLGA-PEG-PLGA-ITA) were created on the base of the test tube inverting method (Fig. 2).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 219


Temperature (°C)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

PLGA/PEG/PLGA<br />

ITA-PLGA/PEG/PLGA-ITA<br />

white viscous<br />

suspension<br />

suspension<br />

white gel<br />

white viscous cloudy gel<br />

cloudy viscous<br />

cloudy viscous<br />

amber sol<br />

amber sol<br />

15<br />

0 5 10 15 20 25<br />

Concentration (w% )<br />

white gel<br />

amber viscous<br />

cloudy gel<br />

amber viscous<br />

amber gel<br />

amber gel<br />

Fig. 2: The sol-gel transition phase diagram of the triblock copolymers PLGA-PEG-PLGA<br />

and ITA-PLGA-PEG-PLGA-ITA<br />

The diagram demonstrates three basic areas - sol, gel and suspension (precipitate). The<br />

phase diagram of PLGA-PEG-PLGA shows the critical gel concentration (CGC) of 19.2 w%<br />

and the critical gelation temperature (CGT) of 34.5 °C. For the next study, the solution of 23<br />

%wt was used because of forming the amber hydrogel at around 37°C. As for the copolymer<br />

modified by ITA, CGC and CGT were determined to be 15.3 w% and 25.0 °C, respectively.<br />

The values were shifted below the curves of the polymer without the itaconic acid which<br />

pointed that the presence of hydrophilic –COOH groups causes better interaction between the<br />

polymer and water molecules. Therefore, CGC and CGT were observed to be lower than<br />

those of the copolymer without ITA.<br />

The change from sol to gel, which occurred by increasing the temperature, was not sharp.<br />

At the temperature much lower than the critical gel temperature; unimers, individual micelles,<br />

and grouped micelles coexisted in the sol state (Fig. 2 amber sol). The unimer fraction<br />

decreased with the temperature increasing (Fig. 2 amber viscous). At the same time, the<br />

grouped micelle size grew rapidly resulting in sol-gel transition (Fig. 2 amber gel). The<br />

aggregation and packing interactions between micelles increased to form denser gel with the<br />

raising temperature (Fig. 2 cloudy viscous state, cloudy gel). When the temperature was<br />

further raised, the hydrophobic chains in the micelle core shrank tightly. Also, the hydrophilic<br />

PEG block underwent dehydration and the second gel-sol transition arisen (Fig. 2 white<br />

viscous state, white gel, suspension). The over shrunk micelle groups precipitated in water<br />

and the solution separated into two phases of water and precipitated polymer (Fig. 2<br />

precipitation) [8].<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 220


Each micelle has a hydrophobic core and a hydrophilic shell, and can move relatively<br />

freely without any bridging connection between the micelles. Sol-gel transition occurs when<br />

the total volume of micelles fraction is larger than the maximum packing fraction volume [8].<br />

The degradation behavior of PLGA-PEG-PLGA was investigated. Four samples of the<br />

copolymer in 0.7 ml of the phosphate buffer (pH 7.4) were placed into the incubator at 37 °C<br />

(the normal temperature of a human body). The samples were ta<strong>ke</strong>n out and lyophilized after<br />

3, 5, 7 and 10 days. The rest of the copolymer was analyzed by GPC. The decrease in the<br />

molecular weight during these periods can be seen in Fig. 2. After 3, 5 and 7 days two phases<br />

in the vials can be observed, the copolymer gel and the buffer. The total dissolving of the<br />

copolymer occurred after 10 days when the measured molecular weight (Mn) was found to be<br />

4170 (Tab. 1).<br />

Tab. 1: The change of the molecular weight and the polydispersity during the degradation<br />

in the phosphatic buffer (pH 7.4, 37 °C)<br />

Time (day) Molecular weight Polydispersity<br />

0 <strong>60</strong>10 1.21<br />

3 5840 1.23<br />

5 5220 1.31<br />

7 4770 1.33<br />

10 4170 1.35<br />

The change of polydispersity (D) was related to the change of Mn. Mn decreased while D<br />

increased with the growing number of the shorter copolymer chains.<br />

Molecular weight<br />

6500<br />

<strong>60</strong>00<br />

5500<br />

5000<br />

4500<br />

4000<br />

3500<br />

0 2 4 6 8 10 12<br />

Time (day)<br />

Fig. 3: The change of the molecular weight (Mn)● and the polydispersity (D)∆ after 0, 3,<br />

5, 7, and 10 days.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 221<br />

1,36<br />

1,34<br />

1,32<br />

1,30<br />

1,28<br />

1,26<br />

1,24<br />

1,22<br />

1,20<br />

Polydispersity


CONCLUSION<br />

The copolymers of PLGA-PEG-PLGA and ITA-PLGA-PEG-PLGA-ITA were synthesized<br />

and characterized by GPC and the test tube inverting method. The presence of the itaconic<br />

acid in the polymer chain caused the decrease in both CGC and CGT.<br />

The degradation of PLGA-PEG-PLGA was attended by the decreasing of molecular<br />

weight during ten days until the gel has dissolved. The number of the low molecular weight<br />

chains increased with time causing the increasing in polydispersity of the polymer.<br />

Acknowledgement<br />

I would li<strong>ke</strong> to thank Dr. Lucy Vojtová for the copolymers preparation and expert advice.<br />

This work was supported by the Ministry of Education of the Czech Republic under the<br />

research project MSM 0021630501.<br />

REFERENCES<br />

[1] A. Göpferich, Biomaterials 1996, 17, 103 – 114.<br />

[2] P. Giunchedi, B. Conti, S. Scalia, U. Conte: J. Contr. Rel. 1998, 56, 53 – 62.<br />

[3] S. Li,: Biomed. Mater. Res. 1999, 48, 342 – 353.<br />

[4] I. Grizzi, H. Garreau, S. Li, M. Vert: Biomaterials 1995, 16, 305 – 311.<br />

[5] B. Marcato, G. Paganetto, G. Ferrara, G. Cecchin: J. Chromatogr. B. 1996, 682, 147 –<br />

156.<br />

[6] T. G. Park: J. Contr. Rel. 1994, 30, 161 – 173.<br />

[7] G. Schliec<strong>ke</strong>r, C. Schmidth, S. Fuchs, T. Kissel: Biomaterials 2003, 24, 3835 – 3844.<br />

[8] M. S. Shim, H. T. Lee, W. S. Shim, I. Park, H. Lee, T. Chang, S. W. Kim, D. S. Lee:<br />

J. Biom .Mat. Res. 2002, 61, 188 - 196<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 222


STUDY OF THE COPPER(II) IONS NON–STATIONARY DIFFUSION<br />

IN HUMIC GEL<br />

Ing. Petr Sedláček, 1 st year of study<br />

Supervisor: doc. Ing. Martina Klučáková, PhD.<br />

Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied<br />

Chemistry, Purkyňova 118, 612 00 Brno, e–mail: sedlacek@fch.vutbr.cz<br />

INTRODUCTION<br />

Severe reduction of use of solid fossil fuels in the power–producing industry has mar<strong>ke</strong>dly<br />

encouraged the investment to alternative applications of these materials. Humic acids (HA),<br />

which are one of their <strong>ke</strong>y components, are because of their rich natural sources, simple<br />

isolation methods and profitable chemical ad physical behavior predetermined for the wide–<br />

spread use in different industrial and agricultural branches. Although the intensive study of<br />

this material lasts for several decades the knowledge level (mainly concerning the structure of<br />

HA) is still quite low (it is often compared with the knowledge of proteins fifty years ago).<br />

Application of HA in a form of humic gel (see [1]) is quite new and unexplored field of<br />

their study. The gel form of HA is easy to prepare, suitable for the exploration of transport<br />

phenomena and mainly simulates the natural conditions; HA are usually found in the highly<br />

humid environment (water sediments, peat etc.) and thus in the swollen form.<br />

One of most famous and promising HA properties is the ability to bind metal ions. They<br />

can form stable complexes among others with heavy metals, which influences their toxicity in<br />

environment and this fact encourages potential applications of humic substances mainly in<br />

environmental industry, in the production of fertilizers and in pharmacy. Most important<br />

binding sites in HA molecule are carboxylic and phenolic groups and aromatic cycles.<br />

Besides the lower mobility of metal ions in humic gels comparing water solution, the<br />

diffusion in gels are influenced also by the retention or immobilization of the ions, both<br />

caused by chemical reaction between metals and HA. The result is that mathematical<br />

apparatus used in the description of diffusion phenomena is very complicated.<br />

Copper(II) ion is well–known for its high affinity to humic substances [2]. Besides this the<br />

HA–Cu(II) binding is among the highest strengths. Therefore and also because of easy<br />

quantification of copper content by means of<br />

spectroscopy, the copper(II) ions has been chosen<br />

as model metal ions for this work.<br />

The main aim of this research was the study of<br />

copper(II) ions diffusion from solutions with<br />

different Cu 2+ concentration into humic gel across<br />

the phase interface and the diffusion in the gel<br />

itself. Other experiment interested in the influence<br />

of other properties of the copper(II) source<br />

solution, namely the type of anion of copper salt,<br />

solution pH and ionic strength.<br />

EXPERIMENTAL PART<br />

HA were obtained from South-Moravia lignite by means of the alkaline extraction (see<br />

[2]). Humic gel was prepared by the technique optimized in [3]: HA were diluted in 0.5 M<br />

NaOH in the 8 g HA in 1 dm 3 Fig. 1 Humic gel sample<br />

NaOH ratio. This sodium humate solution was acidified by<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 223


concentrated HCl to pH ~ 1 and leaved in<br />

refrigerator overnight. After the centrifugation (10<br />

min., 4000 rpm, cooling for 15 °C) the<br />

supernatant was poured out and the gel was<br />

washed three times by deionized water. Each<br />

washing was followed by centrifugation, the last<br />

one took 30 minutes. Finally the gel was<br />

deposited in dessicator with water to stabilize its<br />

humidity. The picture of prepared gel sample is<br />

shown on the Fig. 1.<br />

The HA sample was characterized by means of<br />

table 1 Elementary analysis results<br />

content in dried<br />

element ash-free HA<br />

[atomic %]<br />

H 42,12<br />

C 41,16<br />

O 15,64<br />

N 0,91<br />

S 0,17<br />

the elementary analysis (Microanalyser Flash 1112, Carlo Erba), ash content analysis (sample<br />

contained 6.8 weight % of water and 28.5 weight % of ash), and UV–VIS and FT–IR spectral<br />

analysis (Hitachi U 3300 and Nicolet impact 400 respectively). From the exact results of these<br />

analyses, which are listed elsewhere ([4]), it is clear, that used HA were of high degree of<br />

humification. The humic gel sample was analyzed for its solid matter content<br />

(14.5 weight %), total gel acidity was determined by potentiometric titration (gel contained<br />

8.12 mmol acid equivalents per 1 g of HA). The FT–IR spectroscopy analysis of dried gel<br />

sample results in fact that no chemical structure changes occur while gelation of HA.<br />

Diffusion experiment was divided into several parts; in the first one the pre-determined<br />

(see [3]) value of the diffusion coefficient of copper(II) ions in humic gel was verified by the<br />

stationary diffusion from the saturated copper(II) chloride solution. In detail, experimental<br />

procedure is listed in [4].<br />

In all remaining parts the non-stationary diffusion was studied. All experiments took place<br />

in apparatus presented on Fig. 2. Humic gel was pac<strong>ke</strong>d into plastic tube as 5 cm long<br />

cylinder and 2 ml of both copper ions solution and deionized water were filled into side<br />

containers. First of all diffusion dependency on Cu(II) initial concentration in solution was<br />

monitored by changing the initial concentration of CuCl2 solution placed in the apparatus<br />

container, while the duration of experiment was maintained at 24 hours. After the end of the<br />

experiment, each gel sample was sliced and each slice was separately extracted by 1 mol.dm –3<br />

HCl. By the UV–VIS quantification of Cu(II) content in each extract, the concentration<br />

profile of the gel cylinder and the total diffusion flux across the solution–gel interface were<br />

determined.<br />

Next part deals with the influence of time duration of diffusion experiment. The 1 day,<br />

3 days and 5 days periods have been chosen. The experiment was repeated for three Cu(II)<br />

initial concentration values: 0.1 mol.dm –3 , 0.3 mol.dm –3 and 0.6 mol.dm –3 . Following<br />

experimental technique was adopted from previous experiment without changes.<br />

