26.09.2013 Views

Effects and Control of Pulsation in Gas Measurement

Effects and Control of Pulsation in Gas Measurement

Effects and Control of Pulsation in Gas Measurement

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Effects</strong> <strong>and</strong> <strong>Control</strong> <strong>of</strong> <strong>Pulsation</strong> <strong>in</strong> <strong>Gas</strong><br />

<strong>Measurement</strong><br />

Introduction<br />

<strong>Pulsation</strong> created by compressors, flow<br />

control valves, regulators <strong>and</strong> some pip<strong>in</strong>g<br />

configurations are known to cause<br />

significant errors <strong>in</strong> gas measurement.<br />

In recent years the Pipel<strong>in</strong>e-<strong>and</strong> Compressor<br />

Research Council (PCRC) now know as<br />

(GMRC) <strong>Gas</strong> Mach<strong>in</strong>ery Research Council, a<br />

subsidiary <strong>of</strong> the Southern <strong>Gas</strong> Association,<br />

commissioned <strong>and</strong> funded various pulsation<br />

research projects at Southwest Research<br />

Institute (SWRI) <strong>in</strong> San Antonio, Texas.<br />

This research culm<strong>in</strong>ated <strong>in</strong> the publication <strong>of</strong><br />

several technical papers, <strong>in</strong>clud<strong>in</strong>g the April<br />

1987 PCRC report 10.87-3 titled "<strong>Pulsation</strong> <strong>and</strong><br />

Transient-<strong>in</strong>duced Errors at Orifice Meter<br />

Installations" <strong>and</strong> a report, 'An Assessment <strong>of</strong><br />

Technology for Correct<strong>in</strong>g <strong>Pulsation</strong> Induced<br />

Orifice Flow <strong>Measurement</strong>" dated November<br />

1991.<br />

The PCRC sponsored research programs<br />

concluded that pulsation <strong>in</strong>duced measurement<br />

errors fall <strong>in</strong>to two broad categories:<br />

1) Primary Element Error: which <strong>in</strong>cludes<br />

square root averag<strong>in</strong>g error (SRE),<br />

<strong>in</strong>ertial errors, <strong>and</strong> shifts <strong>in</strong> the orifice<br />

coefficient?<br />

2) Secondary Element Errors: which<br />

consist <strong>of</strong> gauge l<strong>in</strong>e distortion <strong>and</strong><br />

gauge l<strong>in</strong>e shift, together commonly<br />

referred to as gauge l<strong>in</strong>e error (GLE).<br />

This paper will concentrate on methods to<br />

determ<strong>in</strong>e Square Root Error, Gauge L<strong>in</strong>e<br />

Error, <strong>and</strong> suggest several techniques to reduce<br />

these effects on natural gas measurement.<br />

However, because pulsation is a frequent cause<br />

<strong>of</strong> gauge l<strong>in</strong>e error, it is important to review the<br />

causes <strong>of</strong> pulsation <strong>in</strong>duced SRE.<br />

By: George L. Bell, Sr.<br />

PGI International<br />

<strong>Pulsation</strong> Test<strong>in</strong>g Coord<strong>in</strong>ator<br />

1<br />

Square Root Error<br />

Most <strong>of</strong> the natural gas measurement <strong>in</strong> the United<br />

States is performed with orifice plates.<br />

The gas flow rate (Q) is calculated us<strong>in</strong>g the basic<br />

formula Q = K√∆PXP. The fixed orifice coefficient (K)<br />

is derived from a formula found <strong>in</strong> the latest edition <strong>of</strong><br />

