21.09.2013 Views

Schoonbaert volledig - ie-net

Schoonbaert volledig - ie-net

Schoonbaert volledig - ie-net

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

kvivFSE sp2inl1<br />

BRANDDYNAMICA &<br />

BRANDBEHEERSING<br />

ALS BASIS VOOR ACTIEVE MAATREGELEN<br />

K VIV – SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (a)<br />

Wettelijke basis<br />

• ARAB art. 52 : sprinklers in winkels groter dan 2.000 m²<br />

• Basisnormen : compartiment > 2.500 m² : RWA + Sprinklers<br />

• BBasisnormen i : compartiment ti t + 2 verd<strong>ie</strong>p. di : RWA + Sprinklers S i kl<br />

• Parkeergarages > 2.500 m² : ‘<strong>ie</strong>ts’ doen tegen rookverspreiding<br />

• Hotels (Vlaams Decreet 1989) : branddetect<strong>ie</strong> verplicht<br />

• Meer mogelijk in KB - bijlage 6 (o.a. straling / brandweerstand)<br />

• Afwijking van de basisnormen : doss<strong>ie</strong>r ind<strong>ie</strong>nen bij FOD BiZa<br />

en gelijkwaardigheid g j g bewijzen j !!<br />

• Berekenen naar doelstellingen (performant<strong>ie</strong>) i.p.v. met<br />

vastgestelde waarden (prescript<strong>ie</strong>f) komt eraan (bijlage 7), naar<br />

analog<strong>ie</strong> met buitenlandse ‘Performance Based Codes’<br />

kvivFSE sp2inl2<br />

11/04/2012<br />

1


Gelijkwaardigheid =<br />

FSE in 3 stappen<br />

1. Kwalitat<strong>ie</strong>ve<br />

beoordeling (QDR)<br />

2. Kwantitat<strong>ie</strong>ve<br />

analyse<br />

3. Rapportering van<br />

de conclus<strong>ie</strong>s<br />

kvivFSE sp2inl3<br />

1. Kwalitat<strong>ie</strong>ve beoordeling<br />

• Vastleggen van doelstellingen en criteria<br />

• Beschrijving van het architecturale ontwerp<br />

• Vastleggen van gebouw-, gebruikers- en<br />

omgevingskarakterist<strong>ie</strong>ken<br />

• Identificat<strong>ie</strong> van de mogelijke brandrisico’s<br />

• Vastleggen van de relevante brandscenario’s<br />

• Beschrijving van de beveiligingsconcepten<br />

kvivFSE sp2inl4<br />

11/04/2012<br />

2


2. Kwantitat<strong>ie</strong>ve Analyse<br />

• Uitvoeren van berekeningen via gekende<br />

rekenmodellen<br />

• Resultaten vergelijken met de geëiste criteria<br />

• Eventueel concept aanpassen<br />

• Resultaat van de ene berekening (submodule)<br />

is de input van een volgende<br />

• Alles berekenen tot een goed resultaat<br />

kvivFSE sp2inl5<br />

3. Rapportering<br />

SUB - MODULES (BS 7974 – ISO 13387)<br />

1. Initiat<strong>ie</strong> en ontwikkeling van de brand in de<br />

aanvangsruimte *<br />

2. Verspreiding van rook * en toxische gassen<br />

3. Uitbraak van de brand * en structurele weerstand<br />

4. Detect<strong>ie</strong>, activat<strong>ie</strong> van bestrijdingsmiddelen *<br />

5. Intervent<strong>ie</strong> van de brandweer<br />

66. MMenselijke lijk factoren f t *<br />

7. Bevestiging van de risico-waarschijnlijkheid<br />

(* : wordt behandeld in deze lezing over branddynamica & brandbeheersing)<br />

kvivFSE sp2inl6<br />

11/04/2012<br />

3


Vuur Structuur Brandweer<br />

QDR Rook Det/Blus Evacuat<strong>ie</strong><br />

kvivFSE sp2inl7<br />

1 2 3 4 5 6 Subsystems<br />

Enkele theoretische begrippen<br />

• Brandlast / calorisch potentiaal / verbrandingswaarde<br />

van een brandbaar product = brandstof (kJ/kg of MJ/kg)<br />

– Naaldhout = 18 MJ/kg (m)ethanol = (20)-27 (20) 27 MJ/kg<br />

– Plastics = 25-40 MJ/kg ol<strong>ie</strong>producten en aardgas ≈ 45 MJ/kg<br />

• Verbranding : Brandstof + O 2 restproducten + Hitte + H 2O<br />

• Hitte verspreidt zich op 3 man<strong>ie</strong>ren :<br />

– 5 % Conduct<strong>ie</strong> of geleiding (warmte aan omgevende wanden)<br />

– 75 % Convect<strong>ie</strong> of verplaatsing (met rook als visueel element)<br />

– 20 % Radiat<strong>ie</strong> of straling door een ijl medium (zon / kampvuur)<br />

• Calorisch vermogen of total Heat Release Rate (HRR) :<br />

‘waarneembare’ vrijgekomen hitte = verbranding per<br />

tijdseenheid (kJ/s = kW of MJ/s = MW)<br />

kvivFSE sp2inl8<br />

11/04/2012<br />

4


• Specif<strong>ie</strong>ke brandlast : calorisch potentiaal per oppervlakteeenheid<br />

(kJ/m² of MJ/m²); wordt bepaald door de hoeveelheid<br />

van brandgevaarlijk materiaal in een ruimte.<br />

criterium voor indeling naar categoriën bij allerlei<br />

normen (bv sprinkler-berekening)<br />

• Specif<strong>ie</strong>k vermogen of specific Heat Release Rate : te<br />

verwachten vrijgekomen hitte per oppervlakte-eenheid (kW/m²),<br />

toe te passen in berekeningen voor typische omgevingen :<br />

– Bureel = 130-290 kW/m² winkelshops = 500-750 kW/m²<br />

– Hotelkamer = 250 kW/m² Opslagruimte = 1500 – 3000 kW/m²<br />

• Verbrandingssnelheid : afname van het gewicht aan<br />

brandstof door verbranding (kg/s) hoe hoger deze snelheid,<br />

hoe meer vrijgekomen energ<strong>ie</strong> voor dezelfde brandlast !! Deze<br />

snelheid is n<strong>ie</strong>t constant vermogensp<strong>ie</strong>k<br />

• Rookproduct<strong>ie</strong> : waarneembare reststoffen, welke ongeacht<br />

de densiteit worden bijgemengd met omgevingslucht (kg/s of<br />

ook m³/s = temperatuur gecorrigeerd)<br />

kvivFSE sp2inl9<br />

Nuttige publicat<strong>ie</strong>s<br />

• An Introduction to Fire Dynamics (D. Drysdale – 1987/2001)<br />

• Fire Safety Design Guidelines for Federal Buildings (National<br />

Research Council of Canada – 1996)<br />

• BR 386 : Design Methodolog<strong>ie</strong>s for Smoke and Heat Ventilation<br />

Systems (BRE/Fire Research Station + Institution of Fire<br />

Engineers – UK - 1999)<br />

• The SFPE Handbook of Fire Protection Engineering 3th edition<br />

(Soc<strong>ie</strong>ty of Fire Protection Engineers – USA – 2002)<br />

• The NFPA Fire Protection Handbook 19th edition (National Fire<br />

Protection Association – USA -2003) + NFPA Standards (= normen)<br />

• CIBSE Guide E “Fire Fire Engineering” Engineering (Chartered Institution of<br />

Building Services Engineers – UK – 2003)<br />

• BS 5588 parts 1-11 : Fire Precautions in the design, construction<br />

and use of buildings (British Standards Institute – UK)<br />

• Europese en Belgische Normen + ANPI- publicat<strong>ie</strong>s + …..<br />

kvivFSE sp2inl10<br />

11/04/2012<br />

5


kvivFSE4 sp2tsq1<br />

kvivFSE sp2tsq2<br />

T – SQUARED FIRE GROWTH<br />

EEN REALISTISCHE KEUZE<br />

K VIV – SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (b)<br />

react<strong>ie</strong> bij brand<br />

act<strong>ie</strong>ve elementen<br />

Brandverloop<br />

weerstand tegen brand<br />

pass<strong>ie</strong>ve elementen<br />

1


kvivFSE sp2tsq3<br />

Volontwikkeld na Flashover<br />

Groeifase voor Flashover<br />

• Overgang van initiat<strong>ie</strong>fase<br />

(incubat<strong>ie</strong> op laag niveau)<br />

naar groeifase if<br />

• Afhankelijk van type<br />

brandstof en ventilat<strong>ie</strong><br />

• Vastleggen van een virtueel ontstekingspunt to • Groeikromme (x², x³, exponent<strong>ie</strong>el)<br />

