30.09.2013 Views

Role of vitamin K2 in bone and vascular calcifica'on - Eqology

Role of vitamin K2 in bone and vascular calcifica'on - Eqology

Role of vitamin K2 in bone and vascular calcifica'on - Eqology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Role</strong> <strong>of</strong> <strong>vitam<strong>in</strong></strong> <strong>K2</strong> <strong>in</strong> <strong>bone</strong> <strong>and</strong><br />

<strong>vascular</strong> calcifica6on<br />

Leon J Schurgers, PhD<br />

Associate Pr<strong>of</strong>essor <strong>of</strong> Biochemistry<br />

MUMC +<br />

Norway, 28th <strong>of</strong> January 2012


Once upon a time…<br />

a <strong>vitam<strong>in</strong></strong>, once regarded as the C<strong>in</strong>derella <strong>of</strong> fat-­‐soluble<br />

<strong>vitam<strong>in</strong></strong>s emerged from a s<strong>in</strong>gle-­‐funcCon “haemostasis <strong>vitam<strong>in</strong></strong>”<br />

to a “mulC-­‐funcCon <strong>vitam<strong>in</strong></strong>” <strong>and</strong> arguably the most fasc<strong>in</strong>aCng<br />

<strong>of</strong> all…<br />

…It’s name is <strong>vitam<strong>in</strong></strong> K…<br />

Shearer et al. DeGruyter 2011


§ Discovered <strong>in</strong> 1929<br />

§ K st<strong>and</strong>s for “koagula6on”<br />

§ 14 VKD-­‐prote<strong>in</strong>s known<br />

§ Ac6vates <strong>vitam<strong>in</strong></strong> K-­‐dependent prote<strong>in</strong>s<br />

§ Vitam<strong>in</strong> K1 <strong>and</strong> <strong>vitam<strong>in</strong></strong> <strong>K2</strong><br />

Henrik Dam Edward Adelbert Doisy<br />

Vitam<strong>in</strong> K<br />

Dam <strong>and</strong> Doisy shared the<br />

1943 Nobel Prize for their work<br />

on Vitam<strong>in</strong> K


Absorp6on <strong>of</strong> natural <strong>vitam<strong>in</strong></strong> K1 from sp<strong>in</strong>ach<br />

<strong>and</strong> natural <strong>vitam<strong>in</strong></strong> <strong>K2</strong> (MK7) from naTo<br />

Schurgers et al. Haemostasis 2000


Matrix Gla-prote<strong>in</strong><br />

Gas-6<br />

Prote<strong>in</strong> S<br />

Gla-rich Prote<strong>in</strong><br />

Bone<br />

Prothromb<strong>in</strong><br />

FVII<br />

FIX<br />

FX<br />

Prote<strong>in</strong> C<br />

Prote<strong>in</strong> S<br />

Prote<strong>in</strong> Z


Func6on <strong>of</strong> <strong>vitam<strong>in</strong></strong> K<br />

KH 2<br />

COO -<br />

K<br />

Glu<br />

COO -<br />

O<br />

O<br />

KO


Accumula6on dur<strong>in</strong>g prolonged <strong>in</strong>take<br />

Serum <strong>vitam<strong>in</strong></strong> K (µmol/L)<br />

difference from basel<strong>in</strong>e<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 5 10 15 20 25 30 35 40 45<br />

Treatment duration (days)<br />

o No accumula6on <strong>of</strong> K 1 but significant accumula6on <strong>of</strong> MK7<br />

o AVer 14 days a steady level for MK-­‐7 was reached<br />

o F<strong>in</strong>al level for MK-­‐7 was 7-­‐8 fold higher than for K 1<br />

If taken on a daily basis, 45 µg/day <strong>of</strong> MK-­‐7 is more effec6ve than 240<br />

