28.09.2013 Views

Influensautbrottet i Sverige 2007

Influensautbrottet i Sverige 2007

Influensautbrottet i Sverige 2007

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Intervet AB<br />

Box 123<br />

182 12 Danderyd<br />

Tel 08 - 775 76 50<br />

www.intervet.se<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

INTERVET SYMPOSIUM<br />

Med fokus på hästinfluensan <strong>2007</strong><br />

Stockholm Göteborg Malmö<br />

Solvalla 16/10 Åby 17/10 Jägersro 18/10<br />

<strong>Influensautbrottet</strong> i <strong>Sverige</strong> <strong>2007</strong><br />

Gittan Gröndahl och Maria Eriksson, SVA<br />

EquiFluNet och internationella rekommendationer<br />

Louise Treiberg Berndtsson, SVA<br />

<strong>Influensautbrottet</strong> 1993<br />

– Historik och vad lärde vi oss av detta?<br />

Peter Forssberg, STC<br />

Paneldebatt/frågestund<br />

Föredragshållarna samt<br />

Stig Hägglund, STC<br />

Solvalla 16 okt - Åby 17 okt - Jägersro 18 okt


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Solvalla 16 okt - Åby 17 okt - Jägersro 18 okt


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Program<br />

INTERVET SYMPOSIUM –<br />

Med fokus på hästinfluensan <strong>2007</strong><br />

18.45-19.30 <strong>Influensautbrottet</strong> i <strong>Sverige</strong> <strong>2007</strong><br />

(Gittan Gröndahl och Maria Eriksson, SVA)<br />

19.30-19.50 EquiFluNet och internationella rekommendationer<br />

(Louise Treiberg-Berndtsson)<br />

19.50-20.00 Bensträckare<br />

20.00-20.20 <strong>Influensautbrottet</strong> -93<br />

– Historik och vad lärde vi oss av detta?<br />

(Peter Forssberg, STC)<br />

20.20-21.00 Paneldebatt/frågestund<br />

(föredragshållarna samt Stig Hägglund, STC)<br />

Equilis ® Prequenza<br />

Antigen<br />

→ Subenhetsvaccin<br />

Adjuvans<br />

→ ISCOM-Matrix<br />

Vaccinets skyddande effekt visat<br />

→ Challenge mot både Nm/05/03<br />

och SA/04/03<br />

Förpackningar<br />

→ Sprutor eller ampuller, båda med<br />

peel off-etikett<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Med fokus på hästinfluensan <strong>2007</strong><br />

• Varför fick detta utbrott så stor spridning?<br />

• Var startade det, och hur/var skedde spridningen?<br />

• Typ av hästar som drabbades, vaccinationsstatus på<br />

drabbade?<br />

• Vad kan vi göra för att förhindra ett liknande utbrott i framtiden?<br />

• Vad lärde vi oss vi förra stora utbrottet -93?<br />

• Orsaken till att vaccinationsobligatoriet inom travet upphävdes?<br />

• Kommer regler/rutiner att ändras, vad händer/gäller utomlands?<br />

• Hur fungerar det globala nätverket för övervakning av<br />

hästinfluensa?<br />

• Hur väljs vaccinstammar ut, hur görs uppföljningar?<br />

Hästinfluensa…<br />

Varför ska vi vaccinera..?<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Resultat från studien som ges i denna<br />

presentation är preliminära.<br />

För slutgiltiga siffror och resultat hänvisas till<br />

kommande publikation i<br />

Svensk Veterinärtidning.<br />

Oktober <strong>2007</strong><br />

Gittan Gröndahl<br />

Epidemin av<br />

hästinfluensa stinfluensa<br />

i <strong>Sverige</strong> <strong>2007</strong><br />

Gittan Gr Gröndahl dahl, tf statsveterinär, VMD<br />

Maria Eriksson, vet stud<br />

SVA, <strong>2007</strong><br />

Sedan 1980talet:<br />

Europeisk<br />

variant<br />

Amerikansk<br />

variant<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Hästinfluensa<br />

orsakas av<br />

influensavirus av<br />

olika subtyper<br />

även<br />

Sydamerikansk<br />

variant<br />

Sydafrikansk<br />

variant<br />

© Tf statsvet Gittan Gröndahl, SVA<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Hästinfluensans utbredning<br />

• A1: inte sedan 1979<br />

• A2: nya varianter<br />

• Hästinfluensa förekommer i <strong>Sverige</strong> årligen<br />

• Mer epidemiskt vissa år<br />

• De flesta länder har h ästinfluensa<br />

• Nya Zeeland och Island fria<br />

• Australien var fritt tills augusti <strong>2007</strong><br />

Australiens utbrott <strong>2007</strong><br />

• Första fallet augusti <strong>2007</strong><br />

• Tidigare fritt land,<br />

inga vaccinerade hästar<br />

• Kraftig spridning på en månad:<br />

2653 Infected Properties,<br />

323 Dangerous Contact Properties and<br />

356 Suspect Properties. (070928)<br />

• Mål: utrota EI inom 6 månader<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1997 199819992000200120022003200420052006<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Svenska rapporterade utbrott till<br />

Jordbruksverket 1997-2006<br />

Hästinfluensa<br />

1 ”utbrott”=<br />

första fallet,<br />

men kan vara<br />

många hästar<br />

drabbade<br />

© Tf statsvet Gittan Gröndahl, SVA<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Symptom på hästinfluensa<br />

Symptom på hästinfluensa A2<br />

• OBS: Vaccinerade hästar får lindrigare<br />

symtom – om de över huvudtaget får<br />

symtom. Sprider mindre mängd virus, och<br />

återhämtar sig snabbare än ovaccinerade<br />

Isoleringsrekommendationer<br />

vid influensa<br />

• Stallet isoleras 10 dagar efter<br />

senaste insjuknade hästs<br />

första febertopp<br />

OBS - Spridningen av smitta kan begränsas<br />

om man har m öjlighet att separera/isolera<br />

den först insjuknade hästen i stallet<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

© Tf statsvet Gittan Gröndahl, SVA<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Stor svensk epidemi av<br />

hästinfluensa <strong>2007</strong><br />

• Spreds från södra <strong>Sverige</strong> i januari <strong>2007</strong><br />

• Nådde hela <strong>Sverige</strong>, jan jan-juni juni <strong>2007</strong><br />

• Mest travstallar drabbade,<br />

inkl de flesta banor<br />

• 2 unga h ästar akut döda i sviterna<br />

• Bristande vaccination, åsidos sidosättande ttande av<br />

smittskyddsregler, mörkande?<br />

Travronden rapporterade om A2<br />

• [070924]: Kriterieauktionen direktsänds<br />

• [070613]: V64-trippel för Kari<br />

• [070613]: Den nye Gidde...<br />

• [070613]: V64: Formkusk ligger lågt<br />

• [070605]: Fler A2-sjuka på Solvalla<br />

• [070604]: A2 på Solvalla<br />

• [070509]: Smittoläget<br />

• [070507]: Misstänkt A2 hos Svensson<br />

• [070426]: A2-nytt<br />

• [070420]: Russel, Chaplin och USA-importer<br />

• [070418]: Ännu mera A2<br />

• [070417]: Peter Forssberg om A2-influensan<br />

• [070417]: Nurmos-stall isolerat<br />

• [070417]: Misstänkt A2 i Boden<br />

• [070403]: A2 på Vermo<br />

• [070326]: A2 även på Romme<br />

• [070325]: "I påsk vill jag vara med igen"<br />

• [070321]: Konstaterad A2 i Gävle<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

• [070320]: Gävle-stall A2-isolerade<br />

• [070314]: Hallå där Charlotta B...<br />

• [070305]: Inbrott hos Turja igen<br />

• [070301]: Nya fall av A2-virus<br />

• [070220]: "Det måste gå fort i början"<br />

• [070216]: Laursens överl ägsna 101-oddsare<br />

• [070210]: Heiskanen tränare i Italien<br />

• [070206]: Återbud från Adielsson<br />

• [070123]: A2-läget stabiliserat<br />

• [070119]: A2-läget: inga nya fall idag<br />

• [070118]: A2-läget just nu<br />

• [070117]: Dags för vaccinationstvång?<br />

• [070117]: Två hästar döda på Axevalla<br />

• [070116]: Per ställer in Axevallapremiären?<br />

• [070115]: A2 på Axevalla<br />

• [070104]: A2 i Skaratrakten<br />

• [061209]: Champagne i Århus<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Det påstås att…….<br />

• ”Vaccinerade hästar blir också sjuka och det<br />

pågår mycket, mycket l ängre än hos<br />

ovaccinerade” (Travronden blogginlägg av Pelle, april <strong>2007</strong>)<br />

• ”Att vaccinera är att spruta in sjukdom i kroppen<br />

(…) och vilken idrottsman gör det frivilligt?” (Pelle<br />

igen)<br />

• ”Det är bättre att hästarna blir ordentligt sjuka så<br />

man inte råkar missa det och startar en<br />

vaccinerad häst som bara är lite sjuk i influensa,<br />

för då kan den få allvarliga komplikationer” (en av<br />

våra svarare)<br />

Studie av epidemin av<br />

hästinfluensa i <strong>Sverige</strong> <strong>2007</strong><br />

• Oberoende studie vid<br />

Statens veterinärmedicinska anstalt (SVA)<br />

• Stöd från SVAs Forskningsfond<br />

Syfte med studien<br />

• Vilken typ av hästar drabbades?<br />

• Blev hästarna sjuka trots att de var<br />

vaccinerade? (ny virusstam/dåliga vaccin)<br />

• Eller var det ovaccinerade h ästar som<br />

framför allt blev sjuka?<br />

• Skyddade vaccin mot sjukdom/gravare<br />

sjukdom?<br />

• Kan rutiner förbättras?<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Underlag:<br />

Studie av epidemin av<br />

hästinfluensa i <strong>Sverige</strong> <strong>2007</strong><br />

• 68 rapporter vid SVA om positiva influensaprover<br />

från ca 100 hästar januari-juni <strong>2007</strong><br />

• Känt att hästinfluensan drabbade<br />

<strong>Sverige</strong>s 32 travbanor/regioner enligt följande:<br />

3/3 storbanor, 8/11 mellanbanor och 13/18<br />

sm åbanor, totalt 24 st.<br />

• Mörkertal antal drabbade banor?<br />

• Varje banregion innefattar många tränare<br />

Januari:<br />

Axvall, Aneby,<br />

Hishult<br />

Tävling Axevalla 16/1<br />

under isoleringen och<br />

3 hästar dör – Åby,<br />

Mantorp och Jä gersro<br />

isolerar dagarna efter.<br />

Virus sprider sig över<br />

landet…..<br />

Februari:<br />

Hammarö, Visby,<br />

Vårgårda,<br />

Borensberg,<br />

Uppsala<br />

Färjestad o Visby<br />

isolerar, tävling på<br />

Färjestad 19/2<br />

Mars:<br />

Sala, Järvsö,<br />

Borlänge, St Skedvi,<br />

Skattkärr, Saxdalen,<br />

Glanshammar, Gävle,<br />

Helsingborg<br />

Tävling Gävle 20 och 27/2<br />

under isoleringen.<br />

Hagmyren ställer in.<br />

Romme isolerar också.<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Bollnäs, Rättvik,<br />