• Continu groe<strong>ie</strong>nd naar Flashover, brandstofbepaald<br />

of gestopt door blussing<br />

kvivFSE sp2tsq4<br />

2


Keuze voor kwadratische groeicurve<br />

• Experimentele gegevens (1972 : FM, NIST, FRS)<br />

• Eerst 3 curves c r es : Slow, Slo Medium Medi m en Fast<br />

• Daarna nog een curve Ultra-fast<br />

• Tijdsconstante tg (sec) : tot 1.000 btu/sec<br />

600sec (S) ( ) – 300sec (M) ( ) – 150sec (F) ( ) – 75sec (UF) ( )<br />

kvivFSE sp2tsq5<br />

kvivFSE sp2tsq6<br />

Q = 1.000 (t/tg)² (btu/sec)<br />

NFPA 92B (appendix C)<br />

3


kvivFSE sp2tsq7<br />

kvivFSE sp2tsq8<br />

Q = a t² (kW)<br />

met a = 1.055/(tg ( g )² ) (1 ( btu/sec = 1.055 W) )<br />

Slow : a = 1.055/(600)² = 0,0029<br />

Medium : a = 1.055/(300)² = 0,012<br />

Fast : a = 10 1.055/(150)² /(10)² = 004 0,047<br />

Ultra-fast : a = 1.055/(75)² = 0,188<br />

Q = a .t² (kW)<br />

1,000<br />

750<br />

500<br />

250<br />

0<br />

a = 0,0029 (600 s)<br />

SLOW<br />

t (s)<br />

0 60 120 180 240 300 360 420 480 540 600<br />

4


kvivFSE sp2tsq9<br />

Q = a .t² (kW)<br />

4,000<br />

3,500<br />

3,000<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

a = 0,012 (300 s)<br />

a = 0,0029 (600 s)<br />

MEDIUM<br />

t (s)<br />

0 60 120 180 240 300 360 420 480 540 600<br />

Q = a .t² (kW)<br />

10,000<br />

9,000<br />

8,000<br />

7,000<br />

6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000 ,<br />

1,000<br />

0<br />

kvivFSE sp2tsq10<br />

a = 0,047 (150 s)<br />

a = 0,012 (300 s)<br />

a = 0,0029 (600 s)<br />

FAST<br />

0 60 120 180 240 300 360 420 480 540<br />

t (s)<br />

600<br />

5


Q = a .t² (kW)<br />

20,000<br />

18,000<br />

16,000 a = 0,188 (75 s)<br />

14,000<br />

12,000<br />

10,000<br />

8,000<br />

6,000<br />

4000 4,000<br />

2,000<br />

0<br />

kvivFSE4 sptsq11<br />

kvivFSE sp2tsq12<br />

a = 0,047 (150 s)<br />

a = 0,012 (300 s)<br />

a = 0,0029 (600 s)<br />

ULTRA - FAST<br />

0 60 120 180 240 300 360 420 480 540<br />

t (s)<br />

600<br />

Keuze van groeiparameter a<br />

Woning of bureel : Medium<br />

Winkelruimte (shop) : Fast<br />

St Stockageruimte k i t : Ult Ultra-fast f t<br />

Hotelkamer : Medium<br />

Grote zaal (toneel, confer. ,...) : Fast - Medium<br />

Klass<strong>ie</strong>k museum : Slow<br />

Act<strong>ie</strong>f museum : Medium<br />

Exposit<strong>ie</strong>ruimte (Fl. Expo) : Fast<br />

Vluchtige brandstoffen (benzine, alcohol) : U-F<br />

.... : met overleg te bepalen<br />

6


kvivFSE sp2tsq13<br />

Internationale groeicurves<br />

Fire And Smoke Transport – model (NIST)<br />

kvivFSE sp2tsq14<br />

7


Andere factoren<br />

• Pré-flashover te berekenen in eenzelfde ruimte<br />

(sprinkleractivat<strong>ie</strong> of RWA in een grote hall)<br />

•Post-flashover fl h levert l data d voor een aanliggend li d<br />

compartiment (RWA in een atrium)<br />

• P<strong>ie</strong>kvermogen ± 200 % (brandlast / brandduur)<br />

(100 kg hout op 20 min = 1.800 MJ / 1.200 s x 200% = 3.000 kW)<br />

• Rekstapeling in stapelmagazijnen : Q = 0,045 t³<br />

• Straling en terugstraling speelt een belangrijke<br />

rol ter bepaling van de flashover<br />

kvivFSE sp2tsq15<br />

8


kvivFSE sp2cjt1<br />

kvivFSE sp2cjt2<br />

DE ‘CEILING JET’<br />

DE MOTOR TOT FLASHOVER<br />

K VIV – SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (c)<br />

Ceiling Jet – Principe (1955)<br />

• Warme lucht (rook) stijgt<br />

• Botst tegen plafond<br />

• Verspreidt zich egaal in<br />

de 4 richtingen<br />

• Snelheid = f (Q,H,r)<br />

• TTemperatuur t = f (Q,H,r) (QH )<br />

• Direct boven de brand<br />

speelt de straal (r)geen rol<br />

1


kvivFSE sp2cjt3<br />

Basisformules vaste vuurhaard<br />

Temperatuur (°C) :<br />

16,<br />

9⋅<br />

Q<br />

voor r/H O 0,18 : ΔT<br />

= 5/<br />

3<br />

H<br />

snelheid<br />

(m/s)<br />

tempe eratuur (°C x 100)<br />

kvivFSE sp2cjt4<br />

voor r/H > 0,18 :<br />

Snelheid (m/s) :<br />

15.00<br />

14.00<br />

13.00<br />

12.00<br />

11.00<br />

10.00<br />

voor r/H O 0,15 , :<br />

900 9.00<br />

8.00<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

voor r/H > 0,15 :<br />

2 / 3<br />

5, 38⋅<br />

( Q / r)<br />

ΔT<br />

=<br />

H<br />

U g<br />

U g<br />

2/<br />

3<br />

= 0, 96⋅<br />

( (QQ<br />

/ H )<br />

=<br />

0,<br />

195<br />

⋅Q<br />

r<br />

1/<br />

3<br />

5/<br />

6<br />

Ceiling Jet waarden voor H = 3m<br />

1/<br />

3<br />

⋅ H<br />

1/<br />

2<br />

0.00<br />

0 0.5 1 1.5 2 3 4 6 8<br />

Straal r (m)<br />

10<br />

snelheid met Q = 10,000 kW temperatuur met Q = 10,000 kW<br />

snelheid met Q = 5,000 kW temperatuur met Q = 5,000 kW<br />

snelheid met Q = 2,000 kW temperatuur met Q = 2,000 kW<br />

snelheid met Q = 1,000 kW temperatuur met Q = 1,000 kW<br />

snelheid met Q = 500 kW temperatuur met Q = 500 kW<br />

2


snelheid<br />

(m/s)<br />

tempe eratuur (°C x 100)<br />

kvivFSE sp2cjt5<br />

snelheid<br />

(m/s)<br />

tempe eratuur (°C x 100)<br />

kvivFSE sp2cjt6<br />

13.00<br />

12.00<br />

11.00<br />

10.00<br />

9.00<br />

8.00<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

Ceiling Jet waarden voor H = 5m<br />

0.00<br />

0 0.5 1 1.5 2 3 4 6 8<br />

Straal r (m)<br />

10<br />

11.00<br />

10.00<br />

9.00<br />

8.00<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

snelheid met Q = 10,000 kW temperatuur met Q = 10,000 kW<br />

snelheid met Q = 5,000 kW temperatuur met Q = 5,000 kW<br />

snelheid met Q = 2,000 kW temperatuur met Q = 2,000 kW<br />

snelheid met Q = 1,000 kW temperatuur met Q = 1,000 kW<br />

snelheid met Q = 500 kW temperatuur met Q = 500 kW<br />

Ceiling Jet waarden voor H = 10 m<br />

0.00<br />

0 0.5 1 1.5 2 3 4 6 8<br />

Straal r (m)<br />

10<br />

snelheid met Q = 10,000 kW temperatuur met Q = 10,000 kW<br />

snelheid met Q = 5,000 kW temperatuur met Q = 5,000 kW<br />

snelheid met Q = 2,000 kW temperatuur met Q = 2,000 kW<br />

snelheid met Q = 1,000 kW temperatuur met Q = 1,000 kW<br />

snelheid met Q = 500 kW temperatuur met Q = 500 kW<br />

3


Met een T² groe<strong>ie</strong>nde vuurhaard<br />

1) Bepalen van een aantal tussenwaarden (dimens<strong>ie</strong>loos*) :<br />

• t f *=0,954 (1+( r t f 0,954 (1 ( / H)) H))<br />

• A = g / (To.ro) = 9,81 / (293 . 1,208) = 0,0278<br />

2) Bepalen van de fict<strong>ie</strong>ve DT en snelheid op tijdstip t:<br />

kvivFSE sp2cjt7<br />

−1/<br />

5 −1/<br />

5 4 / 5<br />

( A ⋅α<br />

⋅ H )<br />

r<br />

0,<br />

188 0,<br />

313⋅<br />

( / )<br />

⎛ t /<br />

− t<br />

ΔT*<br />

= ⎜<br />

⎜<br />

⎝ + H<br />

U* = 0,<br />

59 ⋅ H<br />

r −0,<br />

63<br />

( / ) ⋅ ΔT<br />

*<br />

f<br />

* ⎞<br />

⎟<br />

⎟<br />

⎠<br />

4 / 3<br />

(ind<strong>ie</strong>n negat<strong>ie</strong>f DT* = 0 )<br />

3) Bepalen Ceiling Jet temperatuur en snelheid<br />

Temperatuur (°C) :<br />

Snelheid (m/s) :<br />

2/<br />

5<br />

2/<br />

5 −3/<br />

5<br />

( A ( T / 9,<br />

81)<br />

⋅ H ) + ( T − 273)<br />

t = ΔT<br />

* ⋅<br />

α<br />

g<br />

o<br />

1/<br />

5 1/<br />

5 1/<br />

5<br />

( A ⋅ ⋅ H )<br />

U = U * ⋅ αα<br />

⋅ H<br />

U g<br />

Met a = 0,0029 (slow) / 0,012 (medium) / 0,047 (fast) / 0,188 (ultra-fast)<br />

kvivFSE sp2cjt8<br />

o<br />

4


kvivFSE sp2cjt9<br />

snelheid (mm/s)<br />

Temperatuur (° °C x 100)<br />

snelheid (mm/s)<br />

Temperatuur (°C C x 100)<br />

kvivFSE sp2cjt10<br />

5.00<br />

4.50<br />

4.00<br />

3.50<br />

300 3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

5,00<br />

4,50<br />

4,00<br />

3,50<br />

300 3,00<br />

2,50<br />

2,00<br />

1,50<br />

1,00<br />

0,50<br />

0,00<br />

Ceiling Jet T-squared met H = 3 m en r = 2 m<br />

0 20 40 60 80 100 120 140 160<br />

Tijdsverloop in seconden<br />

temperatuur (Ultra-fast) snelheid (Ultra-fast)<br />

temperatuur (Fast) snelheid (Fast)<br />

temperatuur (Medium) snelheid (medium)<br />

temperatuur (Slow) snelheid (Slow)<br />

Ceiling Jet T-squared met H = 10 m en r = 2 m<br />

0 20 40 60 80 100 120 140 160<br />

Tijdsverloop in seconden<br />

temperatuur (Ultra-fast) snelheid (Ultra-fast)<br />

temperatuur (Fast) snelheid (Fast)<br />

temperatuur (Medium) snelheid (medium)<br />

temperatuur (Slow) snelheid (Slow)<br />

5


FAST<br />

Belangrijk : plaats vd vuurhaard !<br />

kvivFSE sp2cjt11<br />

FAST<br />

Belangrijk : grootte van het compartiment !<br />

kvivFSE sp2cjt12<br />

6


kvivFSE sp2cjt13<br />

Bepalende factoren tot flashover<br />

1. Grootte van het compartiment, ofwel oppervlakte van de<br />

omgevende wanden At<br />

• Qloss(cond) = k1.At.Dtgas (kW)<br />

• Qloss(rad) = k2.s.At. (Tgas 4 -To 4 ) (kW)<br />

waarbij k2 = f (emissiviteit(e) en % aanstraling)<br />

en s = cte van Stefan-Bolzman = 5,67 x 10 -11 kW/m 2 K 4<br />

2. Grootte van de ventilat<strong>ie</strong>-openingen<br />

• Ao : oppervlakte van de openingen (m²)<br />

• Ho : (gemiddelde) hoogte van de openingen (m)<br />

ventilat<strong>ie</strong>factor : (m5/2 )<br />

A<br />

o o H<br />

Minimaal vermogen tot flashover<br />

Belangrijk onderzoek levert analoge bevindingen op :<br />

V. Babrauskas (1981) ( ) – P. Thomas (1981) ( ) – A. Heselden (1981) ( ) -<br />

J. Quint<strong>ie</strong>re (1981) – M. Law (1983) – D. Drysdale (1985)<br />

basisparameter : flashover treedt op bij DT ≅ 550°C<br />

Eenvoudige formule : Qfo = 750 . AoHo 1/2 (kW)<br />

i Q 78A + 378 A H 1/2<br />

Prec<strong>ie</strong>zer : Qfo = 7,8 At + 378 . AoHo 1/2<br />

met At = Afloor + Aceiling + Awalls –Ao (m²) en At > 10 AoHo 1/2<br />

kvivFSE sp2cjt14<br />

(kW)<br />

7


kvivFSE sp2cjt15<br />

Q = 20.000 kW<br />

Q = 18.100 kW<br />

Q = 16.300 kW<br />

Q = 14.600 kW<br />

Q = 13.000 kW<br />

Q = 11.500 kW<br />

Q = 10.100 kW<br />

Q = 8.800 8 800 kW<br />

Q = 7.600 kW<br />

Q = 6.500 kW<br />

Q = 5.500 kW<br />

Q = 4.600 kW<br />

Q = 3.800 kW<br />

Q = 3.100 kW<br />

Q = 2.500 kW<br />

Q = 2.000 kW<br />

Q = 1.600 kW<br />

Q = 1.300 kW<br />

Q = 1.000 kW<br />

graf<strong>ie</strong>kgrens<br />

Ventilat<strong>ie</strong>factor<br />

Ao(Ho)^1/2<br />

39<br />

36<br />

33<br />

30<br />

27<br />

24<br />

21<br />

18<br />

15<br />

12<br />

9<br />

6<br />

3<br />

0<br />

50<br />

60<br />

80<br />

110<br />

150<br />

Flashover Grenswaarden<br />

200<br />

Oppervlakte omsloten wanden At (m²)<br />

260<br />

330<br />

410<br />

500<br />

600<br />

710<br />

830<br />

960<br />

1.100<br />

1.260<br />

1.440<br />

Maximum temperatuur na flashover<br />

H<strong>ie</strong>rbij spelen zowel de compartimentsgrootte, de ventilat<strong>ie</strong>factor<br />

als de totale brandlast in het lokaal een rol :<br />

(t )+ΔT 6000 (1 e-0 10x (t ) -05 (1 e-0 05y<br />

o)+ΔT = 6000.(1 – e ) (°C)<br />

-0,10x ).x-0,5 .(1 – e-0,05y ) ( C)<br />

Met x = A t / (A oSH o )<br />

y = P / [18 S(A o .A t )]<br />

En P is de totale brandlast (MJ)<br />

P/18 = equivalent kg hout<br />

kvivFSE sp2cjt14<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

ruimte van 10 m x 5 m x 3 m (met 1 opening)<br />

5 m x 2 m 3 m x 2 m 3 m x 1 m<br />

max temp °C<br />

kg hout<br />

250 350 500 1.000 2.500 5.000 10.000<br />

8


RTI = FLASHOVER VERMIJDEN<br />

Rap en op Tijd voor Intervent<strong>ie</strong><br />

kvivFSE sp2rti1<br />

K VIV – SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (d)<br />

Snelle intervent<strong>ie</strong> na snelle ontdekking<br />

• Reukzin van de aanwezigen<br />

• Permanente monstername van de lucht<br />

• Visuele waarneming van de vuurhaard<br />

• Opmerken van rook<br />

• Rook detecteren in n<strong>ie</strong>t bemande ruimtes<br />

• Aanvoelen van stralingswarmte<br />

• Meting van een temperatuursverhoging<br />

kvivFSE sp2rti2<br />

1


Automatisch reageren op temperatuur<br />

• Thermische detector met vaste waarde<br />

• Thermodifferent<strong>ie</strong>el detector<br />

• Lineaire detector (laserlicht-principe)<br />

• Tubulaire detector (drukverhogings-principe)<br />

• Smeltlood (sprinkler, rookluik, brandklep)<br />

• Glasbulb (sprinkler, rookluik) ( filmpje)<br />

kvivFSE sp2rti3<br />

kvivFSE sp2rti4<br />

Bepalende factoren voor werking<br />

van het detect<strong>ie</strong>-element :<br />

1. Activat<strong>ie</strong>-temperatuur :<br />

• Statische detectoren : 50 50°-58°-71°-92°<br />

58 71 92<br />

• Different<strong>ie</strong>eldetectoren : 5°/min - 8°/min – 14°/min<br />

• Smeltlood : 72° - 101°<br />

• Glasbulb : 57°(Or) – 68°(Ro) – 79°(Ge) – 93°(Gr) – 141° (Bl)<br />

2. Gevoeligheid (i.f.v.) :<br />

• Massiviteit van het geheel<br />

• Detect<strong>ie</strong>-oppervlakte<br />

• Soortelijke warmte van het materiaal<br />

• Warmte-overdracht<br />

2


Gevoeligheid = Response Time Index (RTI)<br />

kvivFSE sp2rti5<br />

kvivFSE sp2rti6<br />

I. De detect<strong>ie</strong> d<strong>ie</strong>nt te gebeuren tijdens de aanvangsfase<br />

van de brand : De convect<strong>ie</strong>ve warmte-overdracht is<br />

overheersend over straling en geleiding Q = Qconv Qconv<br />

q = qconv = h.A.(Tg –Td) (kW)<br />

• q = de fract<strong>ie</strong> van Q d<strong>ie</strong> het detect<strong>ie</strong>-element bereikt<br />

• h = de convect. warmte-overdrachts coëfficiënt (kW/m²K)<br />

• A = de werkzame oppervlakte van de detector (m²)<br />

•Tg = Temperatuur van de hete gassen (K)<br />

•Td = Temperatuur van het detect<strong>ie</strong>-element (K)<br />

II. Het element zal opwarmen in funct<strong>ie</strong> van<br />

de tijd en materiaal-eigenschappen<br />

dT dTd/dt /dt = q / (m.c) (m c) (°C/ (°C/s) )<br />

• q = de fract<strong>ie</strong> van Q d<strong>ie</strong> het detect<strong>ie</strong>-element bereikt<br />

• m = de effect<strong>ie</strong>ve massa van het element (kg)<br />

• c = de soortelijke j warmte van het element (kJ/kg.K) ( g )<br />

• dt = differentiële tijdstoename (s)<br />

•dTd = Temperatuurstoename van het element (K of °C)<br />

3


III. Voor elk detect<strong>ie</strong>-element kan men een tijdsconstante<br />

berekenen, onafhankelijk van de warmtestroom q :<br />

kvivFSE sp2rti7<br />

[ h.A.(Tg-Td) = m.c.(dTd/dt) ]<br />

dt ⋅(<br />

Tg<br />

−Td<br />

) m⋅<br />

c<br />

τ =<br />

=<br />

dT h ⋅ A<br />

d<br />

De warmte-overdrachtscoëfficiënt h is echter wél afhankelijk<br />

van de ‘Ceiling Jet snelheid’ (Ug) [ h = f( 1/Ug 1/2 ) ] zodat :<br />

RTI = t.Ug 1/2<br />

(s)<br />

(m 1/2 .s 1/2 ) (= cte)<br />

Deze Response Time Index is een vaste waarde en d<strong>ie</strong>nt<br />

opgegeven door de fabricant van het detect<strong>ie</strong>-element<br />

Typische RTI - waarden<br />

• Thermische detector : 30<br />

• Standaard sprinkler (bulb) : 135 - 350<br />

• Quick response sprinkler (bulb) : 50 - 80<br />

• Smeltlood : 25 (ESFR) - ??? (brandklep)<br />

• (Rookdetector : 0,5 0 5 en Tact. Tact = To To +15°) + 15 )<br />

• Volgens testen van UL (thermische detectoren ) :<br />

van 11 tot 495 (in funct<strong>ie</strong> van spreiding onder het plafond)<br />

kvivFSE sp2rti8<br />

4


kvivFSE sp2rti9<br />

Activat<strong>ie</strong>tijd van een detector<br />

1) Met vaste vuurhaard : Q = cte<br />

kvivFSE sp2rti10<br />

Gekende gegevens :<br />

QT Q, To, HH, rr, RTI RTI, TTactt (detector of sprinkler)<br />

Tg (K) en Ug (m/s)<br />

volgen uit de Ceiling Jet<br />

formules (z<strong>ie</strong> vorig Hfdk)<br />

⋅ ( T − T<br />

U ⋅ ( T − T )<br />

dt g d )<br />

Uit τ =<br />

volgt :<br />

dT<br />

d<br />

dT dTd g g d<br />

=<br />

dt<br />

RTI<br />

dTd / dt : temperatuursstijging v/d detector per tijdseenheid (K/s)<br />

Td : berekende detector-temperatuur (K)<br />

Het detect<strong>ie</strong>-element zal reageren (electrisch signaal of<br />

sprinklerkop opent zich) wanneer Td > Tact<br />

Td Td wordt opgelost volgens de vergelijking :<br />

T<br />

d , t + Δt<br />

= T<br />

d , t<br />

+<br />

( Tg<br />

− Td<br />

, t<br />

) ⋅ ( 1−<br />

e<br />

U g<br />

−<br />

RTI<br />

H<strong>ie</strong>rbij wordt geldt als eerste waarde voor Td = To en<br />

wordt met een tijdstap Dt van 1 sec. telkens een n<strong>ie</strong>uwe<br />

Td berekend totdat Tact wordt overschreden.<br />

)<br />

5


kvivFSE sp2rti11<br />

kvivFSE sp2rti12<br />

XLS - berekening<br />

Response time activat<strong>ie</strong> na 74 seconden<br />

Q 8000 kW<br />

To 20 °C = 293 K<br />

Tact 68 °C = 341 K<br />

H 6 m<br />

r 5 m<br />

RTI 230 m^(1/2).s^(1/2)<br />

Ug 25m/s 2,5 m/s<br />

Tg 416 K = 143 °C<br />

start 293 tijd (s)<br />

294 1<br />

295 2<br />

296 3<br />

296 4<br />

FAST (cte)<br />

6


2) Met vuurhaard : Q = a.t²<br />

In principe kan dezelfde redenering worden opgebouwd maar dan<br />

met een warmtevermogen Q dat verhoogt met <strong>ie</strong>dere tijdsstap.<br />

Zodoende zijn Tg en Ug n<strong>ie</strong>t constant en d<strong>ie</strong>nen deze telkens<br />

berekend zoals onder het hoofdstuk “ceiling jet”.<br />

De differentiaalvergelijk wordt dan ook opgelost met een<br />

bijkomende term :<br />

1<br />

−<br />

T Td , t + Δt<br />

= T Td<br />

, t<br />

Δ t<br />

ττ + ( T Tg<br />

, t + Δt<br />

− T Td<br />

, t ) ⋅ ( 1 1−<br />

e ) + ( T Tg<br />

, t + t − T Tg<br />

, ) ⋅τ<br />

⋅ ( e<br />

Waarbij t = RTI /Ug 1/2 en veranderlijk in de tijd<br />

Ook Tg start met de waarde To en wordt per seconde berekend<br />

kvivFSE sp2rti13<br />

Response time activat<strong>ie</strong> na 246 seconden<br />

bij 2844 kW<br />

a 0,047 kW/s²<br />

To 20 °C = 293 K<br />

Tact 68 °C = 341 K<br />

H 6 m<br />

r 5 m<br />

RTI 80 m^(1/2).s^(1/2)<br />

XLS - berekening<br />

1<br />

−<br />

ττ<br />

1<br />

+ − 1 )<br />

τ<br />

r/H 0,833 -<br />

tf* 1,75 s<br />

A 0,0278<br />

Tg Td<br />

start Q t2* DT* U* 293 Ug t 293,0 tijd (s)<br />

1 0 0,1 0,0 0,0 293 0,0 400,0 293,0 1<br />

2 0 0,1 0,0 0,0 293 0,0 400,0 293,0 2<br />

3 0 0,2 0,0 0,0 293 0,0 400,0 293,0 3<br />

4 1 0,3 0,0 0,0 293 0,0 400,0 293,0 4<br />

5 1 0,3 0,0 0,0 293 0,0 400,0 293,0 5<br />

6 2 0,4 0,0 0,0 293 0,0 400,0 293,0 6<br />

7<br />

kvivFSE sp2rti14<br />

8<br />

2<br />

3<br />

0,4<br />

0,5<br />

0,0<br />

0,0<br />

0,0<br />

0,0<br />

293<br />

293<br />

0,0<br />

0,0<br />

400,0<br />

400,0<br />

293,0<br />

293,0<br />

7<br />

8<br />

9 4 06 00 00 293 00 400 0 293 0 9<br />

7


kvivFSE sp2rti15<br />

FAST (Tsq)<br />

8


BLUSSING DOOR SPRINKLERS<br />

Is de bluswatercapaciteit echt nodig<br />

kvivFSE sp2spr1<br />

K VIV – SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (e)<br />

Installat<strong>ie</strong> volgens de ‘norm’<br />

• NBN S21-028, CEA 4001, EN 12845, NFPA 13, FMglobal,...<br />

• Conservat<strong>ie</strong>ve benadering = “worst case scenario”<br />

• Potent<strong>ie</strong>el gevaar brandklasse deb<strong>ie</strong>t (densiteit x<br />

werkzame oppervlakte Buffercapaciteit (i.f.v.<br />

gevraagde werkduur)<br />

• Maximale druk aan laatste sprinkler<br />

• Bepalen l van pompkarakterist<strong>ie</strong>k k k i i k(i (i.f.v. f leiding l idi lay-out) l )<br />

