18.09.2013 Views

Drained and undrained slope stability analysis using GIS on a ...

Drained and undrained slope stability analysis using GIS on a ...

Drained and undrained slope stability analysis using GIS on a ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIVERSITY GHENT<br />

UNIVERSITEIT<br />

GENT<br />

INTERUNIVERSITY PROGRAMME<br />

MASTER OF SCIENCE IN<br />

PHYSICAL LAND RESOURCES<br />

Universiteit Gent<br />

Vrije Universiteit Brussel<br />

Belgium<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>undrained</str<strong>on</strong>g> <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>using</str<strong>on</strong>g> <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a regi<strong>on</strong>al scale<br />

September 2005<br />

Promotor: Master dissertati<strong>on</strong> in partial fulfilment<br />

Prof. F. De Smedt of the requirements for the Degree of<br />

Master of Science in<br />

Physical L<str<strong>on</strong>g>and</str<strong>on</strong>g> Resources<br />

by: Prigiarto Hokkal Y<strong>on</strong>atan


Most true it is, that I have looked <strong>on</strong> truth<br />

Askance <str<strong>on</strong>g>and</str<strong>on</strong>g> strangely; but, by all above,<br />

These blenches gave my heart another youth,<br />

And worse essays proved thee my best of love.<br />

Shakespeare CX<br />

Het is zeker waar: ik zag oprechtheid, deugd<br />

met een scheel oog, maar hemel, alsjeblieft,<br />

dit dwalen bracht mijn hart een nieuwe jeugd,<br />

en jij bleek op mijn pad mijn zoetste lief.<br />

Shakespeare CX<br />

Il est vrai que j’ai regardé ce qui est vrai,<br />

etrangement de travers, mais après tout,<br />

ces faux regards <strong>on</strong>t d<strong>on</strong>né une autre jeunesse<br />

à m<strong>on</strong> coeur; et les pires essays te m<strong>on</strong>trent le meilleur.<br />

Shakespeare CX (Pierre Jean Jouve)


Acknowledgements i<br />

ACKNOWLEDGEMENTS<br />

This thesis <strong>on</strong> “Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale” is the final output of<br />

my advanced study in Physical L<str<strong>on</strong>g>and</str<strong>on</strong>g> Resources organized by Free University Brussels (VUB)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> University of Gent (RUG). I would like to express my deepest appreciati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thanks to<br />

my promoter, Prof. Dr. Ir. F. De Smedt, for his encouragement, comments, suggesti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>stant support throughout my study period <str<strong>on</strong>g>and</str<strong>on</strong>g> research work. It has been a privilege <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

pleasure to be supervised by leading researcher in the department.<br />

I would like to express my best appreciati<strong>on</strong> to Prof. Marc Van Molle for his valued support<br />

in giving directi<strong>on</strong> for this thesis work. My sincere thanks also go to Mr. W. Solom<strong>on</strong> Tuccu,<br />

Mr. Corluy Jan <str<strong>on</strong>g>and</str<strong>on</strong>g> Mr. Hung Le Quock for their valuable support, criticism, guidance <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

help to make this manuscript finished. I have also been fortunate to have the support of Mr. Y.<br />

P. Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>ra especially for sending me informati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> materials needed for finishing my<br />

thesis.<br />

My gratitude also goes to Anja Cosemans for her valuable support during my study. She has<br />

been a computer IT advisor, a good friend <str<strong>on</strong>g>and</str<strong>on</strong>g> also an advisor for many technical questi<strong>on</strong>s<br />

related to my study.<br />

This has been a w<strong>on</strong>derful year for me to have an experience studying in Belgium. This<br />

experience has been more colourful with many friends that support me during my study. My<br />

special thanks go to all my colleagues, especially Mr. Michael Ndemo Bog<strong>on</strong>ko, for sharing<br />

computer room <str<strong>on</strong>g>and</str<strong>on</strong>g> accompanying me during my thesis work. I would like also to express my<br />

special gratitude to my best friend Mr. Pascal Nottet for encouragement, valuable support <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

especially sharing good <str<strong>on</strong>g>and</str<strong>on</strong>g> bad time together. Live in Belgium has never been w<strong>on</strong>derful<br />

without all of you.<br />

I would like to express my deepest gratitude also to my aunt, Mrs. Menny Indrawaty, for<br />

making everything possible <str<strong>on</strong>g>and</str<strong>on</strong>g> supporting me for studying in Belgium. My special gratitude<br />

also goes to my beloved brothers, Mr. Tjaja Hokmoro J<strong>on</strong>atan <str<strong>on</strong>g>and</str<strong>on</strong>g> Mr. Sugiarto Hoklay<br />

Y<strong>on</strong>atan for their love <str<strong>on</strong>g>and</str<strong>on</strong>g> encouragement.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Abstract ii<br />

ABSTRACT<br />

This study is the c<strong>on</strong>tinuati<strong>on</strong> of the previous study d<strong>on</strong>e by Ram Lakhan Ray, 2004, that<br />

applied <str<strong>on</strong>g>stability</str<strong>on</strong>g> model <strong>on</strong> an area of 341 km 2 of Dhading district, Nepal. In this study, a<br />

spatial distributed physically based <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> model was presented <str<strong>on</strong>g>and</str<strong>on</strong>g> applied <strong>on</strong> 84 km 2<br />

of cohesive soil, covered about 25% of the original study area. Two methods of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> were<br />

performed, i.e. total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress analyses <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> methods were<br />

applied <strong>on</strong> the <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. Critical height <str<strong>on</strong>g>and</str<strong>on</strong>g> safety factor maps were produced based <strong>on</strong> those<br />

analyses. Steady state <str<strong>on</strong>g>and</str<strong>on</strong>g> quasi dynamic c<strong>on</strong>diti<strong>on</strong>s were c<strong>on</strong>sidered for the present study<br />

with varying soil thickness. For quasi dynamic c<strong>on</strong>diti<strong>on</strong>s, wetness index was applied based<br />

<strong>on</strong> direct rainfall infiltrati<strong>on</strong>s. Slope angle of 38° <str<strong>on</strong>g>and</str<strong>on</strong>g> 17° can be c<strong>on</strong>sidered as the average<br />

mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle to cause in<str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the lower most <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle for stable c<strong>on</strong>diti<strong>on</strong>s,<br />

respectively. This value was derived from the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> based <strong>on</strong> half saturated c<strong>on</strong>diti<strong>on</strong>s. It<br />

was also c<strong>on</strong>cluded that this case can serve as general c<strong>on</strong>diti<strong>on</strong>s of safety factor map at the<br />

site where this case also has a similar result with models based <strong>on</strong> different return periods.<br />

Taylor method was not applicable for this study area since this method is <strong>on</strong>ly applicable for<br />

assessing safety factor with high <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle. For short term safety factor map, completely dry<br />

c<strong>on</strong>diti<strong>on</strong>s resulted from infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> method can be used as a short term applicati<strong>on</strong>s. Half<br />

saturated case can be c<strong>on</strong>sidered as general <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g term safety factor map as this c<strong>on</strong>diti<strong>on</strong><br />

reveals similar result as given by various return periods. This study has proved that models<br />

developed with infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> models have given the best result even with some assumpti<strong>on</strong>.<br />

Keywords: <str<strong>on</strong>g>stability</str<strong>on</strong>g>, total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, Taylor method, infinite<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g> method, critical height, safety factor, steady state c<strong>on</strong>diti<strong>on</strong>, quasi dynamic c<strong>on</strong>diti<strong>on</strong>,<br />

short term safety factor map, l<strong>on</strong>g term safety factor map.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Table of C<strong>on</strong>tents iii<br />

Table of C<strong>on</strong>tents<br />

ACKNOWLEDGEMENTS ................................................................................................. i<br />

ABSTRACT......................................................................................................................... ii<br />

Table of C<strong>on</strong>tents................................................................................................................ iii<br />

List of Figures..................................................................................................................... vi<br />

List of Tables ...................................................................................................................... ix<br />

List of Abbreviati<strong>on</strong>s............................................................................................................x<br />

CHAPTER 1 : INTRODUCTION .......................................................................................1<br />

1.1 General..........................................................................................................................1<br />

1.2 Introducti<strong>on</strong> to Study Area.............................................................................................2<br />

1.3 Scope of the Study.........................................................................................................4<br />

1.4 The Objective of the Study ............................................................................................4<br />

CHAPTER 2 : LITERATURE REVIEW ...........................................................................5<br />

2.1 General..........................................................................................................................5<br />

2.2 Slope Failure Mechanism...............................................................................................6<br />

2.2.1 Internal Factors Effecting Slope In<str<strong>on</strong>g>stability</str<strong>on</strong>g>.........................................................8<br />

2.2.1.1 Slope <str<strong>on</strong>g>and</str<strong>on</strong>g> Gravity Force ......................................................................9<br />

2.2.1.2 Influence of Groundwater ....................................................................9<br />

2.2.2 External Triggering Events.................................................................................9<br />

2.3 Fundamentals of Soil Parameters .................................................................................10<br />

2.3.1 Principle of Effective Stress .............................................................................10<br />

2.3.2 Failure Criteri<strong>on</strong>...............................................................................................11<br />

2.3.3 <str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Strength.......................................................................11<br />

2.3.3.1 Undrained Strength............................................................................12<br />

2.3.3.2 <str<strong>on</strong>g>Drained</str<strong>on</strong>g> Strength................................................................................14<br />

2.3.3.3 Residual Strength...............................................................................15<br />

2.3.4 Choice Between Total <str<strong>on</strong>g>and</str<strong>on</strong>g> Effective Stress ......................................................16<br />

2.4 Stability Analysis Methods ..........................................................................................17<br />

2.4.1 Infinite Slopes ..................................................................................................19<br />

2.4.1.1 Cohesive Material in Dry C<strong>on</strong>diti<strong>on</strong>...................................................19<br />

2.4.1.2 Cohesive Material with Groundwater Effect ......................................21<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Table of C<strong>on</strong>tents iv<br />

2.4.1.3 Cohesi<strong>on</strong>less Material in Dry C<strong>on</strong>diti<strong>on</strong>.............................................21<br />

2.4.1.4 Cohesi<strong>on</strong>less Material with Groundwater Effect ................................22<br />

2.4.2 Total Stress Analysis........................................................................................22<br />

2.4.3 Wedge Analysis ...............................................................................................25<br />

2.4.4 N<strong>on</strong>-Linear Methods ........................................................................................25<br />

2.4.5 Model Based <strong>on</strong> Root Cohesi<strong>on</strong> .......................................................................26<br />

2.5 L<str<strong>on</strong>g>and</str<strong>on</strong>g>slide Hazard Analysis with <str<strong>on</strong>g>GIS</str<strong>on</strong>g>............................................................................26<br />

2.5.1 Model C<strong>on</strong>cept.................................................................................................27<br />

2.5.1.1 Using Infinite Slope with Total <str<strong>on</strong>g>and</str<strong>on</strong>g> Effective Stress ..........................28<br />