Romme, Dannero,<br />

Solänget, Åmål,<br />

Skellefteå, Boden,<br />

Oviken, Halmstad,<br />

Örebro, Solvalla<br />

isolerar.<br />

Finland också A2.<br />

April:<br />

Orsa, Rättvik, Tumba,<br />

Örebro, Boden, Halmstad,<br />

Edsvalla, Eskilstuna,<br />

Nossebro, Haparanda,<br />

Älandsbro, Lindesberg,<br />

Edsbyn, Åmål, Borlänge,<br />

Näsviken, Ljungbyhed,<br />

Bollnäs, Eskilstuna, St<br />

Skedvi, Kimstad, Norberg<br />

Insamlingsresultat<br />

Örebro, Åby, Åmål,<br />

Skellefteå, Solvalla<br />

isolerar.<br />

Finland också A2.<br />

Maj:<br />

Tävelsås, Västerljung,<br />

Söderköping, Linkö ping,<br />

Skinnskatteberg,<br />

Enköping, Säffle, St<br />

Anna, Strömsholm,<br />

Örebro, Nordingrå<br />

• 45 av SVA-positiva hästhållare kunde kontaktas<br />

varav enkätsvar erhållits från 19 st.<br />

• 13 drabbade travbanor kontaktades.<br />

Svar från 8: Axevalla, Färjestad, Visby, Romme,<br />

Örebro, Lindesberg, Solvalla samt Halmstad.<br />

Inget svar från: Mantorp, Åmål, Rättvik, Gävle,<br />

Hagmyren och Boden.<br />

• 63 stallar med 773 hästar analyserade<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Enkätfrågor<br />

• Sjuka och friska hästars namn, ålder,<br />

kön, ras, träningsstatus<br />

• Datum för senaste 2 vaccinationer<br />

mot hästinfluensa<br />

• Tidigare sjuk i influensa<br />

• Temperaturkurvor under utbrottet<br />

• Antal dagar med hosta +/- näsfl öde<br />

• Antibiotikabehandlingar<br />

Subjektiva uppfattningar<br />

”Var smittades dina hästar tror du?”<br />

• Många svarar:<br />

”- På travtävlingar för 2-3 dagar sedan”<br />

• Jägersro, Mantorp 2/1, Axevalla,<br />

Gävle 12/3, Romme 16/3 + 16/4,<br />

Rättvik 26/3, Dannero 15/4<br />

omnämns t ex<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Kriterier i studien<br />

• Adekvat vaccinerad = Grundvacc 2 ggr<br />

eller revacc inom 1 år tillbaka<br />

• Ej adekvat vaccinerad = Vaccinerad<br />

men ej som ovan<br />

• Ovaccinerad = Ingen vacc eller endast<br />

1 vacc för mindre än 2 veckor sedan<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


87%<br />

Kriterier i studien<br />

• Feber = Temperatur =38,3°C<br />

• Hosta, näsflöde = Enl hästhållaren<br />

• Sjukdomsgrad:<br />

lindrig = feber i 1 -2 dagar<br />

måttlig = feber i 3-4 dagar<br />

kraftig = feber i 5 dagar eller mer<br />

• Tävlingskondition = Har nyligen startat<br />

el ska starta i travlopp<br />

Svar från 63 stallar med<br />

totalt 773 friska och sjuka hästar<br />

Tävlingskondition: 233/293 hästar (80%)<br />

Rasfördelning<br />

Andel<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

6%<br />

3%<br />

3%<br />

1%<br />

Varmblod<br />

Kallblod<br />

Ponny<br />

Halvblod<br />

Okänt<br />

23%<br />

0 – 29 år<br />

Medelålder = 4,9 år (±3,2)<br />

0 år<br />

1 år<br />

2 år<br />

3 år<br />

4 år<br />

5 år<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Ålder<br />

35%<br />

Könsfördelning<br />

1%<br />

41%<br />

Åldersfördelning i hela materialet<br />

6 år<br />

7 år<br />

8 år<br />

9 år<br />

10+ år<br />

okänd<br />

Ston<br />

Valacker<br />

Hingstar<br />

Okänt<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


40,5<br />

40<br />

39,5<br />

39<br />

38,5<br />

38<br />

37,5<br />

37<br />

36,5<br />

<strong>2007</strong>-01-<br />

08<br />

<strong>2007</strong>-01-<br />

13<br />

Vaccinationsstatus –<br />

känt för 530 hästar (friska och sjuka)<br />

• Ovaccinerade: 213 st (40%)<br />

• Adekvat vaccinerade: 169 st (32%)<br />

• Ej adekvat vaccinerade: 148 st (28%)<br />

• För 1/3 av hästarna visste inte tränarna om<br />

de var vaccinerade eller inte (243 st)<br />

• 7% (21/318 svar) hade haft influensa förut<br />

30%<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

Åldersfördelning (friska+sjuka)<br />

per vaccinationskategori<br />

Tränare A inne på Axevalla.<br />

Adekvat vaccinerade hästar (25%)<br />

<strong>2007</strong>-01-<br />

18<br />

<strong>2007</strong>-01-<br />

23<br />

<strong>2007</strong>-01- <strong>2007</strong>-02-<br />

28 02<br />

0 år<br />

1 år<br />

2 år<br />

3 år<br />

4 år<br />

5 år<br />

Normal temp är upp till 38°C.<br />

BB 7 år<br />

CML 6 år<br />

TL 5 år<br />

Ovaccinerade hästar f år högre<br />

feber och i fler dagar (upp till 2 v).<br />

Ålder<br />

1 vaccination är bättre än ingen.<br />

Men för att hinna ge skydd bör det<br />

ha gått några veckor.<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

40,5<br />

40<br />

39,5<br />

39<br />

38,5<br />

38<br />

37,5<br />

37<br />

36,5<br />

<strong>2007</strong>-01-<br />

08<br />

40,5<br />

40<br />

39,5<br />

39<br />

38,5<br />

38<br />

37,5<br />

37<br />

36,5<br />

Ovaccinerade<br />

Adekvat vaccinerade<br />

Ej adekvat vaccinerade<br />

6 år<br />

7 år<br />

8 år<br />

9 år<br />

10+ år<br />

okänt<br />

Tränare A inne på Axevalla.<br />

Ej adekvat vaccinerade hästar (42%)<br />

<strong>2007</strong>-01-<br />

13<br />

<strong>2007</strong>-01-<br />

18<br />

<strong>2007</strong>-01-<br />

23<br />

Andel<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

0 år<br />

1 år<br />

2 år<br />

3 år<br />

4 år<br />

5 år<br />

<strong>2007</strong>-01- <strong>2007</strong>-02-<br />

28 02<br />

Tränare A inne på Axevalla.<br />

Ovaccinerade hästar (33%) (3 är vacc, men väldigt<br />

nära/vid utbrottet)<br />

<strong>2007</strong>-01-<br />

08<br />

<strong>2007</strong>-01-<br />

13<br />

<strong>2007</strong>-01-<br />

18<br />

<strong>2007</strong>-01-<br />

23<br />

<strong>2007</strong>-01- <strong>2007</strong>-02-<br />

28 02<br />

Ålder<br />

6 år<br />

7 år<br />

8 år<br />

9 år<br />

10+ år<br />

okänd<br />

CH 2 år<br />

EK 4 år<br />

MR 2 år<br />

RR 2 år<br />

HC 2 år<br />

RA 2 år<br />

RH 2 år<br />

HJ 2 år<br />

BFR 3 år<br />

© Tf statsvet Gittan Gröndahl, SVA<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


40,5<br />

40<br />

39,5<br />

39<br />

38,5<br />

38<br />

37,5<br />

37<br />

36,5<br />

<strong>2007</strong>-01-<br />

03<br />

32%<br />

32%<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Tränare B utanför Axevalla.<br />

Hästar som är adekvat vaccinerade (18%)<br />

<strong>2007</strong>-01-<br />

08<br />

<strong>2007</strong>-01-<br />

13<br />

<strong>2007</strong>-01-<br />

18<br />

Adekvat vaccinerade<br />

(n=91)<br />

<strong>2007</strong>-01-<br />

23<br />

QS 4 år<br />

SJ 3 år<br />

40,5<br />

39,5<br />

38,5<br />

37,5<br />

Ju fler ovaccinerade hästar,<br />

desto högre smittryck<br />

(högre virusmängd i stallet)<br />

Tränare B utanför Axevalla.<br />

Ovaccinerade hästar/okänt vaccinationsstatus (72%)<br />

36,5<br />

<strong>2007</strong>-01-03 <strong>2007</strong>-01-08 <strong>2007</strong>-01-13 <strong>2007</strong>-01-18 <strong>2007</strong>-01-23<br />

och desto fler sjuka (sjukare) hästar.<br />

68%<br />

68%<br />

Ej adekvat vaccinerade<br />

(n=80)<br />

55%<br />

55%<br />

45%<br />

45%<br />

79%<br />

79%<br />

CL 4 år<br />

LJS 2 år<br />

LJ 2 år<br />

CLA 4 år<br />

HG 2 år<br />

HP 7 år<br />

LM 6 år<br />

LP 10 år<br />

LL 2 år<br />

© Tf statsvet Gittan Gröndahl, SVA<br />

Ovaccinerade: majoriteten fick feber<br />

• Av samtliga hästar fick 311/562 st feber (=38,3°C) minst en dag,<br />

uppdelat på vaccinationsstatus ser det ut så här:<br />

Feber<br />

Ej feber<br />

Ovaccinerade<br />

(n=168)<br />

21% 21%<br />

Ovaccinerade: högre febertoppar och<br />

fler dagar sjuka<br />

Antal feberdagar hos de hästar<br />

som hade feber (medel ± SD)<br />

***<br />

**<br />

Vaccinerade<br />

(n=91)<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

41<br />

40,5<br />

40<br />

39,5<br />

39<br />

38,5<br />

38<br />

37,5<br />

37<br />

36,5<br />

Ej adekvat vaccinerade<br />

(n=80)<br />

Högsta febertopp hos hästar med<br />

feber (medel ± SD)<br />

***<br />

*<br />

Ovaccinerade<br />

(n=168)<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


100%<br />

1 häst<br />

Hosta<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Vaccinerade<br />

(n=91)<br />

Feberperiod<br />

Ej adekvat<br />

vaccinerade<br />

(n=80)<br />

Ovaccinerade<br />

(n=168)<br />

Hur länge tar det för ett stall att<br />

bli feberfritt?<br />

Ingen feber<br />

Kortare feberperiod<br />

(1-2 d)<br />

Måttlig feberperiod<br />

(3-4 d)<br />

Längre feberperiod<br />

(5 d el mer)<br />

• 2 – 22 dagar<br />

• Medelvärde 7 dgr (±3,4)<br />

• När började mätningarna?<br />

– Sannolikt längre perioder i verkligheten<br />

• 202 st (45 %) hostade<br />

• 1-23 dagar<br />

• Medel 6,1 dgr (±3,7)<br />

• n=453 svar<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Hosta & Näsflöde<br />