AGA Report Number 3. Differential pressure (∆P)<br />

<strong>and</strong> l<strong>in</strong>e pressure (P) are measured with mechanical<br />

chart recorders or electronic transmitters.<br />

Under steady-state flow conditions, gas volumes can<br />

be accurately measured with current state-<strong>of</strong>-the-art<br />

equipment. However, <strong>in</strong>accurate measurement<br />

occurs when the ∆P modulates, or changes, at a<br />

frequency greater than the frequency that the<br />

measurement system extracts the square root <strong>of</strong> the<br />

∆P.<br />

<strong>Pulsation</strong> from gas compressors, control valves,<br />

pressure regulators, <strong>and</strong> some pip<strong>in</strong>g configurations<br />

are one source <strong>of</strong> frequent ∆P modulation. Figure 1<br />

illustrates the amplitude <strong>and</strong> frequency <strong>of</strong> pulsation<br />

generated by a reciprocat<strong>in</strong>g compressor <strong>and</strong> a<br />

control valve.<br />

Figure 1


The compressor is caus<strong>in</strong>g the pulsation<br />

between 0 <strong>and</strong> 50 Hz, <strong>and</strong> a control valve is<br />

creat<strong>in</strong>g the pulse at 100 Hz.<br />

The measurement error referred to above is<br />

called Square Root Error (SRE). It is the<br />

calculation <strong>of</strong> unsteady flow us<strong>in</strong>g the square<br />

root <strong>of</strong> the average ∆P verses the average <strong>of</strong><br />

the square root values <strong>of</strong> the <strong>in</strong>stantaneous ∆P.<br />

Because SRE is directly related to flow<br />

measurement error, it is a very important topic<br />

to those who buy <strong>and</strong> sell natural gas.<br />

In a paper presented at the 1989 Gulf Coast<br />

<strong>Gas</strong> <strong>Measurement</strong> Short Course <strong>in</strong>-Houston,<br />

Texas titled "<strong>Pulsation</strong> <strong>Effects</strong> on Orifice<br />

Meter<strong>in</strong>g Consider<strong>in</strong>g Primary <strong>and</strong> Secondary<br />

Elements", Mr. Robert J. McKee <strong>of</strong> SWRI<br />

states, “a mathematical def<strong>in</strong>ition <strong>of</strong> SRE can<br />

be developed from the fact that the average<br />

flow is proportional to the Avg.√∆P as opposed<br />

to the √Avg. ∆P!'”<br />

The formula developed by SWRI to determ<strong>in</strong>e<br />

the severity <strong>of</strong> SRE is illustrated below:<br />

%SRE = (√Avg. ∆P - Avg.√∆P) x 100<br />

Avg. √∆P<br />

An illustration <strong>of</strong> a %SRE calculation <strong>of</strong> a series<br />

<strong>of</strong> six ∆P read<strong>in</strong>gs taken from a pulsat<strong>in</strong>g flow is<br />

shown below:<br />

Read<strong>in</strong>g ∆P’s (<strong>in</strong>.wc.) √∆P (<strong>in</strong>. wc.)<br />

1 75.0 8.660<br />

2 30.0 5.477<br />

3 47.5 6.892<br />

4 52.2 7.225<br />

5 26.1 5.109<br />

6 71.6 8.462<br />

Total: 302.4 41.825<br />

Avg.∆P: 50.4<br />

√Avg.∆: 7.099 6.971<br />

%SRE = (7.099 – 6.971) x 100 = +1.84%SRE<br />

6.971<br />

Note that %SRE is a positive number;<br />

mathematically it is impossible for %SRE to be<br />

2<br />

negative. In addition, %SRE <strong>in</strong>creases with pulsation<br />

amplitude, <strong>and</strong> is <strong>in</strong>versely proportional to ∆P (for a<br />

given pulsation amplitude %SRE will be greater at low<br />

∆P than at high ∆P).<br />

Other Primary Element Errors<br />

Though SRE is the largest component <strong>of</strong> pulsation<br />

<strong>in</strong>duced primary element error, under extreme<br />

pulsation conditions <strong>in</strong>ertial error <strong>and</strong> coefficient shift<br />

will both <strong>in</strong>crease <strong>in</strong> magnitude. A brief explanation <strong>of</strong><br />