µg/day <strong>of</strong> K 1 (twice the RDA!)<br />

Schurgers et al. Blood 2007<br />

K1<br />

MK-7


cOC / ucOC ratio<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

0 20 40<br />

Duration <strong>of</strong> treatment (days)<br />

v MK-­‐7 is more effec6ve than K 1 <strong>in</strong> improv<strong>in</strong>g <strong>vitam<strong>in</strong></strong> K status à effect visible<br />

aVer 2-­‐3 weeks<br />

v Effect most pronounced aVer 6 week<br />

K1 MK-7<br />

v At that 6me MK-­‐7 was over 3 6mes more effec6ve than K 1<br />

Schurgers et al. Blood 2007


Vitam<strong>in</strong> K <strong>and</strong> <strong>bone</strong> health


Why is K-­‐status <strong>in</strong> childhood important?<br />

• The higher the “peak” <strong>bone</strong><br />

mass (achieved at age < 30<br />

years) the more you are<br />

protected to develope<br />

osteoporosis<br />

• Young <strong>bone</strong> is highly ac6ve <strong>and</strong><br />

osteocalc<strong>in</strong> levels are<br />

8 – 10 fold higher as compared<br />

to adults à requirement <strong>of</strong><br />

<strong>vitam<strong>in</strong></strong> K thus also higher


Summeren et al., BJN 2009<br />

The VitaKids study<br />

• R<strong>and</strong>omized, placebo controlled, double bl<strong>in</strong>d<br />

• 60 children, 6-­‐10 years <strong>of</strong> age<br />

• Equal boys / girls<br />

• 45 µg MK7 daily for 8 weeks<br />

• Measurement <strong>of</strong> ucOC <strong>and</strong> cOC to assess the<br />

<strong>vitam<strong>in</strong></strong> K-­‐status<br />

The effect <strong>of</strong> MK7 on<br />

osteocalc<strong>in</strong> carboxyla6on <strong>in</strong> healthy children


UCR<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Summeren et al., BJN 2009<br />

UCR: ucOC/cOC ra6o<br />

p = 0.451<br />

p < 0.001<br />

p < 0.001<br />

basel<strong>in</strong>e 8 weeks basel<strong>in</strong>e 8 weeks<br />

placebo-group <strong>vitam<strong>in</strong></strong> K-group


Menaqu<strong>in</strong>one-­‐7 absorp6on from MenaQ7<br />

Menaqu<strong>in</strong>one-7 (ng/ml)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Summeren et al., BJN 2009<br />

p = 0.1194<br />

p < 0.0001<br />

p < 0.0001<br />

basel<strong>in</strong>e 8 weeks basel<strong>in</strong>e 8 weeks<br />

placebo-group <strong>vitam<strong>in</strong></strong> K-group


Osteoporosis<br />

§ Osteoporosis affects 75 millions<br />

<strong>in</strong> Europe, US <strong>and</strong> Japan<br />

§ Over 90 million people<br />

have osteoporosis <strong>in</strong> Ch<strong>in</strong>a<br />

§ 45% <strong>of</strong> women over 50 years will<br />

experience fractures, <strong>and</strong> 20 – 25%<br />

<strong>of</strong> men will suffer from fractures<br />

when over 50<br />

Total cost* <strong>of</strong> fractures<br />

US (2007) EU (2003)<br />

USD 18 billion EUR 32 billion


Osteo-<strong>K2</strong> study<br />

§ 325 postmenopausal women (55-75 years)<br />

§ Treatment for 3 years with daily supplementation<br />

1. P group Placebo<br />

2. <strong>K2</strong> group 45 mg MK-4<br />

§ Measurements:<br />

BMD, <strong>bone</strong> m<strong>in</strong>eral content (BMC), <strong>bone</strong> strength, <strong>and</strong> <strong>bone</strong> markers<br />

Knapen et al., Osteoporosis Int 2007


Osteo-<strong>K2</strong> study<br />

§ Bone strength<br />

Change (% <strong>of</strong> start)<br />

§ Weight<br />

1<br />

§ Heigth<br />

0<br />

§ BMD<br />

-1<br />

§ FNW<br />

-2<br />

§ HAL<br />

-3<br />

-4<br />

0 1 2 3<br />

Knapen et al., Osteoporosis Int 2007<br />

Duration <strong>of</strong> treatment (yrs)<br />

p < 0.005<br />

<strong>K2</strong><br />

P<br />

§ No loss <strong>of</strong><br />

<strong>bone</strong> strength<br />

§ Improv<strong>in</strong>g BMC<br />

<strong>and</strong> FNW<br />

§ Improv<strong>in</strong>g ucOC<br />

levels


Osteo-MK7 study<br />

§ 240 postmenopausal women (55-65 years)<br />

§ Treatment for 3 years with daily supplementation<br />

1. P group Placebo<br />

2. MK-7 group 180 µg MK-7 (MK-7)<br />

§ Measurements:<br />

ü Bone health:<br />

BMD, BMC, <strong>bone</strong> strength, <strong>bone</strong> geometry, <strong>and</strong> <strong>bone</strong> markers<br />