2.5.1.2 Using Taylor Method.........................................................................28<br />

2.5.1.3 Assessment of Stability Classes .........................................................29<br />

2.5.2 Hydrological Model .........................................................................................30<br />

CHAPTER 3 : MATERIALS AND METHOD.................................................................32<br />

3.1 General........................................................................................................................32<br />

3.2 Data Availability..........................................................................................................33<br />

3.2.1 Available DEM <str<strong>on</strong>g>and</str<strong>on</strong>g> Raster Maps .....................................................................33<br />

3.2.2 Available Hydrological Data ............................................................................37<br />

3.3 Applied Methodology ..................................................................................................37<br />

3.3.1 Soil Parameters Determinati<strong>on</strong> .........................................................................38<br />

3.3.2 Model Development.........................................................................................41<br />

CHAPTER 4 : RESULT AND DISCUSSION...................................................................46<br />

4.1 General........................................................................................................................46<br />

4.2 Ground C<strong>on</strong>diti<strong>on</strong> at the Study Area ............................................................................46<br />

4.3 Critical Height Maps....................................................................................................48<br />

4.3.1 Based <strong>on</strong> Total Stress Analysis (TSA)..............................................................48<br />

4.3.1.1 Using Taylor Method.........................................................................48<br />

4.3.1.2 Using Infinite Slope Method ..............................................................50<br />

4.3.2 Based <strong>on</strong> Effective Stress Analysis (ESA) ........................................................52<br />

4.4 Safety Factor Maps......................................................................................................55<br />

4.4.1 Total Stress Analysis........................................................................................55<br />

4.4.1.1 Using Taylor Method.........................................................................55<br />

4.4.1.2 Using Infinite Slope Method ..............................................................57<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Table of C<strong>on</strong>tents v<br />

4.4.2 Effective Stress Analysis..................................................................................59<br />

4.4.2.1 Completely Dry C<strong>on</strong>diti<strong>on</strong>.................................................................60<br />

4.4.2.2 Half Saturated C<strong>on</strong>diti<strong>on</strong>....................................................................63<br />

4.4.2.3 Fully Saturated C<strong>on</strong>diti<strong>on</strong> ..................................................................65<br />

4.4.2.4 Based <strong>on</strong> Different Return Periods.....................................................68<br />

4.5 Discussi<strong>on</strong> ...................................................................................................................71<br />

4.5.1 Total <str<strong>on</strong>g>and</str<strong>on</strong>g> Effective Stress Analyses..................................................................71<br />

4.5.2 Influence of Depth............................................................................................73<br />

4.5.3 Slope Angle .....................................................................................................73<br />

4.5.4 Selecti<strong>on</strong> of Maps.............................................................................................74<br />

4.5.4.1 Critical Height Map ...........................................................................74<br />

4.5.4.2 Safety Factor Map..............................................................................76<br />

4.5.5 Comparis<strong>on</strong> with Root Cohesi<strong>on</strong> Method .........................................................78<br />

CHAPTER 5 : CONCLUSIONS AND RECOMMENDATIONS ....................................82<br />

5.1 C<strong>on</strong>clusi<strong>on</strong>s .................................................................................................................82<br />

5.2 Recommendati<strong>on</strong>s........................................................................................................84<br />

REFERENCES................................................................................................................... ix<br />

APPENDICES .................................................................................................................. xiii<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


List of Figures vi<br />

List of Figures<br />

Figure 1: Sensitive L<str<strong>on</strong>g>and</str<strong>on</strong>g>slides Area (Ray, 2004) ...............................................................3<br />

Figure 2 : Simplificati<strong>on</strong> Mass <strong>on</strong> Slope.............................................................................7<br />

Figure 3 : Results of Undrained Triaxial Tests <strong>on</strong> Saturated Clay .....................................12<br />

Figure 4 : Relati<strong>on</strong>ship between su/σ ' <str<strong>on</strong>g>and</str<strong>on</strong>g> plasticity Index (Bjerrum <str<strong>on</strong>g>and</str<strong>on</strong>g> Sim<strong>on</strong>s, 1960) ..13<br />

Figure 5 : Relati<strong>on</strong>ship between the Natural Shear Strength of Undisturbed Clays <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Liquidity Index (Carter <str<strong>on</strong>g>and</str<strong>on</strong>g> Bentley, 1991) ......................................................14<br />

Figure 6 : Correlati<strong>on</strong> between Effective Fricti<strong>on</strong> Angle <str<strong>on</strong>g>and</str<strong>on</strong>g> Plasticity Index for Fine-<br />

Grained Soils (NAVFAC DM-7)......................................................................15<br />

Figure 7 : The C<strong>on</strong>cept of Residual Shear Strength...........................................................16<br />

Figure 8 : Forces <strong>on</strong> element of infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> (Cernica, 1995) ..........................................20<br />

Figure 9 : Total Stress Analysis........................................................................................23<br />

Figure 10 : Taylor's Stability Coefficients for φu = 0 (after Craig, 2004).............................24<br />

Figure 11 : Locati<strong>on</strong> of the Study Area (Ray, 2004) ...........................................................32<br />

Figure 12 : Digital Elevati<strong>on</strong> Model (DEM) of the Study Area (Ray, 2004)........................34<br />

Figure 13 : Slope Map of the Study Area............................................................................34<br />

Figure 14 : Soil Map of the Study Area (Ray, 2004)...........................................................35<br />

Figure 15 : Clayey Soil in the Study Area...........................................................................35<br />

Figure 16 : L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Map of the Study Area (Ray, 2004) ..................................................36<br />

Figure 17 : Flow Chart for the Present Study......................................................................42<br />

Figure 18 : Previous <str<strong>on</strong>g>and</str<strong>on</strong>g> Present Study Assumpti<strong>on</strong> <strong>on</strong> Soil Thickness ..............................43<br />

Figure 19 : Map Calculati<strong>on</strong> for Stability Coefficient (Ns) .................................................43<br />

Figure 20 : Map Calculati<strong>on</strong> for Critical Height with Taylor Method..................................44<br />

Figure 21 : Map Calculati<strong>on</strong> for Critical Height with Infinite Slope....................................44<br />

Figure 22 : Map Calculati<strong>on</strong> for Safety Factor with Infinite Slope <str<strong>on</strong>g>and</str<strong>on</strong>g> TSA .......................45<br />

Figure 23 : Map Calculati<strong>on</strong> for Safety Factor in Dry C<strong>on</strong>diti<strong>on</strong>.........................................45<br />

Figure 24 : Percentage Area of Each Soil Type for each L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Types...........................47<br />

Figure 25 : Slope Magnitude within the L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Type .....................................................48<br />

Figure 26 : Stability Coefficient Map for Taylor Method....................................................49<br />

Figure 27 : Critical Height based <strong>on</strong> Taylor Method...........................................................50<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


List of Figures vii<br />

Figure 28 : Area of Critical Height for Each Soil Types Using Lower Undrained Shear<br />

Strength............................................................................................................51<br />

Figure 29 : Area of Critical Height for Each L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Types Using Lower Undrained Shear<br />

Strength............................................................................................................51<br />

Figure 30 : Critical Height Map with TSA..........................................................................52<br />

Figure 31 : Area of Critical Height based <strong>on</strong> ESA ..............................................................53<br />

Figure 32 : Area of Critical Height for Each Soil Types under Different Steady State<br />

C<strong>on</strong>diti<strong>on</strong>s........................................................................................................54<br />

Figure 33 : Area within Safety Factor Class with Taylor Methods......................................56<br />

Figure 34 : Safety Factor Map of Taylor Method with H = 5 m ..........................................56<br />

Figure 35 : Area of Stability Class under Different Soil Thickness for Infinite Slope Method<br />

with TSA..........................................................................................................57<br />

Figure 36 : Stability Area under Different Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Thickness with Infinite Slope <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

TSA .................................................................................................................58<br />

Figure 37 : Range of Slope Angle against Stability Class for Different Soil Thickness .......58<br />

Figure 38 : Safety Factor Map with Infinite Slope Method (TSA) for H = 2 m ...................59<br />

Figure 39 : Area of Stability Class for Dry C<strong>on</strong>diti<strong>on</strong> with ESA.........................................60<br />

Figure 40 : Relati<strong>on</strong>ship between Area Occupied by Stability Class <str<strong>on</strong>g>and</str<strong>on</strong>g> Soil Thickness.....61<br />

Figure 41 : Stability Area under Different Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Thickness in Dry C<strong>on</strong>diti<strong>on</strong> ......61<br />

Figure 42 : Range of Slope Angle against Stability Class under Different Soil Thickness<br />

(Dry) ................................................................................................................62<br />

Figure 43 : Safety Factor Map of Completely Dry C<strong>on</strong>diti<strong>on</strong> for H = 4 m ..........................62<br />

Figure 44 : Area of Stability Class for Full Saturated C<strong>on</strong>diti<strong>on</strong> with ESA .........................63<br />

Figure 45 : Stability Area under Different Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Thickness in Half Saturated<br />

C<strong>on</strong>diti<strong>on</strong> .........................................................................................................64<br />

Figure 46 : Range of Slope Angle against Stability Class under Different Soil Thickness<br />

(Half) ...............................................................................................................65<br />

Figure 47 : Safety Factor Map of Half Saturated C<strong>on</strong>diti<strong>on</strong> for H=5m................................65<br />

Figure 48 : Area of Stability Class for Full Saturated C<strong>on</strong>diti<strong>on</strong> with ESA .........................66<br />

Figure 49 : Stability Area under Different Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Thickness in Full Saturated<br />

C<strong>on</strong>diti<strong>on</strong> .........................................................................................................67<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


List of Figures viii<br />

Figure 50 : Range of Slope Angle against Stability Class under Different Soil Thickness<br />

(Full)................................................................................................................67<br />

Figure 51 : Safety Factor Map of Full Saturated C<strong>on</strong>diti<strong>on</strong> for H = 6 m..............................68<br />

Figure 52 : Wetness Index for Various Soil Thickness <str<strong>on</strong>g>and</str<strong>on</strong>g> Soil Types ...............................69<br />

Figure 53 : Rainfall Intensity with Various Return Periods.................................................69<br />

Figure 54 : Area of Safety Factor with Various Return Periods...........................................70<br />

Figure 55 : Stable Area with Various Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Return Periods with Soil Thickness of<br />

2m....................................................................................................................71<br />

Figure 56 : Comparis<strong>on</strong> between Various Method Results..................................................72<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


List of Tables ix<br />

List of Tables<br />

Table 1 : Classificati<strong>on</strong> of L<str<strong>on</strong>g>and</str<strong>on</strong>g>slides (Varnes, 1975)........................................................7<br />

Table 2: C<strong>on</strong>sistency-Strength Relati<strong>on</strong>ship from Field Inspecti<strong>on</strong> (BS 8004: 1986) ......13<br />

Table 3 : Methods of Analysis.........................................................................................18<br />

Table 4 : Stability Clases.................................................................................................30<br />