each follows:<br />

Inertial Error: Pulsat<strong>in</strong>g gas flow will tend to rema<strong>in</strong> <strong>in</strong><br />

motion due to its <strong>in</strong>ertia. As a result, flow velocity<br />

changes lag beh<strong>in</strong>d ∆P changes. Inertial errors are<br />

<strong>in</strong>significant unless pulsation amplitude <strong>and</strong><br />

frequency are both relatively high.<br />

Coefficient Shifts: Though difficult to quantify, test<br />

data <strong>in</strong>dicates that pulsation levels above 1.5% SRE<br />

contribute to shifts <strong>in</strong> the orifice co-efficient.<br />

Measur<strong>in</strong>g %SRE<br />

When the %SRE at operat<strong>in</strong>g conditions is quantified,<br />

it can be used to approximate the primary element<br />

error <strong>in</strong>duced by pulsation <strong>and</strong> to determ<strong>in</strong>e whether<br />

or not corrective action is necessary.<br />

Percent square root error is measured with a device<br />

called the Square Root Error Indicator produced by<br />

PGI International. This analytical <strong>in</strong>strument utilizes a<br />

high frequency response ∆P transducer <strong>and</strong> special<br />

s<strong>of</strong>tware to calculate %SRE accord<strong>in</strong>g to the formula<br />

developed by SWRI shown earlier.<br />

The PGI SRE Indicator is an analytical <strong>in</strong>strument<br />

used to determ<strong>in</strong>e the severity <strong>of</strong> pulsation <strong>and</strong><br />

calculate %SRE. Because other primary element<br />

errors (<strong>in</strong>ertial error <strong>and</strong> co-efficient shifts) are not<br />

measured, %SRE should not be used to correct flow<br />

measurement read<strong>in</strong>gs, but to determ<strong>in</strong>e if corrective<br />

action is necessary.<br />

Reduc<strong>in</strong>g <strong>Pulsation</strong><br />

Because <strong>of</strong> the potential measurement error, many<br />

buyers will not accept delivery <strong>of</strong> natural gas from<br />

producers if the %SRE exceeds specific contract<br />

limits. %SRE allowed by contract may vary


depend<strong>in</strong>g on daily volume, <strong>and</strong> could be as low<br />

as 0.20 %SRE.<br />

The simplest method <strong>of</strong> reduc<strong>in</strong>g pulsation<br />

<strong>in</strong>duced SRE is to raise the ∆P by chang<strong>in</strong>g the<br />

orifice plate. Unfortunately, this may also limit<br />

the operat<strong>in</strong>g range <strong>of</strong> the measurement<br />

system.<br />

In some cases, the pip<strong>in</strong>g system can be<br />

modified or the pulsation source moved to<br />

reduce SRE. This can be time consum<strong>in</strong>g <strong>and</strong><br />

costly.<br />

Another popular "cure' for high SRE is to <strong>in</strong>stall<br />

a device, such as a restrict<strong>in</strong>g orifice, between<br />

the pulsation source <strong>and</strong> the measur<strong>in</strong>g station.<br />

The negative effects <strong>of</strong> restrict<strong>in</strong>g devices are<br />

<strong>in</strong>creased cost <strong>of</strong> compression <strong>and</strong> a limited<br />

flow range.<br />

%SRE can also be reduced by <strong>in</strong>stall<strong>in</strong>g an<br />

acoustic filter to remove most <strong>of</strong> the pulsation.<br />

Though more costly than a restrict<strong>in</strong>g device, a<br />

properly designed acoustic filter will operate<br />

over a much wider flow range with a lower<br />

pressure drop.<br />

If %SRE is above your contract limits, it is a<br />

good idea to contact an expert such as<br />

SouthWest Research <strong>in</strong> San Antonio, Texas for<br />

more extensive test<strong>in</strong>g to determ<strong>in</strong>e a solution.<br />

