20.09.2013 Views

PCR-Based Detection of Pathogen DNA in Critical Illness: Septifast ...

PCR-Based Detection of Pathogen DNA in Critical Illness: Septifast ...

PCR-Based Detection of Pathogen DNA in Critical Illness: Septifast ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>PCR</strong>-<strong>Based</strong> <strong>Detection</strong> <strong>of</strong> <strong>Pathogen</strong><br />

<strong>DNA</strong> <strong>in</strong> <strong>Critical</strong> <strong>Illness</strong>:<br />

<strong>Septifast</strong> and other……<br />

Ge<strong>of</strong>frey Warhurst<br />

1Infection, Infection, Injury & Inflammation Research Group, Salford Royal<br />

Hospital NHS Trust; 2School School <strong>of</strong> Translational Medic<strong>in</strong>e,<br />

University <strong>of</strong> Manchester; 3Institute Institute <strong>of</strong> Biomedic<strong>in</strong>e, University <strong>of</strong><br />

Salford UK


Aims<br />

• The diagnostic challenge<br />

- Cl<strong>in</strong>ical impact <strong>of</strong> sepsis <strong>in</strong> critical care<br />

- Diagnosis – the need for speed<br />

• <strong>PCR</strong> approaches to pathogen <strong>DNA</strong> detection<br />

• Uncerta<strong>in</strong>ties<br />

- Biology<br />

- Broad range <strong>PCR</strong> – High Resolution Melt<br />

- <strong>Septifast</strong> – cl<strong>in</strong>ical validity studies<br />

- Cl<strong>in</strong>ical Mean<strong>in</strong>g<br />

- Cl<strong>in</strong>ical / Cost Efficacy


Background<br />

Research collaboration<br />

- responses to severe <strong>in</strong>jury and <strong>in</strong>fection<br />

- new diagnostic/therapeutic approaches to help<br />

patients survive and recover from <strong>in</strong>tensive care<br />

Near-patient research laboratories<br />

Level 3 <strong>in</strong>tensive care (17-bed, ~1000 patients)<br />

Patients requir<strong>in</strong>g multi-organ support and<br />

treatment.<br />

Regional centre for neuro<strong>in</strong>jury, complex<br />

bowel surgery


INFECTION<br />

Endothelial Damage<br />

Tissue Injury<br />

Susceptibility to secondary <strong>in</strong>fection<br />

Multi-organ Dysfunction / Death<br />

SIRS = Systemic Inflammatory Response Syndrome


SEPSIS – Systemic Inflammatory Response<br />

to Infection<br />

Sepsis associated with <strong>in</strong>creases <strong>in</strong>.…<br />

ICU and hospital length <strong>of</strong> stay<br />

frequency and duration <strong>of</strong> organ failures<br />

mortality (20-50%; 135,000 European deaths)<br />

costs €7.6 billion per annum<br />

A grow<strong>in</strong>g problem (double mortality s<strong>in</strong>ce 1990)<br />

- ag<strong>in</strong>g population<br />

- complex <strong>in</strong>vasive procedures<br />

- resistant pathogens


The Sepsis Cont<strong>in</strong>uum<br />

SIRS<br />

Infection-25% Injury-75%<br />

A cl<strong>in</strong>ical response<br />

aris<strong>in</strong>g from a<br />

nonspecific <strong>in</strong>sult, with<br />

≥2 2 <strong>of</strong> the follow<strong>in</strong>g:<br />

T >38 oC C or 90 beats/m<strong>in</strong><br />

RR >20/m<strong>in</strong><br />

WBC >12,000/mm 3<br />

or


Early and appropriate antibiotic treatment<br />

is key to survival<br />

Intravenous broad spectrum antibiotics to<br />

be given with<strong>in</strong> first hour <strong>of</strong> recognition <strong>of</strong><br />

cl<strong>in</strong>ical signs<br />

Mortality <strong>in</strong>creases by 8% for every hour <strong>of</strong> delay <strong>in</strong> antibiotic therapy<br />