Näsflöde<br />

Hälften av alla<br />

ovaccinerade<br />

hästar fick feber<br />

3 d eller längre<br />

(25% >5d)<br />

• 208 st (45 %) hade<br />

näsflöde<br />

• 1-15 dagar<br />

• Medel 6,1 dgr (±3,0)<br />

• n=460 svar<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Hosta<br />

Näsflöde<br />

Ovaccinerade Adekvat<br />

vaccinerade<br />

Ovaccinerade: fler hostar och snorar<br />

och under längre tid<br />

Hur många hästar har<br />

hosta eller näsflöde?<br />

Ej adekvat<br />

vaccinerade<br />

Antal dagar<br />

4,5<br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

Hur många dagar har<br />

dessa hosta eller näsflöde i<br />

snitt?<br />

Medel hostdagar<br />

Medel näsflödesdagar<br />

Ovaccinerade Adekvat<br />

vaccinerade<br />

Antibiotikabehandlingar<br />

• 9 % behandlades sekundärt (30/319)<br />

– vanligast penicillin (18) och trimsulfa (7)<br />

– behandling 5,9 dgr (±1,03)<br />

– genomsnittlig ålder 3,7 år (±1,91)***<br />

jmfr 4,9 år för hela materialet.<br />

• Inga av dessa 30 hästar var adekvat<br />

vaccinerade…<br />

Vaccinerade h ästar jämfört med ovaccinerade:<br />

• Färre hästar med feber<br />

• Färre feberdagar/häst<br />

• Lägre feber<br />

• Färre hästar får hosta och näsflöde<br />

• Färre dagar/häst med hosta resp. näsflöde<br />

• Färre (inga!) hästar behövde behandlas<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Take home message<br />

32%<br />

Adekvat vaccinerade (n=91)<br />

68%<br />

Ovaccinerade (n=168)<br />

79%<br />

Ej adekvat<br />

vaccinerade<br />

21%<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Konklusion<br />

Hästar som vaccineras mot influensa<br />

på ett adekvat s ätt<br />

blir inte sjuka eller<br />

får en mildare sjukdom under kortare tid<br />

jämfört med ovaccinerade individer.<br />

Förebygg influensa!<br />

• Vaccinera fölen<br />

efter 6 månaders ålder (2 ggr)<br />

• Vaccinera alla hästar i stallet<br />

• Vaccination helst var 6 mån.<br />

(unga hästar) t.o.m. 4 års ålder<br />

• Årlig vaccination fr.o.m. 5 år<br />

• FEI, internationell ridsport:<br />

Vaccination var 6 mån.<br />

• Vaccinera när utbrott närmar sig!<br />

• Inför obligatorisk vaccination av<br />

svenska travhästar igen?<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Att diskutera…<br />

• Hur länge är prestationen nedsatt?<br />

• 1 veckas vila för varje feberdag<br />

rekommenderas<br />

• Varje dag i ett travträningsstall kan kosta<br />

ca 300 kr. 10 dagars isolering/sjukdom =<br />

3000 kr/häst i träningsavgift till spillo för<br />

travhästägaren<br />

• Vaccination kostar mindre än 1 kr/dag<br />

• Bättre isoleringsåtgärder vid utbrott?<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Rätt tt sk skötsel tsel<br />

och<br />

hästh sthållnings llnings-<br />

rutiner<br />

med<br />

smittskydd i<br />

fokus<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Bättre ttre djurskydd<br />

Kortare avbrott i<br />

verksamheten<br />

Ekonomiskt<br />

mycket att vinna<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Equi Flu Net och internationella<br />

rekommendationer<br />

Louise T Berndtsson<br />

Avd för virologi<br />

Influensa hos häst<br />

• Först isolerad i<br />

Tjeckoslovakien 1956<br />

A1, H7N7<br />

(A/eq1/Prague/56)<br />

• Isolerad i Miami 1963<br />

A2, H3N8<br />

(A/eq2/Miami/63)<br />

Influensavirus<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


HA – för införsel<br />

av virus in i cellen<br />

Hemagglutinin och<br />

Neuraminidas<br />

Faktorer som vidmakthåller<br />

epizootier av hästinfluensa<br />

Na – för att ta sig<br />

ut ur cellen efter<br />

virus<br />

replikationen<br />

• Antigen drift<br />

När existerande antikroppar inte längre<br />

känner igen HA-gp och därmed ej virus.<br />

• Kort duration av immunitet<br />

• (Sprids över speciesgränserna?)<br />

Amerikansk och Europeisk<br />

variant<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


A1<br />

Prag/56<br />

† ?<br />

A2<br />

Miami/63<br />

Hästinfluensa<br />

fylogenetiskt träd<br />

A2<br />

Europeisk<br />

Amerikansk<br />

Newmarket/1/93<br />

Kentucky/94<br />

Kentucky/98<br />

South Africa/4/03<br />

Newmarket/5/03<br />

Internationell övervakning av<br />

hästinfluensa<br />

• Expert Surveillance Panel<br />

– SVA ett av 6 laboratorier globalt<br />

– Möts varje år för genomgång av<br />

utbrott och karakterisering av<br />

stammar<br />

– På grundval av utvecklingen<br />

rekommenderas bibehållande<br />

eller utbyte av vaccinstammar<br />

– Rekommendationer för<br />

harmonisering och standardisering<br />

av metoder för antigenbestämmning<br />

i vacciner<br />

• South Africa/4/03 täcker väl<br />

stammar av amerikanska<br />

varianten<br />

• Newmarket/2/93 täcker väl de<br />

flesta stammar av europeiska<br />

varianten, men några isolat<br />

från 2002 ”outgroups”<br />

• Antigenic Cartography en<br />

metod för framtida<br />

karakterisering?<br />

ESP <strong>2007</strong> - antigen<br />

karakterisering<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


H3N8 stammar som används i<br />

nuvarande amerikanska och<br />

europeiska vaccin<br />

• Europeisk variant:<br />

– Suffolk/89<br />

– Borlänge/91<br />

– Newmarket/2/93<br />

• Amerikansk variant:<br />

– Newmarket/1/93<br />

– Kentucky/92<br />

– Kentucky/94<br />

– Kentucky/95<br />

– Kentucky/97<br />

– Kentucky/98<br />

2006 OIE recommendations<br />

Update vaccines to contain :<br />

• an A/equine/South Africa/4/03 (H3N8)-like virus (American<br />

lineage) and<br />

• an A/equine/Newmarket/2/93 (H3N8)-like virus (European<br />

lineage) remains<br />

Olika möjligheter för<br />

influensavacciner<br />

• uppgradera nuvarande vacciner -<br />

kan ta flera år<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

• Testa existerande vaccin -<br />

challenge studie mot Syd Afrikanska<br />

varianten<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Conclusions and recommendations from the Expert Surveillance Panel on Equine<br />

Influenza Vaccines - January 2006<br />

These recommendations relating to the composition of vaccines for 2006 were made<br />

following review of the data arising from equine influenza surveillance by the panel of<br />

international collaborators for the period January 2005 – January 2006. The<br />

recommendations for vaccine strains remain as for 2005.<br />

Influenza activity 2005<br />

Outbreaks of equine influenza in Denmark, France, Sweden, Tunisia, United Kingdom, and<br />

the USA were reported during 2005. Some outbreaks occurred in vaccinated animals but<br />

disease was generally mild.<br />

All influenza activity was associated with H3N8 viruses. There were no reports of serological<br />

or virological evidence of H7N7 (equine-1) subtype viruses circulating in the equine<br />

population. Nevertheless, diagnostic laboratories should continue serological and virological<br />

monitoring and when using polymerase chain reaction (PCR) for rapid diagnosis, should<br />

ensure that primers specific for H7N7 virus as well as H3N8 virus are used.<br />

Characteristics of recent isolates<br />

All viruses characterised antigenically and/or genetically from Europe and North America<br />

during 2005 belonged to the ‘American' lineage with the exception of one isolate in the UK.<br />

In haemagglutination inhibition (HI) tests using post infection ferret antisera American<br />

Lineage viruses isolated in Europe and North America were closely related to the prototype<br />

vaccine strain A/South Africa/4/2003 and the A/eq/Newmarket/5/2003 reference strain. The<br />

HA1 sequences of American lineage viruses isolated since 2003 in America, Europe and<br />

South Africa all fall within a single phylogenetic sub-group, previously referred to as the<br />

‘Florida' lineage (Lai et al., 2001; 2004). The sequences of viruses isolated in America since<br />

2003 and represented by A/eq/South Africa/4/2003 (and A/eq/Ohio/2003) are characterised<br />

by two further amino acid changes in antigenic sites compared with the HA1 sequences of<br />

viruses isolated in Europe; these additional changes appear to contribute to greater antigenic<br />

drift from A/eq/Newmarket/1/93-like viruses currently included in vaccines. The European<br />

lineage virus isolated in 2005 reacted well in HI tests with ferret antisera against the<br />

European lineage reference strain A/eq/Newmarket/2/93.<br />

Recommendations for the composition of equine influenza vaccines<br />

During the period January 2005 to January 2006, H3N8 viruses of the ‘American’ lineage<br />

continued to circulate in Europe and North America with some vaccinated horses affected.<br />

These viruses, together with those responsible for the 2003/4 outbreaks in South Africa and<br />

circulating in North America were antigenically closely related to the currently recommended<br />

vaccine strains, A/eq/South Africa/4/2003-like. Only one virus belonging to the ‘European’<br />

lineage was characterised during 2005 and no serious clinical episodes have been attributed<br />

to these viruses. Nonetheless, the recommendation remains that a European lineage virus be<br />

included in vaccines and surveillance for European lineage viruses be continued.<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


It is recommended, therefore, that vaccines contain the following:<br />

• an A/eq/South Africa/4/2003 (H3N8)-like virus (American lineage) 1<br />

1<br />

A/eq/Ohio/2003 is as equally acceptable as A/eq/South Africa/4/2003.<br />

• an A/eq/Newmarket/2/93 (H3N8)-like virus (European lineage) 2<br />

2<br />

A/eq/Suffolk/89 and A/eq/Borlänge/91, currently used vaccine strains, continue to be<br />

acceptable.<br />

Reference reagents<br />

Reference reagents specific for the recommended European lineage vaccine strains are<br />

available for standardisation of vaccine content by single radial diffusion (SRD) assay and<br />

can be obtained from the National Institute for Biological Standards and Control (NIBSC).<br />

Preparation of reagents for the 2005 recommendation is under review.<br />

Three equine influenza horse antisera (anti-A/eq/Newmarket/77 [H7N7], anti-<br />

A/eq/Newmarket/1/93 [H3N8] and anti-A/eq/Newmarket/2/93 [H3N8]) are available as<br />

European Pharmacopoeia Biological Reference Preparations (EP BRPs) for serological<br />

testing of equine influenza vaccines by the single radial haemolysis assay. These antisera are<br />

also available from the Office International des Epizooties International Reference<br />

Laboratory in Newmarket (UK) for use as primary standards in diagnostic serological testing.<br />

Pooled equine serum obtained post infection with A/eq/South Africa/4/2003 (H3N8) virus is<br />

currently the subject of an international collaborative study to establish this serum as an EP<br />

BRP / OIE primary standard to supersede the anti-A/eq/Newmarket/1/93 (H3N8) serum.<br />

SRD reference reagents EP BRPs for serological<br />

testing of equine influenza<br />

vaccines<br />

NIBSC, Blanche Lane,<br />

South Mimms, Potters Bar,<br />

Herts, EN6 3QG, UK<br />

Fax: +44 (0)1707 646730<br />

e-mail:<br />

enquiries@nibsc.ac.uk<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

European Directorate for<br />

the Quality of Medicines,<br />

BP 907, F-67029<br />

Strasbourg Cedex, France<br />

Website:<br />

http://www.pheur.org<br />

OIE primary standards<br />

for diagnostic serological<br />

testing<br />

Animal Health Trust,<br />

Lanwades Park, Kentford,<br />

Newmarket, Suffolk,<br />

CB8 7UU, UK<br />

Fax: +44 (0)8700 50 24 61<br />

e-mail: info@aht.org.uk<br />

References:<br />

Lai A.C.K., Chambers T., Holland R.E., Morley P.S., Haines D.M., Townsend H.G.G. &<br />