Gauge L<strong>in</strong>e Errors<br />

Gauge L<strong>in</strong>e Error (GLE) exists when the ∆P at<br />

the taps does not equal the ∆P at the end <strong>of</strong><br />

the gauge l<strong>in</strong>es. GLE may be caused by<br />

pulsation or flow phenomena.<br />

The gauge l<strong>in</strong>e starts at the orifice taps <strong>and</strong><br />

ends at the transmitter, flow computer, or<br />

chart recorder connections. It <strong>in</strong>cludes any<br />

pipe fitt<strong>in</strong>gs, valves, valve manifolds, tube<br />

fitt<strong>in</strong>gs, <strong>in</strong>strument tub<strong>in</strong>g, <strong>and</strong> condensate<br />

chambers or bottles that may be <strong>in</strong>stalled<br />

between the orifice taps <strong>and</strong> the measurement<br />

device.<br />

Based upon research conducted by SWRI, it<br />

has been determ<strong>in</strong>ed that gauge l<strong>in</strong>e error has<br />

two components:<br />

1) Gage L<strong>in</strong>e Distortion: def<strong>in</strong>ed as the<br />

amplification (<strong>in</strong>crease) or attenuation<br />

3<br />

(decrease) <strong>of</strong> the pulsation amplitude <strong>in</strong> the<br />

gauge l<strong>in</strong>es. Gauge l<strong>in</strong>e distortion is similar to<br />

the noise created when play<strong>in</strong>g a flute or<br />

blow<strong>in</strong>g across the top <strong>of</strong> an open bottle.<br />

2) Gauge L<strong>in</strong>e Shift: def<strong>in</strong>ed as the actual shift<strong>in</strong>g<br />

<strong>of</strong> the average pressure along the length <strong>of</strong> the<br />

gauge l<strong>in</strong>e. Gage l<strong>in</strong>e shift may be created by<br />

pulsation rectification effects, which occur<br />

when the ∆P signal is transmitted through<br />

chang<strong>in</strong>g <strong>in</strong>side diameters <strong>of</strong> gauge l<strong>in</strong>e<br />

created by multiple <strong>in</strong>strument tub<strong>in</strong>g sizes,<br />

bottles or condensate chambers, shut-<strong>of</strong>f<br />

valves with a smaller ID than the <strong>in</strong>strument<br />

tub<strong>in</strong>g, or male-to-female NPT connections.<br />

Other causes <strong>of</strong> gauge l<strong>in</strong>e shift <strong>in</strong>clude gas<br />

oscillation at the mouth <strong>of</strong> the gauge l<strong>in</strong>e, <strong>and</strong><br />

density changes caused by pressure <strong>and</strong><br />

temperature fluctuations <strong>in</strong> the gauge l<strong>in</strong>e.<br />

Measur<strong>in</strong>g Gauge L<strong>in</strong>e Errors<br />

In 1990, a GLE <strong>in</strong>dicator was developed by PGI<br />

International. In 1996, improvements to the earlier<br />

model <strong>in</strong>cluded the capability to perform both %SRE<br />

<strong>and</strong> GLE tests. (shown <strong>in</strong> Figure 2). The Indicator<br />

was developed by PGI International to <strong>in</strong>dicate <strong>and</strong><br />

quantify both gauge l<strong>in</strong>e error <strong>and</strong> square root error.<br />

Used extensively over the past five years, it has<br />

proven to be quite useful <strong>in</strong> the study <strong>of</strong> gauge l<strong>in</strong>e<br />

<strong>and</strong> square root error.<br />

Figure 2<br />

The GLE <strong>in</strong>dicator is designed to compare the, ∆P at<br />

the orifice taps to the ∆P at the end <strong>of</strong> the gauge<br />

l<strong>in</strong>es. If the two signals are not the same, the<br />

difference will be due to gauge l<strong>in</strong>e error.