ü Vascular health:<br />

IMT, distensibility & elasticity <strong>of</strong> carotid artery, PWV


• Hypercalcemia (>2.8mM)"<br />

• Hyperphosphatemia (>2.0mM)"<br />

• Atherosclerosis (Ca> 30mM)"<br />

Vascular disease <strong>and</strong> <strong>vascular</strong><br />

calcification<br />

• End-Stage Renal Disease (Ca x P)"<br />

• Hypertension (<strong>in</strong>tracellular Ca-overload)"<br />

Precipitation <strong>of</strong> calcium-salts at<br />

pathological sites


Matrix Gla-­‐prote<strong>in</strong> (MGP): the <strong>vascular</strong><br />

calcifica6on <strong>in</strong>hibitor <strong>in</strong> need <strong>of</strong> <strong>vitam<strong>in</strong></strong> K<br />

o <strong>vitam<strong>in</strong></strong> K-­‐dependent prote<strong>in</strong><br />

o 84 am<strong>in</strong>o acids (Mw ~11 kD)<br />

o Gla-­‐residues (required for ac6vity)<br />

o Ser<strong>in</strong>e-­‐phosphoryla6on (func6on unknown)<br />

Luo et al. Nature 1997


VKA: from rat poison to drug<br />

q 1925, rare caTle disease<br />

q 1948, dicoumarols launched as rat poison<br />

q 1951, unsuccessful suicide aTempt by US army soldier with<br />

warfar<strong>in</strong><br />

q 1954, warfar<strong>in</strong> approved as medic<strong>in</strong>e<br />

q 1955, Eisenhower one <strong>of</strong> the first<br />

famous recipient because <strong>of</strong> an heart<br />

aTack


Interference with <strong>vitam<strong>in</strong></strong> K-­‐metabolism<br />

KH 2<br />

COO -<br />

K<br />

Glu<br />

COO -<br />

O<br />

O<br />

KO


Lu Lu<br />

Lu<br />

Warfar<strong>in</strong> <strong>in</strong>duced artery calcificaCon is promoted by <strong>in</strong>creases <strong>in</strong> serum calcium or phosphate.<br />

Strong upregulaCon <strong>of</strong> MGP at sites <strong>of</strong> calcificaCon, though <strong>in</strong> the <strong>in</strong>acCve uncarboxylated form<br />

Price et al. ATVB 1998<br />

Lu


Schurgers et al. Blood, Nov 2004<br />

Warfar<strong>in</strong> <strong>in</strong>duced calcifica6ons<br />

(%) <strong>of</strong> calcified area<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

OAC no OAC<br />

Variable Oral an6coagulants P value<br />

CT <strong>of</strong> patient before<br />

coumar<strong>in</strong> treatment<br />

Agatston score Yes (n =23) No (n = 63)<br />

CT <strong>of</strong> patient 9 months<br />

after start <strong>of</strong><br />

coumar<strong>in</strong> treatment<br />

Valve 2,410 1,070 0.002<br />

Coronary 1,561 738 0.024<br />

Koos Hristova et al. et Am al. J AJKD <strong>of</strong> card 2010<br />

2005


Vascular calcification as a marker <strong>of</strong> <strong>in</strong>creased<br />

cardio<strong>vascular</strong> risk: a meta-analysis<br />

Rennenberg et al. Vascular health <strong>and</strong> risk management 2009<br />

Alexopoulos et al. Nature Reviews Cardiology 2009<br />

3.41 (2.71 – 4.30<br />

Coronary artery calcium is a better predictor <strong>of</strong> cardio<strong>vascular</strong> events than<br />

the Fram<strong>in</strong>gham risk score <strong>and</strong> can help to reclassify asymptomatic<br />