Barrandeguy M. (2001). Diverged evolution of recent equine-2 influenza (H3N8) viruses in<br />

the Western Hemisphere. Arch. Virol., 146 , 1063–1074;<br />

Lai A.C.K., Rogers K.M., Glaser A., Tudor L. & Chambers T. (2004). Alternate circulation<br />

of recent equine-2 influenza viruses (H3N8) from two distinct lineages in the United States.<br />

Virus Res., 100 , 159–164.<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


<strong>Influensautbrottet</strong> 1993<br />

- Historik och vad lärde vi oss av detta?<br />

Peter Forssberg, STC<br />

amerikansk<br />

stam<br />

A2-influensa<br />

Historik<br />

Större utbrott<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

europeisk<br />

stam<br />

1979, 1985, 1992, 2006<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Vaccinationsobligatorium<br />

Ej i Finland, ej i <strong>Sverige</strong><br />

Framställan om obligatorium<br />

Nordisk djurskyddskommitté<br />

Banveterinärkonferens<br />

Utbrott A2<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

november 1992 – maj 1993<br />

< 1 år efter föregående utbrott<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


Pia Törnqvist et.al 1991<br />

effekt 81%<br />

intervaller?<br />

• Förväntningar<br />

•Biverkningar<br />

• Ekonomi<br />

• Avvecklat obligatorium<br />

Borttaget obligatorium<br />

• Lokala smittskyddsgrupper<br />

• Ändrade intervaller<br />

• ”öppnare” isolering<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


1993<br />

färre sjuka 19% 8%<br />

vaccinationsgrad dålig:<br />

Solvalla 90-100%<br />

Mantorp 27%<br />

Gävle 34%<br />

Östersund 15%<br />

25%<br />

Fördelning kallblod<br />

25%<br />

25%<br />

25%<br />

Påstådda biverkningar<br />

12%<br />

55%<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

18%<br />

15%<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Vet. Res. 35 (2004) 411–423<br />

© INRA, EDP Sciences, 2004<br />

DOI: 10.1051/vetres:2004023<br />

411<br />

Review article<br />

Current perspectives on control of equine influenza<br />

Janet M. DALY*, J. Richard NEWTON, Jennifer A. MUMFORD<br />

Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk,<br />

CB8 7UU, United Kingdom<br />

(Received 7 July 2003; accepted 31 October 2003)<br />

Abstract – Influenza A viruses of the H3N8 subtype are a major cause of respiratory disease in horses.<br />

Subclinical infection with virus shedding can occur in vaccinated horses, particularly where there is<br />

a mismatch between the vaccine strains and the virus strains circulating in the field. Such infections<br />

contribute to the spread of the disease. Rapid diagnostic techniques are available for detection of<br />

virus antigen and can be used as an aid in control programmes. Improvements have been made to<br />

methods of standardising inactivated virus vaccines, and a direct relationship between vaccine<br />

potency measured by single radial diffusion and vaccine-induced antibody measured by single radial<br />

haemolysis has been demonstrated. Improved adjuvants and antigenic presentation systems extend<br />

the duration of immunity induced by inactivated virus vaccines, but high levels of antibody are<br />

required for protection against field infection. In addition to circulating antibody, infection with<br />

influenza virus stimulates mucosal and cellular immunity; unlike immunity to inactivated virus<br />

vaccines, infection-induced immunity is not dependent on the presence of circulating antibody to<br />

HA. Live attenuated or vectored equine influenza vaccines, which may better mimic the immunity<br />

generated by influenza infection than inactivated virus vaccines, are now available. Mathematical<br />

modelling based upon experimental and field data has been applied to examine issues relating to<br />

vaccine efficacy at the population level. A vaccine strain selection system has been implemented<br />

and a more global approach to the surveillance of equine influenza is being developed.<br />

equine influenza / epidemiology / vaccine strain selection / surveillance<br />

Table of contents<br />

1. Introduction...................................................................................................................................... 412<br />

2. Epidemiology................................................................................................................................... 412<br />

3. Vaccine potency............................................................................................................................... 413<br />

4. Natural immunity and live vaccines ................................................................................................ 414<br />

5. Optimising vaccination schedules .................................................................................................. 416<br />

6. Vaccine strain selection ................................................................................................................... 417<br />

7. Diagnosis ......................................................................................................................................... 419<br />

8. International control......................................................................................................................... 420<br />

9. Conclusion ....................................................................................................................................... 420<br />

* Corresponding author: janet.daly@aht.org.uk<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


412 J.M. Daly et al.<br />

1. INTRODUCTION<br />

Management procedures aimed at limiting<br />

the severity of disease and the spread of<br />

infection, whether on a local or international<br />

basis, require sensitive diagnostic<br />

techniques for rapid detection of clinical<br />

and subclinical infection. Equine influenza<br />

vaccines were first developed in the 1960s<br />

[4], and are used widely for control of<br />

equine influenza however, in spite of intensive<br />

vaccination programmes in some groups,<br />

equine influenza infections remain a serious<br />

problem. The H3N8 component of<br />

inactivated vaccines has been the subject of<br />

intense investigation with a view to identifying<br />

the reasons for vaccine breakdown<br />

against this subtype. Research has focussed<br />

on vaccine potency, adjuvants, vaccination<br />

schedules and antigenic drift. During the<br />

last decade, progress has been made in all<br />

these areas of investigation, providing new<br />

approaches to the control of equine influenza.<br />

2. EPIDEMIOLOGY<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

Equine influenza was first recognised in<br />

1956, when influenza was recovered during<br />

a widespread epidemic of respiratory disease<br />

among horses in Eastern Europe [58].<br />

The virus (A/eq/Prague/56), which has an<br />

H7 haemagglutinin (HA) and an N7 neuraminidase<br />

(NA), was designated as the<br />

prototype equine influenza virus, historically<br />

referred to as equine subtype 1. The<br />

last confirmed outbreak caused by an H7N7<br />

subtype virus was in 1979; however H7specific<br />

antibody has been reported in<br />

horses believed to be unvaccinated, suggesting<br />

that the virus may still circulate in<br />

a subclinical form.<br />

In 1963, an equine influenza virus of a<br />

different antigenic subtype (H3N8), originally<br />

designated as equine subtype 2,<br />

caused a major epidemic in the USA [64].<br />

The prototype virus, A/eq/Miami/63, was<br />

introduced into the equine population of<br />

Florida with the importation of horses from<br />

Argentina [57]. Field evidence suggested<br />

that regular vaccination provided protection<br />

against H7N7 infections, but that the<br />

H3N8 component of the vaccine was less<br />

effective [53]. For example, in January<br />

1976 a localised outbreak of H3N8 occurred<br />

in Thoroughbred horses in Newmarket<br />

(UK) at a time when many animals had<br />

recently been vaccinated [59]. Clinical<br />

influenza affected unvaccinated and some<br />

vaccinated horses, with the severity of disease<br />

corresponding with the period since<br />

vaccination. Stables in which over 75% of<br />

horses were vaccinated were not affected<br />

seriously [59]. Between 1978 and 1981,<br />

widespread epidemics of H3N8 viruses<br />

were reported in Europe and North America<br />

with infections occurring in vaccinated as<br />

well as unvaccinated horses [7, 28, 30, 52,<br />

62]. In Britain in 1979, influenza was confined<br />

to unvaccinated horses during the first<br />

six months of the year, but spread to vaccinated<br />

Thoroughbreds in June 1979, providing<br />

clear evidence that the vaccines did not<br />

provide immunity against field infection<br />

for the full year between “booster doses”<br />

[6]. Racing was affected, and this led to the<br />

subsequent introduction of mandatory vaccination<br />

in the UK and Ireland in 1981.<br />

In 1989, there was again a major epidemic<br />

of influenza H3N8 in Europe affecting<br />

not only unvaccinated but also large<br />

numbers of vaccinated horses [33]. This<br />

represented the first major outbreak in Britain<br />

since 1979. Outbreaks of equine influenza<br />

have occurred sporadically in Europe<br />

and on the American continent since the<br />

1989 epidemic.<br />

In the last 15 years, there have also been<br />

a number of serious outbreaks of H3N8<br />

influenza in populations with no previous<br />

history of the disease. In 1986 and 1987, the<br />

infection was introduced into South Africa<br />

and India, respectively. The source of these<br />

outbreaks could be traced to the transportation<br />

of infected horses by air from areas<br />

where influenza was endemic. Inadequate<br />

quarantine at the port of entry allowed the<br />

introduction of infected horses into the local<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

susceptible populations with subsequent<br />

explosive spread of disease and some mortality.<br />

Analysis of the HA genes of the South<br />

African and Indian viruses have confirmed<br />

their close relationship to viruses circulating<br />

in the USA and Europe at the time. In<br />

1989, an influenza epidemic was reported<br />

in horses in China with morbidity rates as<br />

high as 80% and mortality rates reaching<br />

20% in some herds. Fatal cases were always<br />

associated with bacterial infection [21].<br />

The origin of this outbreak was not traced<br />

to the importation of equidae and indeed the<br />

antigenic characteristics of this virus appear<br />

markedly different from other equine H3N8<br />

isolates [22]. On the basis of sequence<br />

information, it was proposed that this virus<br />

was derived from an avian source and as<br />

such represented a new interspecies transmission<br />

event [65]. Although this avianderived<br />

virus successfully transmitted to<br />

horses and lost its ability to infect ducks, it<br />

did not spread beyond China and did not<br />

persist in the local horse population beyond<br />

1990 [23]. Further outbreaks in Hong Kong<br />

in 1992 [54], Dubai in 1995 [66], and the<br />

Philippines in 1997 highlighted the ease<br />

with which equine influenza outbreaks can<br />

be introduced into susceptible populations<br />

as a result of international movement of<br />

horses.<br />

3. VACCINE POTENCY<br />

Currently, the principal markers for<br />

resistance to and recovery from influenza<br />

virus infection are circulating antibodies<br />

specific for the HA and NA glycoproteins<br />

[1]. These glycoproteins are the principle<br />

determinants for cell entry in infection<br />

(HA) and for exit from the cell after virus<br />

replication (NA). Progress in assessing the<br />

protective efficacy of early vaccines was<br />

hampered by a lack of reliable methods to<br />

measure the HA content of vaccines and the<br />

host’s antibody response to the HA. Additionally,<br />

there was no reproducible challenge<br />

method in horses for assessing the<br />

protection provided by vaccination. The<br />

Control of equine influenza 413<br />

HA content of vaccines was measured in<br />

chick cell agglutination (CCA) units and<br />

antibody responses to the HA were measured<br />

by the haemagglutination inhibition<br />

(HI) test. In some instances these methods<br />

are both still used. Early attempts to analyse<br />

the relationship between vaccine-induced<br />

antibody and protection against infection<br />

were confused by technical problems, and<br />

HI titres ranging from 8 to 128 were quoted<br />

as being protective [5, 31, 55, 59]. Improved<br />

methods of measuring vaccine potency,<br />

antibody responses and protection against<br />

infection have since been developed, facilitating<br />

progress in vaccine standardisation<br />

and design. A reliable in vitro potency test,<br />

the single radial immunodiffusion (SRD)<br />

test, has been introduced for measurement<br />

of immunologically active HA in equine<br />

influenza vaccines and has been evaluated<br />

in an international collaborative study [68].<br />

A further international collaborative study<br />

demonstrated that the single radial haemolysis<br />

(SRH) assay is more reproducible than<br />

the HI test for measuring antibody to HA<br />

[38]. Furthermore, there is a direct relationship<br />

between vaccine potency, in terms of<br />

microgrammes of HA, and antibody to HA<br />

stimulated by inactivated vaccines as measured<br />

by SRH [41, 67].<br />

Vaccine evaluation by experimental challenge<br />

infection of horses was slow to progress<br />

because of difficulties encountered in reproducing<br />

clinical disease [8, 31, 35, 56]. These<br />

difficulties have been overcome by using<br />

nebulised aerosols. This delivery system<br />

mimics a natural infection by producing<br />

infectious droplets (diameter < 5 mm) capable<br />

of reaching the upper and lower airways<br />

(D. Hannant, unpublished data) and avoids<br />

a concentration of challenge inoculum at<br />

the site of sampling. Using this challenge<br />

method, a series of experiments to measure<br />

the protection afforded by inactivated virus<br />

vaccines with a variety of adjuvants and<br />

antigen presentation systems have been performed.<br />

A number of experiments have<br />

used the SRD test to standardise inactivated<br />

vaccines, the SRH test to measure antibody<br />

responses in the horse and challenge infections<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