The GLE Indicator consists <strong>of</strong> two (2)<br />

Rosemount 3051C "SMART" ∆P transmitters<br />

<strong>and</strong> the necessary mount<strong>in</strong>g hardware to <strong>in</strong>stall<br />

one 3051 C directly at the orifice taps, <strong>and</strong> the<br />

other at the end <strong>of</strong> the gauge l<strong>in</strong>es.<br />

A PCMCIA A/D converter changes the analog<br />

output signals from each 3051C transmitter <strong>in</strong>to<br />

a digital signal. Which is then analyzed by<br />

special s<strong>of</strong>tware <strong>in</strong> a portable, battery operated<br />

lap top computer. All s<strong>of</strong>tware is W<strong>in</strong>dows <strong>and</strong><br />

W<strong>in</strong>dows 95 based for ease <strong>of</strong> operation.<br />

Operation <strong>of</strong> the GLE Indicator is<br />

straight forward. Station <strong>and</strong> test data are<br />

entered as shown <strong>in</strong> Figures 3 <strong>and</strong> 4.<br />

Figure 3<br />

Figure 4<br />

4<br />

A calibration procedure corrects any output signal<br />

deviations at shown <strong>in</strong>put differential pressures (see<br />

Figure 5).<br />

Figure 5<br />

A "noise test" is then performed to determ<strong>in</strong>e system<br />

error (see Figure 6). Dur<strong>in</strong>g the "noise test,' both<br />

3051 C's measure the same differential pressure,<br />

which is manually modulated us<strong>in</strong>g a h<strong>and</strong> pump.<br />

The noise test will show that the 3051C's <strong>and</strong> the<br />

Validyne are read<strong>in</strong>g the same <strong>and</strong> no outside<br />

electrical <strong>in</strong>terference is present.<br />

Figure 6


The 3051 C transmitters are then <strong>in</strong>stalled as <strong>in</strong><br />

Figure 2, pressurized to l<strong>in</strong>e pressure <strong>and</strong> rezeroed<br />

to correct for transmitter position <strong>and</strong><br />

static pressure zero shift.<br />

Dur<strong>in</strong>g the timed GLE test, the ∆P <strong>of</strong> each<br />

3051C is sampled at a frequency <strong>of</strong> 250<br />

times/second. A flow calculation for each<br />

transmitter is performed once each second<br />

us<strong>in</strong>g the average <strong>of</strong> the ∆P's.<br />

The GLE Indicator graphically <strong>in</strong>dicates the true<br />

∆P at the orifice <strong>and</strong> the actual gauge l<strong>in</strong>e error.<br />

Average gauge l<strong>in</strong>e error <strong>in</strong> <strong>in</strong>ches <strong>of</strong> water <strong>and</strong><br />

%GLE are also displayed. At the conclusion <strong>of</strong><br />

the test, the flow calculated from each<br />

transmitter is compared. Any difference <strong>in</strong> thetwo<br />

volumes is displayed <strong>in</strong> annualized MMCF<br />

<strong>of</strong> gas <strong>and</strong> dollars <strong>of</strong> ga<strong>in</strong> or loss. The dollar<br />

amount is calculated based on the user’s price<br />

<strong>of</strong> gas per MCF at the time <strong>of</strong> the test.<br />

Numerous GLE tests can be performed at<br />

various flow rates. All gauge l<strong>in</strong>e <strong>and</strong> square<br />

root error tests are automatically stored to the<br />

hard disk for future analysis or pr<strong>in</strong>t<strong>in</strong>g.<br />