Table 5 : Various Types of Soils <str<strong>on</strong>g>and</str<strong>on</strong>g> Corresp<strong>on</strong>ding Slope Angle...................................36<br />

Table 6 : Rainfall Predicti<strong>on</strong> of Study Area with SMADA 6 Software (Ray, 2004) .........37<br />

Table 7 : Index Properties of Soil Based <strong>on</strong> Deoja et al. (1991).......................................39<br />

Table 8 : Undrained Shear Strength from Various References.........................................39<br />

Table 9 : Effective Stress Parameters for the Study Area.................................................40<br />

Table 10 : Soil Parameter Used for the Analysis ...............................................................41<br />

Table 11 : Tabulated Area of Soil Types for each L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Types ...................................46<br />

Table 12 : Summary of Critical Height Using Taylor Method ...........................................49<br />

Table 13 : Summary of Critical Height <str<strong>on</strong>g>using</str<strong>on</strong>g> Infinite Slope Method .................................51<br />

Table 14 : Range of Critical Height, Area <str<strong>on</strong>g>and</str<strong>on</strong>g> Slope Angle...............................................52<br />

Table 15 : Critical Height <str<strong>on</strong>g>and</str<strong>on</strong>g> Slope Angle under Different Steady State C<strong>on</strong>diti<strong>on</strong>..........54<br />

Table 16 : Range of Mean Slope Angle.............................................................................74<br />

Table 17 : Slope Angle for Unstable <str<strong>on</strong>g>and</str<strong>on</strong>g> Stable C<strong>on</strong>diti<strong>on</strong>s ..............................................74<br />

Table 18 : Summary of Critical Height..............................................................................75<br />

Table 19 : Percentage of Total Area of Safety Factor for TSA Result................................77<br />

Table 20 : Percentage of Total Area of Safety Factor for ESA Result................................78<br />

Table 21 : Previous Study Assumpti<strong>on</strong> <strong>on</strong> Soil Thickness for Cohesive Soil .....................78<br />

Table 22 : Lower Most Slope Angle Ca<str<strong>on</strong>g>using</str<strong>on</strong>g> In<str<strong>on</strong>g>stability</str<strong>on</strong>g> for Previous <str<strong>on</strong>g>and</str<strong>on</strong>g> Present Study...80<br />

Table 23 : Summary Comparis<strong>on</strong> between Previous <str<strong>on</strong>g>and</str<strong>on</strong>g> Present Study.............................80<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


List of Abbreviati<strong>on</strong>s x<br />

DEM Digital Elevati<strong>on</strong> Model<br />

DoR Department of Roads<br />

ESA Effective Stress Analysis<br />

FS Safety Factor<br />

List of Abbreviati<strong>on</strong>s<br />

<str<strong>on</strong>g>GIS</str<strong>on</strong>g> Geographical Informati<strong>on</strong> System<br />

Inf. Infinite Slope Method<br />

Mod. Moderately<br />

Mst. Moderately Stable<br />

Qst. Quasi Stable<br />

RCM Root Cohesi<strong>on</strong> Method<br />

St. Stable<br />

TSA Total Stress Analysis<br />

Ust. Unstable<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 1 : Introducti<strong>on</strong> 1<br />

CHAPTER 1 : INTRODUCTION<br />

1.1 General<br />

Slope <str<strong>on</strong>g>stability</str<strong>on</strong>g> is a term used to explain the general immovability performance of a <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

under natural c<strong>on</strong>diti<strong>on</strong>s or man-made <str<strong>on</strong>g>slope</str<strong>on</strong>g>. A <str<strong>on</strong>g>slope</str<strong>on</strong>g> may be laterally unsupported earth<br />

mass, natural or man-made, whose surface forms an angle with the horiz<strong>on</strong>tal. Hills <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mountains, riverbanks <str<strong>on</strong>g>and</str<strong>on</strong>g> coastal formati<strong>on</strong>s, earth dams, highway cuts, trenches <str<strong>on</strong>g>and</str<strong>on</strong>g> the like<br />

are examples of <str<strong>on</strong>g>slope</str<strong>on</strong>g>s. Every <str<strong>on</strong>g>slope</str<strong>on</strong>g> experiences gravitati<strong>on</strong>al forces <str<strong>on</strong>g>and</str<strong>on</strong>g> it may also possibly<br />

be subjected to earthquakes, glacial forces or water pressures. In turn, these phenomena may<br />

be direct influences <strong>on</strong> the <str<strong>on</strong>g>stability</str<strong>on</strong>g> of the <str<strong>on</strong>g>slope</str<strong>on</strong>g>.<br />

A distincti<strong>on</strong> should be made between natural <str<strong>on</strong>g>and</str<strong>on</strong>g> man-made <str<strong>on</strong>g>slope</str<strong>on</strong>g>s where both of the <str<strong>on</strong>g>slope</str<strong>on</strong>g>s<br />

might have different effect <strong>on</strong> the <str<strong>on</strong>g>stability</str<strong>on</strong>g> performance. Man-made <str<strong>on</strong>g>slope</str<strong>on</strong>g>s are usually under-<br />

human c<strong>on</strong>trolled where dimensi<strong>on</strong>s, material characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> strength are c<strong>on</strong>trolled by<br />

several site tests <str<strong>on</strong>g>and</str<strong>on</strong>g> designs to adapt favourable <str<strong>on</strong>g>slope</str<strong>on</strong>g>. Natural <str<strong>on</strong>g>slope</str<strong>on</strong>g>s, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, are<br />

mainly natural occurrence of <str<strong>on</strong>g>slope</str<strong>on</strong>g>s where materials characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> strengths are<br />

generally un-c<strong>on</strong>trolled. Thus, in man-made <str<strong>on</strong>g>slope</str<strong>on</strong>g>s, the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is designed in such a way to<br />

fulfil the characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> strengths of the materials, while for natural <str<strong>on</strong>g>slope</str<strong>on</strong>g>s, an attempt is<br />

used to maintain the <str<strong>on</strong>g>slope</str<strong>on</strong>g> from failure, which is caused by external triggering factor.<br />

Basically, the performance of immovability of a <str<strong>on</strong>g>slope</str<strong>on</strong>g>, safety factor, for both man-made <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

natural <str<strong>on</strong>g>slope</str<strong>on</strong>g>s is evaluated in relative terms of forces ratio that withst<str<strong>on</strong>g>and</str<strong>on</strong>g>s the <str<strong>on</strong>g>slope</str<strong>on</strong>g> from<br />

movements against that of causes failure. Am<strong>on</strong>g many internal <str<strong>on</strong>g>and</str<strong>on</strong>g> external forces,<br />

gravitati<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> seepage forces are the internal factors that mainly cause imbalance forces in<br />

soil or rock structures. Gravity is the force that acts everywhere <strong>on</strong> the earth’s surface, pulling<br />

everything in a directi<strong>on</strong> toward the centre of the earth. While seepage or pore water pressure<br />

causes failure due to the rapid build up of pore water pressure.<br />

For an embankment, the evaluati<strong>on</strong> is based <strong>on</strong> the c<strong>on</strong>trolled characteristics of the materials<br />

used for the embankment <str<strong>on</strong>g>and</str<strong>on</strong>g> an investigati<strong>on</strong> of the underlying sub soils. However, the<br />

situati<strong>on</strong> becomes complicated when the evaluati<strong>on</strong> of <str<strong>on</strong>g>stability</str<strong>on</strong>g> incorporates huge areas or<br />

regi<strong>on</strong>al areas. The evaluati<strong>on</strong> of safety factor or l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide over a huge areas is generally<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 1 : Introducti<strong>on</strong> 2<br />

called as L<str<strong>on</strong>g>and</str<strong>on</strong>g>slide Hazard Evaluati<strong>on</strong> or Mapping. Complexity of the terrain <str<strong>on</strong>g>and</str<strong>on</strong>g> uncertainty<br />

in factors affecting failure of the <str<strong>on</strong>g>slope</str<strong>on</strong>g> are more substantial compared to local <str<strong>on</strong>g>slope</str<strong>on</strong>g>s. Thus,<br />

the need of evaluating l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard has led to the use of Geographical Informati<strong>on</strong><br />

Systems (<str<strong>on</strong>g>GIS</str<strong>on</strong>g>), which are capable to analyze regi<strong>on</strong>al areas based <strong>on</strong> spatial distributi<strong>on</strong>.<br />

However, the principle used for the evaluati<strong>on</strong> of l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard remains the same as in<br />

c<strong>on</strong>venti<strong>on</strong>al local <str<strong>on</strong>g>slope</str<strong>on</strong>g>, which evaluates imbalance in forces. The different is that in spatial<br />

analyzes the safety factor is evaluated in a pixel. Despite the difference, many deterministic<br />

methods can be applied for evaluating l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e of the most comm<strong>on</strong> methods<br />

is so-called limit equilibrium approach. In this method, a <str<strong>on</strong>g>slope</str<strong>on</strong>g> may be divided into a number<br />

of slices <str<strong>on</strong>g>and</str<strong>on</strong>g> the factor of safety is computed by solving the static equilibrium equati<strong>on</strong>s based<br />

<strong>on</strong> a set of assumpti<strong>on</strong>s (Ray, 2004). The parameters required for <str<strong>on</strong>g>analysis</str<strong>on</strong>g> includes <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

geometry <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al soil mechanics parameters. In most cases, the accuracy generally<br />

depends <strong>on</strong> a proper estimati<strong>on</strong> of soil parameters, hydrogeology c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> geometric<br />

c<strong>on</strong>diti<strong>on</strong>s (Burt<strong>on</strong>, 1998). However, c<strong>on</strong>siderati<strong>on</strong> <strong>on</strong> the type of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> either drained or<br />

<str<strong>on</strong>g>undrained</str<strong>on</strong>g> cases should be carefully taken into account, because these cases determined the<br />

chosen of parameters to be used in the analyses <str<strong>on</strong>g>and</str<strong>on</strong>g> the use of the outcome safety factor map.<br />

As the type of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> shows different effect <strong>on</strong> the <str<strong>on</strong>g>stability</str<strong>on</strong>g> result, a decisi<strong>on</strong> must be made<br />

whether to use a total or an effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> especially, in clayey soils. The choice<br />

generally follows from the classificati<strong>on</strong> of a <str<strong>on</strong>g>stability</str<strong>on</strong>g> problem as short or l<strong>on</strong>g term. Slope<br />

failures generally result from a change of loading <strong>on</strong> the soil <str<strong>on</strong>g>and</str<strong>on</strong>g> if this occurs quickly, which<br />

is the case in hilly or mountainous areas, the <str<strong>on</strong>g>stability</str<strong>on</strong>g> during <str<strong>on</strong>g>and</str<strong>on</strong>g> immediately after the change<br />

may need to be assessed. This will be particularly important if the change of loading results in<br />

a change of pore-water pressure in the soil mass <str<strong>on</strong>g>and</str<strong>on</strong>g> the change is rapid compared to the<br />

c<strong>on</strong>solidati<strong>on</strong> time for the soil (Nash, 1987). Thus, in principle a total or an effective stress<br />

approach could be used to analyze any <str<strong>on</strong>g>slope</str<strong>on</strong>g>, although, in practice, the short term <str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

problems often simpler <str<strong>on</strong>g>and</str<strong>on</strong>g> regardless the fluctuati<strong>on</strong> of groundwater table.<br />