• Electrisch- en/of D<strong>ie</strong>sel-vermogen<br />

• Installat<strong>ie</strong>, rekening houdend met structuur / obstakels<br />

kvivFSE sp2spr2<br />

1


Mogelijke optimalisat<strong>ie</strong><br />

1) Is het vereiste waterdeb<strong>ie</strong>t een vast gegeven ?<br />

kvivFSE sp2spr3<br />

NFPA 13 : 6,1 x 372 = 2x (8,1 x 139) !!<br />

2) Gebruik van het type sprinkler i.f.v. de parameters :<br />

opstelling / sproeicurve / snelheid / grootte(K-factor)<br />

Standard spray (pendent – upright)<br />

kvivFSE sp2spr4<br />

Flush spray (recessed)<br />

Sidewall<br />

Concealed Ceiling<br />

Extended Coverage<br />

EExtra t Large L Orifice O ifi<br />

Early Suppression Fast Response (stapeling)<br />

Large Drop<br />

2


kvivFSE sp2spr5<br />

kvivFSE sp2spr6<br />

Quick Response Sprinkler (L & OH)<br />

NFPA 13<br />

Verminderde werkzame<br />

oppervlakte bij gebruik van<br />

Quick Response Sprinklers* !<br />

H > 6 m : - 0 %<br />

H < 3 m : - 40 %<br />

3 m [ H [ 6 m : (5 (5.H–55) H 55) %<br />

* Toepasbaar in kantoorgebouwen en (grote) winkelruimtes<br />

3) Wat is de werkelijke blussingskracht<br />

Uit deb<strong>ie</strong>t en druk ( Q = K . P 1/2 ) en het toegepaste<br />

sprinkler-type volgt :<br />

• Druppelgrootte (diameter dm of oppervlakte Ad)<br />

Ad y Q / dm y Q.P1/3 / Ø 2/3<br />

[ toepassing = watermist (120 bar) : 1 L / 6 m³ lokaal ]<br />

• PPe<strong>net</strong>rat<strong>ie</strong> i = f ( (snelheid lh id en grootte) )<br />

• Hoeveelheid \<br />

• Spreiding / Densiteit (L / min.m²) of mw (mm/s)<br />

3


NFPA handbook<br />

kvivFSE sp2spr7<br />

kvivFSE sp2spr8<br />

Een minimale densiteit is<br />

vereist i.f.v. de brandlast,<br />

anders is blussing onmogelijk :<br />

Bepaling van de blussingscurve (reëel) - 1993<br />

Q t −<br />

= Q<br />

( t act ) t act<br />

⋅ e<br />

⎛<br />

⎜<br />

( t − t<br />

⎜<br />

⎝ 3⋅(<br />

m w )<br />

act<br />

− −1<br />

, 85<br />

tact : tijdstip waarop de sprinkler wordt geactiveerd (s)<br />

mw : waterdensiteit van de sprinkler (mm/s)<br />

)<br />

⎞<br />

⎟<br />

⎠<br />

4


TEST : Blussing bij 0,07 mm/s (4,2 L/min.m²) noemer = 410<br />

kvivFSE sp2spr9<br />

Medium / Qact = 2500 kW<br />

Vermogen (kkW)<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

BLUSTIJD = f (densiteit)<br />

0<br />

80<br />

160<br />

240<br />

320<br />

400<br />

480<br />

560<br />

640<br />

720<br />

800<br />

880<br />

960<br />

1040<br />

1120<br />

1200<br />

1280<br />

1360<br />

1440<br />

1520<br />

1600<br />

1680<br />

1760<br />

kvivFSE sp2spr10<br />

tijd (s)<br />

densiteit = 2 L/min.m² densiteit = 3 L/min.m² densiteit = 4 L/min.m² densiteit = 5 L/min.m²<br />

densiteit = 6 L/min.m² densiteit = 7 L/min.m² densiteit = 8 L/min.m² densiteit = 9 L/min.m²<br />

5


U-fast / Qact = 7500 kW<br />

Vermogen (kkW)<br />

kvivFSE sp2spr11<br />

10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

0<br />

90<br />

BLUSTIJD = f (densiteit)<br />

180<br />

270<br />

360<br />

450<br />

540<br />

630<br />

720<br />

810<br />

900<br />

990<br />

1080<br />

1170<br />

1260<br />

1350<br />

1440<br />

1530<br />

1620<br />

1710<br />

1800<br />

tijd (s)<br />

densiteit = 2 L/min.m² densiteit = 4 L/min.m² densiteit = 6 L/min.m² densiteit = 8 L/min.m²<br />

densiteit = 10 L/min.m² densiteit = 12 L/min.m² densiteit = 14 L/min.m² densiteit = 16 L/min.m²<br />

4) Finale berekening<br />

• Vastleggen van het vuurhaard-type en Tsq – curve<br />

• Keuze van type sprinklers (RTI)<br />

• Keuze van druk/deb<strong>ie</strong>t parameters (K-factor)<br />

• Activat<strong>ie</strong>tijd bepalen (ceiling jet !) en nakijken hoeveel sprinklers<br />

afgaan : blussing / controle<br />

• Blussingstijd berekenen<br />

• Benodigde watervoorraad (m (m³) ) :<br />

blustijd x aantal sprinklers x sprinklerdeb<strong>ie</strong>t<br />

• Let wel : Dit is een praktische FSE – benadering, géén norm !!<br />

kvivFSE sp2spr12<br />

6


kvivFSE sp2rad1<br />

kvivFSE sp2rad2<br />

STRALING & VLAMMEN<br />

Als de brand dan toch uitbreidt<br />

KVIV– K VIV SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (f)<br />

Straling vanuit een open vlam<br />

• Gelijkmatig verdeeld over een halve bol<br />

• Omgekeerd evenredig tot de afstand ² (R)<br />

• Lineair afhankelijk van het warmtevermogen (Q)<br />

• Afhankelijk van de diameter van de vuurhaard (D)<br />

• Rekening houden met het stralingsaandeel (cr)<br />

χr<br />

⋅Q<br />

q =<br />

4π ⋅ R²<br />

[ cr = 0,21 – 0,0034.D y 20 % in open lucht ]<br />

(kW/m²)<br />

1


40 kW/m² :<br />

Zware<br />

structuren<br />

20 kW/ kW/m² ² :<br />

Lichte<br />

structuren<br />

15 kW/m² :<br />

VVeilige ili afstand f t d<br />

1,5 kW/m² :<br />

Zonnebrand<br />

kvivFSE sp2rad3<br />

Stralingsintensiteit<br />

(kW/m²)<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

STRALING VAN EEN OPEN VLAM<br />

2 2,5 3 3,5 4 4,5 5 6 8 11 15<br />

afstand van de vlam (m)<br />

46.000 kW<br />

37.000 kW<br />

29.000 kW<br />

22.000 kW<br />

16.000 kW<br />

11.000 kW<br />

7.000 kW<br />

4.000 kW<br />

2.000 kW<br />

1.000 kW<br />

Straling vanuit een ruimte in flashover<br />

De straling gebeurt vanaf het raamoppervlak met een<br />

intensiteit van :<br />

qbron = Ø.e.s.( Tf 4 –To 4 ) ( ± 100 kW/m²)<br />

•Ø.e= configurat<strong>ie</strong>factor x emiss<strong>ie</strong>factor = 0,5<br />

(vanuit een gesloten ruimte)<br />

• s= constante van Stefan Bolzman = 5 67 10 -11 (kW/m²K 4 • s= constante van Stefan Bolzman = 5,67.10 (kW/m K )<br />

•Tf = vlamtemperatuur (1.400 K)<br />

•To = omgevingstemperatuur (300 K)<br />

kvivFSE sp2rad4<br />

2


Belang van 3 afstanden :<br />

• R : afstand tot de aangestraalde oppervlakte<br />

• h : de hoogte van het raam<br />

• b : de breedte van het raam<br />

q = qbron x F (kW/m²)<br />

met F : v<strong>ie</strong>wfactor of overzichtsfactor = f (R/b , h/b)<br />

Ofwel : een veilige afstand wanneer F < 0,15<br />

kvivFSE sp2rad5<br />

kvivFSE sp2rad6<br />

Ofwel : een veilige afstand wanneer F < 0,15<br />

Brandbeveiligingsconcept Min.bi.za (Nl)<br />

3


Hoogte van de<br />

ramen (m)<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

kvivFSE sp2rad7<br />

VEILIGE AFSTAND (15 kW/m²)<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

Breedte van de ramen (m)<br />

R = 30 m<br />

R = 20 m<br />

R = 15 m<br />

R = 12 m<br />

R = 10 m<br />

R = 8 m<br />

R = 6 m<br />

R = 5 m<br />

R = 4 m<br />

R = 3 m<br />

Vlamhoogte = eigenlijke stralingsbron<br />

1) Ongehinderd in een hoge ruimte :<br />

Specif<strong>ie</strong>ke warmtevermogen : qs (kW/m²)<br />

Bepalen v/d diameter D = (4/π.(Q/qs)) 1/2<br />

Vlamhoogte :<br />

kvivFSE sp2rad8<br />

L = A.Q 2/5 – 1,02.D (m) = f (e ¨¨ qs)<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

Met A afhankelijk van atmosferische condit<strong>ie</strong>s en<br />

typische verbrandingswaarden. Normaal : A = 0,235<br />

spec. vermogen<br />

vlamhoogte<br />

0%<br />

1 2 3 4 5 6 7 8<br />

4


kvivFSE sp2rad9<br />

2) Uitslaande vlammen in een gevelopening :<br />

Afstand van de vloer<br />

tot de bovenkant van de opening : h (m)<br />

Breedte van de opening : w (m)<br />

Breedte & d<strong>ie</strong>pte van de ruimte : b & d (m)<br />

At en ventilat<strong>ie</strong>factor AoSHo (z<strong>ie</strong> Ceiling Jet)<br />

De afbrandsnelheid : R (in Flashover of Fuel Bed Controlled)<br />

1/2<br />

Rfo = 0,02 [At . AoSHo . (b/d)] 1/2<br />

R fbc = 1,5 Q / Hc (met Hc = kJ/kg)<br />

Hoogte van de vlam boven de opening :<br />

kvivFSE sp2rad10<br />

Zf = 12,8 (R/w) 2/3 -h<br />

(m)<br />

(kg/s)<br />

CIBSE Guide E<br />

Afbrandkromme i.f.v.<br />

Brandlast en<br />

ventilat<strong>ie</strong>factor :<br />

“30( 1 /4)” betekent :<br />

- 30 kg hout per m²<br />

- 25% ventilat<strong>ie</strong> in één muur<br />

Z f<br />

5


kvivFSE sp2tep1<br />

kvivFSE sp2tep2<br />

DE THERMISCHE PLUIM<br />

Waar vuur is, is er rook<br />

K VIV – SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (g)<br />

1


De ‘Thermal Plume’<br />

= Rookpluim recht boven de vuurhaard<br />

kvivFSE sp2tep3<br />

Basisparameters :<br />

• Totaal warmtevermogen : Q (= As x qs) (kW)<br />

• Convect<strong>ie</strong>f warmtevermogen : Qc ≈ 0,7.Q (kW)<br />

• Rookvrije hoogte z (of Y in NBN) (m)<br />

• Gemiddelde rooktemperatuur Tc = Qc / m.cp + To (K)<br />

- m = rookmassadeb<strong>ie</strong>t in kg/s (te berekenen)<br />

-cp = specif<strong>ie</strong>ke warmte ~ 1 kJ / kg.K<br />

• Rookvolume V = m.Tc / r.To<br />

kvivFSE sp2tep4<br />

(m³/s)<br />

2


Berekening van het rookmassadeb<strong>ie</strong>t m<br />

1) Voor een relat<strong>ie</strong>f kleine vuurhaard (L < z)<br />

kvivFSE sp2tep5<br />

[met L = vlamhoogte uit vorig hoofdstuk]<br />

m = 0,071. k 2/3 . Qc 1/3 . (z-zo) 5/3 + 0,0018.Qc<br />

Vereenvoudiging 1 : Er is geen invloed v/d zijwand : k = 1<br />

Vereenvoudiging 2 : de virtuële vuurhaard-bron zo bevindt op vloerniveau :<br />

Zo = 0,083.Q 2/5 – 1,02D ≈ 0<br />

o , Q ,<br />

Vereenvoudiging 3 : Bij kleinere Qc of grotere z is de 2de term te schrappen<br />

Tc : Gemiddelde<br />

temperatuur (°C)<br />

200<br />

150<br />

100<br />

50<br />

kvivFSE sp2tep6<br />

m = 0,071. Qc 1/3 . z 5/3<br />

Temperatuur & Rookmassadeb<strong>ie</strong>t<br />

m : Rookmassadeb<strong>ie</strong>t<br />

(kg/s)<br />

0<br />

0<br />

2 3 4 5 7 10 14 20 30<br />

Rookvrije Hoogte z (m)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

(kg/s)<br />

Tc bij Q = 11.000 kW<br />

Tc bij Q = 8.000 8 000 kW<br />

Tc bij Q = 5.500 kW<br />

Tc bij Q = 3.500 kW<br />

Tc bij Q = 2.000 kW<br />

Tc bij Q = 1.000 kW<br />

Tc bij Q = 500 kW<br />

m bij Q = 11.000 kW<br />

m bij Q = 8.000 kW<br />

m bij Q = 5.500 kW<br />

m bij Q = 3.500 kW<br />

m bij Q = 2.000 kW<br />

m bij Q = 1.000 kW<br />

m bij Q = 500 kW<br />

3


kvivFSE sp2tep7<br />

2) Verdere benaderingen<br />

- Ind<strong>ie</strong>n qs gekend is (kW/m²) en / of de perimeter P (m) van<br />

de vuurhaard gelden volgende andere formule ook :<br />

[ met As = Q/qs en Qc = 0,7.Q]<br />

z < 2,5.P en 200 < Qc/As < 750<br />

m = 0,188. P. z 3/2 (kg/s) NBN !!<br />

-Ind<strong>ie</strong>n I di de d vuurhaard h deen langwerpige l i rechthoek h h kvormt<br />

(ratio Ls/bs > 3) en z < 5. Ls<br />

m = 0,21. Qc 1/3 . Ls 5/3 . z (kg/s)<br />

3) Voor een relat<strong>ie</strong>f grote vuurhaard<br />

(in een “open ruimte” en L > z)<br />

of Q > 1 /3 z5/2 (MW !!)<br />

m 16Q3/5 m = 1,6 Q (k / )<br />

3/5 . z (kg/s)<br />

Deze situat<strong>ie</strong> doet zich voor bij hoge<br />

brandlast en /of bij lage ruimtes. De<br />

rechtstreekse interact<strong>ie</strong> tussen vlammen<br />

en de rooklaag geeft een expans<strong>ie</strong>f<br />

tempe-ratuursverloop tempe ratuursverloop en dit leidt snel<br />

tot flashover, als 1,3 Q 2/5 > h<br />

Op dat ogenblik zijn de formules n<strong>ie</strong>t<br />

meer geldig.<br />

kvivFSE sp2tep8<br />

Flashoverzone<br />

Q (MW) 180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

3 4 5 6 7 8 9 10<br />

h of z (m)<br />

4


Rookventilat<strong>ie</strong> door een horizontale opening<br />

kvivFSE sp2tep9<br />

Om tot een stab<strong>ie</strong>le rooklaag te komen (op een hoogte z) d<strong>ie</strong>nt<br />

een evenwicht ingesteld tussen mf (rookmassaprodukt<strong>ie</strong>) en<br />

mv ( rookafvoer). Het maken van openingen in het dak is<br />

h<strong>ie</strong>rbij het meest efficiënte middel.<br />

Basisparameters :<br />

• Dikte van het rookreservoir : d = h – z (m)<br />

• Rooktemperatuur Tc DT met de buitenlucht (K)<br />

• Oppervlakte Av van de opening (m²)<br />

• Aerodynamische coëfficiënt Cv (± 0,6 0,7)<br />

• r = 1,22 , kg/m³ g/ en e g = 9,81 9,8 m/s² /s<br />

kvivFSE sp2tep10<br />

mv = AvCv . r.( 2 . g . d . To . DT / Tc² ) 1/2<br />

(kg/s)<br />

5


Belang van temperatuur en toevoerlucht<br />

SFPE handbook<br />

kvivFSE sp2tep11<br />

Rookdichtheid en CO - product<strong>ie</strong><br />

Alhoewel zeer ‘gevoelige’ gegevens i.v.m. levensbedreigende<br />

situat<strong>ie</strong>s, komen ze in de FSE – benadering weinig voor :<br />

• Massa Rookpotent<strong>ie</strong>el D m (m²/g) [hout = 0,05 ; PS = 1,00]<br />

• Optische Dichtheid (OD) :<br />

OD = 10 [D m . m f / V t] (dB/m)<br />

met mf = brandstofverbruik (g) en Vt = rookvolume (m³) na t sec.<br />

- Gipskartonplaten : 50 dB/m - Kerstboom : 100 dB/m<br />

- Matras / Stoel : 200 – 400 dB/m - Kunststof : 300 – 1000 dB/m<br />

• Zichtbaarheid (m) = 10/OD (bij reflect<strong>ie</strong> van licht)<br />

= 25/OD (bij emiss<strong>ie</strong> van licht)<br />

kvivFSE sp2tep12<br />

6


Koolstofmonoxide is gradueel schadelijk :<br />

kvivFSE sp2tep13<br />

- Gemiddeld 25 ppm over 8 uur (ARAB) : OK<br />

- 150 ppm gedurende ½ u : geen effect<br />

- 300 ppm pp gedurende g ½ u : hoofdpijn p j<br />

- 1500 ppm gedurende 15 min. : bewusteloos<br />

- 3000 ppm gedurende 5 min. : dodelijk<br />

CO = 0,858 x 10 6 . [Y co . m f / V t] (ppm)<br />

MtY Met YCO = CO CO-product<strong>ie</strong> d ti bij verbranding b di in i kg/kg k /k<br />