414 J.M. Daly et al.<br />

to assess protection from infection and disease.<br />

These studies have determined the<br />

relationships between vaccine potency, circulating<br />

antibody to HA and protection<br />

against infection and disease. Levels of antibody<br />

required for virological protection against<br />

challenge with an antigenically similar<br />

virus were between 120 to 154 mm 2 , with<br />

evidence that a higher threshold was required<br />

for protection with increasing doses of nebulised<br />

virus [39]. The influenza epidemic in<br />

South Africa in 1986 provided a rare opportunity<br />

to examine vaccine efficacy in the<br />

field in a population where no natural<br />

immunity exists. From pre-infection antibody<br />

levels it was possible to estimate that<br />

an SRH value of around 160 mm 2 was consistent<br />

with a 90% protection rate based on<br />

the proportion of horses that seroconverted<br />

when exposed to infection [39].<br />

The majority of current equine influenza<br />

vaccines contain inactivated whole virus<br />

(with adjuvants, which include oil, alhydrogel<br />

or carbomer) or subunit vaccines (ISCOMs<br />

or micelles combined with Quil A). It was<br />

found that antibody responses stimulated<br />

by vaccines containing aluminium phosphate<br />

or hydroxide were more durable than<br />

those induced by aqueous vaccines of<br />

equivalent antigenic content. Antibody nevertheless<br />

declined to low levels by 16 to<br />

20 weeks after the second and third dose of<br />

vaccine. In contrast, the incorporation of a<br />

polymer adjuvant was found to stimulate<br />

antibody that remained at a high level for at<br />

least six months after the third dose of vaccine<br />

[43]. Similarly, vaccination with three<br />

doses of ISCOMs containing 15 mg HA<br />

resulted in the level of SRH antibody persisting<br />

at around 70 mm 2 for 15 months following<br />

the third dose [42].<br />

The historical lack of standardisation of<br />

vaccines from different sources, and the<br />

undemanding standards of some licensing<br />

authorities, has resulted in the use of products<br />

with inadequate potency in terms of<br />

ability to stimulate antibody to the HA.<br />

Morley et al. [37] described a large doubleblind<br />

field trial using a commercial killed<br />

vaccine that failed to demonstrate a significant<br />

difference in the rate of disease between<br />

vaccinated and unvaccinated animals in the<br />

face of a naturally occurring outbreak of<br />

disease in a population of horses stabled at<br />

a racetrack. The situation is improving with<br />

the establishment of European Pharmacopoeia<br />

international reference preparations<br />

to standardise serological tests for potency<br />

evaluation of vaccines, and the introduction<br />

of federal regulations on equine influenza<br />

vaccines in Europe [17] and, more recently,<br />

in the USA (9CFR parts 112 and 113).<br />

4. NATURAL IMMUNITY AND LIVE<br />

VACCINES<br />

Immunity provided by inactivated influenza<br />

virus vaccines, is dependent on high<br />

levels of circulating antibody to HA and, in<br />

the absence of such antibody, vaccinated<br />

horses are susceptible to infection. In contrast,<br />

infection with influenza induces longterm<br />

immunity independent of circulating<br />

antibody against HA. For example, ponies<br />

with low or undetectable anti-HA antibodies<br />

were clinically and virologically protected<br />

from challenge infection more than<br />

one year after natural infection [26]. This<br />

suggests an important difference in the<br />

immune response following infection compared<br />

with vaccination using inactivated<br />

virus. Additional components of the immune<br />

response that may be involved are the cellular<br />

immune and mucosal antibody responses<br />

local to the site of infection.<br />

Cellular immune responses to influenza<br />

are well defined in man. The key cell-mediated<br />

immune response is the development<br />

of MHC class I restricted CD8 + cytotoxic<br />

T lymphocytes (CTL), which are usually<br />

detectable within 3 to 4 days after infection.<br />

CD8 + CTL lyse virus-infected host cells<br />

[70]. The epitopes recognised by CTL on<br />

the HA, nucleoprotein (NP), matrix (M1)<br />

and polymerase PB2 proteins are more<br />

highly conserved than those involved in<br />

humoral immunity. MHC class II-restricted<br />

CD4 + T helper cells facilitate both humoral<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