1.2 Introducti<strong>on</strong> to Study Area<br />

This study is a part of study that has been c<strong>on</strong>ducted by Ram Lakhan Ray as a part of his<br />

fulfilment of the requirements for the Degree of Master of Science in Physical L<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 1 : Introducti<strong>on</strong> 3<br />

Resources in Vrije Universiteit Brussel. Thus, materials <str<strong>on</strong>g>and</str<strong>on</strong>g> data used for this study are<br />

basically collected <str<strong>on</strong>g>and</str<strong>on</strong>g> re-used from the previous study d<strong>on</strong>e by Ram Lakhan Ray.<br />

The study area is located at Dhading district, Nepal. Nepal is located in the heart of the<br />

Himalayan arc <str<strong>on</strong>g>and</str<strong>on</strong>g> occupies nearly <strong>on</strong>e third of the mountain range (Ray, 2004) with the<br />

l<strong>on</strong>gitude of 80°04’ to 88°12’ easting <str<strong>on</strong>g>and</str<strong>on</strong>g> latitude of 26°22’ to 30°27 northing. The previous<br />

study is a part of a project called “Slope Stability Analysis <str<strong>on</strong>g>using</str<strong>on</strong>g> <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale”,<br />

which lies in the Dhusa Village in Dhading district al<strong>on</strong>g the Prithvi Highway leading from<br />

the Western <str<strong>on</strong>g>and</str<strong>on</strong>g> Eastern parts of the country to Kathm<str<strong>on</strong>g>and</str<strong>on</strong>g>u, the nati<strong>on</strong>al capital of Nepal. The<br />

study area itself is located in the mountainous district in Nepal where nati<strong>on</strong>al road<br />

c<strong>on</strong>necting major towns in some parts of Gorkha <str<strong>on</strong>g>and</str<strong>on</strong>g> Chitwan districts lies within this<br />

mountainous area with latitude of 27°45’ to 27°52’30” northing <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitude of 84°37’30” to<br />

84°52’30” easting. The latitude varies from about 242 to 1922m above sea level. Detail<br />

explanati<strong>on</strong> related to the study area can be found in “Slope Stability Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a<br />

Regi<strong>on</strong>al Scale” by Ram Lakan Ray, 2004. Figure 1 presents the sensitive area where<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides are frequently occurred.<br />

Figure 1: Sensitive L<str<strong>on</strong>g>and</str<strong>on</strong>g>slides Area (Ray, 2004)<br />

This area has been reported as the most critical area where many major l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides occurred.<br />

One of the major l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides in this area had been located at Krishna Bhir of Dhusa al<strong>on</strong>g with<br />

the Prithvi Highway. It was also reported that every year l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide occurs during the rainy<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 1 : Introducti<strong>on</strong> 4<br />

seas<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>, because of that, the major nati<strong>on</strong>al road that c<strong>on</strong>nects other major districts is<br />

closed for several weeks. Due to the frequently occurrence of l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides within this area, the<br />

government has decided to develop mitigati<strong>on</strong> plan for this area.<br />

1.3 Scope of the Study<br />

This study is mainly focused <strong>on</strong> to which extend the used of total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> effective<br />

stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> applicable for the proposed study area. Since, the study area is covered both by<br />

cohesive <str<strong>on</strong>g>and</str<strong>on</strong>g> cohesi<strong>on</strong>less soil, while the total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is mainly applicable for<br />

cohesive soil. Thus the study is c<strong>on</strong>ducted <strong>on</strong>ly <strong>on</strong> cohesive soil presented in the study area.<br />

Two types of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> was performed, i.e. total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, <str<strong>on</strong>g>using</str<strong>on</strong>g> Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> method. Critical height <str<strong>on</strong>g>and</str<strong>on</strong>g> safety factor maps were produced based <strong>on</strong> those<br />

analyses. Steady state <str<strong>on</strong>g>and</str<strong>on</strong>g> quasi dynamic c<strong>on</strong>diti<strong>on</strong>s were c<strong>on</strong>sidered for the present study<br />

with varying soil thickness. For quasi dynamic c<strong>on</strong>diti<strong>on</strong>s, wetness index was applied based<br />

<strong>on</strong> direct rainfall infiltrati<strong>on</strong>s.<br />

1.4 The Objective of the Study<br />

Stability <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <strong>on</strong> a regi<strong>on</strong>al scale have been investigated <str<strong>on</strong>g>and</str<strong>on</strong>g> studied by many researcher.<br />

However, the methods <str<strong>on</strong>g>and</str<strong>on</strong>g> assumpti<strong>on</strong> used are not well explained. Therefore, the present<br />

study aims to find a better approach for <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> over a regi<strong>on</strong>al area. The outcome of<br />

the study will be helpful in planning, designing <str<strong>on</strong>g>and</str<strong>on</strong>g> implementing the development paradigms<br />

of l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide area.<br />

The l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard as an outcome of this study could then be used as a guidance to assists<br />

planners <str<strong>on</strong>g>and</str<strong>on</strong>g> administrators in making decisi<strong>on</strong>s related to the l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide area. Furthermore, it<br />

can be used as an indicati<strong>on</strong> of <str<strong>on</strong>g>stability</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s over the study area. Risk assessment <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

measurement can be interpreted based <strong>on</strong> the outcome. This will certainly provide useful<br />

informati<strong>on</strong> of <str<strong>on</strong>g>stability</str<strong>on</strong>g> <strong>on</strong> a project site in the early stage where necessary remedial acti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> design can be taken to avoid <str<strong>on</strong>g>slope</str<strong>on</strong>g> failure. In return, a good design <str<strong>on</strong>g>and</str<strong>on</strong>g> remedial acti<strong>on</strong><br />

will reduce budget <str<strong>on</strong>g>and</str<strong>on</strong>g> also provide security <strong>on</strong> a project <str<strong>on</strong>g>and</str<strong>on</strong>g> society living nearby the project.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 5<br />

CHAPTER 2 : LITERATURE REVIEW<br />

2.1 General<br />

Slides may occur in almost every c<strong>on</strong>ceivable manner, slowly or suddenly <str<strong>on</strong>g>and</str<strong>on</strong>g> with or<br />

without any apparent provocati<strong>on</strong>. The term l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide is comm<strong>on</strong>ly used to denote the<br />

downward <str<strong>on</strong>g>and</str<strong>on</strong>g> outward movements of <str<strong>on</strong>g>slope</str<strong>on</strong>g>-forming materials al<strong>on</strong>g surfaces of separati<strong>on</strong><br />

by falling, sliding, <str<strong>on</strong>g>and</str<strong>on</strong>g> flowing at a faster rate. Although l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides are primarily associated<br />

with mountainous regi<strong>on</strong>s they can also occur in areas of low relief, especially in surface<br />

excavati<strong>on</strong>s for highways, buildings <str<strong>on</strong>g>and</str<strong>on</strong>g> open-pit mines. The geological history <str<strong>on</strong>g>and</str<strong>on</strong>g> human<br />

activities often cause unstable c<strong>on</strong>diti<strong>on</strong>s that lead to <str<strong>on</strong>g>slope</str<strong>on</strong>g> failure.<br />

A quantitative assessment of the <str<strong>on</strong>g>stability</str<strong>on</strong>g> of a <str<strong>on</strong>g>slope</str<strong>on</strong>g> is clearly important when a judgement is<br />

needed about whether the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is stable or not, <str<strong>on</strong>g>and</str<strong>on</strong>g> decisi<strong>on</strong>s are to be made as a<br />

c<strong>on</strong>sequence. The quantitative assessment of the <str<strong>on</strong>g>stability</str<strong>on</strong>g> is referred to safety factor, which is<br />

calculated as a ratio between forces that withst<str<strong>on</strong>g>and</str<strong>on</strong>g> the structural soil mass from falling or<br />

resisting forces <str<strong>on</strong>g>and</str<strong>on</strong>g> forces that causes the structural soil to failure or driving forces.<br />

The safety factor evaluati<strong>on</strong> is depended <strong>on</strong> a number of factors <str<strong>on</strong>g>and</str<strong>on</strong>g> the evaluati<strong>on</strong> itself<br />

depends <strong>on</strong> the types of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> used. The factors affecting <str<strong>on</strong>g>slope</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g> are generally<br />

influenced by gravity forces <str<strong>on</strong>g>and</str<strong>on</strong>g> seepage forces (Craig, 2004), while type of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> to be<br />

used is depended <strong>on</strong> whether the safety factor is c<strong>on</strong>sidered as short or l<strong>on</strong>g term applicati<strong>on</strong>s.<br />

According to Nash (1987) both of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> type can be applied for any <str<strong>on</strong>g>slope</str<strong>on</strong>g>s, eventhough,<br />

the c<strong>on</strong>siderati<strong>on</strong> taken for short term applicati<strong>on</strong> is much simpler <str<strong>on</strong>g>and</str<strong>on</strong>g> regardless the seepage<br />

forces.<br />

Deterministic, or physically based, models are based <strong>on</strong> physical laws of c<strong>on</strong>servati<strong>on</strong> of<br />

mass, energy or momentum. The parameters used in these models can be determined in the<br />

field or in the laboratory. Most deterministic models are site-specific <str<strong>on</strong>g>and</str<strong>on</strong>g> do not take into<br />

account the spatial distributi<strong>on</strong> of the input parameters. Models which take into account the<br />

spatial distributi<strong>on</strong> of input parameters are called ‘distributed models’ (Van Westen, 1994).<br />

Deterministic distributed models require maps which give the spatial distributi<strong>on</strong> of the input<br />

data. The applicati<strong>on</strong> of deterministic models for the z<strong>on</strong>ati<strong>on</strong> of l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard in larger<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 6<br />

areas, however, has never seen a more extensive development, due to the regi<strong>on</strong>al variability<br />

of geotechnical variables such as cohesi<strong>on</strong>, angle of internal fricti<strong>on</strong>, thickness of layers, or<br />

depth to groundwater. Furthermore, the calculati<strong>on</strong> of safety factors over larger areas involves<br />

an extremely large number of calculati<strong>on</strong>s, which could not be executed without the use of<br />