Kumar A et al. Duration <strong>of</strong> hypotension before <strong>in</strong>itiation <strong>of</strong> effective antimicrobial therapy is the critical determ<strong>in</strong>ant<br />

<strong>of</strong> survival <strong>in</strong> human septic shock. Crit Care Med (2006)<br />

Focus antibiotics to specific organism (de-escalate)<br />

as quickly as possible<br />

18% mortality rate <strong>in</strong> de-escalated patients vs 43% <strong>in</strong> non-de-escalated;<br />

Rello J, et al. Crit Care Med 2004;32:2183–2190


Injury<br />

(75%)<br />

Infection<br />

(25%)<br />

Culture delays prevent effective diagnosis and<br />

management <strong>of</strong> sepsis<br />

CULTURE Day 1 Day 2 Day 3 Day 4<br />

BC<br />

Patient with ><br />

2 SIRS<br />

criteria<br />

Broad spectrum Ab<br />

Culture Gram<br />

Positivity<br />

BC BC BC<br />

CULTURE<br />

Other<br />

samples<br />

Species<br />

Antibiotic<br />

Susceptibility<br />

Focus therapy


<strong>Detection</strong> <strong>of</strong> pathogen <strong>DNA</strong> <strong>in</strong> blood – what<br />

could it <strong>of</strong>fer?<br />

• A rapid “rule-out” diagnosis ie. differentiate sepsis from SIRS?<br />

- Reduce unnecessary antibiotic use<br />

- Impact on emergence <strong>of</strong> antibiotic-resistant organisms<br />

- Change cl<strong>in</strong>ical management<br />

• A reliable and rapid “rule <strong>in</strong>” diagnosis <strong>of</strong> sepsis?<br />

- Shorten time to positive diagnosis to ~6-8 hr<br />

- Rapid identification <strong>of</strong> pathogen species <strong>in</strong>volved<br />

- Focuss<strong>in</strong>g <strong>of</strong> therapy


<strong>PCR</strong> <strong>Detection</strong> <strong>of</strong> <strong>Pathogen</strong> <strong>DNA</strong><br />

Bacteria -16S ITS<br />

Amplification <strong>of</strong> hyper-variable regions<br />

<strong>in</strong> ribosomal <strong>DNA</strong>.<br />

Detect broad range <strong>of</strong> pathogens<br />

Gram type Speciation [Resistance]<br />

23S<br />

Fungi - 18S 5.8S<br />

Cursons et al “Use <strong>of</strong> <strong>PCR</strong> to detect septicemia <strong>in</strong> critically ill patients”<br />

Crit Care Med 1999.


<strong>PCR</strong> Approaches<br />

<strong>Detection</strong> (Y/N)<br />

Blood<br />

EDTA tube<br />

Isolation <strong>of</strong> pathogen and human <strong>DNA</strong><br />

Amplification<br />

Separation <strong>of</strong> pathogen <strong>DNA</strong><br />

Multi-pathogen <strong>PCR</strong> Broad range <strong>PCR</strong><br />

<strong>Pathogen</strong> Identity +<br />

<strong>Septifast</strong><br />

VYOO<br />

Sequenc<strong>in</strong>g<br />

Microarray<br />

Mass Spect<br />

SepsiTest<br />

Licensed for cl<strong>in</strong>ical use


Experimental Approaches<br />

- Broad-range detection<br />

BactScreen Toolset<br />

- Rapid, cost-effective pathogen species identification<br />

High Resolution Melt<strong>in</strong>g Analysis (HRMA)<br />

- Cl<strong>in</strong>ical validity<br />

SeptiFast


Broad Range <strong>PCR</strong> for <strong>Detection</strong> <strong>of</strong> <strong>Pathogen</strong> <strong>DNA</strong><br />