( hout = 0,004 / PP = 0,024 / PVC en PS = 0.06 )<br />

7


kvivFSE sp2spp1<br />

kvivFSE sp2spp2<br />

DE UITSTROMENDE PLUIM<br />

Een verhaal van nog meer rook<br />

K VIV – SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (h)<br />

1


1<br />

kvivFSE sp2spp3<br />

Rookontwikkeling in een compartiment<br />

2<br />

1) Rookuitstroom voor Flashover (brandstof gecontroleerd)<br />

v = e2Dp/r (Bernoulli)<br />

m = A.Ce2rDp<br />

A = wv.hv (m²)<br />

C = ‘flow coëfficiënt’<br />

En Dp = f (r, dy) + of –<br />

Neutrale lijn hn<br />

v = [ 2 g .y. (ra-r)/r ] 1/2 (m/s)<br />

kvivFSE sp2spp4<br />

8<br />

m = ⋅ C ⋅ w v g ⋅ ρ ( ρ a − ρ ) ⋅ ( h v − h<br />

3<br />

n<br />

4<br />

SFPE handbook<br />

3 / 2<br />

)<br />

(kg/s)<br />

3<br />

2


Gebruikelijke formules :<br />

CIBSE : m = 0,09 (Qc.wv²) 1/3 .hv<br />

en Qc = convect<strong>ie</strong>ve warmtestroom (kW)<br />

EN 12101-5<br />

BR 368 :<br />

m =<br />

⎡<br />

⎢w<br />

⎢⎣<br />

2 / 3<br />

(kg/s)<br />

C e ⋅ P ⋅ w ⋅ h<br />

C d = 0,65 h<br />

2 / 3<br />

3 / 2<br />

1 ⎛ C ⋅ P ⎞ ⎤<br />

e + ⎜ ⎟ ⎥<br />

C d ⎝ 2 ⎠ ⎥⎦<br />

C d = 1<br />

h<br />

Met P = omtrek (perimeter) van de vuurhaard (m)<br />

Ce = ‘entrainment’ – coëfficiënt (0,188 – 0,21 – 0,337)<br />

Cd = ‘discharge’ – coëff. : (0,65 – 1) i.f.v. ‘downstand’<br />

2) Rookuitstroom na Flashover (ventilat<strong>ie</strong> – gecontroleerd)<br />

kvivFSE sp2spp5<br />

m = 0,5 AweHw<br />

Bepalende factoren in de uitstroomzone<br />

kvivFSE sp2spp6<br />

• Is er een balkon aanwezig, en hoe breed is dit<br />

•‘Kleeft’ Kleeft de rook aan de bovenliggende gevel<br />

• Is de uitstroombreedte onder controle<br />

• Wat is de gewenste extra stijghoogte van de rook :<br />

Bepaald door een maximale temperatuur<br />

Bepaald door een minimale vrije hoogte<br />

• Is er uitstroom van vlammen<br />

• Wat is de resulterende temperatuur<br />

3


Balkon ‘dubbele’ pluim<br />

11. RRotat<strong>ie</strong>factor i f : 0,16 0 16 vs 0,077 0 077<br />

2. Bijmengfactor : 2 vs 1<br />

3. + 3 m : wel / n<strong>ie</strong>t effect<strong>ie</strong>f<br />

kvivFSE sp2spp7<br />

Breedte :<br />

Raam zelf (w)<br />

Onder balkon (L)<br />

(channeling)<br />

( g)<br />

kvivFSE sp2spp8<br />

BRE / FRS (BR 368)<br />

Geen balkon ‘enkele’ pluim<br />

4


Berekeningsmethoden<br />

NFPA 92B : (met balkon) W = w + b W = L<br />

kvivFSE sp2spp9<br />

kvivFSE sp2spp10<br />

Qc (kW)<br />

m = 0,36 (Qc.W 2 ) 1/3 .(zb + 0,25 H) (kg/s)<br />

En : Tc = To + Qc/m (K) en V = m.Tc / r.To (m³/s)<br />

NFPA 92B : (na flashover)<br />

Met vuurhaard, gecontroleerd<br />

door het ventilat<strong>ie</strong>-oppervlak :<br />

QQc = 456 AAw.eHw H (kW)<br />

Definit<strong>ie</strong> v/d ‘effect<strong>ie</strong>ve hoogte’ :<br />

a = 2,4 Aw 2/5 . Hw 1/5 - 2,1 Hw<br />

m = 0,071 Qc 1/3 .(zw + a) 5/3 + 0,0018 Qc<br />

(kg/s)<br />

Let op : bij m ↑↑ en DT ↓↓ : Aanz<strong>ie</strong>nlijke AvCv vereist !!<br />

5


BR 368 (BRE-FRS : H.P. Morgan Phd) y CR EN 12101-5 :<br />

1. Vastleggen van Vuurhaardgrootte (met of zonder sprinklers)<br />

2. Bepalen van het ventilat<strong>ie</strong> – regime (FBC of VC)<br />

3. Berekenen van de rookuitstroom uit het compartiment<br />

4. Met of zonder ‘downstand’ – balkon – channelings<br />

5. Berekeningsalgoritme (‘ANNEX E’)<br />

66. Rekening houden met wandverl<strong>ie</strong>zen stratificat<strong>ie</strong><br />

7. Mogelijke ‘hybride’ oplossingen i.f.v. neutrale lijn<br />

8. Oplossing met AvCv (m²) of afvoerdeb<strong>ie</strong>t V (m³/s)<br />

kvivFSE sp2spp11<br />

+<br />

Landschapsbureel zonder ‘downstand’ en enkele pluim / Grote winkel met ‘downstand’, balkon en dubbele pluim<br />

kvivFSE sp2spp12<br />

+<br />

6


kvivFSE sp2spp13<br />

Tc ?<br />

Neutrale lijn<br />

Op zoek naar de ideale oplossing<br />

7


DE ROOKVULTIJD<br />

De tijd voor evacuat<strong>ie</strong> en intervent<strong>ie</strong><br />

kvivFSE sp2fit1<br />

kvivFSE sp2fit2<br />

K VIV – SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (i)<br />

Sterke rookontwikkeling leidt tot :<br />

• Verminderde zichtbaarheid<br />

• Toxische gassen<br />

• Hitte<br />

1


Welke parameters spelen een rol :<br />

• Thermisch pluim of uitstromende pluim (complex !!)<br />

• Oppervlakte van het rookreservoir (Ap)<br />

• Hoogte van de ruimte (h)<br />

• Vermogen van de vuurhaard (constant of groe<strong>ie</strong>nd)<br />

• Rook- en Warmteafvoer aanwezig (in het dak verondersteld)<br />

• Blussing van de vuurhaard na een zekere tijd of n<strong>ie</strong>t<br />

• Wordt een flashover – toestand bereikt<br />

• (init<strong>ie</strong>le ruimtetemperatuur , stel 20 °C)<br />

• Er wordt géén rekening gehouden met warmteverl<strong>ie</strong>s aan<br />

de wanden (veilige benadering)<br />

kvivFSE sp2fit3<br />

Berekeningsmethode (thermische pluim) :<br />

( met vast convect<strong>ie</strong>f warmtevermogen Qc)<br />

1. Stel de initiële stijghoogte z = h<br />

2. Bereken de rookmassa voor een bepaalde tijdseenheid Dt (per<br />

seconde seconde, per 5 s, s per 10 s,...) s ) met de formule<br />

ms= 0,071 Qc 1/3 . z5/3 (kg/s)<br />

3. Bepaal temperatuur = Qc/ms en rs = ro . (Tc/To) (kg/m³)<br />

4. Het rookvolumedeb<strong>ie</strong>t V = ms / rs<br />

(m³/s)<br />

5. De indaalsnelheid Ut = V / Ap (m/s)<br />

66. Bepaal de n<strong>ie</strong>uwe stijghoogte z t+1 =zt = z t – Ut Ut.Dt Dt (m)<br />

7. Bereken een volgende tijdseenheid (vanaf 2.)<br />

8. Maak een evaluat<strong>ie</strong> van de verschillende grootheden (op graf<strong>ie</strong>k)<br />

kvivFSE sp2fit4<br />

2


Zonder Rook-en warmteafvoer :<br />

Rookvulling met vaste vuurhaard<br />

kvivFSE sp2fit5<br />

rookmassa ms (kg/s)<br />

indaling v/d rook (cm/s)<br />

temperatuur rook (°C x 10)<br />

rookvrije hoogte z (m)<br />

Conv. Brandlast Qc = 2.000 kW<br />

hoogte ruimte h = 10 m<br />

vloeroppervlak Ap = 1000 m²<br />

50,0<br />

40,0<br />

30,0<br />

20,0<br />

10,0<br />

0,0<br />

0 30 60 90 120 150 180 210 240<br />

-10,0<br />

Met Rook-en Warmteafvoer :<br />

seconden<br />

• Op natuurlijke wijze (met rookluiken en gegarandeerde<br />

luchttoevoer) leidt dit automatisch tot een evenwichts-situat<strong>ie</strong>,<br />

onder invloed van de thermische kracht<br />

mv = f ( AvCv, AiCi, (h-z), Tc, ) z<strong>ie</strong> hoofdstuk ‘thermische pluim’<br />

• Op mechnische wijze is dit veel delicater, want een vast<br />

afvoerdeb<strong>ie</strong>t (in m³/s) voert minder massa af naarmate de<br />

temperatuur stijgt<br />

mv = f (V, Tc)<br />

• Berekenings-stap 3. en 4. hebben nu de term (ms –mv)<br />

• Ook het moment van activat<strong>ie</strong> speelt een grote rol<br />

( = i.f.v. de rookdetect<strong>ie</strong> of manueel)<br />

kvivFSE sp2fit6<br />

3


Rookvulling met vaste vuurhaard<br />

en natuurlijke rookafvoer<br />

kvivFSE sp2fit7<br />

rookproduct<strong>ie</strong> ms (kg/s)<br />

indaling v/d rook (cm/s)<br />

temperatuur rook (°C x 10)<br />

rookvrije hoogte z (m)<br />

rookafvoer mv (kg/s)<br />

Conv. Brandlast Qc = 3.000 kW<br />

hoogte ruimte h = 5 m<br />

vloeroppervlak Ap = 500 m² m<br />

Afvoeropp. AvCv = 5 m²<br />

Toevoeropp. AiCi = 5 m²<br />

Rookvulling met vaste vuurhaard<br />

en mechanische rookafvoer<br />

kvivFSE sp2fit8<br />

rookproduct<strong>ie</strong> ms (kg/s)<br />

indaling v/d rook (cm/s)<br />

temperatuur rook (°C x 10)<br />

rookvrije hoogte z (m)<br />

rookafvoer mv (kg/s)<br />

Conv. Brandlast Qc = 5.000 kW<br />

hhoogte t ruimte i t h = 5 m<br />

vloeroppervlak Ap = 500 m²<br />

Afvoerdeb<strong>ie</strong>t V = 30 m³/s<br />

25,0<br />

20,0<br />

15,0<br />

10,0<br />

5,0<br />

0,0<br />

0 30 60 90 120 150 180 210 240<br />

-5,0<br />

-10,0<br />

45,0<br />

40,0<br />

35,0<br />

30,0<br />

25,0<br />

20,0<br />

15,0<br />

10,0<br />

5,0<br />

-10,0<br />

seconden<br />

0,0<br />

0 30 60 90 120 150 180 210 240<br />

-5,0<br />

seconden<br />

4


Met groe<strong>ie</strong>nde vuurhaard en blussing na bepaalde tijd :<br />

Zoals waargenomen op de vorige graf<strong>ie</strong>k is het mogelijk dat de<br />

afgevoerde rookmassa mv groter is dan de product<strong>ie</strong> ms<br />

( Opgelet, bij mechanische ontroking en z = h is mv O ms !! )<br />

Als groeicurve grijpen we terug naar een t² - verloop<br />

Bij een groe<strong>ie</strong>nde vuurhaard is het temperatuursverloop geringer<br />

zodat de vlamhoogte L d<strong>ie</strong>nt gecontroleerd t.o.v. de rookvrije<br />

hoogte z (gebruikslim<strong>ie</strong>t van de formules)<br />

Bij blussing kan geopteerd worden voor een conservat<strong>ie</strong>ve<br />

benadering (Qc = constant) of met een bepaald blusdeb<strong>ie</strong>t <br />

exponentiële afname v/h warmtevermogen ( = hoofdstuk sprinklers )<br />

kvivFSE sp2fit9<br />

Rookvulling met t ² - vuurhaard<br />

kvivFSE sp2fit10<br />

rookmassa ms (kg/s) ( g )<br />

indaling v/d rook (cm/s)<br />

temperatuur rook (°C x 100)<br />

rookvrije hoogte z (m)<br />

aangroeifactor a = 0,012<br />

hoogte ruimte h = 10 m<br />

vloeroppervlak pp Ap p = 1000 m²<br />

convect<strong>ie</strong>f vermogen in kW<br />

18,00<br />

16,00<br />

14,00<br />

12,00<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

2.500<br />

2.000<br />

1.500<br />

1.000<br />

0,00<br />

500<br />

0 150 300 450 600 750 900 1050 1200<br />

-2,00<br />

-4,00<br />

0<br />

seconden<br />

5


kvivFSE sp2fit11<br />

Rookvulling met t ² - vuurhaard<br />

en mechanische rookafvoer<br />

rookproduct<strong>ie</strong> ms (kg/s)<br />

indaling v/d rook (cm/s)<br />

temperatuur rook (°C x 100)<br />

rookvrije hoogte z (m)<br />

rookafvoer mv (kg/s)<br />

aangroeifactor a = 0,012<br />

hoogte ruimte h = 5 m<br />

vloeroppervlak Ap = 500 m²<br />

Afvoerdeb<strong>ie</strong>t V = 5m³/s 5 m /s<br />

convect<strong>ie</strong>f vermogen in kW<br />

Rookvulling met t ² - vuurhaard<br />

en natuurlijke rookafvoer<br />

kvivFSE sp2fit12<br />

rookproduct<strong>ie</strong> ms (kg/s)<br />

indaling v/d rook (cm/s)<br />

temperatuur rook (°C x 10)<br />

rookvrije hoogte z (m)<br />

rookafvoer mv (kg/s)<br />

aangroeifactor a = 0,047<br />

hoogte ruimte h = 5 m<br />

vloeroppervlak Ap = 1000 m²<br />

Afvoeropp. AvCv = 2 m²<br />

Toevoeropp. AiCi = 10 m²<br />

convect<strong>ie</strong>f vermogen in kW<br />

9,00<br />

8,00<br />

7,00<br />

6,00<br />

5,00<br />

4,00<br />

3,00<br />

2,00<br />

1.200<br />

1.000<br />

800<br />

600<br />

400<br />

100 1,00<br />

0,00<br />

200<br />

0 90 180 270 360 450 540 630 720<br />

-1,00<br />

0<br />

seconden<br />

10,00<br />

8,00<br />

600 6,00<br />

4,00<br />

2,00<br />

-2,00<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

0,00<br />

500<br />

0 150 300 450 600 750 900 1050 1200<br />

0<br />

seconden<br />

6


kvivFSE sp2evac1<br />

DE GEBOUW – EVACUATIE<br />

Horizontale en vertikale beweging<br />

bij een gedwongen ontruiming<br />

K VIV – SPECIALISATIE - CURSUS 2012<br />

Fire Safety Engineering<br />

Module 2 (j)<br />

Ontvluchtingstijd (RSET)


Oplossing ? In Belgische wetgeving :<br />

Bezettingsgraad = 1 persoon / 3 m² (publ<strong>ie</strong>k togankelijk)<br />

= 1 persoon / 10 m² (n<strong>ie</strong>t publ<strong>ie</strong>k toegankelijk)<br />

Breedte van de deuren : 1 cm per persoon (min 80 cm en veelvoud van 60)<br />

Breedte van de trap : 1,25 cm pp ⇓ of 2 cm pp ⇑<br />

In het buitenland :<br />

5 mm per persoon (min 80 cm)<br />

Trap (+ 5% ) zowel ⇓ als ⇑<br />

Bezetting : z<strong>ie</strong> tabel (UK) <br />

FSE : rekenen met tijd !!<br />

kvivFSE sp2evac3<br />

Is gedrag bij evacuat<strong>ie</strong> te voorspellen ?<br />

Het verwerven van de kennis van het menselijk gedrag bij<br />

brand is een zeer intens<strong>ie</strong>f stud<strong>ie</strong>domein, met verscheidene<br />

topresearchers en regelmatig symposia. Het Amerikaanse NFPA<br />

heeft z’n code 101 ‘life safety y code’ een ® (Registered ( g Trademark) )<br />

meegegeven, als enige naast de ‘fire alarm’ en ‘electrical’ code.<br />

Deze code (en handbook) levert de nodige uitleg bij de te<br />

voorz<strong>ie</strong>ne evacuat<strong>ie</strong>mogelijkheden en dit in algemene termen<br />

alsook in typische gebouwen (‘occupanc<strong>ie</strong>s’)<br />

De gegevens d<strong>ie</strong> h<strong>ie</strong>rin zijn opgenomen zijn een bruikbare<br />

synthese van het onderzoekswerk dat in de jaren ’70 en ’80<br />

uitgevoerd i dwerd dgedaan. d Inzichten I i h worden d nog regelmatig l i<br />

bijgesteld, op basis van berekeningen en simulat<strong>ie</strong>s.<br />

De volgende rekenmodellen steunen op onderzoek van Pauls,<br />

Nelson en MacLennan (SFPE handbook of FPE)<br />

kvivFSE sp2evac4<br />

2


Enkele basisbegrippen :<br />

De stroom ‘flow’ = snelheid x dichtheid x breedte<br />

= m/s . Pers / m² . m = personen / seconde<br />

De dichtheid ‘density’ : D : init<strong>ie</strong>el volgens vastgelegd ratio (tabel)<br />