In the last part, the influence of other copper(II) solution properties has been investigated.<br />

The influence of the type of copper(II) salt anion was studied by using CuCl2, Cu(NO3)2,<br />

Cu(II)<br />

plugged solution<br />

containers<br />

HUMIC GEL<br />

plastic tube<br />

H2O<br />

Fig. 2 Scheme of the aparatus used in all<br />

diffusion eperiments<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 224


CuSO4, Cu(ClO4)2 and Cu2P2O7 of the same Cu 2+ concentration (0.1 mol.dm –3 ) as a stock<br />

solution for diffusion experiments of the same time duration (24 hours). Finally, the solution<br />

pH – dependency and solution ionic strength dependency of the diffusion process was<br />

chec<strong>ke</strong>d by diluting CuCl2 salt using the differently concentrated hydrochloric acid and<br />

sodium chloride, respectively. For all of these experiments the same Cu 2+ concentration<br />

(0.1 mol.dm –3 ) as well as the time duration (24 hours) was used and the same experimental<br />

technique (see above) was adopted.<br />

RESULTS AND DISCUSSION<br />

The value of calculated effective diffusion coefficient of copper(II) ions in humic gel was<br />

7.96×10 -10 m 2 .s –1 . This value is in good agreement with the one pre–determined by another<br />

experimental method (see [3]) and was used for all following calculations. As can be seen on<br />

Fig. 3 and Fig. 4, total diffusion flux of Cu 2+ through solution–gel phase interface linearly<br />

increases with the initial concentration of copper(II) in solution and with the square root of<br />

time duration of diffusion experiment. The later dependency is however much more<br />

complicated; the nonzero intercept of the regression line indicates that the linearity is just<br />

illusory and in fact the dependency is curved. Klučáková et al. in [5] stated the equation for<br />

the total diffusion flux across the solution–gel interface:<br />

ε c D τ<br />

0<br />

g<br />

m = (1)<br />

1+<br />

ε D / π<br />

g D<br />

in which m stands for the total diffusion flux, c0 is initial concentration of the ion in solution,<br />

τ is the time duration of the diffusion, ε is ratio of ion concentration in the gel and in the<br />

solution in final equilibrium (at the “end of diffusion”), Dg and D is diffusion coefficient of<br />

cupric ions in humic gel and in solution, respectively. Following this equation the value of ε<br />

was calculated from total diffusion flux corresponding to c0 and τ values. It was found that for<br />

the same duration of diffusion experiment this value is constant for different initial<br />

concentrations of the solution but it varies for different duration of experiment (Fig. 5). This<br />

fact could be explained by the apparatus construction (small solution volumes – gel weight<br />

ratio) or by the time–consuming formation of some stable structural or chemical complexes<br />

between gel and ions. This affects the mobility of ions (retention of ions can lead up to their<br />

immobilization in gel) and their equilibrium in gel and solution. This fact could explain<br />

mentioned deformation of total flux time dependency as well.<br />

The knowledge of the ε value allows<br />

the calculation of theoretical<br />

y = 6.454E-03x<br />

concentration profiles of the copper (II)<br />

R<br />

ions in the humic gel (used<br />

mathematical apparatus is presented in<br />

detail in reference [5]) for individual<br />

experiment conditions (initial<br />

concentration, time duration). The<br />

example on Fig. 6 shows very good<br />

agreement between calculated and<br />

measured concentration profiles.<br />

2 50<br />

40<br />

= 1.000E+00<br />

30<br />

20<br />

10<br />

0<br />

0 2000 4000 <strong>60</strong>00 8000<br />

total flux [mol.m -2 ]<br />

c0 [mol.m -3 ]<br />

Fig. 3 The total diffusion flux dependency on<br />

the initial concentration of Cu 2+ in the<br />

solution (diffusion duration 24 hours)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 225


ε<br />

total flux [mol.m -2 ]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y = 0.0099x<br />

R 2 = 0.9997<br />

y = 0.0066x<br />

R 2 = 0.9983<br />

y = 0.0084x<br />

R 2 = 0.9985<br />

0<br />

0 200 400 <strong>60</strong>0 800<br />

c0 [mol.m -3 ]<br />

1 day<br />

3 days<br />

5 days<br />

The results of the part which deals with the influence of another copper(II) solution<br />

properties shows dramatically smaller effect of the type of anion in the copper(II) salt and<br />

solution ionic strength and pH compared with initial copper(II) concentration and time<br />

duration of diffusion. On Fig. 7, it can be seen that for all anions with unit valence (CuCl2,<br />

Cu(NO3)2 a Cu(ClO4)2) the total diffusion flux is similar even if for example anion size differs<br />

mar<strong>ke</strong>dly. On the other hand, anions with higher valence (CuSO4 and Cu2P2O7) show<br />

inconsiderable decrease of total diffusion flux. The pH and ionic strength measurement<br />

excluded these properties as causer of this<br />

decrease, so it can be supposed that this shift<br />

can be explained as a consequence of higher<br />

charge of multivalent anions.<br />

Total diffusion flux is also affected by the<br />

copper solution pH. Fig. 8 shows that with<br />

higher acidity of the solution total diffusion<br />

flux decreases. This could be explained for<br />

example by well–known decrease of HA<br />

sorption ability in acid media (see [2]) or by<br />

the change of solution–gel equilibrium.<br />

Higher acidity affects salt hydrolysis and<br />

thus actual ion concentration in solution.<br />

total flux [mol.m -2 ]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y = 5.517E-03x + 2.250E+00<br />

R 2 = 9.950E-01<br />

y = 2.449E-03x + 1.343E+00<br />

R 2 = 9.994E-01<br />

y = 1.095E-03x + 3.265E-01<br />

R 2 = 9.999E-01<br />

0<br />

200 300 400 500 <strong>60</strong>0 700<br />

t 1/2 [s 1/2 ]<br />

Fig. 4 The total diffusion flux dependencies on the initial concentration of Cu 2+ and on the<br />

duration of the experiment<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 1 2 3 4 5 6<br />

τ [days]<br />

Fig. 5 The time shift of ε<br />

copper(II) ions concentration<br />

[mol/dm 3 gel]<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

experimental results<br />

(0.3 M; 3 days)<br />

calculated<br />

concentration profile<br />

(0.3 M; 3 days)<br />

0.1M<br />

0.3M<br />

0.6M<br />

0 10 20 30 40 50<br />

distance from the interface [mm]<br />

Fig. 6 Concentration profiles of Cu 2+<br />

in humic gel<br />

total flux [mol.m –2 ]<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

CuCl2<br />

0.614 0.620 0.<strong>60</strong>8<br />

Cu(NO3)2<br />

Cu(ClO4)2<br />

CuSO4<br />

0.476<br />

Cu2P2O7<br />

Fig. 7 Total diffusion flux for different<br />

copper(II) salts<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 226<br />

0.355


total flux [mol.m –2 ]<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

0.4<br />

0 1 2 3 4 5<br />

pH<br />

total flux [mol.m –2 ]<br />

0.4<br />

0 1 2 3 4 5 6<br />

Finally the total diffusion flux showed complex dependency on the ionic strength of<br />

copper(II) solution. For small NaCl additions, the decrease of total flux comes with the<br />

increase of ionic strength, on the contrary substantial increase appeares in higher NaCl<br />

concentration range. Former decrease can be caused by decrease of HA sorption ability,<br />

competitive diffusion of Na + ions or by affecting Cu 2+ solvation. The later increase is not very<br />

clear. It can be supposed that in the solution with high ionic strength bigger Cu 2+ clusters are<br />

solvated and easily took out from the solution.<br />

CONCLUSIONS<br />

This paper deals with the study of copper(II) ions non–stationary diffusion in humic gel.<br />

Main aim was to determinate the influence of individual copper(II) solution properties on the<br />

total diffusion flux across the solution–gel interface.<br />

It was proved that copper(II) ions diffusion across the phase interface is affected mainly by<br />

the initial concentration of copper in the solution and by the time duration of the diffusion.<br />

The influence of other solution properties, such as its pH or ionic strength as well as the type<br />

of copper(II) salt anion is far less important however show interesting dependencies.<br />

Although the applied apparatus was very simple and could be improved for following<br />

experiments (the higher solution volumes should be used) experimental data are fitted well by<br />

the theoretical calculations, so it can be said that this method presented itself suitable for the<br />

wide spectrum of diffusion experiments using humic gel as a very usefull natural–li<strong>ke</strong> model.<br />

REFERENCES<br />

[1] Klučáková, M.: Huminový gel jako model pro studium transportu těžkých kovů<br />

v přírodních systémech. CHEMagazín 2004, Vol. 14, No. 3, p. 8–9. ISSN 1210–7409<br />

[2] Klučáková, M., Kaláb, M., Pekař, M., Lapčík, L.: Study of Structure and properties of<br />

Humic and Fulvic Acids. II. Study of Adsorption of Cu + ions to Humic Acids Extracted<br />

from Lignite, J.Polym.Mater 19 (3) 2002<br />

[3] Malenovská, M.: Studium difúzních procesů v huminových gelech. 55 stran. Diplomová<br />

práce na VUT, FCH Brno 2005. Vedoucí diplomové práce Ing. Martina Klučáková<br />

PhD.<br />

[4] Sedláček, P..: Difúze kovových iontů v huminových gelech. 70 stran. Diplomová práce<br />

na VUT, FCH Brno 2006. Vedoucí diplomové práce Doc. Ing. Martina Klučáková PhD.<br />

[5] Klučáková, M., Pekař, M.: Diffusion of Metal Cations in Humic Gels. In Humic<br />

Substances: Nature´s most Versatile Materials (E. Ghabbour, G. Davies Eds.), Francis<br />

& Taylor, New York, 2004, p. 263–74<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

ionic strength [mol.dm –3 ]<br />

Fig. 8 Total diffusion flux dependency on solution pH (left) and ionic strength (right)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 227


LIVING RADICAL POLYMERIZATIONS INITIATED WITH<br />

SILSESQUIOXANES<br />

Author: Ing. Ondřej Smrtka – 3 rd year of DSP<br />

Supervisor: Prof. RNDr. Josef Jančář, CSc.<br />

Brno University of Technology, Faculty of Chemistry, Institute of Material Chemistry<br />

Purkyňova 118, 612 00 Brno, Czech Republic; email: smrtka@fch.vutbr.cz<br />

INTRODUCTION<br />

It has been discovered that small variations in molecular structure at the nano-meter scale<br />

level allow substantial changes in macroscopic behavior of nanostructured systems.<br />

Nanocomposites with polymeric matrix belong among the most intensively investigated<br />

materials since they promise extensive industrial and biomedical applications.<br />

The polyhedral oligomeric silsesquixanes (POSS) can be included into the large group of<br />

nano-particles used for nanocomposite preparation. POSS, due to their well-defined structure,<br />

are considered to simulate the surface of silica nano-particles as the smallest possible silica<br />

particle. Nanocomposites containing POSS nanoparticles are considered extremely interesting<br />

class of nanostructure organic-inorganic materials.<br />

Polyhedral oligomeric silsesquioxans are compounds of general formula (RSiO1.5)x, where<br />

x is an even number higher than 4, mostly being 8. R is any of large number of organic<br />

groups, or e.g. hydrogen or halogen atom.<br />

R<br />

R<br />

O<br />

Si<br />

O<br />

R<br />

Si<br />

O<br />

O<br />

Si<br />

O<br />

R<br />

Si<br />

O<br />

Fig. 1: Polyhedral oligomeric silsesquioxan (POSS)<br />

POSS are prepared preferentially by hydrolytic condensation of trifunctional silanes [1].<br />

Organic groups are carried into the molecule either directly during the synthesis (as the fourth<br />

non-reactive group of the silane precursor), or by a transformation of existing groups [2].<br />

Monofunctional POSS are synthesized from incompletely condensed molecules of<br />

silsesquioxane by condensation of another silane with appropriate functional group [3].<br />

POSS particles can be incorporated to the polymeric materials directly by blending with<br />

polymer as the additive, or as the component of polymeric chain. The POSS containing<br />

macromolecules can be synthesized using monomers with POSS pendant groups, or<br />

afterwards, by grafting to the polymer using various condensation or addition reactions (e.g.<br />

hydrosilylation). Another way how to connect POSS with the polymer chain is to use it as the<br />

initiator for ATRP.<br />

ATRP (Atom Transfer Radical Polymerization) has been developed in 1995 by<br />

Matyjaszewski [4]. It is based on rapid attainment of dynamic equilibrium between low<br />

amount of growing free radicals and much higher amount of dormant species. Because the<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 228<br />