and cellular immune responses and can<br />

exert cytolytic effects, though to a lesser<br />

extent than CD8 + CTL. Whereas antibodies<br />

reduce virus load and restrict re-infection,<br />

cellular immune mechanisms probably play a<br />

more important role in clearance of virus<br />

during the convalescent period [12, 36].<br />

Less is known about cellular immune<br />

responses in horses. Experimental infection<br />

of ponies with influenza induces a genetically<br />

restricted, antigen-specific CTL response<br />

that persists for at least six months [25].<br />

Generation of CTL in this case probably<br />

occurs through endogenous antigen processing<br />

followed by peptide presentation via<br />

MHC class I molecules. In contrast, inactivated<br />

virus vaccines fail to stimulate a significant<br />

CTL response because the antigens<br />

undergo exogenous processing and presentation<br />

via MHC class II.<br />

Equine influenza virus infection has been<br />

demonstrated to generate virus-specific mucosal<br />

IgA and serum IgGa and IgGb responses,<br />

whereas an inactivated virus vaccine induced<br />

only a serum IgG(T) response [44].<br />

The qualitative differences between the<br />

immune responses that follow infection or<br />

vaccination with inactivated virus suggest<br />

that improvements can be made in vaccine<br />

design. Ideally, vaccines should induce<br />

broadly reactive, local and systemic, antibody<br />

and cellular immune responses, establish<br />

memory and consequently generate a<br />

rapid anamnestic response upon field exposure<br />

to equine influenza virus. The incidence<br />

of free and cell-associated virus is<br />

thereby reduced and recovery enhanced.<br />

Live attenuated and live, vectored equine<br />

influenza vaccines that should more closely<br />

mimic natural infection are available. The<br />

Merial vaccine PROTEQ Flu is a live<br />

recombinant vaccine that uses canarypox as<br />

the vector to express the HA genes of<br />

equine influenza viruses. The recombinant<br />

virus undergoes an abortive infection in<br />

mammalian cells so that no progeny viruses<br />

are made but the expressed viral antigens<br />

are processed endogenously and presented<br />

as peptides via MHC class I by the host cell<br />

Control of equine influenza 415<br />

in the same manner as occurs in natural<br />

infection but without associated infection<br />

risks. There is a wealth of evidence for<br />

canarypox vaccines inducing cellular immune<br />

responses to human immunodeficiency<br />

virus in man [18, 20], but this has yet to be<br />

demonstrated for the PROTEQ Flu vaccine.<br />

A cold-adapted, temperature-sensitive,<br />

modified-live virus equine influenza vaccine<br />

(FluAvert IN Vaccine), which is delivered<br />

intranasally, is now licensed for sale in<br />

the USA. The safety and efficacy of the vaccine<br />

has been demonstrated in experimental<br />

studies, however the vaccine does not provide<br />

sterile immunity [10, 34, 60, 71]. No<br />

correlation was found between the concentration<br />

of serum antibody induced by vaccination<br />

and protection against infection,<br />

though an anamnestic response was demonstrated<br />

at seven days post infection [61].<br />

Although there is evidence to show that<br />

primed animals will develop a serological<br />

response [71], it appears that the use of<br />

serum antibody response as a measure of<br />

live virus mucosal vaccines in naïve animals<br />

is inappropriate. Our ability to measure<br />

alternative correlates of immunity has<br />

lagged behind the development of these<br />

alternative vaccination strategies.<br />

Induction of a cellular immune response<br />

to a conserved protein such as NP may<br />

potentially provide protection when the<br />

viral strains incorporated in the vaccine do<br />

not match circulating strains. Such crossreactive<br />

immunity may even extend to partial<br />

protection against infection with a virus<br />

of a different subtype (heterosubtypic immunity).<br />

Infection of mice with a human influenza<br />

A virus of one subtype can induce partial<br />

protection against infection with virus of a<br />

different subtype [47], and a similar study<br />

in pigs suggested that CD8 + T lymphocytes<br />

have a role in this heterosubtypic immunity<br />

[27]. Generation of such cross-reactive<br />

immunity in the horse could be advantageous<br />

in the event of a new subtype of influenza<br />

A virus emerging (or re-emerging) in<br />

the horse population.<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

416 J.M. Daly et al.<br />

5. OPTIMISING VACCINATION<br />

SCHEDULES<br />

The early vaccination schedules for<br />

inactivated virus vaccines required two primary<br />

doses 4 to 6 weeks apart followed by<br />

annual booster doses. The current minimum<br />

requirements imposed for competition<br />

animals by the Federation Equines<br />

International are a primary course of two<br />

doses 4 to 6 weeks apart and a booster six<br />

months later followed by annual boosters.<br />

Mathematical models validated against experimental<br />

and field data have demonstrated<br />

that vaccination dramatically reduces both<br />

the incidence and size of epidemics, with<br />

larger outbreaks of equine influenza being<br />

exceptional amongst groups of vaccinated<br />

animals [19]. Thus the vaccination policy<br />

ensures a sufficient level of herd immunity<br />

to prevent large-scale outbreaks that are<br />

likely to lead to cancellation of race meetings<br />

and other equestrian events. However<br />

it is questionable whether the preliminary<br />

programme of three doses followed by<br />

annual vaccination provides sufficient immunity<br />

to protect young horses from the disease<br />

or individual training yards from small<br />

outbreaks of influenza. The short-lived<br />

immunity provided by inactivated vaccines<br />

has been acknowledged for some years, and<br />

it is apparent from various studies [13, 61,<br />

63] that vaccination in accordance with the<br />

minimum requirements of Jockey Club<br />

rules and the vaccine manufacturer’s recommendations<br />

leaves horses with low antibody<br />

titres for several months between their<br />

second and third vaccination. Newton et al.<br />

[46] found that SRH antibody levels in<br />

yearling Thoroughbreds on studs in Newmarket<br />

declined below a protective level<br />

within four months of a booster vaccination.<br />

Importantly, this also coincided with<br />

the autumn sales, a recognised risk period<br />

for transmission of influenza in young<br />

Thoroughbreds [45]. Later observations in<br />

yearlings entering training yards in Newmarket<br />

confirmed that antibody levels at<br />

this time were influenced by both time<br />

elapsed since the last vaccination and the<br />

total number of vaccines that had been previously<br />

administered [46]. Cullinane et al.<br />

[13] demonstrated that an additional 6monthly<br />

booster would benefit horses that<br />

may be at high risk during this interval.<br />

Intensive vaccination regimes, involving<br />

booster doses every 30 to 60 days, have<br />

been practised in the USA. However, little<br />

is known about the potential adverse effects<br />

of administering a potent vaccine too frequently,<br />

which may attenuate the immune<br />

response. Using a stochastic model to assess<br />

the risk of an outbreak occurring in a Thoroughbred<br />

population in a typical flat racing<br />

training yard, Park et al. [51] suggested that<br />

increasing the frequency of vaccination in<br />

horses aged 2-years and upwards to include<br />

six monthly boosters would offer a significant<br />

increase in protection over annual vaccination.<br />

Timing of the first vaccination may be<br />

critical to the subsequent development of<br />

antibody. Although it is recognised that maternal<br />

antibody generally inhibits the development<br />

of neonatal antibody synthesis, it has<br />

often been assumed that these antibodies<br />

have decayed to an insignificant level by 3<br />

to 4 months. The temptation is to vaccinate<br />

elite stock prior to the loss of maternal antibodies<br />

to avoid any window of susceptibility.<br />

Foals born to mares vaccinated during<br />

the gestation period have high levels of<br />

maternal antibody within two days of birth<br />

[13, 61, 63]. In contrast to Liu et al. [32],<br />

who reported that maternal antibody persisted<br />

for only a short period, several<br />

authors [13, 61, 63] found that the majority<br />

of foals they tested had detectable (HI) antibody<br />

titres at three months of age but these<br />

had virtually disappeared at six months.<br />

Cullinane et al. [13] suggested that not only<br />

does vaccination in the face of maternal<br />

antibody interfere with the development of<br />

active immunity but that repeat vaccination<br />

in the face of maternal antibodies may induce<br />

tolerance. On the basis of their findings,<br />

they recommended that mares should be<br />

vaccinated against equine influenza in the<br />

last 6 to 4 weeks of pregnancy to ensure the<br />

transfer of protective levels of antibody in<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

the colostrum, and that foals should not be<br />

vaccinated until their maternal antibodies<br />

have waned (i.e. not until six months of age<br />

or they are seronegative).<br />

6. VACCINE STRAIN SELECTION<br />

Surveillance of antigenic drift is a cornerstone<br />

of influenza control programmes<br />

based on vaccination. As with other RNA<br />

viruses, influenza virus replication is highly<br />

error-prone, therefore newly synthesised<br />

viral genes have a high frequency of mutation.<br />

Many of these mutations are either<br />

inconsequential or detrimental to the virus,<br />

but mutations affecting the antigenic sites<br />

of the HA (and NA) can lead to the virus not<br />

being recognisable by pre-existing antibodies<br />

generated by infection or vaccination<br />

with an earlier strain, a process known as<br />

“antigenic drift”. The formulation of human<br />

influenza vaccines is reviewed on an annual<br />

basis and in most years is changed to reflect<br />

the virus strains most representative of<br />

those in worldwide circulation.<br />

Historically, antigenic drift in equine<br />

H3N8 viruses has been examined in HI tests<br />

employing post infection or post vaccination<br />

sera prepared in a number of different<br />

species. Conclusions about the antigenic<br />

relatedness of equine H3N8 viruses and the<br />

significance of observed differences with<br />

respect to the immunity induced have varied.<br />

For example, Hinshaw et al. [28] concluded<br />

than the majority of viruses isolated<br />

between 1979 and 1981 were substantially<br />

different from the prototype virus, Miami/<br />

63 included in the vaccine when compared<br />

using post infection ferret sera in HI assays,<br />

and that representatives of the new variant<br />

should be included in the vaccines. On the<br />

other hand, Burrows et al. [6, 7] concluded<br />

that the minor antigenic drift that they<br />

detected in viruses isolated between 1963<br />

and 1979 did not justify a change in vaccine<br />

strains because post vaccination sera from<br />

horses immunised with Miami/63 virus<br />

were highly cross-reactive in HI tests with<br />

viruses from 1979. This conclusion did not<br />

Control of equine influenza 417<br />

take into account the findings of Haaheim<br />

and Schild [24] that strain-specific antibody<br />

is more effective than cross-reactive<br />

antibody in conferring protection.<br />

Horse sera are relatively cross-reactive,<br />

particularly when taken from repeatedly<br />

vaccinated animals whereas ferrets develop<br />

a more strain-specific antibody response [39].<br />

During the 1989 outbreak of influenza in<br />

the UK, only horses with very high levels<br />

of vaccine-induced antibody were protected<br />

against infection, raising the possibility<br />

that there had been significant antigenic<br />

changes in the 1989 isolate that<br />

prevented its neutralisation by antibody<br />

stimulated by vaccines containing Miami/63,<br />

Fontainebleau/79 or Kentucky/81. Sequencing<br />

of the HA1 gene and antigenic analysis<br />

using monoclonal antibodies suggested that<br />

there were significant differences between<br />

a representative 1989 strain and the vaccine<br />

strains in current use at the time [2]. The<br />

hypothesis was tested by vaccinating groups<br />

of ponies with monovalent vaccines containing<br />

either of the vaccine strains or a<br />

1989 strain and experimentally challenging<br />

them with a 1989 virus [15]. Although all<br />

vaccines provided clinical protection, vaccine<br />

efficacy in terms of ability to eliminate<br />

virus excretion correlated directly with the<br />

degree of antigenic relatedness between<br />

vaccine and challenge strain. Following a<br />

meeting of OIE and WHO experts on newly<br />

emerging strains of equine influenza, it was<br />

recommended that equine influenza vaccines<br />

be updated to include a 1989 isolate,<br />

and that efforts be made to increase surveillance<br />

and virus characterisation [40].<br />

Phylogenetic analysis of HA sequences<br />

revealed that equine H3N8 viruses, which<br />

had been evolving as a single lineage [29],<br />

apparently diverged into two distinct lineages<br />

during the mid-1980s [14] and, to<br />

date, both lineages continue to co-circulate<br />

independently (Fig. 1). Viruses in one lineage<br />

were predominantly isolated from<br />

horses in Europe, with the exception of one<br />

virus isolated in Canada in 1990, whereas<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

418 J.M. Daly et al.<br />

Figure 1. Phylogenetic tree constructed from equine influenza H3 HA1 amino acid sequences using<br />

parsimony method.<br />

viruses in the other lineage were predominantly<br />

from horses on the American continent.<br />

It was apparent, however, that American<br />

lineage viruses had been introduced into<br />

Europe on at least one occasion. The<br />

genetic divergence of American and European<br />

lineage viruses was reflected in their<br />

antigenic reactivity, raising the question of<br />

the potential importance of geographical<br />

variations in antigenic character for vaccine<br />

efficacy. Further vaccination and experimental<br />

challenge studies in ponies suggested<br />

that vaccines containing virus from<br />

the American lineage may not be as effective<br />

in protecting against infection as the<br />

homologous vaccine against challenge with<br />

virus from the European lineage [69]. Field<br />

observations have supported the hypothesis<br />

that antigenic differences between viruses<br />

of the American and European lineages are<br />

sufficient to adversely affect vaccine efficacy.<br />

During an outbreak caused by a European<br />

lineage virus in vaccinated Thoroughbred<br />

horses in the UK in 1995, horses with antibody<br />

levels of more than around 140 mm 2 were<br />

protected against infection [46]. However,<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


419 J.M. Daly et al.<br />

during an outbreak caused by an American<br />

lineage virus in 1998, when the vaccines<br />

used contained only European lineage viruses,<br />

a quarter of horses with antibody levels<br />

higher than 140 mm 2 became infected [45].<br />

The co-circulation of antigenic variants<br />

means that it is important to base the selection<br />

of new vaccine strains on knowledge of<br />

the dominant virus circulating in the field.<br />

Following a further consultation of OIE and<br />

WHO experts in 1995, a more formal surveillance<br />

system was established for equine<br />

influenza [48]. An international panel of<br />

experts including representatives from OIE<br />

and WHO influenza reference laboratories<br />

reviews data collected on outbreaks of<br />

influenza, vaccine performance in the field,<br />

and antigenic and genetic characteristics of<br />

new virus isolates annually. The expert surveillance<br />

panel make recommendations on<br />

the need to update vaccine strains, which<br />

are published in the OIE Bulletin. The criteria<br />

used for deciding on the need to update<br />

equine influenza vaccine strains are based<br />

largely on those used for human influenza<br />

vaccine strain selection, i.e. detection of<br />

changes in the HA as characterised by HI<br />

tests using ferret and horse antisera, genetic<br />

sequencing of the HA1 gene and vaccine<br />

breakdown in the field. Improved surveillance<br />

in the field, standardisation of the<br />

potency of vaccines and the introduction of<br />

a vaccine strain selection system has enabled<br />

the development of a fast-track licensing<br />

system for vaccines containing updated<br />

strains [16].<br />

7. DIAGNOSIS<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

We have demonstrated that vaccinated<br />

horses are often only partially immune to<br />

influenza (particularly if vaccine strains are<br />

a poor match for circulating viruses) and<br />

may shed virus in the absence of clinical<br />

signs. Such animals present a significant<br />

risk for the spread of infection. Thus our<br />

ability to diagnose both clinical and sub<br />

clinical infections in partially immune ani-<br />

mals is critical in attempts to control equine<br />

influenza.<br />

For many years the diagnosis of equine<br />

influenza has relied on culture of virus in<br />

embryonated hens’ eggs (and more recently<br />

Madin-Darby canine kidney cells) and<br />

measurement of antibody responses to the<br />

HA. Although a useful epidemiological<br />

tool, serological diagnosis of equine influenza<br />

tends to be retrospective because a<br />

convalescent sample taken around two<br />

weeks after an acute sample is required for<br />

a definitive diagnosis. This is because<br />

infection-induced antibody detected in an<br />

acute sample cannot be distinguished from<br />

vaccine-induced antibody.<br />

An ELISA to detect antibody to the nonstructural<br />

protein NS1 has been developed<br />

[3, 50]. As this protein is produced during<br />

an infection but is not incorporated into<br />

inactivated whole virus vaccines, it theoretically<br />

enables differentiation of antibody<br />

responses to infection from responses to<br />

vaccination with a traditional vaccine. With<br />

the introduction of live attenuated equine<br />

influenza vaccines, the potential usefulness<br />

of this test for confirmation of infection in<br />

vaccinated animals will probably be considerably<br />

reduced. However, the current<br />

trend towards genetically engineered vaccines<br />

may facilitate the development of<br />

DIVA (differentiation of infected from vaccinated<br />

animals) vaccines in which a specific<br />

gene encoding a highly immunogenic<br />

protein is modified or removed.<br />

Detection of the presence of infectious<br />

virus by culture of virus in nasal secretions<br />

can take a minimum of 2 or 3 days, and if<br />

multiple passages are required confirmation<br />

of diagnosis is delayed further. A<br />

number of alternative assays based upon the<br />

use of a monoclonal antibody to detect<br />

nucleoprotein in nasal swab abstract provide<br />

a diagnosis within 24 h. An equine<br />

influenza-specific ELISA has been described<br />

[11]. When used in parallel with virus isolation<br />

during the 1989 equine influenza epidemic<br />

in Britain, the ELISA enhanced the<br />

virus detection rate by 44% [33]. Kits for<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