De snelheid ‘speed’ : S = 0,85 . k (met D < 0,54 pers/m²)<br />

= k (1 – 0,266.D) (met D > 0,54 pers/m²)<br />

Met k = 1,4 voor gangen en deuren,<br />

1,23 voor ‘lu<strong>ie</strong>’ trappen (h/a = 0,5)<br />

1,00 voor ‘steile’ trappen (h/a = 0,75)<br />

De effect<strong>ie</strong>ve breedte ‘effective width’ : We = gecorrigeerde breedte,<br />

rekening houdend met handrails, obstakels, nadering van de muur (2 x 15 cm)<br />

kvivFSE sp2evac5<br />

kvivFSE sp2evac6<br />

k = 1,4 : Horizontale weg<br />

k = 1,23 : Trap 17 / 34<br />

k = 1,16 : Trap 17 / 31,5<br />

k = 1,08 : Trap 18 / 28,5<br />

k = 11,00 00 : Trap 19 / 25 25,5 5<br />

k = 1,4 : 1,19 m/s<br />

k = 1,23 : 1,05 m/s<br />

k = 1,16 : 0,99 m/s<br />

k = 1,08 , : 0,92 , m/s<br />

k = 1,00 : 0,85 m/s<br />

SFPE<br />

Trap met k-factor 1,08<br />

Experiment met een<br />

willekeurige evacuat<strong>ie</strong><br />

3


De ‘specific flow’ Fs = S . D = k (1 - 0,266.D)D<br />

De maximale evacuat<strong>ie</strong> (per<br />

eenheidsbreedte) wordt bereikt bij<br />

D = 11,88 88 personen / mm²<br />

‘effective flow’ Fc = Fs . We<br />

k = 1,4 : Horizontale weg Fs max = 1,31 pers/sm<br />

k = 1,23 : Trap 17 / 34 Fs max = 1,15 pers/sm<br />

k = 1,16 : Trap 17 / 31,5 Fs max = 1,09 pers/sm<br />

k = 1,08 : Trap 18 / 28,5 Fs max = 1,02 pers/sm<br />

k = 1,00 : Trap 19 / 25,5 Fs max = 0,94 pers/sm<br />

De passagetijd Tp = P / Fc<br />

Met P = de totale populat<strong>ie</strong> van<br />

het gebouw<br />

Dit d<strong>ie</strong>nt logischerwijze opgesplitst in deelpopulat<strong>ie</strong>s met bijhorende flow<br />

kvivFSE sp2evac7<br />

kvivFSE sp2evac8<br />

FAST<br />

4


kvivFSE sp2evac9<br />

5


An Updated International Survey of<br />

Computer Models for Fire and Smoke<br />

STEPHEN M. OLENICK* AND DOUGLAS J. CARPENTER<br />

Combustion Sc<strong>ie</strong>nce & Engineering, Inc.<br />

Columbia, MD 21045, USA<br />

ABSTRACT: In 1992, a comprehensive survey of computer models for fire and<br />

smoke was conducted at the request of the Forum for International Cooperation on<br />

Fire Research. This study serves as an update to that work. One hundred sixty eight<br />

computer modeling programs for fire and smoke from several countr<strong>ie</strong>s were<br />

identif<strong>ie</strong>d and categorized. The developers were contacted and given an opportunity<br />

to supply information about their particular model via an electronic survey. The<br />

results of the survey will be made available on the inter<strong>net</strong> at www.firemodelsurvey.<br />

com. A discussion of the categor<strong>ie</strong>s of computer fire models is included, followed by<br />

lists of the identif<strong>ie</strong>d models.<br />

KEY WORDS: modeling, computer fire models, model survey, model database,<br />

computational fluid dynamics, CFD.<br />

INTRODUCTION<br />

IN 1992, FRIEDMAN [1] conducted a survey of computer fire models for the<br />

Forum for International Cooperation on Fire Research. This survey was<br />

widely published and offered a source of information on many computer fire<br />

models. The original survey work identif<strong>ie</strong>d 74 computer-modeling<br />

programs, and outlined their use in the fire engineering profession.<br />

In the ten years since the original survey paper was published, computer<br />

modeling of fire and smoke transport has become a more accepted practice.<br />

Increased use of computer modeling is due to a greater database of fire<br />

knowledge that has become available in the last ten years from research and<br />

*Author to whom corresponding should be addressed. E-mail: solenick@csefire.com<br />

Journal of FIRE PROTECTION ENGINEERING, Vol. 13—May 2003 87<br />

1042-3915/03/02 0087–24 $10.00/0 DOI: 10.1177/104239103033367<br />

ß 2003 Soc<strong>ie</strong>ty of Fire Protection Engineers


88 S. M. OLENICK AND D. J. CARPENTER<br />

experimentation as well as from more-sophisticated computer resources<br />

allowing for improved and faster computation methods to be employed.<br />

This increased use of modeling is also attributable to the move towards<br />

performance-based building codes in the United States and other countr<strong>ie</strong>s.<br />

Instead of using a prescriptive building code, engineers now can design for<br />

egress of building occupants in unique geometr<strong>ie</strong>s under varying fire<br />

conditions.<br />

Due to the growth in the use of computer modeling, most of the computer<br />

programs listed in the original survey have been updated in the last 10 years.<br />

Furthermore, numerous new models have been developed. Hence, an<br />

updated list of available computer models for fire and smoke transport is<br />

warranted. The goals of this project were to:<br />

(1) Update the survey information of the models identif<strong>ie</strong>d in the original<br />

survey.<br />

(2) Identify and survey new models developed since the original survey.<br />

(3) Include supplementary information about the models including contact<br />

information, availability, price, and additional references in response to<br />

a letter to the editor suggestion [135].<br />

(4) Provide a logical categorization of computer modeling programs, and<br />

include a description of each category.<br />

(5) Post the full, categorized results of the model survey on the Inter<strong>net</strong>,<br />

allowing access of these results to the entire engineering community.<br />

(6) Create a mechanism to update the survey periodically. This will allow<br />

ample time for model development, while not allowing the database to<br />

become outdated.<br />

The categor<strong>ie</strong>s chosen for computer fire models include zone models, f<strong>ie</strong>ld<br />

models, detector response, fire endurance, egress, and miscellaneous. The<br />

miscellaneous category includes models that have characteristics covering<br />

several of the categor<strong>ie</strong>s, making it difficult to be placed in a single category,<br />

or models that have unique capabilit<strong>ie</strong>s which do not allow them to be<br />

categorized anywhere else. These categor<strong>ie</strong>s are similar to those in the<br />

original survey [1] and to those outlined by Hunt [2], who provides a general<br />

description of each category.<br />

THE SURVEY<br />

While the original survey was intended to provide basic information<br />

about each model, this new survey is intended to provide a comprehensive<br />

index of models, and reference information for the model descriptions and<br />

background. The survey is not intended to be the sole informational source<br />

for a particular model, but instead will provide enough information so that


An Updated International Survey ofComputer Models 89<br />

readers can decide if a model may meet their needs. Then, readers can rev<strong>ie</strong>w<br />

the references listed or contact the developer to obtain more detailed<br />

information.<br />

The original survey of computer fire models [1] provided the following<br />

information:<br />

(a) Model name<br />

(b) Short description<br />

(c) Modelers, Organizations<br />

(d) References<br />

(e) Availability<br />

(f) Hardware<br />

(g) Language<br />

(h) Size<br />

(i) Detailed description<br />

This information provided a logical presentation of capabilit<strong>ie</strong>s and<br />

critical data on each computer model. The current survey is modeled after<br />

Fr<strong>ie</strong>dman [1], with some changes and additions:<br />

(1) The version number of the model is to be given. The reader will then<br />

know to what version the survey refers and whether the reader is<br />

working with an older or more recent version of the model.<br />

(2) A classification is provided as part of the model survey (i.e., zone model,<br />

f<strong>ie</strong>ld model, etc.)<br />

(3) Three types of references are requested: user’s guide, technical<br />

references, and validation references.<br />

(4) The cost of purchasing the model is to be given. While many models<br />

may be available, it is essential to know if the model is affordable, as<br />

well as if special prices are available for students or researchers.<br />

(5) Contact information for the developer, or person in charge of<br />

maintaining the model is requested. The contact information provides<br />

the user a point of contact for further information.<br />

A survey form encompassing all of the original and new information<br />

elements was then developed. Appendix A is a sample completed survey<br />

form for the NIST zone model FAST/CFAST. Complete results from<br />

the survey are available only on the inter<strong>net</strong> at www.firemodelsurvey.com.<br />

In a number of cases, no updated survey information was obtained.<br />

This introduced gaps of information on some models in the database.<br />

When possible, these gaps were filled by using the original survey data.<br />

It is the intent of the authors to maintain and update this database. Hence,<br />

as other model surveys are submitted, they will be included in future<br />

updates.


90 S. M. OLENICK AND D. J. CARPENTER<br />

THE MODELS<br />

Before the model survey was created, the fire engineering community was<br />

polled to identify computer models for fire and smoke. The models<br />

identif<strong>ie</strong>d by the fire engineering community were combined with those<br />

listed in the original survey, as well as others found in assorted fire modeling<br />

literature to develop a complete list of known fire models. These models<br />

were then categorized, and a survey form was sent to developers or known<br />

points of contact to collect more information about each model.<br />

Availability of a model was found to be an important area of interest in<br />

the engineering community. It was decided that all models should be<br />

included in the database even if the model is unavailable, outdated, or not<br />

maintained. The reason for inclusion of these models was that while newer,<br />

more sophisticated and better maintained models may be available, previous<br />

research work may involve older, now outdated and no longer maintained,<br />

and possibly unavailablemodels. Thedatabasewith theinclusion of these<br />

models will provide researchers with a source that describes the characteristics<br />

of these older, no longer maintained, or unavailable models.<br />

A description of the overall model identification and categorization is<br />

provided below:<br />

Zone Models<br />

A zone model is a computer program that predicts the effects of the<br />

development of a fire inside a relatively enclosed volume. In most<br />

applications, the volume is not totally enclosed as doors, windows, and<br />

vents are usually included in the calculation. Zone models for compartments<br />

have been developed for both single-room and multiroom configurations.<br />

The ‘zonal’ approach theory to modeling plume and layer development in<br />

confined spaces was appl<strong>ie</strong>d to fires by several groups in the 1970s, e.g.<br />

Zukoski [3]. The ‘zonal’ approach divides the area of interest into a number<br />

of uniform zones, that when combined, describe the area of interest as a<br />

whole [4]. Within each of these zones, the pertinent conservation laws (i.e.<br />

mass and energy), in the form of mathematical equations describing the<br />

conditions of interest, are solved [4]. The ‘zonal’ approach for an enclosure<br />

fire usually divides an enclosure into two distinct zones: the hot upper<br />

smoke layer and the lower layer of cooler air. The plume acts as an enthalpy<br />

pump between the lower layer and the hot upper smoke layer. In reality,<br />

depending on the room size and heat release rate of the fire, there is no<br />

perfectly defined ‘interface’ between the hot upper smoke layer and lower<br />

layer and the hot upper smoke layer is not an uniform temperature (as<br />

higher temperatures are observed closer to the fire and plume); however, the


An Updated International Survey ofComputer Models 91<br />

use of two uniform zones allows for reasonable approximations of the<br />

development of a fire in an enclosure under many conditions.<br />

Since the original survey [1], only a few new zone models (approximately<br />

20) have been identif<strong>ie</strong>d. While many of the models identif<strong>ie</strong>d in the original<br />

survey have been improved, the basic zonal approach has been stud<strong>ie</strong>d<br />

thoroughly and, therefore, the opportunit<strong>ie</strong>s to develop a novel zone model<br />

arelimited.<br />

Table 1 lists the zone models which have been identif<strong>ie</strong>d for the model<br />

survey.<br />

F<strong>ie</strong>ld Models<br />

F<strong>ie</strong>ld models, like zone models, are used to model fire development inside<br />

a compartment or a ser<strong>ie</strong>s of compartments. While a zone model divides the<br />

compartment into two zones, and solves the conservation equations (i.e.,<br />

mass, energy, and momentum) within these zones, a f<strong>ie</strong>ld model divides the<br />

compartment into a large number (on the order of thousands) of control<br />

volumes and solves the conservation equations inside each control volume.<br />

This allows for a more detailed solution compared to zone models. Because<br />

there are more than two uniform zones, a f<strong>ie</strong>ld model can be appropriate for<br />

more complex geometr<strong>ie</strong>s where two zones do not accurately describe the<br />

fire phenomenon. They can also be used for fires outside of compartments,<br />

such as large outdoor fuel tank fires [136].<br />

While f<strong>ie</strong>ld models provide very detailed solutions, they require detailed<br />

input information, and usually require more computing resources in order<br />

to model the fire. This can create a costly time delay in obtaining a solution<br />

whilezonemodels usually providea solution morequickly.<br />

In this study, nearly twice as many f<strong>ie</strong>ld models were identif<strong>ie</strong>d than that<br />

in the original survey. This trend of increasingly growing numbers of f<strong>ie</strong>ld<br />

models stems from improved computer hardware which allows for faster,<br />

more complex computational techniques.<br />

Table 2 lists the f<strong>ie</strong>ld models which have been identif<strong>ie</strong>d for the model<br />

survey.<br />

Detector Response Models<br />

Detector response models predict primarily the time to activation of an<br />

initiating device. While most of these models predict the response of a<br />

thermal detector, sprinkler, or fusible link to a fire-induced flow, a few<br />

calculate the response of a smoke detector.<br />

Typically, these models utilize the zonal approach to calculate smoke and<br />

heat transport, but utilize submodels to determine the response of the


92 S. M. OLENICK AND D. J. CARPENTER<br />

Table 1. Identif<strong>ie</strong>d zone models for compartments.<br />

Model Country<br />

Identifying<br />

Reference Description<br />

ARGOS DENMARK [8] Multicompartment zone model<br />

ASET US [9] One room zone model with no<br />

ventilation<br />

ASET-B US [10] ASET in Basic instead of Fortran<br />

BRANZFIRE NEW ZEALAND [11] Multiroom zone model, including<br />

flame spread, multiple fires, and<br />

mechanical ventilation<br />

BRI-2 JAPAN/US [12] Two-layer zone model for<br />

multistory, multicompartment<br />

smoke transport<br />

CALTECH [117] Preflashover zone model<br />

CCFM.VENTS US [13] Multi-room zone model<br />

with ventilation<br />

CFAST/FAST US [14] Zone model with a suite of<br />

correlation programs-CFAST is<br />

the solver, FAST is a front-end<br />

CFIRE-X GERMANY [15] Zone model for compartment fires,<br />

particularly liquid hydrocarbon<br />

pool fires<br />

CiFi FRANCE [16] Multiroom zone model<br />

COMPBRN-III US [17] Compartment zone model<br />

COMF2 US [18] Single room postflashover<br />

compartment model<br />

DACFIR-3 US [44] Zone model for an aircraft cabin<br />

DSLAYV SWEDEN [19] Single compartment zone model<br />

FASTlite US [20] Feature limited version of CFAST<br />

FFM US [116] Preflashover zone model<br />

FIGARO-II GERMANY [21] Zone model for determining<br />

untenability<br />

FIRAC US [22] Uses FIRIN, includes complex<br />

vent systems<br />

FireMD US [121] One room, two zone model<br />

FIREWIND AUSTRALIA [23] Multiroom zone model with<br />

several smaller submodels<br />

(update of FIRECALC)<br />

FIRIN US [24] Multiroom zone model with ducts,<br />

fans, and filters<br />

FIRM US [118] Two zone, single compartment model<br />

FIRST US [25] One room zone model, includes<br />

ventilation<br />

FMD US [26] Zone fire model for atria<br />

HarvardMarkVI US [27] Earl<strong>ie</strong>r version of FIRST<br />

HEMFAST US [28] Furniture fire in a room<br />

HYSLAV SWEDEN [113] Preflashover zone model<br />

(continued )


An Updated International Survey ofComputer Models 93<br />

Model Country<br />

Table 1. Continued.<br />

Identifying<br />

Reference Description<br />

IMFE POLAND [29] Single compartment zone model<br />

with vents<br />

MAGIC FRANCE [30] Two-zone model for nuclear power<br />

stations<br />

MRFC GERMANY [31] Multiroom zone model for<br />

calculation of smoke movement<br />

and temperature load on structures<br />

NAT FRANCE [32] Single compartment zone model with<br />

attention to response of structures<br />

NBS US [112] Preflashover zone model<br />

NRCC1 CANADA [33] Single compartment zone model<br />

NRCC2 CANADA [34] Large office space zone model<br />

OSU US [35] Single compartment zone model<br />

Ozone BELGIUM [36] Zone model with attention to<br />

response of structures<br />

POGAR RUSSIA [37] Single compartment zone model<br />

RADISM UK [38] Zone model incorporating an<br />

immersed ceiling jet within the<br />

buoyant layer, sprinklers, and vents<br />

RFIRES US [115] Preflashover zone model<br />

R-VENT NORWAY [39] Single room smoke ventilation<br />

zone model<br />

SFIRE-4 SWEDEN [40] Postflashover zone model<br />

SICOM FRANCE [41] Single compartment zone model<br />

SMKFLW JAPAN [42] One-layer zone model for smoke<br />

transport in buildings<br />

SmokePro AUSTRALIA [122] Single compartment smoke layer<br />

interface position zone model<br />

SP UK [114] Preflashover zone model<br />

WPI-2 US [43] Single compartment zone model<br />

WPIFIRE US [124] Mufti-room zone model<br />

ZMFE POLAND [29] Single compartment zone model<br />

These models have been identif<strong>ie</strong>d by the authors, but no references or survey information was<br />

provided: CISNV (Russia), Firepro (UK), FLAMES (France).<br />

thermal elements in the detectors to the heat and flow f<strong>ie</strong>ld. The inputs to<br />

the submodels are usually the characteristics of the thermal element (such<br />

as RTI and activation temperature), location of the thermal element, and<br />

the heat release rate of the fire. For some of the more sophisticated detection<br />

zone models, details such as compartment geometry and building material<br />

characteristics are required.<br />

The model then uses simplif<strong>ie</strong>d modeling of the fire and calculates the<br />

heat transfer at the thermal element to determine the time to activation.