O<br />

Si<br />

O<br />

O<br />

Si<br />

R<br />

R<br />

O<br />

O<br />

Si<br />

Si<br />

O<br />

R<br />

R


number of free radicals is very low, the termination is reduced and the polymerization proves<br />

living character.<br />

P –X + Cu –Y/2L ⎯⎯→ P + M + X–Cu –Y/2L<br />

I kakt<br />

•<br />

II<br />

n ←⎯ ⎯ k<br />

n<br />

deakt<br />

Pn + Pm<br />

Fig. 2: Scheme of ATRP<br />

The dormant species are mostly alkylhalides, from which the halogen atom is transferred to<br />

catalyst (copper halide + organic ligand); the specie then becomes a radical, efficient to<br />

propagate radical polymerization. The oxidation state of copper increases by one with<br />

admitting the halogen; with the transfer back to the polymer the original oxidation state is<br />

retrieved. Other transition-metal salts can be used as the ATRP catalyst, with the requirement<br />

to the metal center to have at least two readily accessible oxidation states separated by one<br />

electron.<br />

A variety of monomers have been successfully polymerized using ATRP, typical<br />

monomers include styrenes, methacrylates, acrylamides and acrylonitrile.<br />

In ATRP, alkylhalides are typically used as the initiator. A variety of transition-metal<br />

complexes have been studied as ATRP catalyst, but copper catalysts are superior in ATRP in<br />

terms of versatility and cost. Presence of organic ligand is necessary for dissolution of copper<br />

salt in reaction mixture. Above all, the nitrogen-based ligands are used (e.g. bipyridine,<br />

PMDETA, HMTETA).<br />

Initiation of ATRP with the POSS-based initiator has not been intimately described so far,<br />

only some notes were published [5, 6]; however initiation of ATRP with polysiloxane-based<br />

initiators has been described [7, 8] much more and due to the silimilar structures the depicted<br />

techniques might be used also for POSS-based initiators.<br />

EXPERIMENTAL<br />

Materials used<br />

Styrene was distilled from calcium hydride prior to use. Tetrahydrofurane was distilled<br />

from purple sodium/benzophenon solution. Copper (I) bromide was stirred in glacial acetic<br />

acid overnight, decanted, then washed with absolute ethanol and diethyl ether and vacuum<br />

dried at <strong>60</strong>°C. Ethyl-α-bromo-isobutyrate (EBIB), p-dimethoxybenzene (D<strong>MB</strong>), POSShydride,<br />

allyl-bromoisobutyrate, pentamethyldiethylene triamine (PMDETA), and Karstedt<br />

catalyst were used as received.<br />

Synthesis of POSS-Br<br />

POSS-Br was synthesized using hydrosilylation reaction. 1.37 g (1.44 mmol) of POSS-H,<br />

16 ml dried THF, 0,24 ml (1.44 mmol) allyl-α-bromoisobutyrate and 55μL of Karstedt<br />

catalyst solution in xylene (3 wt.%, 3,64 μmol) were placed into a 50 mL two-neck roundbottom<br />

flask under nitrogen blan<strong>ke</strong>t and stirred. The flask was fit with rubber septum and a<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 229<br />

kp<br />

k´t<br />

P • m<br />

kt<br />

Pn+m


eflux condenser equipped with bubble flask filled with silicon oil. Then 55μL of Karstedt<br />

catalyst solution in xylene (3 wt.%, 3,64 μmol) was injected to the reaction flask and the<br />

mixture was heated in 80 °C oil bath under reflux for 24 hours. THF was evaporated and the<br />

product POSS-Br was vacuum dried.<br />

R<br />

R<br />

R<br />

Si<br />

O<br />

O<br />

Si O<br />

O Si<br />

O<br />

R<br />

Si<br />

O<br />

O<br />

R<br />

O<br />

Si<br />

Si O<br />

O Si<br />

O<br />

O<br />

Si<br />

R<br />

H<br />

C<br />

H 3<br />

R<br />

+<br />

C<br />

H 2<br />

RH3<br />

= C<br />

O<br />

O<br />

CH 3<br />

Br<br />

CH 3<br />

Karstedtův Karstedt's katalyzátor catalysator catalyst<br />

THF, reflux<br />

24 hours<br />

Fig. 3: Synthesis of POSS-Br initiator<br />

Polymerizations<br />

Polymerization 1:<br />

A typical polymerization is as follows: 31 mg CuBr was placed into a 50 mL double-neck<br />

flask; the flask was evacuated and filled with nitrogen. Under a nitrogen blan<strong>ke</strong>t 5 mL of<br />

styrene, 40 μL of PMDETA and 4.6 g of p-dimethoxybenzene was added. The mixture was<br />

stirred until a homogenous solution formed and was placed into a 120°C oil bath under<br />

nitrogen. After heating to the reaction temperature 0,48 g of POSS-Br (initiator) was added.<br />

The solution turned dark green as the reaction began. Periodically, small amounts of reaction<br />

mixture were removed for kinetic and molecular weight analysis (conversion was<br />

determinated by weight analysis, molecular weight of polymers was determined using gel<br />

permeation chromatography). Molar ratios: Styrene:POSS-Br:CuBr:PMDETA -<br />

100:1:0.5:0.5.<br />

Polymerization 2:<br />

This polymerization is similar to the polymerization 1, except the POSS-Br initiator is<br />

replaced with 65 μL of ethyl-α-bromo-isobutyrate, which was injected to the hot mixture via<br />

rubber septum. Molar ratios: Styrene:EBIB:CuBr:PMDETA - 100:1:0.5:0.5.<br />

RESULTS<br />

Reason for using POSS as an initiator of ATRP is to get a polystyrene macromolecule with<br />

one bulky POSS group at one of the chain ends; the initiator of ATRP remains the inseparable<br />

part of the macromolecule.<br />

Molecular weight plots prove living character of polymerizations; molecular weight grows<br />

linearly with conversion, with conversion growing to almost 100%. Linear dependence of<br />

conversion on time in semi logarithmic coordinates (Fig. 5) shows the first-order kinetic with<br />

respect to monomer.<br />

From the molecular weight plot of polymerization 1 (Fig. 6) it is obvious, that initiation<br />

efficiency is low and only about one half of the POSS initiator molecules is used for<br />

initiation; this causes the molecular weight to be twice as high as is should be according to the<br />

theoretical value determined from molar ratio monomer:initiator. In contrast, polymerization<br />

2 initiated with low molecular weight initiator EBIB behaves in accordance with theory<br />

(Fig. 7).<br />

R<br />

R<br />

O<br />

Si<br />

O<br />

R<br />

Si<br />

O<br />

O<br />

Si<br />

O<br />

R<br />

Si<br />

O<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 230<br />

O<br />

Si<br />

O<br />

O<br />

Si<br />

R<br />

R<br />

O<br />

O<br />

Si<br />

Si<br />

O<br />

R<br />

O<br />

O<br />

CH 3<br />

Br<br />

CH 3


Differences can be caused by several reasons; no one of these reasons was studied in this<br />

work in detail, so the following ideas must be ta<strong>ke</strong>n as a speculations.<br />

One factor could be different solubility of catalyst system due to the presence of different<br />

initiator in reaction mixture; it is also important to rule out the possibility of conventional free<br />

radical polymerization taking place to form polystyrene homopolymer, although the catalyst<br />

system should inhibit this reaction; part of POSS based initiator molecules could be<br />

deactivated with some side reaction, or there is just a steric block for approach of molecules<br />

of catalyst or monomer to the bulky POSS molecule; these ideas must be ta<strong>ke</strong>n into<br />

consideration in subsequent work on this project.<br />

Convers ion [%]<br />

ln([M]0/[M]t)<br />

M<br />

100<br />

2<br />

1<br />

80<br />

<strong>60</strong><br />

40<br />

20<br />

0<br />

0 200 400 <strong>60</strong>0 800 1000<br />

t [min]<br />

Fig. 4: Kinetic plots<br />

0<br />

0 100 200 300 400 500<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

t [min]<br />

Fig. 5: Semilogarithmic kinetic plots<br />

0<br />

1.00<br />

0 20 40 <strong>60</strong> 80 100<br />

Co nve rs io n [%]<br />

1.70<br />

1.<strong>60</strong><br />

1.50<br />

1.40<br />

1.30<br />

1.20<br />

1.10<br />

D<br />

Polymerization 1<br />

Polymerization 2<br />

Polymerization 1<br />

Polymerization 2<br />

M(th e o r.)<br />

Fig. 6: Molecular weight plot for polymerization 1<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 231<br />

M<br />

D


CONCLUSION<br />

M<br />

12000<br />

10000<br />

8000<br />

<strong>60</strong>00<br />

4000<br />

2000<br />

0<br />

0 20 40 <strong>60</strong> 80 100<br />

Conve rs ion [%]<br />

1.3<br />

1.25<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

D<br />

M(theor.)<br />

Fig. 7: Molecular weight plot for polymerization 2<br />

ATRP has been employed to produce polystyrene macromolecules containing polyhedral<br />

oligomeric silsesquioxanes (POSS). Polymerizations initiated with POSS prove slower<br />

growth of polymers than polymerizations initiated with low-molecular initiators, and also<br />

lower initiation efficiency, which causes the molecular weight to be much higher than<br />

expected. Further work is underway to optimize the conditions of the polymerizations with<br />

respect to the efficiency of initiation, polydispersity of polymer and polymerization rate.<br />

REFERENCE<br />

[1] Agaskar P.A., Inorg. Chem., 30 (1991), p. 2707-2708<br />

[2] Zhang C., Laine R.M., J. Organomet. Chem., 521 (1996), p. 199-201<br />

[3] Lichtenhan J.D. et al., Mat. Res. Soc.Symp. Proc., 435 (1996), p. 3-11<br />

[4] Wang J.S., Matyjaszewski K., J. Am. Chem. Soc., 117 (1995), p. 5614-5615<br />

[5] Pyun J. et al., J. Am. Chem. Soc. 123 (2001), p. 9445-9446<br />

[6] Matyjaszewski K. et al., ACS Symp. Ser. 729 (2000), p. 270-283<br />

[7] Brown D.A., Price G.J., Polymer 42 (2001), p. 4767-4771<br />

[8] Miller P.J., Matyjaszewski K., Macromolecules 32 (1999), p. 87<strong>60</strong>-8767<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 232<br />

M<br />

D


MEASUREMENT OF THERMOPHYSICAL PROPERTIES OF PMMA<br />

BY PULSE TRANSIENT METHOD<br />

Ing. Pavla Štefková<br />

Supervisor: Prof. Ing. Oldřich Zmeškal, CSc.<br />

Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of<br />

Technology, Purkynova 118, 612 00 Brno, Czech Republic, email: stefkova@fch.vutbr.cz<br />

INTRODUCTION<br />

Polymethyl methacrylate (PMMA) is the synthetic polymer of methyl methacrylate. This<br />

thermoplastic and transparent plastic was developed in 1928 in various laboratories and was<br />

brought to mar<strong>ke</strong>t in 1933 by the German Company Rohm and Haas. This material is used as<br />

the standard reference material for thermal conductivity measurements in metrology.<br />

Chemical analysis and materials testing are becoming ever more important as science,<br />

trade and society are getting more complex worldwide. The number and significance of<br />

decisions based on the results of chemical analysis and materials’ testing is ever increasing in<br />

all spheres of life. For this purpose results of analysis and testing have to be reliable and<br />

comparable as well as acceptable worldwide. The use of certified reference materials is an<br />

efficient and proper tool to achieve these goals [1].<br />

Measurement of the thermophysical properties of PMMA shows that some effects<br />

influencing the measurement process have to be known when one want to use it as laboratory<br />

reference or standard reference material (SRM). This material should be used for validation of<br />

apparatuses upon well-known experimental conditions, to obtain reliable data [2].<br />

The pulse transient method allows investigating the thermal diffusivity, specific heat and<br />

thermal conductivity within single measurement. The principle of this method and the<br />

arrangement of the measured sample are shown in Figure 1. The heat pulse is generated by<br />

the passing of the electrical current through the plane electrical resistor made of metallic foil.<br />

A sensor measures the time development of the temperature field (temperature response) in a<br />

point of the tested body. Then the temperature is characterized by a function [3]<br />