420 J.M. Daly et al.<br />

detection of human influenza are commercially<br />

available, and, because of the high<br />

degree of conservation of the nucleoprotein<br />

among influenza A viruses, one of these, the<br />

Directigen Flu-A assay, has been shown to<br />

be applicable to the diagnosis of equine<br />

influenza [9]. These direct detection methods<br />

are useful in the application of control<br />

measures, as they can be used as a basis for<br />

isolating horses excreting virus in order to<br />

reduce infection pressure and for a decision<br />

on curtailing exercise, which may exacerbate<br />

disease. They are also a useful adjunct<br />

to virus isolation, which remains essential<br />

for characterising new viruses and to provide<br />

future vaccine strains, as they permit<br />

virus isolation efforts to be focussed on<br />

samples known to be positive for equine<br />

influenza.<br />

8. INTERNATIONAL CONTROL<br />

The ever-increasing international movement<br />

of horses for competition and breeding<br />

purposes presents a challenge with<br />

regard to the control of equine influenza.<br />

Several explosive outbreaks of equine influenza<br />

attributable to the introduction of<br />

infected animals into susceptible indigenous<br />

populations have been described during<br />

the last 20 years [54, 66]. Due to economic<br />

and competitive issues, it is desirable<br />

for the disruption to training programmes<br />

caused by quarantine to be kept to a minimum<br />

when horses are moved. There is,<br />

therefore, a reliance on surveillance of<br />

influenza in the population that animals are<br />

leaving and on the effectiveness of vaccines<br />

to prevent viral shedding. When these<br />

measures fail, and subclinically infected<br />

horses shedding virus are transported, the<br />

short quarantine periods that are often used<br />

fail to prevent introduction of infection.<br />

Regulations relating to the movement of<br />

animals based on the use of improved diagnostic<br />

techniques and vaccination policies<br />

that recognise the limitations of current products<br />

are now in place. The Code Commission<br />

of the OIE recommends that importing<br />

countries that are free of equine influenza<br />

should require that all horses travelling<br />

from endemic areas are fully vaccinated<br />

and have received their last booster dose<br />

within 2 to 8 weeks of travel [49]. A simple<br />

additional measure that can be implemented<br />

is the screening of antibody using<br />

the SRH assay, which can identify potentially<br />

susceptible animals that require revaccination<br />

to boost their antibody levels<br />

before travelling. The advent of more rapid<br />

diagnostic tests for equine influenza means<br />

that animals can be screened for viral shedding<br />

while still in quarantine at their destination<br />

before being released into potentially<br />

susceptible local populations.<br />

9. CONCLUSION<br />

There are still important goals to be met<br />

in the control of equine influenza. These<br />

include increased surveillance, virus recovery<br />

and characterisation from large equine<br />

populations in the Americas and Far East,<br />

and international harmonisation of vaccine<br />

standards and licensing procedures. However,<br />

many of the activities are now in place<br />

to provide vaccine manufacturers with the<br />

necessary information for production of<br />

effective vaccines containing epidemiologically<br />

relevant strains, and the development<br />

of rapid diagnostic assays has increased our<br />

ability to monitor equine influenza activity<br />

worldwide and avoid transmission of infection<br />

via movement of horses from areas<br />

where the infection is active.<br />

ACKNOWLEDGEMENTS<br />

Much of the data presented in this paper have<br />

been generated through the collaborative efforts<br />

of research teams at the Animal Health Trust,<br />

which currently includes A. Park, L. Spencer and<br />

D. Hannant, and at the Gluck Equine Research<br />

Centre, University of Kentucky, USA, headed<br />

by T. Chambers. The authors greatly appreciate<br />

the continued financial support of the Horserace<br />

Betting Levy Board, Animal Health Trust, and<br />

the equine influenza vaccine manufacturers.<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