Broad Range 16S <strong>PCR</strong> primers +<br />

Real time detection <strong>of</strong> 1ng – 25fg<br />

E. coli <strong>DNA</strong><br />

Dual colour FRET probes<br />

BACTSCREEN ToolSet<br />

Melt<strong>in</strong>g<br />

Analysis<br />

Gr+ve<br />

Gr-ve<br />

Gram typ<strong>in</strong>g <strong>of</strong> amplified <strong>DNA</strong>


Ability to detect broad range <strong>of</strong> sepsis pathogens<br />

7<br />

6<br />

5<br />

Con B Con A<br />

BACTSCREEN ToolSet; LightCycler480<br />

4<br />

1<br />

2<br />

3<br />

Gram +ve Gram ‐ve<br />

S. aureus (6) E. Coli (1)<br />

CNS (7) Klebsiella pneum (2)<br />

MRSA Pseudomonas aerug<strong>in</strong>osa<br />

Streptococcus pneum. Proteus mirabilis<br />

Enterococcus faecalis (5) Serratia marescens<br />

Enterococcus faecium Hemophilus <strong>in</strong>fluenzae (3)<br />

Ac<strong>in</strong>etobacter baumanii (4)<br />

Enterobacter cloacae<br />

>97% <strong>of</strong> bacterial bloodstream<br />

pathogens from Salford Royal ICU


Analytical Sensitivity<br />

Limit <strong>of</strong> detection ~10 CFU/ml blood<br />

Similar LOD for other<br />

species<br />

*70% <strong>of</strong> bacteremias are


High Resolution Melt<strong>in</strong>g Analysis (HRMA)<br />

Rapid <strong>Detection</strong> and Identification <strong>of</strong> Cl<strong>in</strong>ically Important Bacteria by High<br />

Resolution Melt<strong>in</strong>g Analysis after Broad Range Ribosomal <strong>PCR</strong> – Cheng et<br />

al Cl<strong>in</strong>. Chem. 52: 1997-2004 (2006)<br />

2 nd broad range <strong>PCR</strong> run <strong>in</strong> presence <strong>of</strong> <strong>DNA</strong> saturat<strong>in</strong>g dye<br />

(Resolight)<br />

High resolution (16 bit) acquisition <strong>of</strong> melt<strong>in</strong>g data (LC480 Gene<br />

Scann<strong>in</strong>g s<strong>of</strong>tware)<br />

Detect s<strong>in</strong>gle base pair differences<br />

Sequences differentiated by Tm and/or melt<strong>in</strong>g shape<br />

Low cost


HRMA Stage 1: Differentiation <strong>of</strong> pathogens by melt<strong>in</strong>g temperature<br />