⎟ 2<br />

Q S ⎛ h ⎞<br />

ΔT =<br />

⋅ exp ⎜<br />

⎜−<br />

. (1)<br />

( E−<br />

D)<br />

/ 2<br />

cp<br />

ρ ( 4π<br />

at<br />

) ⎝ 4a<br />

t ⎠<br />

The thermophysical parameters are calculated from the characteristic parameters of the<br />

temperature response (time and the maximum of temperature response to the heat pulse).<br />

The thermal diffusivity is given by<br />

2<br />

h<br />

a =<br />

2tmax f a<br />

the specific heat by<br />

2<br />

h<br />

=<br />

2(<br />

E − D)<br />

tmax<br />

, (2)<br />

Q<br />

cp = ⋅<br />

ρ ΔTmaxh<br />

and thermal conductivity by<br />

f c<br />

=<br />

2π exp( 1)<br />

Q<br />

E−<br />

D<br />

ρ ΔTmaxh<br />

( E −D<br />

) / 2<br />

⎛ E − D ⎞<br />

⋅ ⎜<br />

2 exp( 1)<br />

⎟<br />

⎝ π ⎠<br />

(3)<br />

Q<br />

λ = cp ρ a =<br />

E−<br />

D−2<br />

2(<br />

E − D)<br />

ΔTmaxt<br />

maxh<br />

( E −D<br />

) / 2<br />

⎛ E − D ⎞<br />

⎜<br />

2 exp( 1)<br />

⎟ .<br />

⎝ π ⎠<br />

(4)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 233


It is possible to definite the coefficient fa (fractal dimension D respectively) for every point of<br />

the experimental dependence<br />

2ln(<br />

ΔTmax<br />

ΔT<br />

)<br />

f a = E − D =<br />

. (5)<br />

ln( t t ) + ( t t −1)<br />

t t<br />

specimen<br />

tm t m<br />

Figure 1 The principle of measurement of thermophysical parameters by the pulse transient<br />

method.<br />

max<br />

planar source thermocouple<br />

current current pulse pulseplanar<br />

source<br />

h<br />

thermocouple<br />

I I<br />

t t0 o<br />

I II III<br />

max<br />

T<br />

temperature response response<br />

EXPERIMENT AND RESULTS<br />

For measuring of the responses to the pulse heat the Thermophysical Transient Tester 1.02<br />

was used. It was developed at the Institute of Physics, Slovak Academy of Science. The<br />

specimen of 30 mm in diameter and 6 mm thick was used for the pulse transient method. Its<br />

density is ρ = 1184 kg m –3 . Thermophysical properties of material were measured in air.<br />

1. Comparison between experimental and recommended data of the thermophysical<br />

parameters of PMMA measured at 25 °C<br />

The pulse width of 4 – 40 s, the heat power of 0.18 up to 3.03 W was used and adequate<br />

the pulse heat energy of 3000 – 42000 J m –2 was obtained. The typical heat energy of pulse<br />

was about 13000 J m –2 that is low enough to avoid temperature damage of this material. The<br />

temperature response ΔTmax in the range of 0.1 up to 1.4 °C was obtained. Analysis of these<br />

sets of data was carried out to find optimal experimental conditions.<br />

ΔT (°C)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

T m<br />

0 150 300 450 <strong>60</strong>0 750<br />

t (s)<br />

15065 J m<br />

20197<br />

23753<br />

28706<br />

40081<br />

-2<br />

J m -2<br />

J m -2<br />

J m -2<br />

J m -2<br />

Figure 2 Temperature responses of PMMA measured by the PTM for different heat powers<br />

and various pulse widths; see Table 1.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 234<br />

ΔTm


The typical time responses of temperature for the rectangle (Dirac) pulse of different input<br />

power of heat with various pulse widths are presented in Figure 2. The heat power and width<br />

of pulse were changed for find the optimal measurement conditions and subsequently<br />

determine the reliable data of thermal diffusivity, specific heat and thermal conductivity of<br />

studied material. These results are summarized in Table 1.<br />

Table 1 Thermophysical parameters of PMMA measured in optimum exp. conditions.<br />

Q/S (J m –2 ) P (W) ΔTmax (°C) tmax (s) a (m 2 s –1 ) cp (J kg –1 K –1 ) λ (W m –1 K –1 )<br />

13 069 0.58 0.307 144 0.113 1425.0 0.190<br />

17 325 0.67 0.398 146 0.110 1457.1 0.190<br />

17 267 0.67 0.397 148 0.109 1456.9 0.188<br />

19 789 0.76 0.4<strong>60</strong> 144 0.112 1440.5 0.190<br />

17 990 0.92 0.424 148 0.113 1420.0 0.190<br />

20 197 1.21 0.477 141 0.120 1419.1 0.202<br />

23 753 1.75 0.563 139 0.124 1414.1 0.207<br />

28 706 2.88 0.680 141 0.123 1415.2 0.207<br />

40 081 2.88 0.955 148 0.115 1405.6 0.192<br />

(0.115 ± 0.005) (1428.2 ± 17.8) (0.195 ± 0.007)<br />

The thermophysical parameters were calculated from the parameters of the temperature<br />

response to the heat pulse. Typical temperature increases for reliable data were between<br />

0.3 °C and 1.0 °C that were equivalent to the heat powers of 0.58 W up to 2.88 W and to the<br />

heat energies of 13000 J m –2 up to 40000 J m –2 .<br />

The pulse transient method gives data within the experimental error less than 4.35 % for<br />

thermal diffusivity, less than 1.25 % for specific heat and 3.59 % for thermal conductivity.<br />

Average values a = 0.115 m 2 s –1 , cp = 1428.2 J kg –1 K –1 and λ = 0.195 W m –1 K –1 are in<br />

reasonable coincidence with the recommended values, see Table 2.<br />

Table 2 Recommended values of thermophysical parameters of PMMA at 25 °C [4].<br />

D (–)<br />

ρ (kg m –3 ) a (m 2 s –1 ) cp (J kg –1 K –1 ) λ (W m –1 K –1 )<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

1188 0.112 1450.0 0.193<br />

0 50 100 150 200 250<br />

t (s)<br />

15065 J m<br />

20197<br />

23753<br />

28706<br />

40081<br />

-2<br />

J m -2<br />

J m -2<br />

J m -2<br />

J m -2<br />

Figure 3 Fractal dimension of the heat distribution in the specimen determined from<br />

increased part of characteristics.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 235


The coefficient fa (fractal dimension D respectively) of the fractal heat source for every<br />

point of the experimental dependence was calculated using the Eq. (5).<br />

The fractal heat source characterizes the distribution of the temperature in the specimen in<br />

specific time. The character of these dependences differs for different thicknesses of measured<br />

sample. Dependencies of the fractal dimension on the time are plotted in Figure 3.<br />

Generally we can say that all measured results were started from the value of the fractal<br />

dimension D ≈ 3 and then they were saturated at the some constant value of the fractal<br />

dimension. This value of the fractal dimension depends on the losses during the transport of<br />

heat throw the sample.<br />

2. Study of thermophysical parameters of PMMA at 25 °C and 30 °C<br />

The measurements were carried out with the sample temperature stabilized at 25 °C and<br />

30 °C in atmosphere of air and in the same experimental conditions. The temperature<br />

response occurred in the range of 0.1 up to 1.4 °C. Experimental data was obtained for the<br />

pulse width of 4 – 40 s and the pulse heat energy of <strong>60</strong>00 up to 3<strong>60</strong>00 J m –2 .<br />

a (mm 2 s -1 )<br />

c p (J kg -1 K -1 )<br />

λ (W m -1 K -1 )<br />

0.17<br />

0.16<br />

0.14<br />

0.13<br />

0.11<br />

15705000<br />

11000 17000 23000 29000<br />

1510<br />

1450<br />

1390<br />

1330<br />

0.28<br />

0.26<br />

0.24<br />

0.22<br />

0.20<br />

5000 11000 17000 23000 29000<br />

5000 11000 17000 23000 29000<br />

Q /S (J m -2 )<br />

25 °C<br />

30 °C<br />

Figure 4 Thermophysical parameters of PMMA measured at 25 °C and 30 °C.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 236


Figure 4 illustrates the typical dependencies of the thermophysical parameters of PMMA<br />

on the heat energy for the heat power 1.75 W. This figure shows that thermal diffusivity of<br />

PMMA slightly decreases with the increasing temperature as well as thermal conductivity. On<br />

the contrary, the specific heat increases with the increasing temperature of measured sample.<br />

CONCLUSIONS<br />

This paper presents the results of the measurements in optimal experimental conditions and<br />

of the study of the dependency of the thermophysical parameters on the temperature of<br />

studied specimen that were obtained on PMMA. The measurements were made in air. To<br />

interpret the outcomes, the simplified heat conductivity model is used [3]. Results show the<br />

image of heat distribution in the specimen, in various time intervals after the heat supply from<br />

the source.<br />

The analysis of experimental data measured by the pulse transient method for various heat<br />

power and pulse width of measurement was performed on polymethyl methacrylate (perspex).<br />

The optimization of the procedure of conditions metering was used to find the optimal range<br />

of measuring process at 25 °C where data stability interval exists, e.g. the values of<br />

thermophysical parameters are reliable. The value of thermal diffusivity calculated from the<br />

data stability interval was determined as 0.115 m 2 s –1 , 1428.2 J kg –1 K –1 for the specific heat<br />

and the value of thermal conductivity was calculated as 0.195 W m –1 K –1 and they are close to<br />

the recommended values; see Table 2. The pulse transient method gives data within the<br />

experimental error less than 4.35 % for thermal diffusivity, less than 1.20 % for specific heat<br />

and 3.59 % for thermal conductivity. These evaluations could be used for more accurate<br />

determination of the thermal parameters of studied (homogeneous and heterogeneous)<br />

matters.<br />

Data measured on PMMA clearly show difference of thermophysical parameters measured<br />

in different temperatures for the same specimen and experimental conditions. Thermal<br />

diffusivity of PMMA slightly decreases with the increasing temperature as well as thermal<br />

conductivity. On the contrary, the specific heat increases with the increasing temperature.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by the Grant Agency of the Czech Republic, contract No.<br />

2239/2006/G1.<br />

REFERENCES<br />

[1] Steiger T., Pradel R.: Update on COMAR – the Internet Database for Certified<br />

Reference Materials. Journal of Metrology Society of India. Vol. 19. No. 4. 2004.<br />

p. 203-207.<br />

[2] Boháč V., Kubičár L.: Investigation of Surface Effects on PMMA by Pulse<br />

Transient Method. In Thermophysics 2001, Meeting of the Thermophysical<br />

Society, Working Group of the Slovak Physical Society. Račkova dolina. October<br />

23, 2001. p. 21-27. ISBN 80-8050-491-1.<br />

[3] Stefkova, P., Zmeskal, O., Capousek, R. Study of Thermal Field in Composite<br />

Materials. In Complexus Mundi. WS. London, World Scientific. 2006. p. 217 –<br />

224. ISBN 981-256-666-X.<br />

[4] Vohlídal J., Julák A., Štulík K.: Chemické a analytické tabulky. Grada Publishing<br />

1999; 1. vydání; Praha 1999; 652 s. ISBN 80-7169-855-5.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 237


THE ANALYSIS OF GAMMA LINOLENIC ACID IN EVENING<br />

PRIMROSE OIL<br />

Hana Štoudková, 2.ročník DSP<br />

Školitel: doc. Ing. Miroslav Fišera, CSc.<br />

<strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong>, Ústav potravinářské chemie<br />

a biotechnologie, Purkyňova 118, 61200 Brno, email: stoudkova@fch.vutbr.cz<br />

INTRODUCTION<br />

Evening primrose oil (Oenothera biennis L.) is rich source of ω-6 series of polyunsaturated<br />

fatty acids. One of these fatty acids is gamma linolenic acid – GLA (cis-6,cis-9,cis-12octadecatrienoic<br />

acid). The content of GLA is the single most important parameter to be<br />

determined [1,2].<br />

The oil content of evening primrose seeds varies with such factors as the age of the seed,<br />

cultivar and growth conditions, and typically varies between 18 and 25 %. The oil consists of<br />

about 98 % triacylglycerols, with small amounts of other lipids (free acids, diacylglycerols,<br />

phospholipides) and about 1–2% unsaponifiable matter, of which sterols and tocopherols are<br />

of some importace [1].<br />

Evening primrose oil is used in increasing amount in nutritional and pharmaceutical<br />

preparations. Essential fatty acids are vital components of all membrane structures in the body<br />

and there are also involved in the production of prostaglandins, which regulate the immune<br />

system. A prostaglandin deficiency can cause skin rashes, hair loss, lowered immunity [3,4].<br />