REFERENCES<br />

INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

[1] Askonas B.A., McMichael A.J., Webster R.G.,<br />

The antibody response to influenza virus, in:<br />

Beare A.S. (Ed.), Basic and Applied Influenza<br />

Research, CRC Press, Boca Raton, Florida,<br />

1982, pp. 164–181.<br />

[2] Binns M.M., Daly J.M., Chirnside E.D.,<br />

Mumford J.A., Wood J.M., Richards C.M.,<br />

Daniels R.S., Genetic and antigenic analysis<br />

of an equine influenza H3 isolate from the<br />

1989 epidemic, Arch. Virol. 130 (1993) 33–43.<br />

[3] Birch-Machin I., Rowan A., Pick J., Mumford<br />

J., Binns M., Expression of the nonstructural<br />

protein NS1 of equine influenza A virus:<br />

detection of Anti-NS1 antibody in post infection<br />

equine sera, J. Virol. Methods 65 (1997)<br />

255–263.<br />

[4] Bryans J., Control of equine influenza, in:<br />

Bryans J.T. (Ed.), Proc. 1st Int. Conference on<br />

Equine Infectious Diseases, Stresa, Italy,<br />

1966, pp. 157–165.<br />

[5] Bryans J.T., The antibody response of horses<br />

to two inactivated oil adjuvanted equine influenza<br />

virus vaccines, in: International symposium<br />

on influenza vaccines for men and<br />

horses, Paris, France, 1973, pp. 311–317.<br />

[6] Burrows R., Denyer M., Antigenic properties<br />

of some equine influenza viruses, Arch. Virol.<br />

73 (1982) 15–24.<br />

[7] Burrows R., Denyer M., Goodridge D., Hamilton<br />

F., Field and laboratory studies of equine<br />

influenza viruses isolated in 1979, Vet. Rec.<br />

109 (1981) 353–356.<br />

[8] Cameron T.P., Alford R.H., Kasel J.A., Harvey<br />

E.W., Byrne R.J., Knight V., Experimental<br />

equine influenza in Chincoteague ponies,<br />

Proc. Soc. Exp. Biol. Med. 124 (1967) 510–<br />

515.<br />

[9] Chambers T.M., Shortridge K.F., Li P.H.,<br />

Powell D.G., Watkins K.L., Rapid diagnosis<br />

of equine influenza by the Directigen FLU-A<br />

enzyme immunoassay, Vet. Rec. 135 (1994)<br />

275–279.<br />

[10] Chambers T.M., Holland R.E., Tudor L.R.,<br />

Townsend H.G.G., Cook A., Bogdan J., Lunn<br />

D.P., Hussey S., Whitaker-Dowling P.,<br />

Youngner J.S., Sebring R.W., Penner S.J.,<br />

Stiegler G.l., A new modified live equine<br />

influenza virus vaccine: phenotypic stability,<br />

restricted spread and efficacy against heterologous<br />

virus challenge, Equine Vet. J. 33 (2001)<br />

630–636.<br />

[11] Cook R.F., Sinclair R., Mumford J.A., Detection<br />

of influenza nucleoprotein antigen in<br />

nasal secretions from horses infected with A/<br />

equine influenza (H3N8) viruses, J. Virol.<br />

Methods 20 (1988) 1–12.<br />

Control of equine influenza 421<br />

[12] Couch R.B., Kasel J.A., Immunity to influenza<br />

in man, Annu. Rev. Microbiol. 37 (1983)<br />

529–549.<br />

[13] Cullinane A., Weld J., Osborne M., Nelly M.,<br />

McBride C., Walsh C., Field studies on equine<br />

influenza vaccination regimes in Thoroughbred<br />

foals and yearlings, Vet. J. 161 (2001)<br />

174–185.<br />

[14] Daly J.M., Lai A.C.K., Binns M.M., Chambers<br />

T.M., Barrandeguy M., Mumford J.A., Antigenic<br />

and genetic evolution of equine H3N8<br />

influenza A viruses, J. Gen. Virol. 77 (1996)<br />

661–671.<br />

[15] Daly J.M., Yates P.J., Browse G., Swann Z.,<br />

Newton J.R., Jessett D., Davis-Poynter N.,<br />

Mumford J.A., Comparison of hamster and<br />

pony challenge models for evaluation of effect<br />

of antigenic drift on cross-protection afforded<br />

by equine influenza vaccines, Equine Vet. J.<br />

35 (2003) 458–462.<br />

[16] EMEA/CVMP/112/98, Notes for guidance:<br />

harmonisation of requirements for equine<br />

influenza vaccines-specific requirements for<br />

substitution or addition of a strain or strains,<br />

1998.<br />

[17] European Pharmacopoeia, Monograph on<br />

equine influenza vaccines, 3rd ed., 1998.<br />

[18] Evans T.G., Kallas E.G., Campbell M., Andrews<br />

J.D., Schwartz D., Keefer M., Caudrelier P.,<br />

Evaluation of canarypox-induced CD8(+)<br />

responses following immunization be measuring<br />

the effector population IFNgamma production,<br />

Immunol. Lett. 77 (2001) 7–15.<br />

[19] Glass K., Wood J.L.N., Mumford J.A., Jessett<br />

D., Grenfell B.T., Modelling equine influenza 1:<br />

a stochastic model of within-yard epidemics,<br />

Epidemiol. Infect. 128 (2002) 491–502.<br />

[20] Gorse G.J., Patel G.B., Belshe R.B., HIV type<br />

1 vaccine-induced T cell memory and cytotoxic<br />

T lymphocyte responses in HIV type 1uninfected<br />

volunteers, AIDS Res. Hum. Retroviruses<br />

17 (2001) 1175–1189.<br />

[21] Guo Y., Wang M., Zheng S., Wang P., Ji W.,<br />

Chen Q., Aetiologic study on an influenzalike<br />

epidemic in horses in China, Acta Virol.<br />

35 (1991) 190–195.<br />

[22] Guo Y., Wang M., Kawaoka Y., Gorman O.,<br />

Ito T., Saito T., Webster R.G., Characterization<br />

of a new avian-like influenza A virus from<br />

horses in China, Virology 188 (1992) 245–<br />

255.<br />

[23] Guo Y., Wang M., Zhang G-S., Li W.-K.,<br />

Kawaoka Y., Webster R.G., Seroepidemiological<br />

and molecular evidence for the presence<br />

of two H3N8 equine influenza viruses in<br />

China in 1993–1994, J. Gen. Virol. 76 (1995)<br />

2009–2014.<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

422 J.M. Daly et al.<br />

[24] Haaheim L.R., Schild G.C., Antibodies to the<br />

strain-specific and cross-reactive determinants<br />

of the haemagglutinin of influenza H3N2<br />

viruses. 2. Antiviral activities of the antibodies<br />

in biological systems, Acta Pathol. Microbiol.<br />

Scand. B 88 (1980) 335–340.<br />

[25] Hannant D., Mumford J.A., Cell mediated<br />

immune responses in ponies following infection<br />

with equine influenza virus (H3N8): the<br />

influence of induction culture conditions on<br />

the properties of cytotoxic effector cells, Vet.<br />

Immunol. Immunopathol. 21 (1989) 327–337.<br />

[26] Hannant D., Mumford J.A., Jessett D.M.,<br />

Duration of circulating antibody and immunity<br />

following infection with equine influenza<br />

virus, Vet. Rec. 122 (1988) 125–128.<br />

[27] Heinen P.P., de Boer-Luijtze E.A., Bianchi<br />

A.T.J., Respiratory and systemic humoral and<br />

cellular immune responses of pigs to a heterosubtypic<br />

influenza A virus infection, J. Gen.<br />

Virol. 82 (2001) 2697–2707.<br />

[28] Hinshaw V.S., Naeve C.W., Webster R.G.,<br />

Douglas A., Skehel J.J., Bryans J., Analysis of<br />

antigenic variation in equine 2 influenza A<br />

viruses, Bull. World Health Organ. 61 (1983)<br />

153–158.<br />

[29] Kawaoka Y., Bean W.J., Webster R.G., Evolution<br />

of the hemagglutinin of equine H3<br />

influenza viruses, Virology 169 (1989) 283–<br />

292.<br />

[30] Klingeborn B., Rockborn G., Dinter Z., Significant<br />

antigenic drift within the influenza<br />

equi 2 subtype in Sweden, Vet. Rec. 106<br />

(1980) 363–364.<br />

[31] Kumanomido T., Akiyama Y., Immunoeffect<br />

of serum and nasal antibody against<br />

experimental inoculation with influenza A-<br />

Equi-2 virus, Exp. Rep. Equine Health Lab. 12<br />

(1975) 44–52.<br />

[32] Liu I.K.M., Pascoe D.R., Chang L.W.S., Zee<br />

Y.C., Duration of maternally derived antibodies<br />

against equine influenza in newborn foals,<br />

Am. J. Vet. Res. 46 (1985) 2078–2080.<br />

[33] Livesay G.J., O’Neill T., Hannant D., Yadav<br />

M.P., Mumford J.A., The outbreak of equine<br />

influenza (H3N8) in the United Kingdom in<br />

1989: diagnostic use of an antigen capture<br />

ELISA, Vet. Rec. 133 (1993) 515–519.<br />

[34] Lunn D., Hussey S., Sebring R., Rushlow K.,<br />

Radecki S., Whitaker-Dowling P., Youngner J.,<br />

Chambers T., Holland R., Horohov D., Safety,<br />

efficacy, and immunogenicity of a modifiedlive<br />

equine influenza virus vaccine in ponies<br />

after induction of exercise-induced immunosuppression,<br />

J. Am. Vet. Med. Assoc. 218<br />

(2001) 900–906.<br />

[35] Martens J.G., Development and evaluation of<br />

aerosol delivery of antivirals for the treatment<br />

of equine virus induced respiratory infections,<br />

Diss. Abstr. Int. 47 (1986) 69.<br />

[36] McMichael A.J., Gotch F.M., Cullen P.,<br />

Askonas B.A., Webster R.G., Cytotoxic T cell<br />

immunity to influenza, N. Engl. J. Med. 309<br />

(1983) 13–17.<br />

[37] Morley P.S., Townsend H.G.G., Bogdan J.R.,<br />

Haines D.M., Efficacy of a commercial vaccine<br />

for preventing disease caused by influenza<br />

virus infection in horses, J. Am. Vet.<br />

Med. Assoc. 215 (1999) 61–64.<br />

[38] Mumford J., Collaborative study for the establishment<br />

of three European Pharmacopoeia<br />

Biological Reference Preparations for equine<br />

influenza horse antiserum, Pharmeuropa<br />

(2000) 7–21.<br />

[39] Mumford J., Progress in the control of equine<br />

influenza, in: Plowright W., Rossdale P.D.,<br />

Wade J.F. (Eds.), Proc. 6th Int. Conference on<br />

Equine infectious diseases, Cambridge, 1992,<br />

pp. 207–218.<br />

[40] Mumford J.A., Wood J., Conference report on<br />

WHO/OIE meeting: Consultation on newly<br />

emerging strains of equine influenza, Vaccine<br />

11 (1993) 1172–1175.<br />

[41] Mumford J.A., Wood J.M., Folkers C., Schild<br />

G.C., Protection against experimental infection<br />

with influenza virus A/equine/Miami/<br />

63(H3N8) provided by inactivated whole<br />

virus vaccines containing homologous virus,<br />

Epidemiol. Infect. 100 (1988) 501–510.<br />

[42] Mumford J.A., Jessett D.M., Rollinson E.A.,<br />

Hannant D., Draper M.E., Duration of protective<br />

efficacy of equine influenza immunostimulating<br />

complex/tetanus vaccines, Vet.<br />

Rec. 134 (1994) 158–162.<br />

[43] Mumford J.A., Wilson H., Hannant D., Jessett<br />

D.M., Antigenicity and immunogenicity of<br />

equine influenza vaccines containing a Carbomer<br />

adjuvant, Epidemiol. Infect. 112 (1994)<br />

421–437.<br />

[44] Nelson K.M., Schram B.R., McGrergor<br />

M.W., Sheoran A.S., Olsen C.W., Lunn D.P.,<br />

Local and systemic isotype-specific antibody<br />

responses to equine influenza virus infection<br />

versus conventional vaccination, Vaccine 16<br />

(1998) 1306–1313.<br />

[45] Newton J.R., Verheyen K., Wood J.L.N.,<br />

Yates P.J., Mumford J.A., Equine influenza in<br />

the United Kingdom in 1998, Vet. Rec. 145<br />

(1999) 449–452.<br />

[46] Newton J.R., Lakhani K.H., Wood J.L.N.,<br />

Baker D.J., Risk factors for equine influenza<br />

serum antibody titres in young Thoroughbred<br />

racehorses given an inactivated vaccine, Prev.<br />

Vet. Med. 46 (2000) 129–141.<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10


INTERVET SYMPOSIUM - Med fokus på hästinfluensan <strong>2007</strong><br />

[47] Nguyen H.H., Moldeveanu Z., Novak M.J.,<br />

van Ginkel F.W., Ban E., Kiyono H., McGhee<br />

J.R., Mestecky J., Heterosubtypic immunity<br />

to lethal influenza A virus infection is associated<br />

with virus-specific CD8 + cytotoxic T lymphocyte<br />

responses induced in mucosa-associated<br />

tissues, Virology 254 (1999) 50–60.<br />

[48] OIE, Conclusions and recommendations from<br />

the consultation meeting of OIE and WHO<br />

experts on equine influenza, Newmarket,<br />

United Kingdom, September 18–19, 1995,<br />

OIE Bull. 108 (1996) 482–484.<br />

[49] OIE Code, International Animal Health Code,<br />

7th ed., Office International des Épizooties,<br />

Paris, France, 1998.<br />

[50] Ozaki H., Sugiura T., Sugita S., Imagawa H.,<br />

Kida H., Detection of antibodies to the nonstructural<br />

protein (NS1) of influenza A virus<br />

allows distinction between vaccinated and<br />

infected horses, Vet. Microbiol. 82 (2001)<br />

111–119.<br />

[51] Park A.W., Wood J.L.N., Newton J.R., Daly<br />

J., Mumford J.A., Grenfell B.T., Optimising<br />

vaccination strategies in equine influenza,<br />

Vaccine 21 (2003) 2862–2870.<br />

[52] Plateau E., Crucière C., Virat J., Benazet P.,<br />

Grippe équine : isolement, caractérisation et<br />

étude sérologique dans divers foyers au cours<br />

de l’épizootie 1978-1979, Bull. Acad. Vet. Fr.<br />

52 (1979) 189–194.<br />

[53] Powell D.G., Burrows R., Spooner P., Mumford<br />

J., Thomson G., Field observations on influenza<br />

vaccination among horses in Britain,<br />

1971–1976, Dev. Biol. Stand. 39 (1977) 347–<br />

352.<br />

[54] Powell D.G., Watkins K.L., Li P.H., Shortridge<br />

K.F., Outbreak of equine influenza among<br />

horses in Hong Kong during 1992, Vet. Rec.<br />

136 (1995) 531–536.<br />

[55] Rouse B.T., Ditchfield J.B., The response of<br />

ponies to Myxovirus influenzae A-Equi-2 III.<br />

The protective effect of serum and nasal antibody<br />

against experimental challenge, Res.<br />

Vet. Sci. 11 (1970) 503–507.<br />

[56] Rouse B.T., Ditchfield W.J.B., The response<br />

of ponies to Myxovirus influenzae A-equi 2 I.<br />

Serum and nasal antibody titres following<br />

exposure, Can. J. Comp. Med. 34 (1970) 1–6.<br />

[57] Scholtens R.G., Steele J.H., U.S. epizootic of<br />

equine influenza, 1963: epizootiology, Public<br />

Health Rep. Washington 79 (1964) 393–398.<br />

[58] Sovinová O., Tumová B., Pouska F., Nemec<br />

J., Isolation of a virus causing respiratory disease<br />

in horses, Acta Virol. 2 (1958) 51–61.<br />

[59] Thomson G.R., Spooner P.R., Powell D.G.,<br />

The outbreak of equine influenza in England:<br />

January 1976, Vet. Rec. 100 (1977) 465–468.<br />

Control of equine influenza 423<br />

[60] Townsend H.G.G., Penner S.J., Watts T.C.,<br />

Cook A., Bogdan J., Haines D.M., Griffin S.,<br />

Chambers T., Holland R.E., Whitaker-Dowling<br />

P., Youngner J.S., Sebring R.W., Efficacy of<br />

a cold-adapted, intranasal equine influenza<br />

vaccine: challenge trials, Equine Vet. J. 33<br />

(2001) 637–643.<br />

[61] Van Maanen C., Bruin G., de Boer-Luijtze E.,<br />

Smolders G., de Boer G.F., Interference of<br />

maternal antibodies with the immune response<br />

of foals after vaccination against equine influenza,<br />

Vet. Q. 14 (1992) 13–17.<br />

[62] Van Oirschot J.T., Masurel N., Huffels<br />

A.D.N.H., Anker W.J.J., Equine influenza in<br />

the Netherlands during the winter of 1978–<br />

1979; antigenic drift of the A-equi 2 virus,<br />

Vet. Q. 3 (1981) 81–84.<br />

[63] Van Oirschot J.T., Bruin G., de Boer-Luytze<br />

E., Smolders G., Maternal antibodies against<br />

equine influenza virus in foals and their interference<br />

with vaccination, Zentralbl. Veterinarmed.<br />

B 38 (1991) 391–396.<br />

[64] Waddell G.H., Teigland M.B., Sigel M.M., A<br />

new influenza virus associated with equine<br />

respiratory disease, J. Am. Vet. Med. Assoc.<br />

143 (1963) 587–590.<br />

[65] Webster R.G., Yuanji G., New influenza virus<br />

in horses, Nature 351 (1991) 527.<br />

[66] Wernery R., Yates P.J., Wernery U., Mumford<br />

J.A., An equine influenza outbreak in a polo<br />

club in Dubai, United Arab Emirates in 1995/<br />

96, in: Wernery U., Wade J.F., Mumford J.A.,<br />

Kaaden O.-R. (Eds.), Proc. 8th Int. Conference<br />

on Equine Infections Diseases, Dubai,<br />

1998, pp. 342–346.<br />

[67] Wood J.M., Mumford J., Folkers C., Scott<br />

A.M., Schild G.C., Studies with inactivated<br />

equine influenza vaccine: I. Serological responses<br />

of ponies to graded doses of vaccine, J. Hyg.<br />

(Lond.) 90 (1983) 371–384.<br />

[68] Wood J.M., Schild G.C., Folkers C., Mumford<br />

J., Newman R.W., The standardization of<br />

inactivated equine influenza vaccines by single-radial<br />

immunodiffusion, J. Biol. Stand. 11<br />

(1983) 133–136.<br />

[69] Yates P., Mumford J.A., Equine influenza<br />

vaccine efficacy: the significance of antigenic<br />

variation, Vet. Microbiol. 74 (2000) 173–177.<br />

[70] Yewdell J.W., Hackett C.J., The specificity<br />

and function of T lymphocytes induced by<br />

influenza A viruses, in: Krug R. (Ed.), The<br />

influenza viruses, Plenum Press, New York/<br />

London, 1989, pp. 361–429.<br />

[71] Youngner J.S., Whitaker-Dowling P., Chambers<br />

T.M., Rushlow K.E., Sebring R., Derivation<br />

and characterization of a live attenuated<br />

equine influenza vaccine virus, Am. J. Vet.<br />

Res. 62 (2001) 1290–1294.<br />

Solvalla 16/10 - Åby 17/10 - Jägersro 18/10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!