94 S. M. OLENICK AND D. J. CARPENTER<br />

Model Country<br />

Table 2. Identif<strong>ie</strong>d f<strong>ie</strong>ld models.<br />

Identifying<br />

Reference Description<br />

ALOFT-FT US [45] Smoke movement from large<br />

outdoor fires<br />

CFX UK [46] General purpose CFD software,<br />

applicable to fire and explosions<br />

FDS US [47] Low Mach number CFD code<br />

specific to fire-related flows<br />

FIRE AUSTRALIA [48] CFD model with water sprays<br />

and coupled to solid/liquid phase<br />

fuel to predict burning rate and<br />

extinguishment<br />

FLUENT US [133] General purpose CFD software<br />

JASMINE UK [49] F<strong>ie</strong>ld model for predicting<br />

consequences of fire to evaluate<br />

design issues (based on<br />

PHOENICS)<br />

KAMELEON FireEx NORWAY [50] CFD model for fire linked to a<br />

finite element code for thermal<br />

response of structures<br />

KOBRA-3D GERMANY [51] CFD for smoke spread and heat<br />

transfer in complex geometr<strong>ie</strong>s<br />

MEFE PORTUGAL [52] CFD model for one or two<br />

compartments, includes<br />

time-response of thermocouples<br />

PHOENICS UK [53] Multipurpose CFD code<br />

RMFIRE CANADA [54] Two-dimensional f<strong>ie</strong>ld model for<br />

the trans<strong>ie</strong>nt calculation of smoke<br />

movement in room fires<br />

SMARTFIRE UK [55] Fire f<strong>ie</strong>ld model<br />

SOFIE UK/SWEDEN [56] Fire f<strong>ie</strong>ld model<br />

SOLVENT US [125] CFD model for smoke and heat<br />

transport in a tunnel<br />

SPLASH UK [57] F<strong>ie</strong>ld model describing interaction<br />

of sprinkler sprays with fire gases<br />

STAR-CD UK [58] General purpose CFD software<br />

UNDSAFE US/JAPAN [59] Fire f<strong>ie</strong>ld model for use in open<br />

spaces, or in enclosures<br />

These models have been identif<strong>ie</strong>d by the authors, but no references or survey information was<br />

provided: FLOTRAN (US), STREAM (Japan), VESTA (France).<br />

Care should be taken in selecting the proper model as some are valid only<br />

for flat ceilings, while others are valid only for unconfined ceilings. These<br />

factors limit the applicability of each model.<br />

Since the original survey [1], a few new detection models have been developed.<br />

There also have not been many improvements in the detection models


An Updated International Survey ofComputer Models 95<br />

Model Country<br />

identif<strong>ie</strong>d in the original survey. This trend is due to the fact that detector<br />

response, particularly thermal detector response, is a well-known phenomenon<br />

that is already modeled fairly accurately by the current models. A<br />

growing number of f<strong>ie</strong>ld models also allow for smoke and thermal detection.<br />

Table 3 lists the detector response models identif<strong>ie</strong>d for the survey.<br />

Egress Models<br />

Table 3. Identif<strong>ie</strong>d detector response models.<br />

Identifying<br />

Reference Description<br />

DETACT-QS US [78] Calculates thermal detector activation<br />

time under unconfined ceilings,<br />

arbitrary fire<br />

DETACT-T2 US [79] Calculates thermal detector activation<br />

time under unconfined ceilings, t 2 fire<br />

G-JET NORWAY [80] Smoke detection model<br />

JET US [81] Zone model with particular attention to<br />

fusible links of sprinklers and vents<br />

LAVENT US [82] Zone model with particular attention to<br />

fusible links of sprinklers and vents<br />

PALDET FINLAND [83] Response of sprinklers and fire detectors<br />

under an unconfined ceiling<br />

SPRINK US [123] Sprinkler response for high-rack storage fires<br />

TDISX US [84] Warehouse sprinkler response<br />

These models have been identif<strong>ie</strong>d by the authors, but no references or survey information was<br />

provided: HAD (US).<br />

Egress models predict the time for occupants of a structure to evacuate. A<br />

number of egress models are linked to zone models, which will determine the<br />

time to the onset of untenable conditions in a building, but there are also<br />

stand-alone versions available. Egress models are often used in performance-based<br />

design analyses for alternative design code compliance and for<br />

determining where congestion areas will develop during egress.<br />

Many of these models are quite sophisticated, offering unique computational<br />

methods, as well as interesting features including the psychological<br />

effects of fire on occupants due to the effect of smoke toxicity and decreasing<br />

visibility [5,6]. Many of these models also have useful graphical features so the<br />

movement of people in a building can be visualized during a simulation.<br />

Approximately four times as many egress models have been identif<strong>ie</strong>d in<br />

this work than were identif<strong>ie</strong>d in the original survey [1]. This trend is again<br />

due to the fact that improved computer resources allow egress models to be<br />

created for more complex geometr<strong>ie</strong>s involving the movement of larger


96 S. M. OLENICK AND D. J. CARPENTER<br />

groups of people. This trend is also due to the move that has been made or is<br />

being made towards performance-based design of buildings and therefore<br />

the evacuation of occupants through unique geometr<strong>ie</strong>s and varying fire<br />

scenarios must be considered.<br />

Table 4 lists the egress models which have been identif<strong>ie</strong>d for the model<br />

survey.<br />

Model Country<br />

Table 4. Identif<strong>ie</strong>d egress models.<br />

Identifying<br />

Reference Description<br />

Allsafe NORWAY [101] Egress model including human factors<br />

ASERI GERMANY [102] Movement of people in complex<br />

geometr<strong>ie</strong>s, including behavioral<br />

response to smoke and fire spread<br />

buildingEXODUS UK [6] Evacuation model that includes<br />

interactions for thousands of people<br />

in large geometr<strong>ie</strong>s<br />

EESCAPE AUSTRALIA [103] Evacuation of multistory buildings<br />

via staircases<br />

EGRESS UK [104] Cellular automata evacuation of<br />

multiple people through complex<br />

geometr<strong>ie</strong>s. Includes visualization<br />

EgressPro AUSTRALIA [122] Egress program that includes coping<br />

times and sprinkler–detector<br />

activations<br />

ELVAC US [105] Egress program for use of elevators<br />

for evacuation<br />

EVACNET 4 US [106] Determines optimal building<br />

evacuation plan<br />

EVACS JAPAN [107] Evacuation model for determining<br />

optimal design<br />

EXIT89 US [108] Evacuation from a high-rise building<br />

EXITT US [5] Node and arc type egress model<br />

with people behavior included<br />

PATHFINDER US [129] Egress model<br />

SEVE-P FRANCE [109] Egress model with graphical output<br />

that includes obstructions<br />

Simulex UK [110] Coordinate-based egress model<br />

which models evacuation in<br />

multistory buildings<br />

STEPS UK [130] Egress model<br />

WAYOUT AUSTRALIA [111] Egress part of the FireWind suite<br />

of programs<br />

These models have been identif<strong>ie</strong>d by the authors, but no references or survey information was<br />

provided: BFIRE II, BGRAF, ERM, ESCAPE, Mag<strong>net</strong>ic Simulation, PEDROUTE, Takahashi’s Fluid Model,<br />

VEGAS (UK).


An Updated International Survey ofComputer Models 97<br />

Fire Endurance Models<br />

Fire endurance models simulate the response of building structural<br />

elements to fire exposure. Some of these models are stand-alone, while<br />

others are incorporated into zone or f<strong>ie</strong>ld models. The concept of fire<br />

endurance models is the same as that of the f<strong>ie</strong>ld models. The structural<br />

object is divided into smaller volumes, and the equations for thermal heat<br />

transfer and mechanical behavior for solids are solved to determine when<br />

the structure will fail. Typically, the material propert<strong>ie</strong>s are required input<br />

for the model as well as the boundary conditions (i.e., the fire exposure) for<br />

the structural element.<br />

These models can be very useful for determining when a beam or column<br />

will deform or fail, and for solving for a temperature versus time curve at a<br />

certain depth inside the structural element. Since many structural elements<br />

are constructed differently, have different features, and have different<br />

practical applications, care must be used in selecting a model that properly<br />

characterizes the structural element.<br />

The number of fire endurance models identif<strong>ie</strong>d in this survey has<br />

increased by a factor of two as compared to the earl<strong>ie</strong>r survey [1]. This trend<br />

is again due to improved computer resources, allowing more complete and<br />

complex finite element calculations to be conducted on structural elements.<br />

Also, the trend towards performance-based design has led to more model<br />

creation for structural elements.<br />

Table 5 lists the fire endurance models identif<strong>ie</strong>d for the model<br />

survey.<br />

Miscellaneous Models<br />

The models which are not appropriate for one of the previous categor<strong>ie</strong>s<br />

or have features which fulfill more than one of the other categor<strong>ie</strong>s have<br />

been termed miscellaneous. Many of these models are computer programs<br />

which contain many submodels and therefore can be used for several of the<br />

categor<strong>ie</strong>s listed above. These are suites of programs which have several<br />

separate models which each address an individual aspect of fire and are<br />

contained in one computer package. Others are programs which model<br />

unique aspects of fires such as radiation or risk.<br />

The number of these types of fire modeling programs has also increased<br />

substantially since the earl<strong>ie</strong>r survey was compiled. The models in this<br />

category can address such a wide var<strong>ie</strong>ty of fire engineering subjects that<br />

their growth possibility is endless.<br />

Table 6 lists the models termed miscellaneous identif<strong>ie</strong>d for the model<br />

survey.


98 S. M. OLENICK AND D. J. CARPENTER<br />

Model Country<br />

Table 5. Identif<strong>ie</strong>d fire endurance models.<br />

Identifying<br />

Reference Description<br />

CEFICOSS BELGIUM [132] Fire resistance model<br />

CIRCON CANADA [85] Fire resistance of loaded, reinforced<br />

concrete columns with a circular<br />

cross section<br />

CMPST FRANCE [127] Mechanical resistance of sections at<br />

elevated temperatures<br />

COFIL CANADA [86] Fire resistance of loaded circular hollow<br />

steel columns filled with plain concrete<br />

COMPSL CANADA [87] Temperatures of multilayer slabs during<br />

exposure to fire<br />

FIRES-T3 US [88] Finite element heat transfer for 1-, 2-,<br />

or 3-D conduction<br />

HSLAB SWEDEN [89] Trans<strong>ie</strong>nt temperature development in a<br />

heated slab composed of one or<br />

several materials<br />

INSTAI CANADA [90] Fire resistance of insulated, circular<br />

hollow steel columns<br />

INSTCO CANADA [90] Fire resistance of insulated, circular<br />

concrete-filled tubular steel columns<br />

LENAS FRANCE [127] Mechanical behavior of steel structures<br />

exposed to fire<br />

RCCON CANADA [91] Fire resistance of loaded reinforced<br />

concrete columns with rectangular<br />

cross sections<br />

RECTST CANADA [92] Fire resistance of insulated rectangular<br />

steel columns<br />

SAFIR BELGIUM [93] Trans<strong>ie</strong>nt and mechanical analysis of<br />

structures exposed to fire<br />

SAWTEF US [94] Structural analysis of metal-plate<br />

connected wood trusses exposed to fire<br />

SISMEF FRANCE [127] Mechanical behavior of steel and<br />

concrete composite structures<br />

exposed to fire<br />

SQCON CANADA [95] Fire resistance of square reinforced<br />

concrete columns<br />

STA UK [126] Trans<strong>ie</strong>nt conduction in heated solid<br />

objects<br />

TASEF SWEDEN [96] Finite element method for temperature<br />

analysis of structures exposed to fire<br />

TCSLBM CANADA [97] Two dimensional temperature<br />

distributions for fire-exposed concrete<br />

slab/beam assembl<strong>ie</strong>s<br />

THELMA UK [98] Finite-element code for thermal analysis<br />

of building components in fire<br />

(continued)


An Updated International Survey ofComputer Models 99<br />

Model Country<br />

Model Country<br />

Table 5. Continued.<br />

Identifying<br />

Reference Description<br />

TR8 NEW ZEALAND [99] Fire resistance of concrete slabs and<br />

floor systems<br />

WSHAPS CANADA [100] Fire resistance of loaded, protected<br />

W-shape steel columns<br />

These models have been identif<strong>ie</strong>d by the authors, but no references or survey information was<br />

provided: ABAQUS (US), ALGOR (US), ANSYS (US), COSMOS/M (US), FASBUS, LUSAS (UK),<br />

NASTRAN (US), TAS (US), VULCAN (UK), WALL2D (Canada).<br />

Table 6. Identif<strong>ie</strong>d miscellaneous models.<br />

Identifying<br />

Reference Description<br />

ALARM US [60] Economic optimization of code<br />

compliance measures<br />

ASCOS US [61] Network air flow analysis<br />

ASKFRS UK [134] Suite of models including a<br />

zone model<br />

ASMET US [62] Package of engineering tools for<br />

analysis of atria smoke management<br />

BREAK1 US [119] Window response to fire<br />

(glass breakage)<br />

Brilliant NORWAY [128] CFD model combined with analytical<br />

models<br />

CONTAMW US [63] Airflow model<br />

CRISP UK [64] Fire zone model with egress and<br />

risk assessment<br />

FIERAsystem CANADA [65] Risk assessment model that includes<br />

a suite of correlations<br />

FireCad US [129] Front end for CFAST<br />

FiRECAM CANADA [66] Risk damage assessment<br />

FIRESYS NEW ZEALAND [131] Suite of programs for designers<br />

working under performance-based<br />

fire codes<br />

FireWalk US [67] Uses CFAST zone model with<br />

improved visualization<br />

FIREX GERMANY [68] Simple zone models mixed with<br />

empirical correlations<br />

FIVE US [120] Fire induced vulnerability evaluation<br />

FPETOOL US [69] Suite of models and correlations<br />

including the zone model fire simulator<br />

FRAME BELGIUM [70] Fire risk assessment model<br />

FriskMD US [121] Risk-based version of zone<br />

model FireMD<br />

(continued)


100 S. M. OLENICK AND D. J. CARPENTER<br />

Model Country<br />

Table 6. Continued.<br />

Identifying<br />

Reference Description<br />

HAZARD I US [5] Zone model with extensive egress<br />

capabilit<strong>ie</strong>s<br />

MFIRE US [71] Mine ventilation systems<br />

RadPro AUSTRALIA [122] Fire radiation intensity model<br />

RISK-COST CANADA [72] Computes the expected risk to<br />

life and the fire cost expectation<br />

RiskPro AUSTRALIA [122] Risk ranking model<br />

SMACS US [73] Smoke movement through<br />

air-conditioning systems<br />

SMOKEVIEW US [74] Visualization program for FDS<br />

SPREAD US [75] Predicts burning rate and spread<br />

rate of a fire ignited on a wall<br />

using data from bench-scale tests<br />

UFSG US [76] Predicts upward flame spread and<br />

growth on non-charring and<br />

charring materials<br />

WALLEX CANADA [77] Calculation of heat transfer from<br />

window fire plume to wall<br />

above window<br />

These models have been identif<strong>ie</strong>d by the authors, but no references or survey information was<br />

provided: COFRA (US), DOW Indices (US), FREM (Australia), Risiko (Switzerland).<br />

CONCLUSIONS AND FUTURE WORK<br />

The number of models identif<strong>ie</strong>d by the fire engineering community has<br />

increased substantially over the last ten years. Of particular interest is the<br />

increase in available f<strong>ie</strong>ld and miscellaneous models. The f<strong>ie</strong>ld models<br />

are increasing in numbers and complexity due to increases in available<br />

computer resources, research, and practical knowledge. The miscellaneous<br />

models are increasing in numbers due to a greater, more accessible database<br />

of fire data. Therefore, computer fire modeling is moving in a trend to<br />

provide predictions that are more accurate, as well as predictions about fire<br />

phenomenon that previously no computer fire model addressed.<br />

The database of survey results will be made available on the inter<strong>net</strong> for<br />

free, at www.firemodelsurvey.com and will likely supplement another model<br />

survey being conducted currently by the International Council for Research<br />

and Innovation in Building and Construction (CIB) which is surveying<br />

models on building performance, including fire performance [7]. It is the<br />

hope of the authors that the developers will continue to utilize the survey as<br />

a means of providing information about their model to the fire engineering<br />

community.


An Updated International Survey ofComputer Models 101<br />

ACKNOWLEDGMENTS<br />

The authors wish to thank all the developers and points of contact of the<br />

models for taking the time to describe their model in the survey. The authors<br />

also wish to thank the members of the fire engineering community who took<br />

the time to bring computer models to the attention of the authors. Finally,<br />

theauthors wish to thank Vijay D’Souza for his help locating many of the<br />

references for the models.<br />

APPENDIX A<br />

Sample Survey Form<br />

Model Name: FAST/CFAST<br />

Version: 3.1.6<br />

Classification: ZoneModel<br />

Very Short Description: A zone model to predict the environment in a<br />

compartmented structure.<br />

Modeler(s), Walter W. Jones, National Institute of<br />

Organization(s): Standards and Technology.<br />

User’s Guide: A User’s Guide for FAST: Engineering Tools for<br />

Estimating FireGrowth and SmokeTransport,<br />

NIST Special Publication 921, 2000 Edition.<br />

Technical References: A Technical Reference for CFAST: An Engineering<br />

Tools for Estimating Fire Growth and<br />

SmokeTransport, NIST Technical Note1431.<br />

Validation References: (all of the following papers cite experimental<br />

comparisons with themodel):<br />

A Comparison of CFAST Predictions to<br />

USCG Real-Scale Fire Tests, Journal of<br />

Fire Protection Engineering (in press).<br />

A Technical Reference for CFAST: An Engineering<br />

Tools for Estimating Fire Growth and<br />

SmokeTransport, NIST Technical Note1431<br />

(2000).<br />

Quantifying fire model evaluation using functional<br />

analysis, FireSafety Journal 33 (1999),<br />

167–184.