One of the most important unsaturated fatty acids involved in beneficial prostaglandin<br />

production is gamma linolenic acid.<br />

Gamma linolenic acid and evening primrose oil have been the focus of many medical<br />

studies. Some of these studies claim that evening primrose oil supplementation boost natural<br />

immunity, help lower cholesterol levels, reduce blood pressure, can help ease premenstrual<br />

syndrome, eczema, diabetes, osteoporosis [3,4].<br />

MATERIALS AND METHODS<br />

Samples<br />

A total of eight evening primrose oils were tested. Samples were obtained from Aromatica,<br />

v.o.s. and the other producers. Common lipophilic compounds with stabilized properties were<br />

chosen as antioxidants: coenzyme Q10, β-carotene, vitamin E and Origanox - extract of<br />

Origanum Vulgare containing flavonoids. Various ways of storage were chosen for<br />

assessment of stability of oils. Maximum time of storage was 183 days from opening the vial<br />

with sample.<br />

Methanol esterification method<br />

The fat sample (1,0 g) was saponified with 15 ml methanolic solution of potassium<br />

hydroxide (c = 0,5 mol⋅dm -3 ) for 30 minutes in distilling flask with condenser and was<br />

esterified after neutralization by sulphuric acid on methyl orange for 30 minutes again.<br />

After cooling methyl esters were sha<strong>ke</strong>n with 10 ml of heptane three times. The extract<br />

was dried by anhydrous sodium sulphate and filtered to a 50 ml volumetric flask again. Both<br />

heptane portions were rinsed with 20 ml of water twice. The extract was dried by anhydrous<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 238


sodium sulphate and filtered to a 50 ml volumetric flask and filled up to the mark with<br />

heptane [5].<br />

GC analysis<br />

The GC method – gas chromatography was used for identification of the fatty acids. So<br />

prepared heptane methyl esters solutions were injected to gas chromatograph using<br />

autosampler. The compounds were identified according to available standards.<br />

GC conditions: gas chromatograph TRACE GC (ThermoQuest Italia S. p. A., I) equipped<br />

with flame ionization detector, split/splitless injector and capillary column SPTM 25<strong>60</strong><br />

(100 m × 0,25 mm × 0,2 μm) with the temperature programme <strong>60</strong> °C held for 2 min, ramp<br />

10 °C⋅min -1 up to 220 °C, held for 20 min. The injector temperature was 250 °C and the<br />

detector temperature was 220 °C. The flow rate of the carrier gas N2 was 1,2 ml⋅min -1 .<br />

RESULTS AND DISCUSSION<br />

Gamma linolenic acid (GLA) is found naturally to varying extents in the fatty acid fraction<br />

of some plant seed oils. The content of GLA is the one of the most important parameter for<br />

tested evening primrose oils. It is comprised of 18 carbon atoms and three double bonds.<br />

Double bonds can be cause of the reduce GLA and it leads to changes GLA during time of<br />

storage and used antioxidants.<br />

Virgin evening primrose oils<br />

Virgin evening primrose oils samples (Arnaud, Gustav Heess) were stored at 4 °C during<br />

time of storage. Evening primrose oil Arnaud was also stored under laboratory conditions.<br />

The percentage numbers GLA are shown in producer´s certificates (Arnaud – minimal 9 %,<br />

Gustav Heess - in range from 8 to 12 % GLA). The GLA amount changed significantly<br />

during storage. In the case of virgin evening primrose oil Arnaud the measure values GLA<br />

were lower for up to 1 %. In the case evening primrose oil sample Gustav Heess the content<br />

of GLA was about 8 % and it´s in the certificate range.<br />

No-stabilized sample of evening primrose oil which was held on laboratory conditions<br />

recorded a considerable loss GLA (decrease of the GLA content – 2,9 %).<br />

Commercially produced oil samples<br />

Samples of evening primrose oils with antioxidants (vitamin E, vitamin E and coenzyme<br />

Q10, vitamin E and β-carotene) obtained from Aromatica, v.o.s. The GLA content decreased<br />

during time of storage slightly. The loss GLA was observed independently of added kind,<br />

combination or amount antioxidants.<br />

Dependent the content of GLA on time of storage three samples commercially produced<br />

evening primrose oils with the addition of antioxidants is shown in Fig. 1. In the case evening<br />

primrose oil with coenzyme Q10 a vitamin E a decrease was 0,6 % GLA, the sample with<br />

β-carotene and vitamin E 1,3 % GLA and in the case evening primrose oil with vitamin E a<br />

loss was 1,0 % GLA. The decrease GLA related to the total content of fatty acids.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 239


GLA (%)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

coenzyme Q10 + vitamin E β-carotene + vitamin E vitamin E<br />

1 23 52 91 106 147 183<br />

time (days)<br />

Fig. 1: Variation over time of storage in gamma linolenic acid content of commercially<br />

produced evening primrose oils with antioxidants<br />

Laboratory prepared samples<br />

Two samples (evening primrose oil with Origanox TM and evening primrose with mixture<br />

antioxidants coenzyme Q10, β-carotene and vitamin E) were laboratory prepared. In the case<br />

both of samples the GLA content changed slightly over time of storage (Fig. 2).<br />

GLA (%)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

coenzyme Q10 + β-carotene + vitamin E Origanox<br />

1 30 51 84 125 161 183<br />

time (days)<br />

Fig. 2: Variation over time of storage in gamma linolenic acid content of laboratory<br />

prepared evening primrose oils with antioxidants<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 240


Compare all tested evening primrose oils<br />

The GLA content was similar for the all tested evening primrose oils and range of GLA<br />

was from 5 to 11 % of total fatty acids. The content of GLA decreased gradually during time<br />

of storage. Compare of the GLA content in various tested evening primrose oils at first and<br />

last (183) day of storage is shown in Table 1.<br />

Maximum level GLA recorded virgin evening primrose oil Arnaud in 147 day of storage<br />

(10,40 ± 0,17 %). Minimal amount GLA was found in the sample evening primrose oil at 183<br />

day of storage, which was stored under laboratory conditions (5,65 ± 0,06 %). Evening<br />

primrose oil with antioxidant Origanox changed minimally. Whereas, most losses recorded<br />

no-stabilized evening primrose oil which was hold on laboratory conditions.<br />

Table 1: The content of GLA in evening primrose oils (first and last day of storage)<br />

Time of storage [days]<br />

Evening primrose oils<br />

1 183<br />

GLA [%] sr [%] GLA [%] sr [%]<br />

+ Q10 + vitamin E 8,00 ± 0,10 1,27 7,39 ± 0,03 0,38<br />

+ β-carotene + vitamin E 8,47 ± 0,09 1,07 7,24 ± 0,10 1,39<br />

+ vitamin E 8,77 ± 0,00 0,01 7,75 ± 0,04 0,53<br />

+ Q10 + β-carotene + vitamin E 7,26 ± 0,18 2,44 7,00 ± 0,06 0,86<br />

+ Origanox 8,84 ± 0,04 0,43 8,72 ± 0,18 2,07<br />

virgin, Arnaud 8,50 ± 0,14 1,63 8,01 ± 0,13 1,66<br />

virgin, Gustav Heess 8,06 ± 0,05 0,68 7,63 ± 0,02 0,26<br />

virgin, laboratory conditions 8,55 ± 0,00 0,04 5,65 ± 0,06 1,01<br />

CONCLUSION<br />

Primrose is a pure natural vegetable oil processed from the seeds of the evening primrose<br />

plant. Evening primrose oil is higher in total essential fatty acids than any other vegetable oil.<br />

The oil contains 74 % linolenic acid (LA) and 8-10 % gamma linolenic acid (GLA).<br />

The purpose of this work was to find out and compare the influences of used antioxidants<br />

and time of storage in respect of the content of fatty acids in evening primrose oil. Results of<br />

gas chromatography were statistically compared to determine the relationship between the<br />

stability of oils and the type of the antioxidant or the way of storage.<br />

A total of eight evening primrose oils (virgin or with addition of antioxidants - coenzyme<br />

Q10, β-carotene, vitamin E and Origanox) were considered.<br />

Various ways of storage were chosen for assessment of stability of oils. Methanol<br />

esterification method using potassium hydroxide catalysis was applied to oil for preparing<br />

fatty acids methyl esters. Gas chromatography (GC) was applied for the determination of fatty<br />

acids content (especially gamma linolenic acid - GLA). The compounds were identified by<br />

their retention times relative to authentic standards<br />

Gamma linolenic acid was present most often in concentration 7 – 9 % of total fatty acids<br />

in the samples of evening primrose oils. The content of GLA decreased gradually depending<br />

on increasing time of storage. Evening primrose oil, which was stored under laboratory<br />

conditions, showed the greatest losses GLA. Whereas, sample evening primrose oil<br />

containing Origanox had minimal changes. It was observed great dissimilarity GLA during<br />

another way of storage of oils with addition antioxidants. Virgin evening primrose oils have<br />

comparable levels of GLA.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 241


Addition of antioxidants, their amounts or combination have no influence on changes in<br />

oils during the storage. However, the way of storage can influence on the content of GLA.<br />

REFERENCES<br />

[1] Christie, W.W.: The analysis of evening primrose oil. Industrial Crops and Products,<br />

1999, vol. 10, pp. 73-83. ISSN 0926-6690.<br />

[2] Court, W. A., Hendel, J.G., Pocs, R.: Determination of fatty acids and oil content of<br />

evening primrose (Oenothera biennis L.). Food Reearch International, 1993, vol. 26,<br />

pp. 181-186. ISSN 0963-9969.<br />

[3] Fan,Y.-Y., Chapkin, R.S.: Importance of dietary γ-linolenic acid in human health and<br />

nutrition. Recent Advantages in Nutritional Science, 1998, vol. 128, pp.1411-1414.<br />

ISSN 0022-3166.<br />

[4] Horrobin, D. F.: Nutritional and medical importance of gamma-linolenic acid. Progress In<br />

Lipid Research, 1992, vol. 31, pp. 163-194. ISSN 0163-7827.<br />

[5] ČSN EN ISO 5509: Animal and vegetable fats and oils – preparing of methyl esters of<br />

fatty acids, 2000.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 242


IMPROVED FLUORIMETRIC DETERMINATION OF Al, Ga AND In<br />

BY MICELLE ENHANCED 8-HYDROXYQUINOLINE -5-SULPHONIC<br />

ACID COMPLEX<br />

Šimon Vojta, 3. ročník DSP<br />

Prof.RNDr.Lumír Sommer, DrSc.<br />

Faculty of Chemistry, Brno University of Technology, Institute of Chemistry and Technology<br />

of Environmental Protection, Purkyňova 118, 61200 Brno, e-mail: vojta@fch.vutbr.cz<br />

INTRODUCTION<br />

The enhancement (sensitization) of fluorescent reactions of metal ions with chelating dyes<br />

by the presence of surfactants provides an inexpensive alternative to fluorimetric methods,<br />

when determination of lower concentrations of elements is required.<br />

The complexes formed in micellar media are often characterized by high molar<br />

absorptivities, high stability over a wide pH range, and usually by large bathochromic shift<br />

caused by addition of surfactants to the binary complex formed in water. Moreover, some<br />

fluorescent binary chelates may dramatically increase their quantum yield in micellar media,<br />

providing exceptionally sensitive fluorimetric methods.<br />

The 8-hydroxyquinoline-5-sulphonic acid (QSA) should provide surfactant-sensitized<br />

reactions with Al(III), Ga(III) and In(III), because it is strong acid readily yielding<br />

a negatively charged group (sulphonate) to interact with the positive head of cationic<br />

surfactants.<br />

The importance of monitoring aluminium concentrations in the blood of patients<br />

undergoing haemodialysis has been realised because of the suspicion that aluminium<br />

intoxication is responsible for encephalopathy, oesteopathy and Alzheimer's disease.<br />

In this work, the influence of various surfactants on the reaction of QSA with Al, Ga and<br />

In is studied in details. Improved method of determination of Al, Ga, In by QSA in presence<br />

of cationic surfactant Zephyramine is brought and optimized.<br />

EXPERIMENTAL<br />

REAGENTS<br />

Aluminium standard, containing 1,000±0,002 g l -1 of Aluminium in 5% HCl, purchased<br />

from Analytica, LTD. Prague<br />

Gallium standard, containing 1,000±0,002 g l -1 of Gallium in 10% HCl, purchased from<br />