Group 1 Group 2 Group 3<br />

Group Bacterial species Melt<strong>in</strong>g<br />

temp (Tm)<br />

Group 1 Coagulase negative staphylococci (CNS) 82.50-83.50<br />

Staphylococcus epidermidis 82.50-83.50<br />

MRSA 83.20-83.80<br />

Staphylococcus aureus 83.00-84.20<br />

Group 2 Klebsiella aerogenes 84.40-85.10<br />

Enterobacter aerogenes 84.40-85.10<br />

Serratia marcescens 84.40-85.30<br />

Proteus Mirabilis 84.40-85.30<br />

Klebsiella pneumoniae 84.40-85.45<br />

Haemophilus <strong>in</strong>fluenzae 84.50-85.45<br />

Group 3 Ac<strong>in</strong>etobacter baumannii 85.00-86.20<br />

Streptococcus agalactia 85.80-86.80<br />

Escherichia coli 85.90-86.95<br />

Enterobacter cloacae 85.90-86.90<br />

Streptococcus pyogenes 86.00-86.90<br />

Enterococcus faecalis 86.00-86.90<br />

Streptococcus pneumoniae 86.20-87.00<br />

Pseudomonas aerug<strong>in</strong>osa 86.60-87.15<br />

Non-template control 87.30-87.95<br />

16S <strong>PCR</strong> primers<br />

modified from Cheng et<br />

al, 2006<br />

Species cover >97% <strong>of</strong><br />

ICU sepsis pathogens<br />

<strong>Pathogen</strong>s differentiate<br />

<strong>in</strong>to 3 groups accord<strong>in</strong>g<br />

to Tm


Stage 2: Difference Plots vs Reference Organisms<br />

Reference stra<strong>in</strong> = Klebsiella<br />

Enterococcus faecalis ‐ A<br />

Reference stra<strong>in</strong> = Staph aureus<br />

Enterococcus faecalis ‐ A<br />

Different isolate <strong>of</strong><br />

Enterococcus faecalis<br />

Different isolate <strong>of</strong><br />

Enterococcus faecalis<br />

Highly reproducible pathogen “signatures”<br />

Enterococcus faecalis ‐ B<br />

Enterococcus faecalis ‐ B


Speciation <strong>of</strong> pathogens us<strong>in</strong>g difference plots<br />

Ref: S. aureus Ref:Klebsiella<br />

A. baum A. baum<br />

S. agal<br />

S. agal<br />

E. coli E. coli<br />

E.<br />

faecalis E.<br />

faecalis<br />

4 species with similar Tm<br />

2 reference stra<strong>in</strong>s<br />

discrim<strong>in</strong>ates all 4 species<br />

Discrim<strong>in</strong>ate 16/18<br />

commonest ICU bacteria<br />

Pattern recognition<br />

s<strong>of</strong>tware to automate<br />

detection<br />

Similar approach for fungal<br />

pathogens


Group 1 Group 2 Group 3<br />

Us<strong>in</strong>g Staphylococcus aureus<br />

as reference bacterium aga<strong>in</strong>st<br />

group 1 for generat<strong>in</strong>g melt<strong>in</strong>g<br />

shapes<br />

No differentiation<br />

Us<strong>in</strong>g Klebsiella pneumoniae as<br />

reference bacterium aga<strong>in</strong>st group<br />

1 for generat<strong>in</strong>g melt<strong>in</strong>g shapes<br />

Staphylococcus aureus<br />

Coagulase negative<br />

staphylococci (CNS)<br />

Staphylococcus epidermidis<br />

MRSA<br />

Us<strong>in</strong>g Staphylococcus aureus as<br />

a reference bacterium aga<strong>in</strong>st<br />

group 2 for generat<strong>in</strong>g melt<strong>in</strong>g<br />

shapes<br />

Haemophilus <strong>in</strong>fluenzae<br />

Klebsiella aerogenes<br />

Enterobacter aerogenes<br />

Serratia marcescens<br />

Proteus Mirabilis<br />

Klebsiella pneumoniae<br />

Us<strong>in</strong>g Klebsiella pneumoniae as<br />

reference bacterium aga<strong>in</strong>st the<br />

rema<strong>in</strong><strong>in</strong>g 5 species for generat<strong>in</strong>g<br />

melt<strong>in</strong>g shapes<br />

Proteus Mirabilis<br />

Klebsiella aerogenes<br />

Enterobacter aerogenes<br />

Serratia marcescens<br />

Klebsiella pneumoniae<br />

Proteus Mirabilis as reference bacterium<br />

Klebsiella pneumoniae<br />

Klebsiella aerogenes<br />

Enterobacter aerogenes<br />

Serratia marcescens<br />

Us<strong>in</strong>g Staphylococcus aureus<br />

as reference bacterium aga<strong>in</strong>st<br />

group 3 for generat<strong>in</strong>g melt<strong>in</strong>g<br />

shapes<br />

Streptococcus agalactia<br />

Ac<strong>in</strong>etobacter baumannii<br />

Streptococcus pneumoniae<br />

Pseudomonas aerug<strong>in</strong>osa<br />

Enterobacter cloacae)<br />

Escherichia coli<br />

Streptococcus pyogenes<br />

Enterococcus faecalis<br />

Us<strong>in</strong>g Klebsiella pneumoniae as<br />

reference bacterium aga<strong>in</strong>st the<br />

rema<strong>in</strong><strong>in</strong>g 3 species for generat<strong>in</strong>g<br />