102 S. M. OLENICK AND D. J. CARPENTER<br />

Development of an Algorithm to Predict<br />

Vertical Heat Transfer Through Ceiling/Floor<br />

Conduction, FireTechnology 34, 139 (1998).<br />

Fire Hazard Assessment Methodology,<br />

NISTIR 5836 (1996).<br />

Progress Report on Fire Modeling and<br />

Availability:<br />

Validation, NISTIR 5835 (1996).<br />

Comparison of CFAST Predictions to Real<br />

Scale Fire Tests, Institut de Securite, Fire Safety<br />

Conference on Performance Based Concepts<br />

(1996).<br />

Calculating FlameSpread on Horizontal and<br />

Vertical Surfaces, NISTIR 5392 (1994).<br />

Modeling Smoke Movement Through<br />

Compartmented Structures, Journal of Fire<br />

Sc<strong>ie</strong>nces, 11, 172 (1993).<br />

Improvement in Predicting Smoke Movement<br />

in Compartmented Structures, Fire Safety<br />

Journal, 21, 269 (1993).<br />

Verification of a Model of Fire and Smoke<br />

Transport, FireSafety Journal 21, 89 (1993).<br />

Availablefrom http://fast.nist.gov/ or the<br />

National FireProtection Association (http://<br />

www.nfpa.org).<br />

Price: There is no cost from NIST for the download<br />

or having theCD; NFPA distributes the<br />

CD together with printed documentation for<br />

$25.<br />

Necessary Hardware: Intel architecture, running DOS 6.0 or later.<br />

Runs under Windows 3.1, 95, 98 and 2000, but<br />

not NT. Versions areavailablefor theSilicon<br />

Graphics systems.<br />

Computer Language: FORTRAN/C<br />

Size: Approximately 10 MB of disk space, and 4MB<br />

of RAM required.<br />

Contact Information: Walter W. Jones, 301-975-6887, wwj@nist.gov


An Updated International Survey ofComputer Models 103<br />

Detailed Description:<br />

CFAST is the Consolidated Model of Fire Growth and Smoke Transport. It<br />

is the kernel of the zone fire models that are supported by BFRL. FAST and<br />

FASTLite are data editors and reporting tools which are ‘‘front’’ and<br />

‘‘back’’ ends for the model CFAST. For additional details on the naming<br />

convention, please visit the web site http://fast.nist.gov/versionhistory.htm.<br />

There are a several data editors which have been developed elsewhere:<br />

FireCAD from the RJA Group and FireWalk through the University of<br />

California, Berkeley.<br />

CFAST is a zone model and is used to calculate the evolving distribution of<br />

smoke, fire gases and heat throughout a constructed facility during a fire. In<br />

CFAST, each compartment is divided into two layers, and many zones for<br />

detailed interactions. The modeling equations used in CFAST take the<br />

mathematical form of an initial value problem for a system of ordinary<br />

differential equations (ODE). These equations are derived using the<br />

conservation of mass, the conservation of energy, the ideal gas law and<br />

relations for density and internal energy. These equations predict as<br />

functions of time quantit<strong>ie</strong>s such as pressure, layer heights and temperatures<br />

given the accumulation of mass and enthalpy in the two layers. The CFAST<br />

model then solves of a set of ODEs to compute the environment in each<br />

compartment and a collection of algorithms to compute the mass and<br />

enthalpy source terms. The model incorporates the evolution of the spec<strong>ie</strong>s,<br />

such as carbon monoxide, which areimportant to thesafety of individuals<br />

subjected to a fire environment.<br />

Version 3.1.6 models up to 30 compartments, a fan and duct system for each<br />

compartment, 31 individual fires, up to one flame-spread object, multiple<br />

plumes and fires, multiple sprinklers and detectors, and the ten spec<strong>ie</strong>s<br />

considered most important in toxicity of fires including the effective fatal<br />

dose. The geometry includes variable area–height relations, ignition of<br />

multiple objects such as furniture, thermophysical and pyrolysis databases,<br />

multilayered walls, ignition through barr<strong>ie</strong>rs and vents, wind, the stack<br />

effect, building leakage, and flow through holes in floor–ceiling connections.<br />

The distribution includes graphic and text report generators, a plotting<br />

package and a system for comparing many runs done for parameters<br />

REFERENCES<br />

1. Fr<strong>ie</strong>dman, R., ‘‘An International Survey of Computer Models for Fire and Smoke,’’ Journal<br />

ofFire Protection Engineering, Vol. 4, No. 3, 1992, pp. 81–92.


104 S. M. OLENICK AND D. J. CARPENTER<br />

2. Hunt, S., ‘‘Computer Fire Models,’’ NFPA Update Section News, Vol. 1, No. 2, Oct./Nov.,<br />

2000, pp. 7–9.<br />

3. Zukoski, E. E., ‘‘Development of a Stratif<strong>ie</strong>d Ceiling Layer in the Early Stages of a Closed-<br />

Room Fire,’’ Fire and Materials, Vol. 2, No. 2, 1978.<br />

4. Cox, G. ‘‘Compartment Fire Modelling,’’ Combustion Fundamentals ofFire, Academic<br />

Press, 1995, p. 334.<br />

5. Bukowski, R. W., Peacock, R. D., Jones, W. W. and Forney, C. L., Technical Reference<br />

Guide for the HAZARD I Fire Hazard Assessment Method, Volume 2, NIST Handbook<br />

146/II, National Instituteof Standards and Technology, June1991.<br />

6. BuildingEXODUS V3.0 User Guide and Technical Manual, Doc Rev 3.0. University of<br />

Greenwich, May 2000.<br />

7. CIB Program on Performance-Based Building http://www.cibprogram.dbce.csiro.au<br />

8. Danish Instituteof FireTechnology, ARGOS User’s Guide, Datovej 48, DK 3460<br />

Birkeroed, 1991.<br />

9. Cooper, L. Y. and Stroup, D. W., Calculating Available Safe Egress Time (ASET) – A<br />

Computer Program and User’s Guide, NBSIR 82-2578, National Bureau of Standards<br />

(now National Instituteof Standards and Technology), 1982.<br />

10. Walton, W. D., ASET-B: A Room Fire Program for Personal Computers, NBSIR 85-3144-1,<br />

National Bureau of Standards (now National Institute of Standards and Technology), 1985.<br />

11. A User’s Guide to BRANZFIRE Software, Building Research Association of New Zealand,<br />

2000.<br />

12. Nakamura, K. and Tanaka, T., ‘‘Predicting Capability of a Multiroom Fire Model,’’<br />

In: Proceedings ofthe Second International Symposium on Fire Safety Sc<strong>ie</strong>nce, 1988.<br />

13. Cooper, L. Y. and Forney, G. P., The Consolidated Compartment Fire Model (CCFM)<br />

Computer Code Application CCFM.VENTS, Part I, NISTIR 4342, National Institute of<br />

Standards and Technology, 1990.<br />

14. Peacock, R. D., Reneke, P. A., Jones, W. W., Bukowski, R. W., Forney, G. P., A User’s<br />

Guide for FAST: Engineering Tools for Estimating Fire Growth and Smoke Transport,<br />

NIST Special Publication 921, National Institute of Standards and Technology, 2000.<br />

15. Offenhauser, F., Barth, U. and Schnatz, G., ‘‘CFIRE-X: Simulation of Extinguishing<br />

Methods Concerning Room Fires,’’ VFDB, n. 1, 1991.<br />

16. Bodart, X. and Curtat, M., CIFI Computer Code: Air and Smoke Movement During a Fire<br />

in a Building With Ventilation Ducts Networks Equipment, CIB Publication 104, CIB W14<br />

Workshop on Fire Modeling, Berlin, West Germany, March 1987.<br />

17. Ho, V., Siu, N. and Apostolakis, G., ‘‘COMPBRN III–A FireHazard Model for Risk<br />

Analysis,’’ Fire Safety Journal, Vol. 13, No. 2–3, 1988.<br />

18. Babrauskas, V., COMPF2 – A Program for Calculating Post-Flashover Fire Temperatures<br />

Final Report, NBS Tech Note 991, National Bureau of Standards (now National Institute<br />

of Standards and Technology), 1979.<br />

19. A User’s Guide for DSLAYV: Simulating Fires in Natural and Forced Ventilated<br />

Enclosures, FOA Report C20637, National Defense Research Institute, Sweden, 1986.<br />

20. Port<strong>ie</strong>r, R. W., Peacock, R. D. and Reneke, P. A., FASTLite: Engineering Tools for<br />

Estimating FireGrowth and SmokeTransport, NIST Special Publication 899, National<br />

Instituteof Standards and Technology, 1999.<br />

21. Heins, T., ‘‘Simulation Model for the Safety Assessment of Spreading Smoke From Fires in<br />

Extended Enclosures,’’ Dissertation, Technical University Braunschweig, 1991.<br />

22. Nicholas, B. D. and Gregory, W. S., FIRAC User’s Manual: A Computer Code to Simulate<br />

Fire Accidents in Nuclear Facilit<strong>ie</strong>s, NUREG/CR-4561, LA-10678-M, Los Alamos<br />

National Lab, 1986.<br />

23. Shestopal, V. O., ‘‘Computer Program for an Uninhibited Smoke Plume and Associated<br />

Computer Software,’’ Fire Technology, Vol. 29, No. 3, 1993, pp. 246–267.


An Updated International Survey ofComputer Models 105<br />

24. Chan, M. K., Ballinger, M. Y., Owczarski, P. C. and Sutter, S. L., User’s Manual for<br />

FIRIN 1: A Computer Code to Characterize Accidental Fire and Radioactive Source<br />

Terms in Nuclear Fuel Cycle Facilit<strong>ie</strong>s, Battelle Pacific Northwest Lab Report PNL-4532,<br />

NUREG/CR-3037 (Dec. 1982), Also Claybrook, S. W. FIRIN Preprocessor User’s<br />

Manual, Numerical Applications, Inc., Richland, WA 99352, November 1991.<br />

25. Mitler, H. E. and Rockett, J. A., User’s Guide to FIRST, A Comprehensive Single-Room<br />

Fire Model, NBSIR 87-3595, National Bureau of Standards (now National Institute of<br />

Standards and Technology), 1987.<br />

26. Milke, J. A. and Mowrer, F. W., ‘‘A Design Algorithm for Smoke Management Systems in<br />

Atria and Covered Malls,’’ Report FP 93-04, Report to the American Soc<strong>ie</strong>ty of Heating,<br />

Refrigerating and Air-Conditioning Engineers (ASHRAE), University of Maryland,<br />

May 1993.<br />

27. Rockett, J., Using the Harvard/National Institute of Standards and Technology Mark VI<br />

FireSimulation, NISTIR 4464, National Instituteof Standards and Technology,<br />

Gaithersburg, MD, November 1990.<br />

28. D<strong>ie</strong>tenberger, M. A., ‘‘Validated Furniture Fire Model with FAST (HEMFAST),’’ NIST-<br />

GCR-89-564, National Instituteof Standards and Technology, June1989.<br />

29. Personal communication with Rector Jerzy Wolanin, Warsaw, Jerzy.Wolanin@sgsp.edu.pl.<br />

30. Gaut<strong>ie</strong>r, B., Pages, O. and Thibert, E., ‘‘MAGIC: Global Modelling of Fire Into<br />

Compartments,’’ In: Proceedings of the 8th Interflam Conference, Vol. 2, Edinburgh,<br />

Scotland, 1999.<br />

31. Schneider, U., Lebeda, C. and Max, U., ‘‘An Evaluation and Applicability Study for Use of<br />

Different Fire Codes in NPP Fire Design,’’ In: Proceedings ofthe Post Smirt Conference n. 6,<br />

Lyon, France, August 1997.<br />

32. Curtat, M. R., ‘‘NAT (NATural FireConditions),’’ CIB Publication 104, CIB W14<br />

Workshop on Fire Modeling, Berlin, 1987.<br />

33. Takeda, H. and Yung, D., ‘‘Simplif<strong>ie</strong>d Fire Growth Models for Risk-Cost Assessment in<br />

Apartment Buildings,’’ Journal ofFire Protection Engineering, Vol. 4, No. 2, 1992.<br />

34. Personal communication with David Yung, Fire Risk Management Program, National<br />

Research Council of Canada, Ottawa, ON.<br />

35. Sauer, J. M. and Smith, E. E., ‘‘Mathematical Model of a Ventilation-Controlled<br />

Compartment Fire,’’ Journal ofFire Sc<strong>ie</strong>nces, Vol. 1, 1983, pp. 235–254.<br />

36. Competitive Steel Buildings through Natural Fire Safety Concept, Part 2: Natural Fire<br />

Models, Final Report, Profil ARBED, March 1999.<br />

37. Astapenko, V., Koshmarov, Y., Molchadski, I. and Shevlyakov, A., Termogazodinami of<br />

Fires in the Rooms, Moscow, Stroiizdat, 1988 (from Higher Engineering Fire-Technical<br />

School, Moscow).<br />

38. Persson, B. and Ingason, H., Modelling of Interaction Between Sprinklers and Fire Vents:<br />

Present Knowledge, Swedish National Testing Institute, SP REPORT 1996:32, Sweden,<br />

1996.<br />

39. Meland, O. and Skaret, E., ‘‘User’s Manuel for RVENT,’’ Report STF25 A91034, The<br />

Foundation for Sc<strong>ie</strong>ntific and Industrial Research at the Norwegian Institute of<br />

Technology (SINTEF), Trondheim, Norway, 1987.<br />

40. Magnusson, S. E., and Thelandersson, S., Temperature-Time Curves of Complete Process<br />

of Fire Development, Theoretical Study of Wood Fuel Fires in Enclosed Spaces, APS CI<br />

65, Department of Fire Safety Engineering, Lund University, Sweden, 1970.<br />

41. Introductory Report of a Compartment Fire Simulation using a Two-Zone Model–June,<br />

1999, Centre Technique Industr<strong>ie</strong>l de la Construction Metallqiue (CTICM), France.<br />

42. Matsushita, T., Fukai, H. and Terai, T., ‘‘Calculation of Smoke Movement in Building<br />

in Caseof Fire,’’ In: Proceedings ofthe 1st International Symposium on Fire Safety<br />

Sc<strong>ie</strong>nce, 1985.


106 S. M. OLENICK AND D. J. CARPENTER<br />

43. Satterf<strong>ie</strong>ld, D. B. and Bar<strong>net</strong>t, J. R., User’s Guide to WPI-HARVARD Version 2 (WPI-2) –<br />

A Compartment Fire Model, Worcester Polytechnic Institute, Center for Fire Safety<br />

Stud<strong>ie</strong>s, Worcester, MA, August 1990.<br />

44. MacArthur, C. D., Dayton Aircraft Fire Cabin Model, Version 3, U.S. Dept. of<br />

Transportation, Atlantic City, NJ, DOT/FAA. CT-81/69-I, June1982.<br />

45. McGrattan, K. B., Baum, H. R., Walton, W. D. and Trelles, J. J., Smoke Plume<br />

Trajectory from In Situ Burning of Crude Oil in Alaska – F<strong>ie</strong>ld Experiments and<br />

Modeling of Complex Terrain, NISTIR 5958, National Institute of Standards and<br />

Technology, 1997.<br />

46. CFX-5 User Manual, AEA Technology, Harwell, UK, 2000.<br />

47. McGrattan K. B. and Forney, G. P., Fire Dynamics Simulator – User’s Manual, NISTIR<br />

6469, National Instituteof Standards and Technology, 2000.<br />

48. Novozhilov, V., Harv<strong>ie</strong>, D. J. E., Green, A. R. and Kent, J. H., ‘‘A Computational Fluid<br />

Dynamic Model of Fire Burning Rate and Extinction by Water Sprinkler,’’ Combustion<br />

Sc<strong>ie</strong>nce and Technology, Vol. 123, No. 1–6, 1997, pp. 227–245.<br />

49. Cox, G. and Kumar, S., ‘‘F<strong>ie</strong>ld Modelling of Fire in Forced Ventilated Enclosures,’’<br />

Combustion Sc<strong>ie</strong>nce and Technology, Vol. 52, No. 7, 1986.<br />

50. Kameleon FireEx 99 User Manual, SINTEF Energy Research report TRF5119,<br />

Trondheim, Norway.<br />

51. Schneider, V., WinKobra 4.6 – User’s Guide, I.S.T. Intefr<strong>ie</strong>rte Sischerheits-Technik GmbH,<br />

Germany.<br />

52. V<strong>ie</strong>gas, J. C. G., Seguranca Contra Incendios Em Edificios. Modelacao Matematica De<br />

Incendios E Validacao Experimental (Fire Safety in Buildings, Mathematical Modelling of<br />

Fire and Experimental Validation), Lisbon, Portugal: Instituto Superior Tecnico, Ph.D.<br />

Thesis, 1999.<br />

53. PHOENICS User’s Guide, http://www.cham.co.uk/phoenics/d_polis/d_docs/tr326/<br />

tr326top.htm.<br />

54. Hadjisophocleous, G. V. and Yakan, A., Computer Modeling of Compartment Fires,<br />

Internal Report No. 613, Institute for Research in Construction, National Research<br />

Council of Canada, Ottawa, ON, 1991.<br />

55. SMARTFIRE V2.0 User Guide and Technical Manual, Doc Rev 1.0, July 1998.<br />

56. Rubini, P. A., ‘‘SOFIE – Simulation of Fires in Enclosures,’’ In: Proceedings ofthe 5th<br />

International Symposium on Fire Safety Sc<strong>ie</strong>nce, 1997.<br />

57. Gardiner, A. J., The Mathematical Modeling of the Interaction Between Sprinkler Sprays<br />

and the Thermally Buoyant Layers of Gases from Fires, South Bank Polytechnic, PhD<br />

Thesis, 1998 (now Under Development by FRS)<br />

58. Star-CD V3.100A User Guide, Computational Dynamics Ltd., http://www.cd.co.uk.<br />

59. Yang, K. T. and Chang, L. C., UNDSAFE-1: A Computer Code for Buoyant Flow in an<br />

Enclosure, NBS GCR 77-84, National Bureau of Standards (now National Institute of<br />

Standards and Technology), 1977.<br />

60. Weber, S. F. and Lippiatt, B. C., ALARM 1.0, Decision Support Software for Cost-<br />

Effective Compliance with Fire Safety Codes, NISTIR 5787, National Institute of<br />

Standards and Technology, 1996 (available from NFPA).<br />

61. Klote, J. H. and Milke, J. A., Design ofSmoke Management Systems. American Soc<strong>ie</strong>ty of<br />

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), 1992.<br />

62. Klote, J. H., Method of Predicting Smoke Movement in Atria with Application<br />

to Smoke Management, NISTIR 5516, National Institute of Standards and Technology,<br />

1994.<br />

63. Dols, W. S., Walton, G. N. and Denton, K. R., CONTAMW 1.0 User Manual, Multizone<br />

Airflow and Contaminant Transport Analysis Software, NISTIR 6476, National Institute<br />

of Standards and Technology, 2000.