<str<strong>on</strong>g>GIS</str<strong>on</strong>g>.<br />

2.2 Slope Failure Mechanism<br />

The <str<strong>on</strong>g>slope</str<strong>on</strong>g> failure occurs because of in<str<strong>on</strong>g>stability</str<strong>on</strong>g> forces acting <strong>on</strong> a soil or rock mass. As all<br />

masses <strong>on</strong> earth’s surface are affected by gravity forces, the <str<strong>on</strong>g>slope</str<strong>on</strong>g>s, which are geometrically<br />

elevated above certain latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> have a certain degree of <str<strong>on</strong>g>slope</str<strong>on</strong>g>, tends to slide to lower<br />

latitude. Once the balance of the forces is disturbed by internal changes or external triggering<br />

events, the mass structures are no l<strong>on</strong>ger able to withst<str<strong>on</strong>g>and</str<strong>on</strong>g> the forces that push the mass to a<br />

lower positi<strong>on</strong>. The movements of the mass from the original positi<strong>on</strong>s due to imbalance<br />

forces is called l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide.<br />

The imbalance forces occurring <strong>on</strong> the soil or rock mass can be taken place due to internal<br />

forces or external forces. The internal forces include strengths between particles <str<strong>on</strong>g>and</str<strong>on</strong>g> pore<br />

water pressure, while external forces are the forces that act <strong>on</strong> the structural masses due to<br />

triggering events such as earthquakes. The strengths between soil or rock particles are the<br />

forces that generally withst<str<strong>on</strong>g>and</str<strong>on</strong>g> the soil mass from failure. Thus, in case of gravitati<strong>on</strong> force<br />

<strong>on</strong>ly that acts <strong>on</strong> the structural mass, the tangential comp<strong>on</strong>ents of gravity force to the <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the shear stress are the two forces that act inversely each other. Thus, if the shear stresses<br />

are larger than the tangential gravity force, the structural mass will not move or deform as<br />

illustrated in Figure 2.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 7<br />

τ<br />

g p<br />

Not Moved<br />

g<br />

g t<br />

(a) Gentle Slope (b) Steep Slope<br />

Figure 2 : Simplificati<strong>on</strong> Mass <strong>on</strong> Slope<br />

Moved<br />

Based <strong>on</strong> the type of mass movements, Varnes (1958) classified gravity-induced movements,<br />

which was based <strong>on</strong> two variables, type of materials <str<strong>on</strong>g>and</str<strong>on</strong>g> type of movement. Movement types<br />

are divided into falls, topples, slides, flows <str<strong>on</strong>g>and</str<strong>on</strong>g> a combinati<strong>on</strong> of those movements, while the<br />

materials are divided into two classes, i.e. rocks <str<strong>on</strong>g>and</str<strong>on</strong>g> engineering soils, as listed in Table 1.<br />

Table 1 : Classificati<strong>on</strong> of L<str<strong>on</strong>g>and</str<strong>on</strong>g>slides (Varnes, 1975)<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

τ<br />

g p<br />

Type of Material<br />

Type of Movement Unc<strong>on</strong>solidated Sediment or Soil<br />

Bedrock<br />

Coarse Fine<br />

Falls Rock Fall Debris Fall Earth Fall<br />

Topples Rock Topples Debris Topples Earth Topples<br />

Slides<br />

Rotati<strong>on</strong>al Rock Slump Debris Slump Earth Slump<br />

Transiti<strong>on</strong>al Rock Block Slide Debris Slide Earth Slide<br />

Flows Rock Flow Debris Flow Earth Flow<br />

Complex Combinati<strong>on</strong> of two or more types<br />

g<br />

g t


Chapter 2 : Literature Review 8<br />

In fall movements, the movements occur by free fall or a series of leaps <str<strong>on</strong>g>and</str<strong>on</strong>g> bounds down the<br />

steep <str<strong>on</strong>g>slope</str<strong>on</strong>g>. The movements are relatively free <str<strong>on</strong>g>and</str<strong>on</strong>g> lack of a slide plane. Depending up<strong>on</strong> the<br />

type of <str<strong>on</strong>g>slope</str<strong>on</strong>g> materials involved, it may be a rock-fall, soil fall, debris fall, earth fall, boulder<br />

fall, etc.<br />

Slide type of movements occurs when the materials move as a block mass al<strong>on</strong>g the failure<br />

plane. The failure plane is created as a result of imbalance forces that act in the plane in such<br />

away that the shear stresses of the particles are no l<strong>on</strong>ger capable to resist the soil or rock<br />

mass. There are two types of slides as depicted in Table 1, i.e. rotati<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> translati<strong>on</strong>al<br />

slides. The difference between those types is the type of the failure plane, translati<strong>on</strong>al slides<br />

occur when the failure plane is a planar parallel to the surface, while rotati<strong>on</strong>al slides occur<br />

when the failure plane is a circle.<br />

The other two movements, topple <str<strong>on</strong>g>and</str<strong>on</strong>g> flow, are c<strong>on</strong>sidered less sliding because the<br />

movements are progressively. Topple type of movements occurs as a result of overturning of<br />

the blocks rather than sliding, while flows are the movements of materials progressively<br />

downward.<br />

A distincti<strong>on</strong> should be made between the factor that affects the <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

triggering factors that caused imbalances in forces. Both of the factors are explained in the<br />

following secti<strong>on</strong>s.<br />

2.2.1 Internal Factors Effecting Slope In<str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

It is very important to recognize the factors that effect in<str<strong>on</strong>g>stability</str<strong>on</strong>g> of a <str<strong>on</strong>g>slope</str<strong>on</strong>g> in order to know<br />

the mechanism of failure <str<strong>on</strong>g>and</str<strong>on</strong>g> possible assessment of l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides. The factors that are those<br />

which lead to a slide without any change in surface c<strong>on</strong>diti<strong>on</strong>s, which involve unaltered<br />

shearing stresses in the <str<strong>on</strong>g>slope</str<strong>on</strong>g> material (Ramiah <str<strong>on</strong>g>and</str<strong>on</strong>g> Chickanagappa, 1990) is called internal<br />

factors. The cause of such a c<strong>on</strong>diti<strong>on</strong> is the decrease in shearing resistance brought about by<br />

excess pore water pressure, material softening, breakage of cementati<strong>on</strong> b<strong>on</strong>ds <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong><br />

exchange. Thus, l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides caused by <strong>on</strong>ly internal factors are affected by two major forces,<br />

i.e. gravity force <str<strong>on</strong>g>and</str<strong>on</strong>g> pore water pressures.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 9<br />

2.2.1.1 Slope <str<strong>on</strong>g>and</str<strong>on</strong>g> Gravity Force<br />

The angle at which material <str<strong>on</strong>g>slope</str<strong>on</strong>g>s is the major determining how much of the force of gravity<br />

is directed down<str<strong>on</strong>g>slope</str<strong>on</strong>g>. If a block of rock or soil is placed <strong>on</strong> a flat surface, gravity acts<br />

vertically <str<strong>on</strong>g>and</str<strong>on</strong>g> perpendicular to the flat surface <str<strong>on</strong>g>and</str<strong>on</strong>g> the full force of gravity is directed<br />

downward <strong>on</strong>to the surface. If the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is rotated, some of the force of gravity is directed, or<br />

resolved, perpendicular to the <str<strong>on</strong>g>slope</str<strong>on</strong>g>d surface, called normal force, <str<strong>on</strong>g>and</str<strong>on</strong>g> part is resolved parallel<br />

to the surface, called shear force. As the angle of the <str<strong>on</strong>g>slope</str<strong>on</strong>g>d surface increases, the force of<br />

gravity remains the same however the amount of that force resolved as shear force increases<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the amount resolved as normal force decreases as shown in Figure 2. At some point the<br />

ratio of shear or normal force, called the coefficient of sliding fricti<strong>on</strong>, reaches a critical level<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the block begins to slide down the <str<strong>on</strong>g>slope</str<strong>on</strong>g>. Every material <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>slope</str<strong>on</strong>g> type has an inherent<br />

angle at which the material becomes unstable, called the angle of repose. Most unc<strong>on</strong>solidated<br />

materials, such as soil or sediment, have angles of between 30 <str<strong>on</strong>g>and</str<strong>on</strong>g> 40 degrees. The angle of<br />

repose for solid rock materials depends <strong>on</strong> the smoothness of the <str<strong>on</strong>g>slope</str<strong>on</strong>g>d surface <str<strong>on</strong>g>and</str<strong>on</strong>g> the nature<br />

of the rock material, <str<strong>on</strong>g>and</str<strong>on</strong>g> can vary from 20 – 45 degrees.<br />

2.2.1.2 Influence of Groundwater<br />

Pore water is the water held within the void spaces, or pores, in the rock or sediment. Pore<br />

fluid has two distinct effects <strong>on</strong> mass wasting risk. Pore water has a tendency to liquefy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

disaggregate unc<strong>on</strong>solidated materials, such as sediment or soil. Pore water tends to<br />

destabilize rock layers <strong>on</strong> <str<strong>on</strong>g>slope</str<strong>on</strong>g>d surfaces. When pore water is under pressure it reduces the<br />

normal force holding rock layer stable <strong>on</strong> the <str<strong>on</strong>g>slope</str<strong>on</strong>g>d surface without reducing the shear force<br />

that causes the downward moti<strong>on</strong> of the rock.<br />

2.2.2 External Triggering Events<br />

External causes are those which produce an increase of the shearing stresses at unaltered<br />

shearing resistance of the material. They include steepening of the <str<strong>on</strong>g>slope</str<strong>on</strong>g>, depositi<strong>on</strong> of<br />

material al<strong>on</strong>g the edge of <str<strong>on</strong>g>slope</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> earthquake forces.<br />

Earthquakes have been reported by many researchers as the most destructive envir<strong>on</strong>ment<br />

phenomena. During an earthquake, the sudden ground shaking builds up rapid imbalance<br />

forces in the soil or rock structures in such away that reducti<strong>on</strong> in normal stress <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 10<br />

c<strong>on</strong>sequently also shear strength may occur. In rock materials, breaking of cementati<strong>on</strong> in<br />

disc<strong>on</strong>tinuities or of intact rock may also occur.<br />

Steepening of the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is c<strong>on</strong>sidered as human interacti<strong>on</strong> rather than envir<strong>on</strong>mental effect. It<br />

can be occurred when a mountainous area is cut for road, tunnel, aesthetic of residential, etc.<br />