<strong>in</strong>dividuals <strong>in</strong>to high‐risk or low‐risk categories


BONE<br />

matrix vesicles /<br />

apoptotic bodies<br />

osteoblast matrix<br />

osteoclasts<br />

Requirements for m<strong>in</strong>eralization<br />

INITIATION<br />

NUCLEATION<br />

CRYSTAL GROWTH<br />

REABSORPTION<br />

VASCULATURE<br />

apoptosis <strong>and</strong> matrix vesicles<br />

loss <strong>of</strong> <strong>in</strong>hibitors<br />

MGP<br />

elaboration <strong>of</strong> calcify<strong>in</strong>g matrix<br />

source <strong>of</strong> Ca <strong>and</strong> P<br />

osteoblastic conversion <strong>of</strong> VSMCs<br />

osteoclast-like macrophages?


Influence <strong>of</strong> VKA on medial calcifica6on<br />

Diet composition:<br />

Control diet<br />

0,03 mg Warfar<strong>in</strong> / 1,5 mg K1<br />

0,3 mg Warfar<strong>in</strong> / 1,5 mg K1<br />

3 mg Warfar<strong>in</strong> / 1,5 mg K1<br />

Figure 1: Survival dur<strong>in</strong>g the dose-f<strong>in</strong>d<strong>in</strong>g experiment over 28 days <strong>of</strong> treatment with various<br />

comb<strong>in</strong>ations <strong>of</strong> warfar<strong>in</strong>/<strong>vitam<strong>in</strong></strong> K1.<br />

0 4<br />

mice alive [%]<br />

100<br />

75<br />

50<br />

25<br />

Survival<br />

0<br />

0 7 14 21 28<br />

treatment [days]<br />

8<br />

0,3/0,15 (group 3)<br />

0,03/0,01 (group 1)<br />

3/1,5 (group 5)<br />

Control, group, 2, 4<br />

weeks


Influence <strong>of</strong> VKA on medial calcifica6on: 6me<br />

dependency<br />

Submitted


Low AF pa6ents on warfar<strong>in</strong> treatment<br />

Weijs et al. Eur Heart J 2011


Submitted<br />

D<br />

E<br />

ucMGP; Control<br />

ucMGP; Warfar<strong>in</strong>


Aortic valve<br />

“Cl<strong>in</strong>ical” consequences <strong>of</strong> VKA <strong>in</strong> mice<br />

Peak Gradient [mmHg]<br />

Aortic stiffness<br />

pulse wave velocity [m/s]<br />

Control<br />

28 days warfar<strong>in</strong><br />

49 days warfar<strong>in</strong><br />

8.6 ± 2.5 8.6 ±3.8 25.9 ±3.1<br />

1.9 ± 0.25 2.8 ± 1.44 4.8 ± 0.47<br />

Oral anticoagulation results <strong>in</strong> medial <strong>vascular</strong> calcification, associated<br />

with <strong>vascular</strong> smooth muscle cell loss <strong>and</strong> parameters <strong>of</strong> <strong>vascular</strong><br />

stiffen<strong>in</strong>g


1)<br />

2)<br />

3)<br />

Diet composition:<br />

Control diet<br />

3 mg Warfar<strong>in</strong> / 1,5 mg K1<br />

3 mg Warf. / 1,5 mg K1 /<br />

10 µg MK-7<br />

3 mg Warfar<strong>in</strong> / 1,5 mg K1<br />

0 4<br />

Krueger, Westenfeld, Schurgers<br />

weeks<br />

10 µg Vitam<strong>in</strong> MK-7<br />

Block<strong>in</strong>g vit K<br />

Inhibition by <strong>K2</strong><br />

8<br />

“Therapy”


Ca (mM/mg tissue)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Simultaneous adm<strong>in</strong>istra6on <strong>of</strong><br />

Vitam<strong>in</strong> <strong>K2</strong> (MK7)<br />

Ca content <strong>in</strong> aorta<br />

Ca <strong>in</strong> Aorta (DBA/2)<br />

1<br />

Warf+K1<br />

Warf+K1+<strong>K2</strong><br />

3 mg Warf. / 1,5 mg K1 /<br />

10 µg <strong>K2</strong><br />

0 4<br />

Krueger, Westenfeld, Schurgers<br />

Ca (mM/mg tissue)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Ca content <strong>in</strong> myocardium<br />