Analytica, LTD. Prague<br />

Indium standard, containing 1,000±0,002 g l -1 of Indium in 10% HCl, purchased from<br />

Analytica, LTD. Prague<br />

8-hydroxyquinoline-5-sulphonic acid – Sigma-Aldrich Co.<br />

Benzyldimethyltetradecylammonium chloride (Zephyramine ® ) – Sigma-Aldrich Co.<br />

1-ethoxykarbonylpentadecyltrimethylammonium bromide (Septonex ® )–Sigma-Aldrich Co.<br />

Dodecylbenzyldimethylammonium bromide (Ajatin ® ) – Sigma-Aldrich Co.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 243


Didodecyldimethylammonium bromide – Sigma-Aldrich Co.<br />

Polyoxyethylene(23) lauryl ether (Brij 35) – Sigma-Aldrich Co.<br />

Hexadecyltrimethylammonium chloride – Sigma-Aldrich Co.<br />

4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) – Calbiochem Co.<br />

APPARATUS<br />

A single beam spectrofluorimeter Aminco Bowman ® , series 2 with a xenon lamp working<br />

in a continuous regime, 4 nm slits and constant photomultiplier voltage was used for the<br />

measurements.<br />

RESULTS<br />

The 8-hydroxyquinoline-5-sulphonic acid forms with Al, Ga and In fluorescent complex with<br />

emission maxima at 495 nm (Al), 503 nm (Ga) and 505 nm (In). Excitation maxima for Al is<br />

3<strong>60</strong> nm, 365 nm for Ga and 367 nm for In. There is no fluorescence observed for isolated<br />

QSA. Excitation and emission spectra of Al-QSA in dependence on concentration of Al and<br />

reaction blank without Al are shown in Fig.1.<br />

The formation of fluorescent complex is instantaneous and fluorescence is stable at least for<br />

twelve hours (Fig.3). Fluorescence intensity grows from In to Al and strongly depends on pH<br />

(Fig.2).<br />

F i<br />

80<br />

70<br />

<strong>60</strong><br />

50<br />

40<br />

30<br />

20<br />

10<br />

1a<br />

2a<br />

3a<br />

4a<br />

5a<br />

6a<br />

6b<br />

0<br />

270 320 370 420 470 520 570 620<br />

Fig.1.: Excitation(a) and Emission(b) spectra of Aluminium(III) in the presence of 7,4.10 -5<br />

mol.dm -3 QSA in dependence on concentration of Al(III).<br />

1-1,6μg.cm -3 ,2-0,8μg.cm -3 , 3-0,4μg.cm -3 ,4- 0,2 μg.cm -3 ,5-0,05 μg.cm -3 ,6–0μg.cm -3<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 244<br />

λ (nm)<br />

1b<br />

2b<br />

3b<br />

4b<br />

5b


Al<br />

F i<br />

80<br />

70<br />

<strong>60</strong><br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

1 2 3 4 5 6 7 8 9 10<br />

Fig.2.: Fluorescence intensity dependence on pH for each complex<br />

pH<br />

The fluorescence intensity can be significantly increased in the presence of cationic<br />

surfactant and small bathochromic shift in excitation spectra is also observed. The<br />

fluorescence is increased in one hour (Fig.3) and after it reaches maximum, it’s stable at least<br />

10 hours. The best positive effect was found for Zephyramine (Fig.4.). No positive effect was<br />

observed for anionic and nonionic surfactants.<br />

20<br />

Ga<br />

In<br />

18<br />

a b<br />

Fig.3.: Comparison of emission spectra time trace for Al-QSA complex without surfactant (a)<br />

and in presence of cationic surfactant Zephyramine (b)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 245<br />

Al<br />

In<br />

Ga<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2


F i<br />

90<br />

70<br />

50<br />

30<br />

10<br />

-10<br />

-30<br />

Zephyramin<br />

Septonex Ajatin<br />

DDAB<br />

Triton<br />

SDS<br />

-50<br />

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016<br />

Fig.4.: Surfactants influence on Ga-HQS complex at pH 3. Septonex, Zephyramine, Ajatin,<br />

SDS – mol.dm -3 , CTAC (Hexadecyl trimethyl ammonium chloride)– c/4 (mol.dm -3 ),<br />

DDAB (Didodecyldimethyl ammonium bromide) – c/5 (mol.dm -3 ), Triton X-100 –<br />

c/4.10 -5 (ppm), Brij – c/15 (mol.dm -3 ).<br />

Critical micellar concentrations are highlighted by the fulfilled marks.<br />

The nature of the complex strongly depends on the pH. The molar ratio of Me to QSA in<br />

the binary complex determined by the continuum variations method is 1:1 in acidic range and<br />

1:3 in alkalic range (Fig.5). In the presence of cationic surfactant Zephyramine, the molar<br />

ratio of ternary complex was found to be always 1:3 (Fig.5).<br />

F i<br />

100<br />

80<br />

<strong>60</strong><br />

40<br />

20<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

x L<br />

1<br />

2<br />

3<br />

c<br />

80<br />

<strong>60</strong><br />

40<br />

20<br />

CTAC<br />

Brij<br />

a 100<br />

b<br />

F i<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

Fig.5.: (a) Continuum variations of Al-HQS complex at pH 4. 1-c0= 1,1.10 -4 M, 2- c0= 5,6.10 -5 M,<br />

3-5,6.10 -5 M, 0,0012M Zephyramine<br />

(b) Continuum variations of In-HQS complex. 1-c0= 3,5.10 -5 M, pH8, 2- c0= 1,8.10 -5 M,<br />

pH8, 3-1,8.10 -5 M, 0,0012M Zephyramine, pH8, 4- c0= 1,8.10 -5 M, pH4<br />

Finally, the improved method with enhanced sensitivity by the presence of cationic<br />

surfactant Zephyramine was optimized with concentration of Zephyramine 0,0012M and five<br />

times excess of QSA to highest molar concentration of Me. Optimal pH is 4 for Al, 3 for Ga<br />

and 8 for In.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 246<br />

x L<br />

1<br />

4<br />

2<br />

3


F i<br />

<strong>60</strong><br />

50<br />

40<br />

30<br />

20<br />

10<br />

Data<br />

UCL<br />

LCL<br />

A<br />

B<br />

Calibration Plot<br />

y = 51,982x + 0,9186<br />

R 2 = 0,9991<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

c Al (μg.cm -3 )<br />

Fig.6.: Calibration plot for Al in the presence of 1,4.10 -4 M QSA and 0,012M Zephyramine,<br />

pH4<br />

F i<br />

80<br />

70<br />

<strong>60</strong><br />

50<br />

40<br />

30<br />

20<br />

10<br />

Data<br />

UCL<br />

LCL<br />

A<br />

B<br />

Calibration Plot<br />

y = 78,46x + 1,1235<br />

R 2 = 0,9992<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

c Ga (μg.cm -3 )<br />

F i<br />

200<br />

180<br />

1<strong>60</strong><br />

140<br />

120<br />

100<br />

80<br />

<strong>60</strong><br />

40<br />

20<br />

Data<br />

UCL<br />

LCL<br />

A<br />

B<br />

Calibration Plot<br />

y = 185,06x + 10,75<br />

R 2 = 0,9995<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

Fig.7.: Calibration plots for Ga (In) in the presence of 5,75.10 -4 M (resp.3,5.10 -4 ) QSA and<br />

0,012M Zephyramine, pH3 (resp. 8)<br />

Tab.1.: Comparison of calibration parameters for each complex. U is photomultiplyer voltage<br />

and detection limits were calculated according to Graham 4<br />

a<br />

c In (μg.cm -3 )<br />

Al-HQS Ga-HQS In-HQS<br />

Concentration range (μg.cm -3 ) 0,004-1<br />

U(V) 610 700 680<br />

α<br />

X D (μg.cm -3 ) 7,476E-05 0,0149 6,720E-05<br />

blank<br />

X (μg.cm -3 ) 0,0304 0,0349 0,0333<br />

β<br />

D<br />

−3<br />

( g ⋅ cm )<br />

X b μ<br />

x + 3s<br />

blank<br />

6, a 0,00015 0,00022 0,0042<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 247


CONCLUSIONS<br />

Cationic surfactants sensitize the reaction of Al, Ga and In with 8-hydroxyquinoline-5sulphonic<br />

acid. The effect of various surfactants was studied in details. The best results were<br />

obtained for Zephyramine and Septonex. The nature of the complex was investigated by the<br />

continuum variations method. Improved method for determination of Al, Ga and In in<br />

aqueous solutions was optimized and calibration plots were constructed.<br />

REFERENCES<br />

1. Vercruysse A.: Hazardous Metals in Human Toxicology, Part B, Elsevier Amsterdam<br />

1984<br />

2. Garcia Alonzo J. I., Diaz Garcia M. E., Sanz Medel A.: Talanta. 31, 361 (1984)<br />

3. Hinze W. L., Singh H. N.: Trends in Analytical Chemistry. 3, 193 (1984)<br />

4. Graham R. C.: Data Analysis for the Chemical Sciences. A Guide to Statistical<br />

Techniques. VCH Publishers, New York 1993<br />

5. ČSN ISO 8466-1: 1993, 15. Praha, 1993.<br />

6. Anonyme: Anal.Chem. 52, 2245 (1980)<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 248


PHYSICAL-CHEMICAL ASPECTS OF PAINT FILMS DEGRADATION<br />

Ing. Lucie Wolfová<br />

Supervisor: prof. RNDr. Zdeněk Friedl, CSc.<br />

Brno University of Technology, Purkyňova 118, Brno 612 00, e-mail:wolfova@fch.vutbr.cz<br />

INTRODUCTION:<br />

My dissertation thesis deals with the physical-chemical aspects of paint film degradation.<br />

This work is focused on the study and examination of physical-chemical aspects of paint film<br />

degradation by selected solvents. Mainly it is considered to the determination of solubility<br />

parameters of used polymers δ2 and the examination of the influence of especially polymer<br />

structure to the value of this δ2. The main goal of this study is to verify the coating solubility<br />

theory based on the knowledge of their solubility parameters in practise and its application for<br />

coatings. The other goals include the projection and formulation some new solvent’s mixture<br />

and additives intended for removing paint films and graffiti. Such formulation need to be well<br />

performing and ecological acceptable at the same time, which is the precondition for their<br />

wide application in practise.<br />

THEORETICAL BACKGROUND:<br />

Chemical degradation of paint films could be defined as the physical and chemical<br />

interactions between film-forming components of the paint and chemical surroundings.<br />

During the chemical degradation of polymer a disruption of chains and reticulation, a change<br />

of chemical structure of chains, a change of side groups or combination of all these<br />

phenomena ta<strong>ke</strong> place. This leads to changes in paint qualities and coats lose their visual<br />

appearance and original qualities upon the exposure to organic solvents.<br />

From the thermodynamic point of view, a solubility of polymer and a degree of solvent<br />

affinity to polymer is given by the Gibb´s energy change, which is determined by the<br />

interaction between solvent molecules and macromolecular chain elements. ΔGmix = ΔHmix -<br />

TΔSmix < 0.<br />

The more negative is value of ΔGmix the better is solubility of polymer in solvent. Then the<br />

dissolving of polymers is mainly a question of value ΔHmix because during swelling or<br />

dissolving always increase system’s disorderliness. According to thermodynamic conditions<br />

than is necessary that ΔHmix


Then, the solubility parameter can be estimated from general equations:<br />

ΔHmix = Vs(δ1 – δ2) * φ1 φ2 .<br />

- This is one of the simple expressions of solubility parameter deduced for nonpolar<br />

systems. In practise, we have solvents and solutions with different polar forces such as<br />

dispersion, polar and hydrogen ones. Therefore the cohesive energy Ecoh is divided into three<br />

parts, corresponding to three types of interaction forces Ecoh = Ed + Ep + Eh (contribution of<br />

dispersion forces Ed, polar forces Ep and hydrogen-bonding Eh). Then every substance could<br />

be characterized according to free contributions of total solubility parameter<br />

2 2 2<br />

δtotal.= σ + σ + σ .<br />

disp.<br />

polar.<br />

hydrogen.<br />

By this is predicted that if δ1 = δ2 the ethalpy of mixing is ΔHmix = 0 and ΔGmix = ΔHmix -<br />