Test<strong>in</strong>g Results<br />

Extensive field test<strong>in</strong>g with the GLE Indicator<br />

confirmed the research conducted at SWRI by<br />

PCRC. In the follow<strong>in</strong>g test examples, "DM"<br />

represents the ∆P <strong>of</strong> the reference 3051C that<br />

was direct mounted on one side <strong>of</strong> the orifice<br />

fitt<strong>in</strong>g.<br />

GLE-Test 1: In this test, gauge l<strong>in</strong>e error was<br />

measured at the outlet <strong>of</strong> a small bore (0.187")<br />

5 valve manifold connected to the orifice fitt<strong>in</strong>g<br />

with 4.5 ft. <strong>of</strong> 3/8" O.D. tub<strong>in</strong>g. A pair <strong>of</strong> 3/8’ I.D.<br />

ball valves was <strong>in</strong>stalled at the taps. %SRE at<br />

the taps was .997% as shown <strong>in</strong> Figure 1.<br />

Gauge l<strong>in</strong>e error was negative 0.102 wc. at<br />

30.7 <strong>in</strong>ches wc. ∆P. Annualized, this would<br />

result <strong>in</strong> a measurement error <strong>of</strong> $31,503.00 as<br />

shown <strong>in</strong> Figure 7.<br />

5<br />

Figure 7<br />

GLE-Test 2: In this test, gauge l<strong>in</strong>e error was<br />

measured at the end <strong>of</strong> the 3/8" O.D. gauge l<strong>in</strong>es 5 ft.<br />

from the orifice taps. Block valves on the 6" Daniel<br />

Senior Fitt<strong>in</strong>g were conventional 0. 1 87" s<strong>of</strong>t seat<br />

needle valves. GLE measured negative 0.386 <strong>in</strong>. wc.<br />

at a constant 36.07 MMCFD flow rate. Based on gas<br />

at $2.00 per MCF, the annualized error was a<br />

negative $132,309.00 as shown <strong>in</strong> Figure 8.<br />

Figure 8


GLE-Test 3: A Honeywell ∆P transmitter was<br />

connected to a 16' Daniel Junior fitt<strong>in</strong>g with 15<br />

ft. <strong>of</strong> 3/8" O.D. tub<strong>in</strong>g, a small bore (0.187") 5<br />

valve manifold, <strong>and</strong> 1/2" ball valves at the orifice<br />

taps. At a constant flow <strong>of</strong> 30.19 MMCFD,<br />

gauge l<strong>in</strong>e error measured a negative 0.192 <strong>in</strong>.<br />

wc. Annualized this would result <strong>in</strong> a<br />

measurement error <strong>of</strong> $143,529.00 as shown<br />

below <strong>in</strong> Figure 9.<br />

Figure 9<br />

Elim<strong>in</strong>at<strong>in</strong>g or M<strong>in</strong>imiz<strong>in</strong>g GLE<br />

As mentioned previously, numerous gas<br />

contracts now <strong>in</strong>clude pulsation magnitude<br />

clauses. Many transmission companies<br />

require the <strong>in</strong>stallation <strong>of</strong> acoustic filters to<br />

m<strong>in</strong>imize pulsation levels <strong>and</strong> %SRE.<br />

Test<strong>in</strong>g has shown that <strong>in</strong> some cases<br />

gauge l<strong>in</strong>e error may cont<strong>in</strong>ue to be present<br />

after the <strong>in</strong>stallation <strong>of</strong> an acoustic filter <strong>and</strong><br />

when % <strong>of</strong> SRE read<strong>in</strong>gs are very low - <strong>in</strong><br />

some cases 0.1 % SRE.<br />

Because <strong>of</strong> the many variables <strong>in</strong>volved <strong>in</strong><br />

gauge l<strong>in</strong>e error, such as pulsation levels,<br />

gauge l<strong>in</strong>e lengths <strong>and</strong>/or diameters,<br />

operat<strong>in</strong>g pressure, gas density, <strong>and</strong> gas<br />

velocity, it is extremely difficult to observe a<br />

measurement location <strong>and</strong> predict what<br />

gauge l<strong>in</strong>e error, if any, will be present. The<br />

only way to determ<strong>in</strong>e the presence <strong>of</strong> gauge<br />

l<strong>in</strong>e error is through test<strong>in</strong>g.<br />

An alternative to test<strong>in</strong>g for gauge l<strong>in</strong>e error<br />

at each <strong>in</strong>stallation is to <strong>in</strong>stall the transmitter<br />