Ca <strong>in</strong> heart (DBA/2)<br />

1<br />

weeks<br />

Warf+K1<br />

Warf+K1+<strong>K2</strong><br />

8


Therapy by sequen6al adm<strong>in</strong>istra6on <strong>of</strong><br />

Vitam<strong>in</strong> <strong>K2</strong> (MK-­‐7)<br />

3 mg Warfar<strong>in</strong> / 1,5 mg K1<br />

10 µg Vitam<strong>in</strong> <strong>K2</strong><br />

0 4 8<br />

Krueger, Westenfeld, Schurgers<br />

v. Kossa sta<strong>in</strong>ed area <strong>of</strong> the aorta<br />

weeks


n = 18<br />

n = 6<br />

n = 6<br />

n = 12<br />

Control diet<br />

3 mg Warfar<strong>in</strong> / 1,5 mg K1 3 mg Warfar<strong>in</strong> / 1,5 mg K1<br />

3 mg Warfar<strong>in</strong> / 1,5 mg K1<br />

3 mg Warfar<strong>in</strong> / 1,5 mg K1<br />

0 6<br />

Schurgers et al. Blood 2007<br />

5 µg Vitam<strong>in</strong> K1<br />

100 µg Vitam<strong>in</strong> K1 or <strong>K2</strong><br />

weeks<br />

Control diet Control<br />

12<br />

CalcificaOon<br />

Low <strong>vitam<strong>in</strong></strong> K<br />

High <strong>vitam<strong>in</strong></strong> K


Aorta verkalk<strong>in</strong>g (µg/mg weefsel)<br />

Can we stop or even regress pre-­‐formed<br />

medial artery calcifica6on?<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

control<br />

warfar<strong>in</strong><br />

low vit K<br />

Schurgers et al. Blood 2007<br />

*<br />

high vit K *<br />

0 6 12<br />

Weeks<br />

* *<br />

37% reduc6on<br />

* = P < 0.001


Control diet<br />

Warfar<strong>in</strong> / 1,5 mg K1<br />

low Vitam<strong>in</strong> K<br />

high Vitam<strong>in</strong> K<br />

Schurgers et al. Blood 2007<br />

Von Kossa ucMGP cMGP


<strong>vascular</strong> calcifica6on is trigger<strong>in</strong>g by smooth muscle cell<br />

<strong>vitam<strong>in</strong></strong> K-­‐deficiency<br />

Shr<strong>of</strong>f et al.CirculaCon 2008


Schlieper, JASN 2011<br />

Vitam<strong>in</strong> K-­‐deficiency <strong>in</strong> dialysis<br />

188 CKD5D patients<br />

>90 % deficiency!<br />

Normal range


Vitam<strong>in</strong> K supplementa6on <strong>in</strong> dialysis pa6ents<br />

45 µg<br />

<strong>K2</strong><br />

(n=19)<br />

Submitted<br />

HD Pa6ents n=75<br />

SCREENING<br />

<strong>in</strong>clusion; n= 55<br />

RANDOMIZATION<br />

basel<strong>in</strong>e; 1 week<br />

135 µg<br />

<strong>K2</strong><br />

(n=17)<br />

dropout<br />

n=1<br />

360 µg<br />

<strong>K2</strong><br />

(n=14)<br />

dropout<br />

n=2<br />

dropout<br />

n=2<br />

measurement <strong>of</strong> dp-ucMGP to show improved carboxylation <strong>in</strong> the<br />

vessel wall by high <strong>vitam<strong>in</strong></strong> K <strong>in</strong>take


Decrease <strong>of</strong> dp-ucMGP (%)<br />

20<br />

10<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

0<br />

45µg 135µg 360µg <strong>K2</strong> Supplementation<br />

1....... 28... 42.. 63 1....... 28... 42.. 63 1....... 28... 42.. 63<br />

t (days)<br />

Vitam<strong>in</strong> <strong>K2</strong> supplementation at 135µg <strong>and</strong> 360µg per day<br />