Modificati<strong>on</strong> of a <str<strong>on</strong>g>slope</str<strong>on</strong>g> causes changing in <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle so that it is no l<strong>on</strong>ger at the angle of<br />

repose. Then, the mass-wasting event happens in order to restore the <str<strong>on</strong>g>slope</str<strong>on</strong>g> to its angle of<br />

repose.<br />

2.3 Fundamentals of Soil Parameters<br />

A soil can be visualized as a skelet<strong>on</strong> of solid particles enclosing c<strong>on</strong>tinuous voids which<br />

c<strong>on</strong>tain water <str<strong>on</strong>g>and</str<strong>on</strong>g> or air. For the range of stresses usually encountered in practice the<br />

individual solid particles <str<strong>on</strong>g>and</str<strong>on</strong>g> water can be c<strong>on</strong>sidered incompressible; air, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

is highly compressible. The volume of the soil skelet<strong>on</strong> as a whole can change due to<br />

rearrangement of the soil particles into new positi<strong>on</strong>s, mainly by rolling <str<strong>on</strong>g>and</str<strong>on</strong>g> sliding, with a<br />

corresp<strong>on</strong>ding change in the forces acting between particles. The actual compressibility of the<br />

soil skelet<strong>on</strong> will depend <strong>on</strong> the structural arrangement of the solid particles. In a fully<br />

saturated soil, since water is c<strong>on</strong>sidered to be incompressible, a reducti<strong>on</strong> in volume is<br />

possible <strong>on</strong>ly if some of the water can escape from the voids. In a dry or a partially saturated<br />

soil a reducti<strong>on</strong> in volume is always possible due to compressi<strong>on</strong> of the air in the voids,<br />

provided there is scope for particle rearrangement.<br />

The stress-strain relati<strong>on</strong>ship for any material is used for analyzing the <str<strong>on</strong>g>stability</str<strong>on</strong>g> of structures,<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g>, foundati<strong>on</strong>, etc. Shear stress can be resisted <strong>on</strong>ly by the skelet<strong>on</strong> of solid particles, by<br />

means of forces developed at the interparticle c<strong>on</strong>tacts. Normal stress may be resisted by the<br />

soil skelet<strong>on</strong> through an increase in the interparticle forces. If the soil is fully saturated, the<br />

water filling the voids can also withst<str<strong>on</strong>g>and</str<strong>on</strong>g> normal stress by an increase in pressure.<br />

2.3.1 Principle of Effective Stress<br />

Effective stress in any directi<strong>on</strong> is defined as the difference between the total stress in that<br />

directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the pore-water pressure. The term effective stress is, therefore, a misnomer, its<br />

meaning being a stress difference (Sim<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Menzies, 1977). Stresses are transmitted<br />

through a soil both by the soil skelet<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> by the pore fluid. The soil skelet<strong>on</strong> can transmit<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 11<br />

normal stresses <str<strong>on</strong>g>and</str<strong>on</strong>g> shear stresses through the interparticle c<strong>on</strong>tacts, but the pore fluid can<br />

exert <strong>on</strong>ly all-round pressure. It is the stresses transmitted by the soil skelet<strong>on</strong> through the<br />

inter particle c<strong>on</strong>tacts that c<strong>on</strong>trol the strength <str<strong>on</strong>g>and</str<strong>on</strong>g> deformati<strong>on</strong> of the soil. Where stresses<br />

applied to the soil are wholly supported by the pore fluid pressure, they are not felt by the<br />

c<strong>on</strong>tacts between particles <str<strong>on</strong>g>and</str<strong>on</strong>g> hence the soil behaviour is not affected. The effective stress<br />

(σ’) acting <strong>on</strong> any plane is defined by the following equati<strong>on</strong> :<br />

σ’ = σ - u (1 )<br />

in which σ is the total stress acting <strong>on</strong> the plane <str<strong>on</strong>g>and</str<strong>on</strong>g> u is the pore pressure.<br />

2.3.2 Failure Criteri<strong>on</strong><br />

Numerous failure criteria have been proposed for the <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of soil mass, but most<br />

of them are borrowed from basic mechanics. Since soil is a complicated material, some stress-<br />

strain-time behaviour is highly n<strong>on</strong>-linear. However, for practical uses the linear elastic model<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Mohr-Coulomb criteri<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> their shear equati<strong>on</strong> are comm<strong>on</strong>ly used as expressed below:<br />

τ = c + σ tan φ (2 )<br />

where τ is the shear strength, c is the cohesi<strong>on</strong>, σ is the total stress <str<strong>on</strong>g>and</str<strong>on</strong>g> φ is the angle of<br />

internal fricti<strong>on</strong>. Depending <strong>on</strong> the type of <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, total or effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, the<br />

parameters of c, σ <str<strong>on</strong>g>and</str<strong>on</strong>g> φ should be substitutes with c’, σ’ <str<strong>on</strong>g>and</str<strong>on</strong>g> φ’.<br />

2.3.3 <str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Strength<br />

A distincti<strong>on</strong> should be made between drained <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>undrained</str<strong>on</strong>g> strength of cohesive materials.<br />

As cohesive materials or clays generally posses less permeability compared to s<str<strong>on</strong>g>and</str<strong>on</strong>g>, thus, the<br />

movement of water is restricted whenever there is change in volume. So, for clay, it needs<br />

years to dissipate the excess pore water pressure before the effective equilibrium is reached.<br />

Shortly, drained c<strong>on</strong>diti<strong>on</strong> refers to the c<strong>on</strong>diti<strong>on</strong> where drainage is allowed, while <str<strong>on</strong>g>undrained</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong> refers to the c<strong>on</strong>diti<strong>on</strong> where drainage is restricted. Besides, the drained <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>undrained</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> of cohesive soils, it should be noted that there is a decline in strength of<br />

cohesive soils from its peak strength to its residual strength due to restructuring.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 12<br />

(a) Triaxial Undrained Test (b) Triaxial <str<strong>on</strong>g>Drained</str<strong>on</strong>g> Test<br />

2.3.3.1 Undrained Strength<br />

Figure 3 : Results of Undrained Triaxial Tests <strong>on</strong> Saturated Clay<br />

It has been found empirically that the strength of a saturated soil is c<strong>on</strong>stant if its volume<br />

remains unchanged. This descripti<strong>on</strong> is given in Figure 3(a) which shows the result of testing<br />

several identical specimens of saturated clay in a triaxial apparatus with different c<strong>on</strong>fining<br />

pressures. If no drainage is allowed, the specimens have the same <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> it appears that the clay is purely cohesive. The different by an amount equal to the<br />

difference in c<strong>on</strong>fining pressures, <str<strong>on</strong>g>and</str<strong>on</strong>g> hence the effective stresses are the same. This<br />

behaviour is in c<strong>on</strong>trast to what happens if the drainage is not restricted; the specimens would<br />

have different drainage strengths as shown in Figure 3(b).<br />

Normally, the drained <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>undrained</str<strong>on</strong>g> strength are derived by laboratory test by testing a<br />

specimen <strong>on</strong> a triaxial compressi<strong>on</strong> test. Then, the drainage c<strong>on</strong>diti<strong>on</strong> is applied <strong>on</strong> the<br />

specimens whether drained or <str<strong>on</strong>g>undrained</str<strong>on</strong>g>, the strength result is comparable to drainage<br />

c<strong>on</strong>diti<strong>on</strong>.<br />

However, to derive drained <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>undrained</str<strong>on</strong>g> strength from the laboratory test takes a l<strong>on</strong>g time<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> costs a large amount of budget. To overcome this problem, some researchers proposed<br />

correlati<strong>on</strong> for <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength, <strong>on</strong>e of them are proposed by Skempt<strong>on</strong> (1957). The<br />

following correlati<strong>on</strong> between the ratio cu/σ’ <str<strong>on</strong>g>and</str<strong>on</strong>g> plasticity index, Ip, for normally<br />

c<strong>on</strong>solidated clays was proposed by Skempt<strong>on</strong> (1957):<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 13<br />

c u<br />

=<br />

σ'<br />

0.<br />

11<br />

+<br />

0.<br />

0037 ⋅ I<br />

British St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard gives a rough guide of <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength in relati<strong>on</strong>ships with the<br />

c<strong>on</strong>sistency as shown in Table 2. Bjerrum <str<strong>on</strong>g>and</str<strong>on</strong>g> Sim<strong>on</strong>s (1960) proposed the same correlati<strong>on</strong><br />

as proposed by Skempt<strong>on</strong> in the form of chart as shown in Figure 4. Another correlati<strong>on</strong><br />

proposed by Carter <str<strong>on</strong>g>and</str<strong>on</strong>g> Bentley (1991) correlates natural <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Liquidity Index (LI) as shown in Figure 5.<br />

Table 2: C<strong>on</strong>sistency-Strength Relati<strong>on</strong>ship from Field Inspecti<strong>on</strong> (BS 8004: 1986)<br />

C<strong>on</strong>sistency Field Indicati<strong>on</strong>s<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

p<br />

Undrained Shear<br />

Strength (kPa)<br />

Very Stiff Brittle or very tough > 150<br />

Stiff C<strong>on</strong> not be moulded in the<br />

fingers<br />

Firm Can be moulded in the fingers<br />

by str<strong>on</strong>g pressure<br />

75 - 150<br />

40 - 75<br />

Soft Easily moulded in the fingers 20 - 40<br />

Very Soft Exudes between the fingers<br />

when squeezed in the fist<br />

< 20<br />

Figure 4 : Relati<strong>on</strong>ship between su/σ ' <str<strong>on</strong>g>and</str<strong>on</strong>g> plasticity Index (Bjerrum <str<strong>on</strong>g>and</str<strong>on</strong>g> Sim<strong>on</strong>s, 1960)<br />

(3 )


Chapter 2 : Literature Review 14<br />

The <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength usually uses when a total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is used. This correlati<strong>on</strong><br />

explains that the relati<strong>on</strong>ships between <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength increases to the depth.<br />

Figure 5 : Relati<strong>on</strong>ship between the Natural Shear Strength of Undisturbed Clays <str<strong>on</strong>g>and</str<strong>on</strong>g> Liquidity Index<br />

2.3.3.2 <str<strong>on</strong>g>Drained</str<strong>on</strong>g> Strength<br />

(Carter <str<strong>on</strong>g>and</str<strong>on</strong>g> Bentley, 1991)<br />

When the water movement is not restricted, a specimen placed <strong>on</strong> triaxial compressi<strong>on</strong> test<br />

will show different strengths for different c<strong>on</strong>fining pressures as shown in Figure 3. By<br />

referring to a triaxial test, the strength parameters of cohesive soils can be obtained by means<br />

of c<strong>on</strong>solidated-drained tests or by means of c<strong>on</strong>solidated-<str<strong>on</strong>g>undrained</str<strong>on</strong>g> tests with pore pressure<br />

measurement. Correlati<strong>on</strong> given by Naval Facilities Engineering Comm<str<strong>on</strong>g>and</str<strong>on</strong>g> (NAVFAC),<br />

1986, gives a good estimati<strong>on</strong> <strong>on</strong> the effective angle of shearing resistance as shown in Figure<br />

6.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 15<br />

Figure 6 : Correlati<strong>on</strong> between Effective Fricti<strong>on</strong> Angle <str<strong>on</strong>g>and</str<strong>on</strong>g> Plasticity Index for Fine-Grained Soils<br />

2.3.3.3 Residual Strength<br />

(NAVFAC DM-7)<br />

For <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of shear characteristics of overc<strong>on</strong>solidated soils relating to <str<strong>on</strong>g>stability</str<strong>on</strong>g> problems,<br />

ordinary shear tests are not suitable because they give too high a shear value. Skempt<strong>on</strong><br />