6<br />

<strong>and</strong>/or EFM <strong>in</strong> a manner that will m<strong>in</strong>imize or<br />

elim<strong>in</strong>ate gauge l<strong>in</strong>e error.<br />

To m<strong>in</strong>imize gauge l<strong>in</strong>e error when pulsation or flow<br />

phenomena are present, a differential measur<strong>in</strong>g<br />

device should be close coupled to orifice fitt<strong>in</strong>gs with<br />

equal lengths <strong>of</strong> large bore (0.375" I.D. or greater)<br />

constant diameter gauge l<strong>in</strong>es.<br />

This can be accomplished us<strong>in</strong>g a short length <strong>of</strong> 1/2"<br />

O.D. <strong>in</strong>strument tub<strong>in</strong>g <strong>and</strong> full open<strong>in</strong>g ball valves on<br />

the orifice fitt<strong>in</strong>g <strong>and</strong> measurement device. However,<br />

<strong>in</strong> this type <strong>of</strong> <strong>in</strong>stallation the numerous matt<strong>in</strong>g <strong>of</strong><br />

female NPT connections create small 'volume<br />

chambers," which could produce gauge l<strong>in</strong>e shift<br />

(pulsation rectification effects).<br />

If the full port 1" ball valves are used, it is very easy to<br />

shock one side <strong>of</strong> the measurement device with full<br />

l<strong>in</strong>e pressure. When this occurs, it may create a<br />

significant static shift <strong>in</strong> the calibration <strong>of</strong> the<br />

transmitter not detectable under normal calibration<br />

procedures.<br />

A more feasible method is the Direct Mount<strong>in</strong>g<br />

System as shown <strong>in</strong> Figure 10. With over 10,000<br />

<strong>in</strong>stallations currently <strong>in</strong> service, this method <strong>of</strong> close<br />

coupl<strong>in</strong>g transmitters or a self-conta<strong>in</strong>ed EFM to the<br />

orifice fitt<strong>in</strong>g cont<strong>in</strong>ues to ga<strong>in</strong> wide acceptance with<strong>in</strong><br />

the <strong>in</strong>dustry.<br />

Utiliz<strong>in</strong>g a pair <strong>of</strong> stabilized connectors for safety, <strong>and</strong><br />

roddable large bore (0.375" I.D.) s<strong>of</strong>t seat <strong>in</strong>strument<br />

manifolds, the transmitters are located as close as


possible to the orifice taps, typically with<strong>in</strong> 13<br />

<strong>in</strong>ches or less.<br />

Flanged connections with Teflon® seal’s<br />

elim<strong>in</strong>ate the "volume chambers" found with<br />

NPT connections. Multiple turn valves prevent<br />

"shock<strong>in</strong>g" <strong>of</strong> the measurement device when<br />

opened.<br />

Frequent valve stem pack<strong>in</strong>g adjustments are<br />

elim<strong>in</strong>ated by a dynamically loaded stem seal<br />

that is guaranteed leak-free under fluctuat<strong>in</strong>g<br />

pressure (vacuum to +10,000 PSI) <strong>and</strong><br />

temperature (-40° to +450°F).<br />

Protection <strong>of</strong> the electronic transmitters from<br />

cathodic protection currents <strong>and</strong> possible<br />

transients is provided through the use <strong>of</strong><br />

dielectric isolators, rated to 2,500 volts DC,<br />

located between the stabilized connectors <strong>and</strong><br />

the manifold.<br />

Summary<br />

• <strong>Pulsation</strong> created by compressors, flow<br />

control valves, regulators, <strong>and</strong> some pip<strong>in</strong>g<br />