An Updated International Survey ofComputer Models 107<br />

64. Fraser-Mitchell, J. N. and Pigott, B. B., ‘‘Modelling Human Behaviour in the Fire Risk<br />

Assessment Model CRISP 2,’’ In: Proceedings ofthe International Symposium CIB W14:<br />

Fire Safety Engineering, Part 3, p. 1, 1993.<br />

65. Benichou, N., Kashef, A., Torvi, D.A., Hadjisophocleous, G.V. and Reid, I.,<br />

‘‘FIERAsystem: A Fire Risk Assessment Model for Light Industrial Building Fire Safety<br />

Evaluation,’’ Research Report 120, Institute for Research in Construction, National<br />

Research Council of Canada, November, 2002.<br />

66. Dutcher, C. R., Yung, D. T., and Hadjisophocleous, G. V., FiRECAM System Model<br />

Documentation, Internal Report 732, Institute for Research in Construction, National<br />

Research Council of Canada, Ottawa, ON, 1996.<br />

67. Bukowski, R. and Sequin, C., ‘‘The FireWalk System: Fire Modeling in Interactive Virtual<br />

Environments,’’ In: Proceedings ofthe 2nd International Conference on Fire Research and<br />

Engineering, Gaithersburg, MD, 1997.<br />

68. Schneider, V., FIREX 2.2 – User’s Guide. I.S.T. Intefr<strong>ie</strong>rte Sischerheits-Technik GmbH,<br />

Germany.<br />

69. Nelson, H. E., FPETOOL User’s Guide, NISTIR 4439, National Institute of Standards<br />

and Technology, 1990.<br />

70. De Smet, E., FRAM: Handbook for the User of this Fire Risk Assessment Method for<br />

Engineering, 1999 Edition.<br />

71. Chang, X., Laage, L. W. and Greuer, R. E., User’s Manual for MFIRE: A Computer<br />

Simulation Program for Mine Ventilation and Fire Modeling, U.S. Bureau of Mines, I.C.<br />

9254, 1990.<br />

72. Beck, V. R. and Yung, D., ‘‘A Cost-Effective Risk Assessment Model for Evaluation Fire<br />

Safety and Protection in Canadian Apartment Buildings,’’ In: Proceedings ofthe<br />

International Fire Protection Engineering Institute-V, Ottawa, Canada, 1989.<br />

73. Klote, J. H., ‘‘A Computer Model of Smoke Movement by Air Conditioning Systems<br />

(SMACS),’’ Fire Technology, Vol. 24, 1988, pp. 299–311.<br />

74. Forney, G. P. and McGrattan, K. B., User’s Guide for Smokev<strong>ie</strong>w Version 1.0 – A Tool for<br />

Visualizing FireDynamics Simulation Data, NISTIR 6513, National Instituteof Standards<br />

and Technology, 2000.<br />

75. Mitler, H. E., ‘‘Predicting the Spread Rates of Fires on Vertical Surfaces,’’ 23rd<br />

International Symposium on Combustion, TheCombustion Institute, 1990.<br />

76. Delichatsios, M. A., Chen, Y. and Motevalli, V., ‘‘Flame Spread on Charring<br />

Materials: Numerical Prediction of Experimental Results,’’ In: Proceedings ofthe Fall<br />

Technical Meeting ofthe Eastern Section ofthe Combustion Institute, TheCombustion<br />

Institute, 1991.<br />

77. Oleszk<strong>ie</strong>wicz, I., ‘‘Heat Transfer from a Window Fire Plume to a Building Facade,’’<br />

collected Papers in Heat Transfer – 1989, HTD – Vol. 123, American Soc<strong>ie</strong>ty of Mechanical<br />

Engineers, pp. 163–170.<br />

78. Evans, D. D. and Stroup, D. W., ‘‘Methods to Calculate the Response Time of Heat and<br />

Smoke Detectors Installed Below Large Unobstructed Ceilings,’’ Fire Technology, Vol. 22,<br />

1986, pp. 54–65.<br />

79. Evans, D. D., Stroup, D. W., and Martin, P., Evaluating Thermal Fire Detection Systems<br />

(SI Units), NBS SP 713, National Bureau of Standards (now National Institute of<br />

Standards and Technology), 1986.<br />

80. Jensen, G., Lonvik, T. and Heskestad, A. W., ‘‘Application Specific Sensitivity: A Simple<br />

Engineering Model to Predict Response of Installed Smoke Detectors,’’ In: Proceedings of<br />

the 11th International Conference on Automatic Fire Detection ‘‘AUBE 1999,’’ University of<br />

Duisburg, Germany, 1999.<br />

81. Davis, W. D., The Zone Fire Model JET: A Model for the Prediction of Detector<br />

Activation and Gas Temperature in the Presence of a Smoke Layer, NISTIR 6324,<br />

National Instituteof Standards and Technology, 1999.


108 S. M. OLENICK AND D. J. CARPENTER<br />

82. Davis, W. D. and Cooper, L.Y., Estimating the Environment and the Response of<br />

Sprinkler Links in Compartment Fires with Draft Curtains and Fusible Link-Actuated<br />

Ceiling Vents–Part II: User Guide for the Computer Code LAVENT, NBSIR 89-4122,<br />

National Bureau of Standards (now National Institute of Standards and Technology),<br />

1989.<br />

83. Bjorkman, J., Huttunen, O. and Kokkala, M., ‘‘Calculation Models for Fire Detectors,’’<br />

Research Notes 1036, Technical Research Centre of Finland.<br />

84. Yu, H.-Z., A Sprinkler-Response-Prediction Computer Program for Warehouse<br />

Applications, FMRC Technical Report, J.I. OR2E1.RA, 1991.<br />

85. L<strong>ie</strong>, T. T. and Celikkol, B., ‘‘Method to Calculate the Fire Resistance of Circular<br />

Reinforced Concrete Columns,’’ ACI Materials Journal, Vol. 88, No. 1, 1991.<br />

86. L<strong>ie</strong>, T. T. and Chabot, M., ‘‘A Method to Predict the Fire Resistance of Circular<br />

Concrete-Filled Hollow Steel Columns,’’ Journal ofFire Protection Engineering, Vol. 2,<br />

No. 4, 1990.<br />

87. L<strong>ie</strong>, T. T., ‘‘Calculation of the Fire Resistance of Composite Concrete Floor and Roof<br />

Slabs,’’ Fire Technology, Vol. 14, No. 1, 1978.<br />

88. Bresler, B., Iding, R. and Nizamuddin, Z., FIRES-T3: A Computer Program for the Fire<br />

Response of Structure-Thermal (Three-Dimensional Version), UCB FRG 77-15,<br />

University of California, Berkeley, NIST GCR 95-682, National Institute of Standards<br />

and Technology, 1996.<br />

89. A User’s Guide for HSLAB: HSLAB – A Program for One-Dimensional Heat Flow<br />

Problems, FOA report C20827, National Defence Research Institute, Sweden, 1990.<br />

90. L<strong>ie</strong>, T. T., ‘‘A Procedure to Calculate the Fire Resistance of Structural Members,’’ Fire<br />

and Materials, Vol. 8, No. 1, 1984.<br />

91. L<strong>ie</strong>, T. T. and Irwin, R. J., Evaluation of the Fire Resistance of Reinforced Concrete<br />

Columns with Rectangular Cross Sections, Internal Report No. 601, Institute for<br />

Research in Construction, National Research Council of Canada, Ottawa, ON, 1990.<br />

92. L<strong>ie</strong>, T. T., ‘‘Temperature Distributions in Fire-exposed Building Columns,’’ Journal of<br />

Heat Transfer, Transactions of the ASME, Vol. 99, No. 1, 1977.<br />

93. Nwosu, D., Kodur, V., Franssen, J. M. and Hum, J., User Manual for SAFIR: A<br />

Computer Program for Analysis of Structures at Elevated Temperature Conditions,<br />

Internal Report 782, National Research Council of Canada, Ottawa, ON, 1999.<br />

94. White, R. H., Cramer, S. M. and Shrestha, D. K., Fire Endurance Model for a Metal-<br />

Plate-Connected Wood Truss, Res. Pap. FPL-RP-522, USDA Forest Service, Forest<br />

Products Lab., 1993.<br />

95. L<strong>ie</strong>, T. T., Lin, T. D., Allen, D. E. and Abrams, M. S., Fire Resistance of Reinforced<br />

Concrete Columns, DBR Paper No. 1167, NRCC 23065, Natioanl Research Council of<br />

Canada, Ottawa, ON, 1984.<br />

96. Sterner, E. and Wickstrom, U., TASEF – Temperature Analysis of Structures Exposed to<br />

Fire – User’s Manual., Swedish National Testing and Research Institute (SP), SP Report<br />

1990:05, Boras, 1990.<br />

97. L<strong>ie</strong>, T. T., ‘‘Calculation of the Fire Resistance of Composite Concrete Floor and Roof<br />

Slabs,’’ Fire Technology, Vol. 14, No. 1, pp. 26–46.<br />

98. Spearpoint, M., ‘‘Predicting the Temperatures of Steel Members in the Cardington Fire<br />

Tests Using the THELMA Finite Element Model,’’ Fire Technology, Vol. 37, No. 2, 2001.<br />

99. Wade, C. A. and Lovatt, A. J., User’s guide to BRANZ TR8, Software for Calculating<br />

Fire Resistance of Concrete Beams and Floor Systems, Building Research Association of<br />

New Zealand.<br />

100. L<strong>ie</strong>, T. T. and Almand, K. H., ‘‘A Method to Predict the Fire Resistance of Steel Building<br />

Columns,’’ Engineering Journal, American Institute of Steel Construction, Inc., Vol. 27,<br />

No. 4, 1990.


An Updated International Survey ofComputer Models 109<br />

101. Heskestad, A. W., Jensen, G., Meland, O. and Torlen, E., ‘‘ALLSAFE: An Engineering<br />

Tool for Evacuation Safety Design,’’ In: Proceedings ofthe Fire Safety by Design<br />

Conference, Vol. 3, CIB W14, UK, 1995.<br />

102. Paulsen, T., Soma, H., Schneider, V., Wiklund, J. and Lovas, G., Evaluation of<br />

Simulation Models of Evacuation From Complex Spaces (ESECX), SINTEF Report<br />

STF75 A95020, 1995.<br />

103. Kendik, E., ‘‘Determination of the Evacuation Time Pertinent to the Protected Area<br />

Factor in the Event of Total Evacuation of High-Rise Office Buildings via Staircases,’’<br />

Fire Safety Journal, Vol. 5, 1982, p. 223.<br />

104. Ketchell, N., Cole, S., Webber, D. M., Marriott, C. A., Stephens, P. J., Brearley, I. R.,<br />

Fraser, J., Doheny, J. and Smart, J., ‘‘The EGRESS Code for Human Movement and<br />

Behaviour in Emergency Evacuations,’’ Engineering for Crowd Safety, Institution of Civil<br />

Engineers, London, 1993.<br />

105. Klote, J. H. and Alvord, D. M., Routine for Analysis of the People Movement Time for<br />

Elevator Evacuation, NISTIR 4730, National Institute of Standards and Technology,<br />

1992.<br />

106. EVACNET4 User’s Guide, http://www.ise.ufl.edu/kisko/files/evac<strong>net</strong>/EVAC4UG.HTM<br />

107. Takahashi, K., Tanaka, T. and Kose, S., ‘‘An Evacuation Model for the Use in Fire Safety<br />

Designing of Buildings,’’ In: Proceedings ofthe 2nd International Symposium on Fire Safety<br />

Sc<strong>ie</strong>nce; International Association for Fire Safety Sc<strong>ie</strong>nce, 1988.<br />

108. Fahy, R. F., ‘‘EXIT89 – An Evacuation Model for High-Rise Buildings – Model<br />

Description and Example Applications,’’ In: Proceedings ofthe Fourth International<br />

Symposium, International Association for Fire Safety Sc<strong>ie</strong>nce, 1994, pp. 657–668.<br />

109. Personal communication with Michel Curtat, Centre Sc<strong>ie</strong>ntifique et Technique du<br />

Batiment, France, curtat@cstb.fr.<br />

110. Thompson, P. A. and Marchant, E. W., ‘‘A Computer Model for the Evacuation of Large<br />

Building Populations,’’ Fire Safety Journal, Vol. 24, 1995, pp. 131–148.<br />

111. Shestopal, V. O. and Grubits, S. J., ‘‘Evacuation Model for Merging Traffic Flows in<br />

Multi-room and Multi-storey Buildings,’’ In: Proceedings ofthe 4th International<br />

Symposium on Fire Safety Sc<strong>ie</strong>nce, IAFSS, 1994, pp. 625–632.<br />

112. Quint<strong>ie</strong>re, J. and McCaffrey, B., The Burning of Wood and Plastic Cribs in an Enclosure:<br />

VolumeI, NBSIR 80-2054, National Bureau of Standards (now National Instituteof<br />

Standards and Technology), 1980.<br />

113. Hagglund, B., A Room Fire Simulation Model, Department of Defense, FAO Report<br />

620501-D6, Stockholm, Sweden, 1983.<br />

114. Wickstrom, U. and Goransson, U., ‘‘Flame Spread Predictions in Room/Corner<br />

Test Based on the Cone Calorimeter,’’ In: Proceedings of the Interflam Conference, 1990.<br />

115. Pape, R., Waterman, T., and Eichler, T.V., ‘‘Development of a Fire in a Room from<br />

Ignition to Full Room Involvement – RFIRES,’’ NBS-GCR 81-301, National Bureau of<br />

Standards (now National Instituteof Standards and Technology), 1981.<br />

116. D<strong>ie</strong>tenberger, M., Technical Reference and User’s Guide for FAST/FFM Version 3,<br />

NIST-GCR-91-589, National Instituteof Standards and Technology, 1991.<br />

117. Zukoski, E. and Kubota, T., ‘‘Two-Layer Modeling of Smoke Movement in Building<br />

Fires,’’ Fire and Materials, Vol. 4, 1980.<br />

118. Janssens, M. L., An Introduction to Mathematical Fire Modeling, 2nd Edn., Technomic<br />

Publishing Company, Inc., 2000.<br />

119. Joshi, A. A. and Pagni, P. J., Users’ Guide to BREAK1, The Berkeley Algorithm for<br />

Breaking Window Glass in a Compartment Fire, NIST-GCR-91-596, National Institute<br />

of Standards and Technology, 1991.<br />

120. Mowrer, F. W., Methods of Quantitative Fire Hazard Analysis, Electric Power Research<br />

Institute, EPRI TR-100443s, 1992.


110 S. M. OLENICK AND D. J. CARPENTER<br />

121. Personal communication with Dr. Frederick Mowrer, University of Maryland,<br />

Department of Fire Protection Engineering, College Park, Maryland,<br />

fmowrer@eng. umd.edu.<br />

122. Personal communication with Peter Simenko, SimCo Consulting,<br />

SimCo@alphalink.com.au.<br />

123. Sleights, J. E., Sprink 1.0: A Sprinkler Response Computer Program for Warehouse<br />

Storage Fires, Masters Thesis, Worcester Polytechnic Institute, 1993.<br />

124. Haynes, E. K., Development of WPI/FIRE 3.0: A Multiroom Model, Masters Thesis,<br />

Worcester Polytechnic Institute, 1994.<br />

125. http://www.tunnelfire.com<br />

126. Personal communication with Dr. Raymond Connolly, Fire and Risk Solutions Ltd.,<br />

Connollyrj@eircom.<strong>net</strong>.<br />

127. Personal communication with Dr. Zhao Bin, Centre Technique Industr<strong>ie</strong>l de la<br />

Construction Me´tallique, France, binzhao@cticm.com.<br />

128. Personal communication with Geir Berge, Petrell AS, geir.berge@petrell.no.<br />

129. Cappuccio, J. A., Jones, W. W. and Forney, G. P., ‘‘FireCAD Development for Hazard<br />

Analysis,’’ In: Proceedings ofthe 2nd International Conference on Fire Research and<br />

Engineering (ICFRE2), National Instituteof Standards and Technology and SFPE,<br />

Gaithersburg, MD, August, 1997.<br />

130. Personal communication with Dr. Nicole Hoffman, Mott McDonald Limited, UK,<br />

nh2@mm-croy.mottmac.com.<br />

131. Personal communication with Cliff Bar<strong>net</strong>t, Macdonald Bar<strong>net</strong>t Partners, Ltd.,<br />

New Zealand, cliff@macbar.co.nz.<br />

132. Personal communication with Cajot Louis-Guy, ProfilARBED Research, Luxembourg,<br />

lg.cajot@profilarbed.lu.<br />

133. Fluent/UNS and Rampant 4.2 User’s Guide, 1st Edn., 1997.<br />

134. Deal, S., Technical Reference Guide for FPEtool Version 3.2, NISTIR 5486-1, National<br />

Instituteof Standards and Technology, 1995.<br />

135. Babrauskas, V., ‘‘Letter to the Editor,’’ Journal ofFire Protection Engineering, Vol. 5,<br />

No. 1, 1993, p. 35.<br />

136. Baum, H.R. and McGrattan, K.B., ‘‘Simulation of Oil Tank Fires,’’ In: Proceedings of<br />

the Interflam ’99 Conference, Vol. 2, Edinburgh, Scotland, 1999.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!