(1964) showed that the strength remaining in laboratory samples after large shearing<br />

displacement corresp<strong>on</strong>ded closely with the computed strength from actual l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides;<br />

therefore, he proposed a residual strength c<strong>on</strong>cept as shown in Figure 7. Because of the peak<br />

or residual shear parameters are relatively time c<strong>on</strong>suming <str<strong>on</strong>g>and</str<strong>on</strong>g> expensive, for practical uses<br />

some simple experimental equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> correlati<strong>on</strong>s for estimating these strength parameters<br />

have been proposed by numerous in investigators such as proposed by Jamiolkowski <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Pasqualini as cited by CRRI (1979) as below:<br />

φ’r = 453.1 (LL -0.85 ) (4 )<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 16<br />

Figure 7 : The C<strong>on</strong>cept of Residual Shear Strength<br />

2.3.4 Choice Between Total <str<strong>on</strong>g>and</str<strong>on</strong>g> Effective Stress<br />

A decisi<strong>on</strong> must be made when analysing <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> whether to use a total or an effective<br />

stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. The choice generally follows from the classificati<strong>on</strong> of a <str<strong>on</strong>g>stability</str<strong>on</strong>g> problem as<br />

short or l<strong>on</strong>g term. Slope failures generally result from a change of loading <strong>on</strong> the soil <str<strong>on</strong>g>and</str<strong>on</strong>g> if<br />

this occurs quickly, the <str<strong>on</strong>g>stability</str<strong>on</strong>g> during <str<strong>on</strong>g>and</str<strong>on</strong>g> immediately after the change may need to be<br />

assessed. This will be particularly important if the change of loading results in a change of<br />

pore-water pressure in the soil mass <str<strong>on</strong>g>and</str<strong>on</strong>g> the change is rapid compared to c<strong>on</strong>solidati<strong>on</strong> time of<br />

the soil or if the loading is a natural fluctuati<strong>on</strong> of groundwater levels as occurs in natural<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g>s the problem is c<strong>on</strong>sidered to be l<strong>on</strong>g term.<br />

Theoretically, both total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress analyses could be applied to analyze any <str<strong>on</strong>g>slope</str<strong>on</strong>g>,<br />

although since soils are predominantly fricti<strong>on</strong>al materials an effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> seems<br />

inherently more logical especially for the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of l<strong>on</strong>g-term problems. In practice for<br />

short-term <str<strong>on</strong>g>stability</str<strong>on</strong>g> problems a total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is often simpler <str<strong>on</strong>g>and</str<strong>on</strong>g> more c<strong>on</strong>venient as<br />

there is usually difficulty in predicting pore-pressure changes.<br />

In specifying the shear strength parameters for a total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> it is assumed that for<br />

saturated soils φu = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> cu is the <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength, i.e. the soil behaves as if it were<br />

purely cohesive. In an effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> the effective strength parameters, c’<str<strong>on</strong>g>and</str<strong>on</strong>g> φ’, are<br />

used <str<strong>on</strong>g>and</str<strong>on</strong>g> the pore pressure must be specified as an independent variable.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 17<br />

Another explanati<strong>on</strong> related to total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress is given by the permeability of the soil<br />

structure. If the permeability of the soil is low, a c<strong>on</strong>siderable time will elapse before any<br />

significant dissipati<strong>on</strong> of excess pore water pressure will have taken place. At the end of<br />

c<strong>on</strong>structi<strong>on</strong> the soil will be virtually in the <str<strong>on</strong>g>undrained</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> will<br />

be relevant. In principle an effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is also possible for the end-of-c<strong>on</strong>structi<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>using</str<strong>on</strong>g> the appropriate value of pore water pressure for this c<strong>on</strong>diti<strong>on</strong>. However,<br />

because of its greater simplicity, a total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is generally used. It should be realized<br />

that the same factor of safety will not generally be obtained from a total stress <str<strong>on</strong>g>and</str<strong>on</strong>g> an effective<br />

stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of the end-of-c<strong>on</strong>structi<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>. In a total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> it is implied that<br />

the pore water pressures are those for a failure c<strong>on</strong>diti<strong>on</strong>, while in an effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g><br />

the pore water pressures used are those predicted for a n<strong>on</strong>-failure c<strong>on</strong>diti<strong>on</strong>.<br />

2.4 Stability Analysis Methods<br />

The <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> methods are categorized into two basic approaches, i.e. (1) Limit<br />

Equilibrium Analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) Deformati<strong>on</strong> <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> It is also depended <strong>on</strong> the type of<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> used, i.e. (1) Total Stress Analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) Effective Stress Analysis. So far, limit<br />

equilibrium methods are the most comm<strong>on</strong> used for assessing <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g>, while the type of<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> can be used both total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>.<br />

Limit equilibrium approach postulates that the <str<strong>on</strong>g>slope</str<strong>on</strong>g> might fail by a mass of soil sliding <strong>on</strong> a<br />

failure surface. When the failure occurs, the shear strength is fully mobilized all the way al<strong>on</strong>g<br />

the failure plane, <str<strong>on</strong>g>and</str<strong>on</strong>g> the overall <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> each part of it are in static equilibrium. In the<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> of stable <str<strong>on</strong>g>slope</str<strong>on</strong>g>s the shear strength mobilized under equilibrium c<strong>on</strong>diti<strong>on</strong>s is less than<br />

the available shear strength, <str<strong>on</strong>g>and</str<strong>on</strong>g> it is c<strong>on</strong>venti<strong>on</strong>al to introduce a factor of safety F defined by:<br />

Available Shear Strength<br />

FS = (5 )<br />

Shear Strength required for <str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

Equati<strong>on</strong> (5) is the basic formula in assessing safety factor in limit equilibrium methods.<br />

Depending <strong>on</strong> the method used, the slip surfaces are usually defined <str<strong>on</strong>g>and</str<strong>on</strong>g> the safety factors are<br />

calculated based <strong>on</strong> the selected slip surface. The smallest safety factor from the defined<br />

failure planed is c<strong>on</strong>sidered as the safety factor of the <str<strong>on</strong>g>slope</str<strong>on</strong>g>. The failure plane itself can be<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 18<br />

curve or plane secti<strong>on</strong>, thus, it is necessary to c<strong>on</strong>sider the likely shape of the failure surface.<br />

Table 3 presents the various method of limit equilibrium <str<strong>on</strong>g>and</str<strong>on</strong>g> their formed of failure planed.<br />

The chosen of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> type determines the shear strengths should be used for the <str<strong>on</strong>g>analysis</str<strong>on</strong>g>.<br />

The shear strength of the soil is normally given by the Mohr-Coulomb failure criteri<strong>on</strong> as<br />

follow :<br />

s = cu = su (for <str<strong>on</strong>g>undrained</str<strong>on</strong>g> total stress analyses) (6 )<br />

s = c’ + σ’ tan φ’ (for drained effective stress analyses) (7 )<br />

where, cu or su are the <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strengths <str<strong>on</strong>g>and</str<strong>on</strong>g> c’ <str<strong>on</strong>g>and</str<strong>on</strong>g> φ’ are the effective cohesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the effective fricti<strong>on</strong> angle, respectively.<br />

Table 3 : Methods of Analysis<br />

Method Circular N<strong>on</strong>-Circular<br />

Infinite Slope<br />

Wedge Analysis<br />

Total Stress Analysis<br />

Ordinary or Swedish<br />

Method<br />

Bishop's Method of Slices<br />

Janbu Simplified<br />

Spencer's Method<br />

Janbu Rigorous<br />

*<br />

*<br />

Assumpti<strong>on</strong> about<br />

Interslice force<br />

* Parallel to Slope<br />

* Defined Inclinati<strong>on</strong><br />

Resultant parallel to<br />

base of each slice<br />

* (*) Horiz<strong>on</strong>tal<br />

* * Horiz<strong>on</strong>tal<br />

* (*) C<strong>on</strong>stant Inclinati<strong>on</strong><br />

* * Define thrust line<br />

As listed in Table 3, there are many limit equilibrium methods available; however, <strong>on</strong>ly linear<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> methods are discussed in detail. The methods of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> which are<br />

most amenable to h<str<strong>on</strong>g>and</str<strong>on</strong>g> calculati<strong>on</strong> are the infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

wedge or sliding block <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. These methods are simple to use since in each there is a<br />

linear equati<strong>on</strong> for the factor of safety <str<strong>on</strong>g>and</str<strong>on</strong>g> thus it is c<strong>on</strong>sidered as linear methods.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 19<br />

2.4.1 Infinite Slopes<br />

Infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> is <strong>on</strong>e of the simplest approaches for <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. According to<br />

Skempt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Delory, 1957, a l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides of a planar mass of soil occurs in slip surface which<br />

is approximately parallel to the ground surface can be analyzed effectively <str<strong>on</strong>g>using</str<strong>on</strong>g> the infinite<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. The name infinite-<str<strong>on</strong>g>slope</str<strong>on</strong>g>s is given to earth masses of c<strong>on</strong>stant inclinati<strong>on</strong>s of<br />

unlimited extent <str<strong>on</strong>g>and</str<strong>on</strong>g> uniform c<strong>on</strong>diti<strong>on</strong>s at any given depth below the surface. Thus, in this<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> the soil is assumed to slide <strong>on</strong> a plane slip surface which is parallel to the ground<br />

surface <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is assumed to be infinite in extent at a certain inclinati<strong>on</strong> to the<br />

horiz<strong>on</strong>tal (Nash, 1987). Even though, such assumpti<strong>on</strong>s adopted by infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g>s are<br />

realistically never taken place, infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> method provides a good general idea about the<br />

<str<strong>on</strong>g>stability</str<strong>on</strong>g> of a <str<strong>on</strong>g>slope</str<strong>on</strong>g>. Based <strong>on</strong> the type of materials <str<strong>on</strong>g>and</str<strong>on</strong>g> groundwater occurrence, infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

can be determined in several cases as elaborated below.<br />

2.4.1.1 Cohesive Material in Dry C<strong>on</strong>diti<strong>on</strong><br />

As shown in Figure 8, a case of <str<strong>on</strong>g>slope</str<strong>on</strong>g> with slip failure parallel to the ground surface is applied<br />

with the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is infinite extent <str<strong>on</strong>g>and</str<strong>on</strong>g> no seepage is assumed. The gravity force (W) of a column<br />

soil mass with thickness b is given by γHb. As a c<strong>on</strong>sequence of angle i, the weight of the<br />

column mass can be divided into two comp<strong>on</strong>ents namely S, the force al<strong>on</strong>g the inclinati<strong>on</strong> of<br />

the block <str<strong>on</strong>g>and</str<strong>on</strong>g> N, the force normal to the inclinati<strong>on</strong> of the block. Both of the force can be<br />

expressed as follow, while forces acting parallel to the slip surface, F1 <str<strong>on</strong>g>and</str<strong>on</strong>g> F2 are assumed<br />

equal <str<strong>on</strong>g>and</str<strong>on</strong>g> opposite, <str<strong>on</strong>g>and</str<strong>on</strong>g> are therefore ignored in the <str<strong>on</strong>g>analysis</str<strong>on</strong>g>.<br />