melt<strong>in</strong>g shapes<br />

Escherichia coli<br />

Streptococcus pyogenes<br />

Enterococcus faecalis


Summary <strong>of</strong> BactScreen – HRMA Approach<br />

• Potential for detection and species identification with<strong>in</strong> 8 hours<br />

~4 hr ~2hr<br />

Cl<strong>in</strong>ical sample <strong>DNA</strong> Bactscreen No<br />

HRMA<br />

Yes<br />

• Cl<strong>in</strong>ical utility? Limited cl<strong>in</strong>ical validity study <strong>in</strong> progress<br />

• Prelim<strong>in</strong>ary data shows promise<br />

2 hr<br />

• Limitations: -polymicrobial samples<br />

- currently LOD ~100 fg


Experimental Approaches<br />

- Broad-range detection<br />

BactScreen Toolset<br />

- Rapid, cost-effective pathogen species identification<br />

High Resolution Melt<strong>in</strong>g Analysis (HRMA)<br />

- Cl<strong>in</strong>ical validity<br />

SeptiFast


<strong>Septifast</strong><br />

• Multiplex <strong>PCR</strong> report<strong>in</strong>g a def<strong>in</strong>ed panel <strong>of</strong> pathogens caus<strong>in</strong>g bloodstream<br />

<strong>in</strong>fection <strong>in</strong> ICU<br />

• <strong>DNA</strong> extracts from 1.5-3ml whole blood us<strong>in</strong>g ultrapure MGrade reagents<br />

• Real time monitor<strong>in</strong>g <strong>of</strong> <strong>PCR</strong> products us<strong>in</strong>g FRET hybridisation probes<br />

• Closed system – reports presence/absence above pre-determ<strong>in</strong>ed thresholds


Lehmann et al 2008<br />

Laboratory analytical validity<br />

Simultaneous detection and<br />

speciation<br />

<strong>Pathogen</strong> identification by melt<strong>in</strong>g<br />

temperature<br />

Limits <strong>of</strong> detection - 3-30 CFU/ml<br />

Species dependent


SEPTIFAST – “RULE IN” STUDY OF BLOOD<br />

STREAM INFECTION – SALFORD UK<br />

Study: Diagnostic study <strong>of</strong> critically ill patients requir<strong>in</strong>g blood<br />

culture for suspected blood stream <strong>in</strong>fection with SIRS<br />

(i.e. sepsis)<br />

Sett<strong>in</strong>g: Tertiary NHS-University NHS University <strong>in</strong>tensive care (16 level 3 beds)<br />

Infection prevalence: 12% (95% CI 6% - 16%) from recent study (n = 100)<br />

Power calculation:<br />

* 83 patient samples required to be 95% sure that<br />

specificity is at least 95% Report<strong>in</strong>g 142 patient samples<br />

Ethics: Service evaluation approved by LREC Chair


Cl<strong>in</strong>ical Evaluation <strong>of</strong> SeptiFast SeptiFast<br />

vs Blood Culture<br />

CULTURE +VE CULTURE –VE VE<br />

<strong>PCR</strong> +VE 16 11<br />

<strong>PCR</strong> –VE<br />

VE 6 * 121<br />

* Includes 3 assessed as BC<br />

contam<strong>in</strong>ants after review<br />

Predictive value <strong>of</strong> a positive test – 59%<br />

Specificity (“rule <strong>in</strong>” diagnosis) – 91%<br />

Sensitivity (“rule out” diagnosis) – 84% (but not sufficient power)<br />

First 90 samples reported <strong>in</strong> Dark PM, Chadwick P, Warhurst G Journal <strong>of</strong> Infection 59(4): 296-298; 2009