configurations may create unacceptable<br />

levels <strong>of</strong> SRE <strong>and</strong>/or GLE.<br />

• %SRE is always positive, never negative,<br />

<strong>and</strong> <strong>in</strong>creases with pulsation amplitude.<br />

• To reduce pulsation to an acceptable level,<br />

the source <strong>of</strong> the pulsation must be<br />

elim<strong>in</strong>ated, pip<strong>in</strong>g systems modified, ∆P<br />

<strong>in</strong>creased, a restrict<strong>in</strong>g device <strong>in</strong>stalled, or a<br />

properly sized acoustic filter <strong>in</strong>stalled.<br />

• Whenever pulsation is present there is a<br />

high probability that GLE will exist.<br />

• Even though %SRE read<strong>in</strong>gs may be with<strong>in</strong><br />

acceptable limits, low amplitude/high<br />

frequency pulsations may create significant<br />

GLE.<br />

• Volume chambers, such as condensate<br />

pots, bottles, <strong>and</strong> bellows hous<strong>in</strong>gs <strong>of</strong><br />

different volumes greatly affect GLE.<br />

• Numerous measurement devices<br />

connected to the same set <strong>of</strong> orifice taps<br />

may create GLE.<br />

7<br />

• Unlike %SRE, GLE can be either positive or<br />

negative. It may be <strong>of</strong> a greater magnitude than<br />

%SRE.<br />

• To m<strong>in</strong>imize or elim<strong>in</strong>ate GLE, the transmitters or<br />

EFM should be close coupled to the orifice taps<br />

with equal length, large bore (0.375" I.D. or<br />

greater), constant diameter gauge l<strong>in</strong>es.<br />

• M<strong>in</strong>imiz<strong>in</strong>g or elim<strong>in</strong>at<strong>in</strong>g GLE by close coupl<strong>in</strong>g<br />

the measurement device to the orifice taps will<br />

not reduce %SRE.<br />

References<br />

1. McKee, Robert S. '<strong>Pulsation</strong> <strong>Effects</strong> on Orifice<br />

Meter<strong>in</strong>g Consider<strong>in</strong>g Primary <strong>and</strong> Secondary<br />

Elements," Proceed<strong>in</strong>gs <strong>of</strong> the Twenty-Second<br />

Gulf Coast <strong>Measurement</strong> Short Course, pp.<br />

112-118, 1989.<br />

2. Gegg, Debbie, "<strong>Effects</strong> <strong>and</strong> <strong>Control</strong> <strong>of</strong><br />

<strong>Pulsation</strong>'s <strong>in</strong> <strong>Gas</strong> <strong>Measurement</strong>," Arkia<br />

Energy Resources, Shreveport, La.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the Sixty-Fourth International<br />

School <strong>of</strong> Hydrocarbon <strong>Measurement</strong>, pp. 331-<br />

335, 1989.<br />

3. Durke, Ray G. <strong>and</strong> Sparks, Cecil R., "<strong>Pulsation</strong><br />

<strong>and</strong> Transient-Induced Errors at Orifice Meter<br />

Installations,' PCRC Technical Report No. 87-<br />

3, 1987.<br />

4. Floyd, J.H. <strong>and</strong> Everett, W.S. "The Effect <strong>of</strong><br />

High Frequency <strong>Pulsation</strong>'s on Differential<br />

Meter<br />

Accuracy," Proceed<strong>in</strong>gs <strong>of</strong> the Twenty Third<br />

Appalachian <strong>Gas</strong> <strong>Measurement</strong> Short Course,<br />

pp. 283-294, 1963.<br />

5. Durke Ray G., Smalley, Anthony J., <strong>and</strong><br />

McKee, Robert J. "An Assessment <strong>of</strong><br />

Technology for Correct<strong>in</strong>g <strong>Pulsation</strong>-Induced<br />

Orifice Flow <strong>Measurement</strong> Errors," PCRC<br />

Technical Report No. TA 91-1, 1991.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!