<strong>in</strong>duces <strong>in</strong>cremental reduction <strong>of</strong> dp-ucMGP levels over 6<br />

weeks.<br />

Follow<strong>in</strong>g term<strong>in</strong>ation <strong>of</strong> <strong>vitam<strong>in</strong></strong> <strong>K2</strong> supplementation dpucMGP<br />

levels rise aga<strong>in</strong>.<br />

Submitted


Population<br />

• HD-patients (n = 650)<br />

• Not on VKA<br />

• CAC score > 30<br />

VitaVasK-Study<br />

- Design -<br />

St<strong>and</strong>ard therapy<br />

+ placebo (n = 165)<br />

r<strong>and</strong>omised (1:1) follow-up = 1.5 years<br />

St<strong>and</strong>ard therapy<br />

+ Vitam<strong>in</strong> <strong>K2</strong> (MK7) (n =165)<br />

Week 0 Week 40 Week 78<br />

• End po<strong>in</strong>ts: primary = progress <strong>of</strong> coronary calcification<br />

secondary = progress <strong>of</strong> aortic(-valve) calcification


Population<br />

• CAC-patients (n = 200)<br />

• Not on VKA<br />

• CAC score >100; < 400<br />

VitaK-CAC Study<br />

- Design -<br />

St<strong>and</strong>ard therapy<br />

+ placebo (n = 100)<br />

r<strong>and</strong>omised (1:1) follow-up = 2.0 years<br />

St<strong>and</strong>ard therapy<br />

+ Vitam<strong>in</strong> <strong>K2</strong> (360mcg) (n =100)<br />

Week 0 Week 52 Week 104<br />

• End po<strong>in</strong>ts: primary = progress <strong>of</strong> coronary calcification<br />

secondary = <strong>vascular</strong> stiffness <strong>and</strong> biomarkers


Vitam<strong>in</strong> K supplementation reduces progression <strong>of</strong> VC<br />

Design:<br />

Results:<br />

CAC Score Progression<br />

60<br />

40<br />

20<br />

0<br />

n= 388, mean age 68 years, 500µg K1 supplementation daily<br />

Endpo<strong>in</strong>t: Coronary artery calcification (CAC) progression over 3 y.<br />

Significant differences were only apparent after secondary analysis,<br />

restricted to patients >85% adherent to supplementation (n = 367).<br />

K1<br />

Control<br />

(38-80)<br />

Control<br />

K1 supplementation slows the progression <strong>of</strong> CAC <strong>in</strong> healthy older adults with<br />

preexist<strong>in</strong>g CAC, <strong>in</strong>dependent <strong>of</strong> its effect on total MGP concentrations.<br />

No difference <strong>in</strong> CV morbidity / mortality between the groups.<br />

Shea et al. AJCN 2009<br />

(4-29)<br />

All<br />

(24-50)<br />

60<br />

40<br />

20<br />

0<br />

Basel<strong>in</strong>e CAC > 10<br />

(3-47)<br />

K1


Take home message<br />

o Vitam<strong>in</strong> K is effec6ve <strong>in</strong> ac6va6ng <strong>vitam<strong>in</strong></strong> K-­‐dependent prote<strong>in</strong>s, such<br />

as MGP though current recommended <strong>in</strong>takes are too low<br />

o Poor <strong>vitam<strong>in</strong></strong> K status à mortality à due to enhanced calcifica6on ?<br />

(<strong>vitam<strong>in</strong></strong> K-­‐antagonists are a risk factor for calcificaCon)<br />

o New oral an6coagulants (FIIa <strong>and</strong> FXa <strong>in</strong>hibitors) provide an alterna6ve<br />

<strong>in</strong> certa<strong>in</strong> pa6ent popula6ons without affec6ng extra-­‐hepa6c <strong>vitam<strong>in</strong></strong> K<br />

dependent prote<strong>in</strong>s<br />

o High <strong>vitam<strong>in</strong></strong> <strong>K2</strong> (MK7) <strong>in</strong>take should be considered as a “treatment”<br />

op6on for preven6ng arterial calcifica6on <strong>in</strong> both healthy subjects <strong>and</strong><br />

pa6ents

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!