Micro-organism<br />

Micro organism<br />

Enterobacter<br />

(cloacael cloacael / aerogenes)<br />

aerogenes<br />

Klebsiella<br />

(pneumoniae<br />

pneumoniae / oxytoca) oxytoca<br />

Positive<br />

BCulture and <strong>PCR</strong><br />

Positive<br />

<strong>PCR</strong> only<br />

Positive<br />

BCulture only<br />

4 4 0<br />

3 1 0<br />

Pseudomonas aerug<strong>in</strong>osa 2 3 1<br />

Ac<strong>in</strong>etobacter baumannii 1 0 1<br />

E. coli 0 1 0<br />

Staphylococcus aureus 1 2 0<br />

CNS 2 0 3 *<br />

S. penumoniae 1 0 0<br />

G+ve bacillus sp. 0 0 1<br />

Candida 2 0 0<br />

Total 16 11 6 *


“False positives” - majority associated with organisms<br />

cultured from other sites<br />

Case type<br />

ICU day<br />

<strong>of</strong><br />

sample<br />

Receiv<strong>in</strong>g<br />

broad<br />

spectrum<br />

antibiotics<br />

<strong>PCR</strong><br />

Blood<br />

Cultures<br />

Neuro-<strong>in</strong>jury<br />

Neuro <strong>in</strong>jury 14 yes E. cloa/aero cloa/aero<br />

negative<br />

Neuro-<strong>in</strong>jury<br />

Neuro <strong>in</strong>jury 7 yes E. cloa/aero cloa/aero<br />

negative<br />

Neuro-<strong>in</strong>jury<br />

Neuro <strong>in</strong>jury 7 yes K. pneum/oxytoc negative<br />

Neuro-<strong>in</strong>jury<br />

Neuro <strong>in</strong>jury 13 yes E. cloa/aero cloa/aero<br />

negative<br />

Neuro-<strong>in</strong>jury<br />

Neuro <strong>in</strong>jury 4 no P.aerug<strong>in</strong>osa negative<br />

Pancreatitis 13 yes P. aerug<strong>in</strong>soa negative<br />

Pancreatitis 27 yes P.aerug<strong>in</strong>osa negative<br />

Oesophagectomy 10 yes E. cloa/aero cloa/aero<br />

negative<br />

COPD 13 yes E. cloa/aero cloa/aero<br />

negative<br />

Other<br />

support<strong>in</strong>g<br />

culture<br />

results<br />

CVC tip positive<br />

E. cloa<br />

Nil (NBL and<br />

ur<strong>in</strong>e negative)<br />

CVC tip positive<br />

K. pneum<br />

CVC tip positive<br />

E. cloa<br />

Ur<strong>in</strong>e/NBL<br />

negative<br />

NBL positive for<br />

P. aerog<strong>in</strong>osa<br />

NBL positive for<br />

P. aerog<strong>in</strong>soa<br />

NBL positive for<br />

E. cloa<br />

CVC tip positive<br />

E. aero


Other Published Studies<br />

[<strong>PCR</strong> vs BC]<br />

Study Sett<strong>in</strong>g Pat/Samp Spec<br />

Westh 2009 Suspected sepsis 359/558 76%<br />

Multi-European ?<br />

Bloos 2009 Severe sepsis 63/111 77%<br />

France/Germany ICU<br />

Wallet et al 2009 Suspected sepsis 72/100 88%<br />

France ICU<br />

Dierkes et al 2009 Suspected sepsis 77/101 82%<br />

Germany ICU<br />

Louie et al, 2008 Suspected sepsis 200/200 89%<br />

US ICU, ER, general<br />

Broadly similar f<strong>in</strong>d<strong>in</strong>gs


Culture and pathogen <strong>DNA</strong> are not equivalent measures <strong>of</strong><br />