TΔSmix < 0 and this is in accorrdance with the general rule for thermodynamic view of<br />

solubility and mixing. Then, the smaller is the difference of value δ of solvent and polymer,<br />

the better is possibility of its dissolving. The polymers should be mostly soluble in that<br />

solvents, which their < δ > correspond to the middle of the interval of polymer solubility or<br />

approximately ± 2 units.<br />

AIM OF STUDY:<br />

The aim of conducted research is the evaluation of influence of several aspects – especially<br />

structure of samples – on the chemical resistance of PUR coatings and the value of their<br />

solubility parametr δ2. As far as these aspects are concerned, these include especially the type<br />

of used monomers (in case of PUR polymers for example li<strong>ke</strong> type and funcionality of used<br />

alcohols, acids and isocyanates, type of bonds, etc.), the weight, size and type of film forming<br />

polymer and the type of interactions between individual chain parts.<br />

METHOLOGY:<br />

The solubility parameter δ2 of polymer could be determined according to its interaction<br />

with solvents of known solubility parameter δ1. For example, the solubility parameter of a<br />

linear polymer can be determined from its limiting viscosity number and of a cross-lin<strong>ke</strong>d<br />

one according to the degree of swelling, both of these values being the function of solubility<br />

parameter of used solvent δ1. In case of best solvent, is the value of [η] or Q of polymer the<br />

heights and solubility parameter of this solvent δ1 correspondents with solubility parameter of<br />

polymer δ2<br />

As far as measuring of viscosity is concenred, the samples were dissolved in selected<br />

group of solvents whose solubility parameters δ1 varied from 18 to 24 (30). Then their<br />

dynamic viscosity η were masured. It was done using capillar or Ubelohde viscosimeter.<br />

η sp<br />

Subsequently, specific viscosity ηspec and the limiting viscosity number [η] = lim were<br />

c→0<br />

c<br />

calculated.<br />

The degree of sample’s swelling Q = (m-m0/m0)*1/ςsolv was calculated by weighting<br />

samples after soaking in chosen solvents for 5 days.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 250


Finally, the solubility parameter of sample δ2 was determined as a function of [η] or Q and<br />

compared with values of these δ2 obtained by calculation from sample’s structures. The<br />

calculation of δ2 from sample’s structures is possible from the contibutions of dispersion Ed,<br />

polar Ep and hydrogen-bonding Eh forces of the polymer.<br />

RESULTS AND DISCUSSION:<br />

The exact sample composition can not be published at the moment because of their<br />

intended patent protection. Therefore, the samples are named by the manufacturer code.<br />

The result of influence of different structure of PUR samples to the value of their<br />

solubility parameter δ2 (10 -3 J 1/2 m -3/2 ):<br />

- Differences in sample structures were especially polymer’s molecular weight and size of<br />

chain, type and functionality of used alcohols, acids and isocyanates.<br />

Limiting viscosity number of<br />

samples [η] (m 3 /kg)<br />

Solubility parametrs of PUR samples δ2 determined according to<br />

0,09<br />

limiting viscosity number [η]<br />

U14EG2000<br />

0,08<br />

Diexter G214<br />

C36EG34<br />

0,07<br />

Priplast 3192<br />

0,06<br />

0,05<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0,00<br />

19,0 19,5 20,0 20,5 21,0 21,5 22,0 22,5 23,0 23,5 24,0 24,5 25,0 25,5 26,0<br />

Solubility parametr of solvent δ 1(10 -3 J 1/2 m -3/2 )<br />

U14EG56<br />

U14BD2000<br />

According to the theory, the solubility parameter δ2 value corresponds to the point where<br />

the plot of [η] as a function of δ1 has its maximum.<br />

Determination of solubility parameter δ2 as the function of limiting viscosity number<br />

and by calculation from structure:<br />

Solvents:<br />

Solubility<br />

parameter<br />

δ1<br />

Limiting viscosity number of tested samples [η] (m 3 /kg)<br />

U14EG2000 Diexter C36EG34 Priplast U14EG56 U14BD2000<br />

Dichloromethane 19,8 0,0076 0,0173 0,0094 0,0071 - 0,0266<br />

1,4-dioxane 20,5 0,0135 0,0117 0,0093 0,0048 0,0515 0,0540<br />

Acetyl acetone 22,1 0,0180 0,0087 0,0199 0,0068 0,0856 0,0570<br />

N,Ndimethylacetamide 22,7 0,0618 0,0337 0,0677 0,0243 0,0638 0,0580<br />

N methylpyrrolidone 22,9 0,0150 0,0425 0,0193 0,0163 0,0686 0,0514<br />

N,Ndimethylformamide 24,7 0,0400 0,0144 0,0000 0,0185 - 0,0413<br />

Solubility parameter δ2(10 -3 J 1/2 m -3/2 )<br />

Determined from measuring 22,7 22,9 22,7 22,7 22,1 22,7<br />

Determined from structure 21,37 23,87 21,31 21,78 20,92 21,25<br />

According to the obtained results and the theory, we can predict that the total solubility<br />

parameters δ2 of our tested PUR samples are about 22,7×10 -3 J 1/2 m -3/2 and in case of U14EG56<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 251


22,1×10 -3 J 1/2 m -3/2 . However, if we calculate the value δ2 from the structure, we obtain<br />

approximately similar values of δ2 in a range of 20,9 to 23,9×10 -3 J 1/2 m -3/2 . The biggest<br />

differences are in case of Diexter G214 and U14EG56 where the biggest differences between<br />

their structures are also.<br />

According to these results, it should be possible to dissolve these samples in solvents with<br />

total solubility parameter value of δ1 about 20 to 24 units.- And in most cases, experimental<br />

results comply with theory and samples could be dissolved in solvents with value of δ1≈δ2 ± 2.<br />

Solubility of PUR sample U14EG56 in various type of solvent:<br />

solubility U14EG56<br />

solubility U14EG56<br />

Solvent: p. δ1 δ2 ≈ 22,1 Solvent:<br />

p. δ1 δ2 ≈ 22,1<br />

Toluene 18,2 * N,N dimethylacetamide 22,7 +<br />

Ethylmethyl<strong>ke</strong>tone 19 + N methylpyrrolidone 22,9 +<br />

Dichloromethane 19,8 + Isopropanol 23,6 -<br />

Acetone 20 * N,N dimethylformamide 24,7 +<br />

1,4-Dioxane 20,5 + Ethanol 26 -<br />

Acetyl acetone 22,1 + Butyrolactone 27 -<br />

Ethylene glycol 30 -<br />

In the case, when sample is not soluble in right one solvent according to the theory, it can<br />

be interpreted by different chemical nature of used solvents and it relates to different value of<br />

individual components of their total solubility parameter.<br />

The result of study of influence of different values of rigid segment fraction and crosslin<strong>ke</strong>d<br />

fraction content of sample U14BD2000 to its solubility parameter, according its<br />

parameter of swelling:<br />

During the study of the influence of rigid segment content and cross-lin<strong>ke</strong>d fraction<br />

content to the solubility parameter, it was observed that the more rigit segment fraction and/or<br />

cross-lin<strong>ke</strong>d fraction is present, the more resistent the sample was. All these changes should<br />

be connected with a changes of sample solubility parametr and should be observable<br />

experimentally.<br />

Study of the influence of different percentage distribution of rigid segment fraction in<br />

case of sample U14BD2000:<br />

Parameter of swelling Q<br />

(Type A with the less quantity, type D with the most quantity of rigid segment content)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Influence of different quantity of rigid segment to the<br />

solubility parametr of U14BD2000 (according its<br />

parameter of swelling)<br />

type A<br />

type B<br />

type C<br />

type D<br />

0<br />

19,0 20,0 21,0 22,0 23,0 24,0 25,0<br />

Solubility parameter of solvent δ1 (10-3J1/2m -3/2 )<br />

Type of<br />

sample:<br />

δ2 - from<br />

measuring<br />

δ2 - from the<br />

structure<br />

A 19,8 20,11<br />

B 20,5 20,72<br />

C 22,9 21,34<br />

D 22,9 21,96<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 252


Study of the influence of different percentage distribution of cross-lin<strong>ke</strong>d fraction in<br />

sample U14BD2000:<br />

(Type AA with the less quantity, type DD with the most quantity of cross-lin<strong>ke</strong>d fraction<br />

content)<br />

Parameter of swelling Q<br />

14,00<br />

12,00<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

Influence of different quantity of cross-lin<strong>ke</strong>d to the<br />

solubility parametr of U14BD2000 (according its<br />

parameter of swelling)<br />

type AA<br />

type BB<br />

type CC<br />

type DD<br />

0,00<br />

18,0 19,0 20,0 21,0 22,0 23,0 24,0 25,0<br />

Solubility parameter of sample δ1 (10-3J1/2m -3/2 )<br />

Obtained results show that in the case of the increasing quantity of rigid segment the<br />

solubility parameter δ2 is changing and moving to higher values. In the case of increasing of<br />

cross-lin<strong>ke</strong>d fraction, the value of δ2 is more or less stable and similar and changes only<br />

parameter of swelling. – Both of these agree with the theory.<br />

CONCLUSION:<br />

Type of<br />

sample:<br />

δ2 - from measuring<br />

AA 19,8<br />

BB 20,5<br />

CC 20,5<br />

DD 20,5<br />

According to the obtained data, experimental results comply with the theory about possible<br />

evaluation of coating’s solubility on the base of knowledge their solubility parameters and<br />

also structures in most cases.<br />

In next experimental part of my dissertation work I would li<strong>ke</strong> to improved, extend and<br />

apply this theory and information to the area of dissolving and removing especially water<br />

based coats and modify all of this for use in practice.<br />

Acknoledgments:<br />

I would li<strong>ke</strong> to thank to C. B. Coreia and Prof. J. C. Bordado, Instituto Superior Technico,<br />

Lisboa for their help and support during this research.<br />

LINKS:<br />

1. Barton A. F. M., Handbook of solubility parameters and other cohesion parameters,<br />

London 1991<br />

2. Van Krevelen D. W., Hoftyzer P. J., Properties of polymers – their estimation and<br />

correlation with chemical structure, Amsterdam 1976<br />

3. Bicerano J., Prediction of polymer properties (second edition), New York, 1996<br />

4. Munk P., Aminabhavi T.M., Macromolecular science (second edition), New York, 2002<br />

5. Mleziva J., Šňupárek J., Polymery-výroba, struktura, vlastnosti a použití, Praha, 2002<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 253


Using low-molecular mass pI mar<strong>ke</strong>rs in proteomic staining-free method<br />

for study of posttranslationally modified proteins<br />

Karel Mazanec 1,2 , Karel Šlais 2 and Josef Chmelík 2<br />

1 Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology,<br />

Purkyňova 118, 612 00 Brno, Czech Republic, e-mail: mazanec@iach.cz<br />

2 Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97,<br />

<strong>60</strong>2 00 Brno, Czech Republic<br />

INTRODUCTION<br />

At present the knowledge of proteome plays very important role in the study of living<br />

processes. Special attention in our lab is paid to the investigation of the proteome of barely<br />

grains. The aim is to contribute to understanding of malting processes and to selection of<br />

malting barley cultivars. Proteins are the major functional molecules of life made of amino<br />

acids arranged in a linear chain lin<strong>ke</strong>d together by peptide bonds. The residues in a protein are<br />

often chemically altered in a process known as post-transcriptional modification (PTM):<br />

either before the protein can function in the cell, or as part of control mechanisms. The<br />

identification of the PTM is experimentally difficult.<br />

Due to the fact that many samples, mainly of biological origin, are complex mixtures of<br />

proteins with a wide range of molecular masses, salts and other compounds, proteins should<br />

be separated and purified prior to their identification by mass spectrometry. Traditionally,<br />

most proteomics researches are based upon two-dimensional gel electrophoresis involving<br />

isoelectric focusing (IEF) as one dimension. Separated compounds are focused into very<br />

sharp bends according to their pI values during IEF. They are twice or more concentrated in<br />

this zones. However, ampholytes present in gel and creating pH gradient during IEF<br />

complicate the visualizing the separated proteins by staining and ma<strong>ke</strong> this method<br />

impracticable for common proteomic utilization.<br />

The aim of this work was to develop and optimize the novel staining-free proteomic<br />

procedure for separation of intact proteins by gel IEF in presence of low-molecular mass pI<br />

mar<strong>ke</strong>rs and subsequent determination of molecular masses of separated compounds in the<br />

gels by MALDI-TOF/TOF MS. The selected set of pI mar<strong>ke</strong>rs includes both colored and<br />

colorless compounds with known low-molecular mass. Thus, the identification of both pI<br />

mar<strong>ke</strong>r and proteins in the same excised piece of gel by MS technique is expected to give<br />

reliable information about the correct pI values of analyzed proteins even in complex samples.<br />