<strong>in</strong>fection<br />

Live<br />

pathogen<br />

Dead<br />

pathogen<br />

Free <strong>DNA</strong><br />

<strong>PCR</strong><br />

Culture<br />

Live pathogen<br />

Lung<br />

Ur<strong>in</strong>e<br />

Catheters etc<br />

CSF<br />

= Phagocyte<br />

Shedd<strong>in</strong>g <strong>of</strong> bacterial <strong>DNA</strong> from extracirculatory<br />

sites <strong>in</strong>to circulation


Is blood culture an appropriate “gold standard”?<br />

<strong>Pathogen</strong> <strong>DNA</strong> probably better <strong>in</strong>dicator <strong>of</strong> <strong>in</strong>fection <strong>in</strong> general (ie ( ie sepsis) not<br />

specifically bloodstream <strong>in</strong>fection<br />

“Constructed gold standard”<br />

Blood<br />

culture<br />

positive<br />

Lehmann et al, 2009 (453 patient samples) - Increased assay<br />

specificity from 81% to 93%<br />

Dark et al, 2009 (146 patient samples) Increased assay specificity<br />

from 91% to 96%<br />

+ Cultures from<br />

other sites (ur<strong>in</strong>e,<br />

lavage, CVC)


Where do we go from here?<br />

Biology<br />

K<strong>in</strong>etics <strong>of</strong> pathogen <strong>DNA</strong>emia<br />

Does it contribute to the immune <strong>in</strong>flammatory response<br />

Technology Improvements<br />

Faster, cheaper<br />

Reduce false negatives<br />

Cl<strong>in</strong>ical Value and Cost Efficacy<br />

Cl<strong>in</strong>ical mean<strong>in</strong>g <strong>of</strong> pathogen <strong>DNA</strong>emia<br />

Intervention studies – change therapy based on pathogen <strong>DNA</strong><br />

Cost benefit analysis


Cl<strong>in</strong>ical diagnostic validity <strong>of</strong> rapid detection <strong>of</strong> healthcareassociated<br />

blood stream <strong>in</strong>fection <strong>in</strong> <strong>in</strong>tensive care us<strong>in</strong>g<br />

multi-pathogen real-time <strong>PCR</strong> technology<br />

Stage 1: <strong>Septifast</strong>: >600 ICU patients with cl<strong>in</strong>ical suspicion <strong>of</strong> sepsis<br />

Powered for “rule-<strong>in</strong>” and “rule-out” diagnosis<br />

Standardised protocols for source identification etc<br />

Sample archiv<strong>in</strong>g for assessment emerg<strong>in</strong>g technologies<br />

Stage 2: Detailed Therapeutic Intervention / Cost Efficacy Studies<br />

HTA project No:<br />

08/13/16


Conclusions<br />

<strong>Pathogen</strong> <strong>DNA</strong>emia a promis<strong>in</strong>g biomarker <strong>of</strong> sepsis<br />

Rapid rule <strong>in</strong> detection/speciation (and potential rule out) <strong>of</strong>fers promise<br />

<strong>of</strong> more effective therapy and patient management<br />

<strong>Pathogen</strong> <strong>DNA</strong> and culture tell us different but complementary th<strong>in</strong>gs<br />

about <strong>in</strong>fection - we will need both!<br />

More <strong>in</strong>formation on the biology <strong>of</strong> pathogen <strong>DNA</strong>emia<br />

Technology adoption will not occur without robust cl<strong>in</strong>ical<br />

<strong>in</strong>tervention and cost effectiveness studies<br />

Cl<strong>in</strong>ical confidence – the next 10 years???


Dr Paul Dark<br />

Dr Paul Chadwick<br />

Acknowledgements<br />

Huda Al-griw Al griw – Bactscreen<br />

Hani Ozbak – HRM<br />

Pamela Davies – <strong>Septifast</strong><br />

Norman Higgs – <strong>Septifast</strong><br />

Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!