MATERIALS AND METHODS<br />

pI mar<strong>ke</strong>rs – The substituted phenols (I - Mw 314.08, pI 3.9, yellow color; II - Mw 359.10,<br />

pI 4.3, orange; III - Mw 272.06, pI 5.3, yellow; IV - Mw 252.12, pI 5.7, colorless; V - Mw<br />

285.09, pI 6.4, yellow; VI - Mw 315.10, pI 7.0, yellow; VII - Mw 337.17, pI 7.5, yellow; VIII<br />

– Mw 265.14, pI 7.9, yellow; IX - Mw 363.23, pI 8.4, yellow; X - Mw 267.16, pI 8.9, yellow;<br />

XI - Mw 352.20, pI 9.0, colorless; XII - Mw 333.21, pI 10.1, yellow) used as pI mar<strong>ke</strong>rs were<br />

prepared by the procedure described by Šlais and Friedl 1 at the Institute of Analytical<br />

Chemistry (Brno, Czech Republic). The pI values were determined by potentiometric<br />

titration. The chemical structures of pI mar<strong>ke</strong>rs are shown in Fig. 1.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 254


Fig.1: Chemical structures of pI mar<strong>ke</strong>rs used in this work.<br />

Polyacrylamide gels and IEF - The protein samples (2 mg/ml) were mixed with pI mar<strong>ke</strong>rs<br />

(10 mg/ml each) and the 4 μl of the mixtures were loaded onto the polyacrylamide gel (16%).<br />

The carrier BioLyte 3/10 ampholyte (final concentration 2%) (Bio-Rad, CA, USA) were<br />

added prior to gel polymerization. Separation was performed with constant electric power of<br />

0.6 W for 2 h supplied by VNZ 22 power supply (CSAV Development Workshop, Czech<br />

Republic) using a model 111 Mini IEF Cell (Bio-Rad, CA, USA). After focusing completion<br />

the gels were gently removed from electrodes and scanned.<br />

Ladders of color pI mar<strong>ke</strong>rs simplify the orientation in the gel even when the separated<br />

proteins cannot be seen. Thus, the bands with proteins were excised according to positions of<br />

pI mar<strong>ke</strong>rs. The excised gel pieces were then transferred to 0.5 ml tubes. The pI mar<strong>ke</strong>rs were<br />

then eluted from gel by 30 μl water/ethanol 1:1 (v/v) for 15 min.<br />

Protein digestion and identification - Excised gel pieces after the extraction of the pI mar<strong>ke</strong>rs<br />

were washed twice with water/acetonitrile 1:1 (v/v) for 15 min. Then proteins were identified<br />

according to standard proteomic protocol utilizing in-gel digestion of reduced and alkylated<br />

proteins with trypsin. 2<br />

For comparison, the other IEF focused gels were stained with Coomassie Brilliant Blue R<br />

250. Due to the carrier 3/10 ampholytes used for creating of pH gradient in gels precipitated<br />

the Coomassie dye during staining causing strong blue haze on the background, the washing<br />

step (10% TCA in water/methanol (10/3 v/v); 12-14 h) had to be inserted prior to own<br />

staining procedure.<br />

Mass spectrometry - MS measurements were carried with 4700 Proteomics Analyzer<br />

(Applied Biosystems, USA) MALDI TOF/TOF mass spectrometer (equipped with Nd/YAG<br />

laser; 355 nm). Argon was used as a collision gas. A solution of sinapinic acid (SA) (20<br />

mg/ml in acetonitrile/water (3/2 v/v)) was used as matrix for mar<strong>ke</strong>rs. Alpha-cyano-4hydroxycinnamic<br />

acid (CHCA) (both Sigma-Aldrich, Germany) was used as matrix for<br />

peptides in concentration of 10 mg/ml acetonitrile/water (3/2 v/v).<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 255


RESULTS<br />

More than forty pI mar<strong>ke</strong>rs of different types of structures were studied by MALDI(LDI)-<br />

TOF MS. Twelve selected suitable pI mar<strong>ke</strong>rs are used and more closely characterized in this<br />

work.<br />

At analysis of low-molecular mass pI mar<strong>ke</strong>rs, several features were observed that help to<br />

their identification. In the positive ion mode mass spectra of nitro-substituted pI mar<strong>ke</strong>rs the<br />

characteristic peaks at -16 and -32 Da caused by loss of oxygen atoms during the process of<br />

ionization (also reminded by Strohalm et al. 3 ) can be seen (Fig. 2, spectrum a, c). A<br />

characteristic double-peak pattern is obtained for mar<strong>ke</strong>rs containing a chlorine atom (Fig. 2,<br />

spectrum b, c). These groups of peaks are very helpful for identification of pI mar<strong>ke</strong>rs<br />

especially in complex mixtures where one peak may be hidden with a cluster or by another<br />

well-ionizable substance.<br />

Fig.2: The positive ion mass spectra of the pI mar<strong>ke</strong>rs XII (a); II (b) and I (c) obtained after<br />

extraction from the IEF gel. A characteristic peak patterns are clearly seen.<br />

Isoelectric focusing and gel treatment - The 3/10 carrier ampholytes were used to create pH<br />

gradient in this work. At 50-mm distance of electrodes it means that the slope of the gradient<br />

is 0.14 pH/mm. The color pI mar<strong>ke</strong>rs enable the orientation in gels and supervision of the IEF<br />

process. Each abnormality in pH gradient can be immediately and very easily recognized.<br />

Moreover, the gels can be cut up according to the position of the visible mar<strong>ke</strong>rs. The IEF<br />

gels were immediately after focusing scanned (Fig. 3A) and the bands with focused pI<br />

mar<strong>ke</strong>rs were excised. For comparison, another IEF gel was stained with Coomassie Brilliant<br />

Blue R 250. The focused proteins visualized by Coomassie staining are shown in Fig. 3B,C.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 256


Identification of pI mar<strong>ke</strong>rs - First, the pI mar<strong>ke</strong>rs were extracted from each excised gel<br />

piece and identified from extracts by MALDI-TOF/TOF MS. The experiments confirmed that<br />

pI mar<strong>ke</strong>rs are easily and unambiguously identifiable in extracts from excised gel pieces after<br />

IEF.<br />

Fig.3: IEF gel of pI mar<strong>ke</strong>rs and proteins scanned immediately after focusing (A); standards<br />

(B) and beta-amylase extract (C) after Coomassie staining. The positions of electrodes are<br />

mar<strong>ke</strong>d with E. Letters at right show positions where the proteins were identified (see Tab. 1).<br />

Identification of proteins - First experiment was provided with standard proteins (cytochrome<br />

c, myoglobin and albumin). After extraction of pI mar<strong>ke</strong>rs from particular gel pieces, the<br />

proteins in the same gel pieces were treated by enzyme digestion and identified by MS. These<br />

proteins were identified in positions according to their real pI values and validated our<br />

approach.<br />

Then, the extract from barley malt was used as a model mixture of glycated proteins. The<br />

separated protein mixture after the referential Coomassie staining is shown in Fig. 3C. Table 1<br />

shows the proteins identified in the gel pieces from which the pI mar<strong>ke</strong>rs were extracted and<br />

identified. Nine proteins were identified in eight excised gel pieces of twelve ones excised<br />

according to the locations of the pI mar<strong>ke</strong>rs used. Some proteins were found in two different<br />

gel pieces. During malting process the barley proteins are gradually cleaved and modified.<br />

This is the reason why some proteins may be found in several gel pieces with different pI<br />

values. The differences observed for some other proteins might be caused either by<br />

posttranslational modifications or by discrepancies between experimental and theoretically<br />

calculated pI values. For more detailed studies, the gels can be excised into a higher number<br />

of narrower pieces and the pI values of proteins identified between the locations of pI mar<strong>ke</strong>rs<br />

can be interpolated or a higher number of pI mar<strong>ke</strong>rs can be used. The identifications of the<br />

proteins were confirmed from the stained gel by the same proteomic protocol.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 257


Gel<br />

pos. Name<br />

Protein<br />

Number<br />

pI mar<strong>ke</strong>r<br />

Theor.<br />

pI<br />

No. pI<br />

a Protein Z (Z4) (Major endosperm albumin) P06293 5.70 II 4.3<br />

b Beta-amylase P1<strong>60</strong>98 5.58 III 5.3<br />

Glucan endo-1,3-beta-glucosidase GV Q02438 6.92<br />

c Protein Z (Z4) (Major endosperm albumin) P06293 5.70 IV 5.7<br />

d Granule-bound starch synthase 1 P09842 7.06 VI 7.0<br />

Alpha-amylase/subtilisin inhibitor precursor P07596 7.78<br />

e Glucan endo-1,3-beta-glucosidase GV Q02438 6.92 VII 7.5<br />

f Lichenase II precursor P12257 9.0 IX 8.4<br />

Elongation factor 1-alpha Q40034 9.15<br />

g 26 kDa endochitinase 2 precursor P23951 8.83 XI 9.0<br />

Histone H3 (Fragment) P06353 9.73<br />

h 26 kDa endochitinase 2 precursor P11955 8.54 XII 10.1<br />

Elongation factor 1-alpha Q40034 9.15<br />

Tab.1: The list of proteins identified directly in the same gel piece as the pI mar<strong>ke</strong>r. Standard<br />

proteins are bolded.<br />

CONCLUSIONS<br />

The method is based on separation of intact proteins by gel IEF along with low-molecular<br />

mass pI mar<strong>ke</strong>rs and subsequent sequential determination of molecular masses of separated<br />

compounds by MALDI-TOF/TOF MS. The identification of both pI mar<strong>ke</strong>rs and proteins in<br />

the same gel piece give reliable information about the correct pI values of particular identified<br />

proteins in complex samples. Moreover, it allows omitting protein staining and destaining<br />

procedure, because the Coomassie procedure is in the case of IEF gels complicated by<br />

presence of ampholytes causing dark background. The suggested procedure shortens roughly<br />

by half the time of analysis. The choice of appropriate ampholytes allows to modify the pH<br />

gradient and to study only the certain area of the pH scale.<br />

There are only twelve mainly colored pI mar<strong>ke</strong>rs shown in this work. Nevertheless, the<br />

number of pI mar<strong>ke</strong>rs used may be much higher. The color of pI mar<strong>ke</strong>rs is not relevant for<br />

MS determination. Focused pI mar<strong>ke</strong>rs may cover whole pH range and from gels narrow<br />

pieces can be cut out, which will allow more precise determination of identified proteins.<br />

Utilization of low-molecular mass pI mar<strong>ke</strong>rs with IEF gels was chosen as a first example of<br />

their applicability because the gel process can be easily observed visually. There is a good<br />

chance to use this approach also in other IEF techniques (e.g. in capillaries or on chips).<br />

REFERENCES<br />

[1] Šlais K, Friedl Z. Low-molecular-mass pI mar<strong>ke</strong>rs for isoelectric focusing. Journal of<br />

Chromatography A 1994; 661: 249.<br />

[2] Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins<br />

from silver stained polyacrylamide gels. Analytical Chemistry 1996; 68: 850.<br />

[3] Strohalm M, Santrucek J, Hynek R, Kodicek M. Analysis of tryptophan surface<br />

accessibility in proteins by MALDI-TOF mass spectrometry; Biochemical and<br />

Biophysical Research Communications 2004; 323: 1134.<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

Sekce DSP 2006, strana 258


Název: Sborník příspěvků soutěže Studentské tvůrčí činnosti „STUDENT 2006” a doktorské<br />

soutěže „O cenu děkana 2005 a 2006”<br />

Editor: Mgr. Radek Přikryl, Ph.D., doc. Ing. Martin Weiter, Ph.D., prof. Ing. Ladislav Omelka, DrSc.<br />

Vydání: První<br />

Počet stran: 259<br />

Vydavatel: <strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong><br />

Výroba: <strong>Vysoké</strong> učení technické v Brně, <strong>Fakulta</strong> <strong>chemická</strong><br />

ISBN: 80-214-3321-3<br />

Publikace nebyla jazykově upravena<br />

Sborník soutěže Studentské tvůrčí činnosti Student 2006 a doktorské soutěže O cenu děkana 2005 a 2006<br />

strana 259

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!