Normal Force (N) = W cos i = γHb cos i (8 )<br />

Shear Force (S) = W sin i = γHb sin i (9 )<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 20<br />

Figure 8 : Forces <strong>on</strong> element of infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> (Cernica, 1995)<br />

Resolving the two forces in Equati<strong>on</strong> (8) <str<strong>on</strong>g>and</str<strong>on</strong>g> (9), the normal <str<strong>on</strong>g>and</str<strong>on</strong>g> shear stress can be derived<br />

by dividing the two forces by the width of the soil mass <strong>on</strong> a plane failure, which is b/cos i.<br />

Thus, the normal stress is given by :<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the shear stress is given by :<br />

where, γ is the unit weight of soil.<br />

N 2<br />

σ = = γ H cos i<br />

(10 )<br />

b cos i<br />

S<br />

τ = = γ H sin i cos i<br />

(11 )<br />

b cos i<br />

In case of dry c<strong>on</strong>diti<strong>on</strong>, where pore water pressure does not present, the shear resistance<br />

shown in Equati<strong>on</strong> (7) becomes as follow :<br />

s = c + σ tan φ (12 )<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 21<br />

where, c <str<strong>on</strong>g>and</str<strong>on</strong>g> φ are the cohesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> internal fricti<strong>on</strong> angle, respectively. Thus, substituting<br />

Equati<strong>on</strong> (11) <str<strong>on</strong>g>and</str<strong>on</strong>g> (12) into Equati<strong>on</strong> (5), the safety factor for this c<strong>on</strong>diti<strong>on</strong> becomes as<br />

follow:<br />

c + σ tan φ c tan φ<br />

FS = =<br />

+<br />

(13 )<br />

γ H sin i cos i γ H sin i cos i tan i<br />

For clayey soil, it is interesting to defined a critical height (Hc) of the clay stratum, which can<br />

be expressed by the formula :<br />

c sec i<br />

H c =<br />

(14 )<br />

γ tan i − tan φ<br />

2.4.1.2 Cohesive Material with Groundwater Effect<br />

For a c<strong>on</strong>diti<strong>on</strong> with groundwater effect, the pore pressure at a depth H equals γw Hw cos 2 i.<br />

The effective pressure is (γ H - γw Hw) cos 2 i, where γw is the unit weight of water <str<strong>on</strong>g>and</str<strong>on</strong>g> Hw is the<br />

height of water above the failure plane. Assuming that the thickness of water above the failure<br />

plane equals to mH, then the shear resistance is given by :<br />

s = c + (γ H - γw Hw) cos 2 i tan φ<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

2<br />

s = c + (γ H - γw mH) cos 2 i tan φ = c + (γ - γw m) H cos 2 i tan φ (15 )<br />

The factor m, in the above equati<strong>on</strong> termed as the wetness index gives the c<strong>on</strong>diti<strong>on</strong> of<br />

saturati<strong>on</strong> of the soil. If m equals to <strong>on</strong>e, the soil is in a completely saturated c<strong>on</strong>diti<strong>on</strong> while<br />

the value zero indicates dry c<strong>on</strong>diti<strong>on</strong>s of the soil. Similar to the procedure described above,<br />

the safety factor in this c<strong>on</strong>diti<strong>on</strong> is calculated by the following relati<strong>on</strong>ship.<br />

( γ − γ m)<br />

2.4.1.3 Cohesi<strong>on</strong>less Material in Dry C<strong>on</strong>diti<strong>on</strong><br />

2<br />

c + w H cos i tan φ<br />

FS = (16 )<br />

γ H sin i cosi<br />

Cohesi<strong>on</strong>less soils are completely different with cohesive soil in terms of cohesi<strong>on</strong>.<br />

Cohesi<strong>on</strong>less soils do not exhibit cohesi<strong>on</strong> characteristics as in cohesive soil. Thus, in the case


Chapter 2 : Literature Review 22<br />

of cohesi<strong>on</strong>less soil in dry c<strong>on</strong>diti<strong>on</strong>, the c <str<strong>on</strong>g>and</str<strong>on</strong>g> m in Equati<strong>on</strong> (16) become zero <str<strong>on</strong>g>and</str<strong>on</strong>g> the safety<br />

factor for this c<strong>on</strong>diti<strong>on</strong> is given by :<br />

tan φ<br />

FS = (17 )<br />

tan i<br />

Equati<strong>on</strong> (17) expresses that for cohesi<strong>on</strong>less soil the critical angle of the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is equal to the<br />

internal fricti<strong>on</strong> angle under dry c<strong>on</strong>diti<strong>on</strong>.<br />

2.4.1.4 Cohesi<strong>on</strong>less Material with Groundwater Effect<br />

Looking at Equati<strong>on</strong> (16), for this c<strong>on</strong>diti<strong>on</strong>, the wetness index, m, is no l<strong>on</strong>ger zero because<br />

there is an effect of groundwater table. Thus, solving Equati<strong>on</strong> (16) for this c<strong>on</strong>diti<strong>on</strong>, the<br />

safety factor becomes,<br />

2.4.2 Total Stress Analysis<br />

( γ − γ m)<br />

w tan φ<br />

FS = (18 )<br />

γ tan i<br />

The permeability of clays is very much less than that of s<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> this inhibits the movement<br />

of water if there is tendency to change volume. As a result it may take years after a change of<br />

surface loading <strong>on</strong> a deposit of clay for excess pore pressures to dissipate <str<strong>on</strong>g>and</str<strong>on</strong>g> for the effective<br />

stresses to reach equilibrium. In this case, the c<strong>on</strong>diti<strong>on</strong> of the soil is <str<strong>on</strong>g>undrained</str<strong>on</strong>g> where the<br />

excess pore water pressures are unable to dissipate. However, the shear strength of a soil is<br />

dependent <strong>on</strong> the effective stresses whatever the c<strong>on</strong>diti<strong>on</strong> of drainage. Thus, when movement<br />

of the pore water is restricted, the pore pressure increases in a soil which is trying to c<strong>on</strong>tract<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> decreases in <strong>on</strong>e trying to dilate. The change of pore pressure directly affects the effective<br />

stresses <str<strong>on</strong>g>and</str<strong>on</strong>g> hence the shear strength.<br />

When c<strong>on</strong>sidering the field problems in which the loading or unloading occurs sufficiently<br />

rapidly that drainage does not occur, the <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength may be applied in the<br />

<str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> when a total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is used (Nash, 1987) for clayey soil. The<br />

<str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength of clay may be determined in the laboratory, or in-situ in the field.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 23<br />

The <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> calculated by infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> for cohesive soil can be applied <strong>on</strong> total<br />

stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> by assuming the internal fricti<strong>on</strong> angle (φ) equals to zero. The explanati<strong>on</strong><br />

about this <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is given in Secti<strong>on</strong> 2.5.1.1. Another method for total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is<br />

developed by Taylor (after Craig, 2004), which is assumed fully saturated clay under<br />

<str<strong>on</strong>g>undrained</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s as shown in Figure 9.<br />

Figure 9 : Total Stress Analysis<br />

As shown in Figure 9, <strong>on</strong>ly moment equilibrium is c<strong>on</strong>sidered in the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>undrained</str<strong>on</strong>g><br />

shear strength are used. In secti<strong>on</strong>, the potential failure surface is assumed to be a circular arc.<br />

A trial failure surface (centre O, radius r <str<strong>on</strong>g>and</str<strong>on</strong>g> length La) is shown in Figure 9. Thus, the safety<br />

factor can be expressed as follow,<br />

c u L a r<br />

FS = (19 )<br />

W d<br />

where, cu is the <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength, La is the total length of the failure plane, r is the<br />

radius of the failure plane, W is the weight of the block <str<strong>on</strong>g>and</str<strong>on</strong>g> d is horiz<strong>on</strong>tal distance of the<br />

weight force to the centre of the circle.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 24<br />

Based <strong>on</strong> the principle of geometric similarity, Taylor (after Craig, 2004) published <str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

coefficients for the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of homogeneous <str<strong>on</strong>g>slope</str<strong>on</strong>g>s in terms of total stress. For a <str<strong>on</strong>g>slope</str<strong>on</strong>g> of<br />

height H the <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient (Ns) for the failure surface al<strong>on</strong>g which the factor of safety is<br />

a minimum is as follow,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the safety factor can be expressed as follow:<br />

N<br />

s<br />

c u<br />

= (20 )<br />

FS γ H<br />

c u<br />

FS = (21 )<br />

N γ H<br />

The coefficient Ns depends <strong>on</strong> the <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle β <str<strong>on</strong>g>and</str<strong>on</strong>g> the depth factor D, where DH is the<br />

depth to a firm stratum. Figure 10 shows the Taylor’s <str<strong>on</strong>g>stability</str<strong>on</strong>g> charts.<br />

Figure 10 : Taylor's Stability Coefficients for φ u = 0 (after Craig, 2004)<br />

The use of <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength in this <str<strong>on</strong>g>analysis</str<strong>on</strong>g> implies that pore pressures <str<strong>on</strong>g>and</str<strong>on</strong>g> effective<br />

stresses in the soil have not had time to reach equilibrium under an applied loading. Thus it<br />

can be applied appropriately for natural <str<strong>on</strong>g>slope</str<strong>on</strong>g>s, where generally, <str<strong>on</strong>g>slope</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g> are caused<br />

by heavy rain that the rapid increases of groundwater table are not able to dissipate the excess<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

s


Chapter 2 : Literature Review 25<br />

pore water pressure. However, this method should be used with cauti<strong>on</strong> due to generalizati<strong>on</strong><br />

in pore water pressures. It might be possible to use this method with assumpti<strong>on</strong> that the<br />

clayey soils are heavily impermeable <str<strong>on</strong>g>and</str<strong>on</strong>g> thus, the groundwater pressures are not easily<br />

dissipated.<br />

2.4.3 Wedge Analysis<br />

There are situati<strong>on</strong> in which the slip surface can be approximated by two or three straight<br />

lines. This may occur when the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is underlain by a str<strong>on</strong>g stratum such as rock or there is<br />

a weak stratum included within or beneath the <str<strong>on</strong>g>slope</str<strong>on</strong>g>. In these circumstances an accurate<br />

assessment of the <str<strong>on</strong>g>stability</str<strong>on</strong>g> may be made by splitting the <str<strong>on</strong>g>slope</str<strong>on</strong>g> into several blocks of soil <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

examining the equilibrium of each block.<br />

In this method, the trial sliding mass is divided into two or three large secti<strong>on</strong>s or wedges. The<br />

upper wedge is called the driving or active wedge, while the lower wedge is called the<br />

resisting or passive wedge. In a three-wedge system, the middle segment is sometimes<br />

referred to as the sliding block. The potential failure surface is simplified to a series of planes.<br />

2.4.4 N<strong>on</strong>-Linear Methods<br />

There are numerous n<strong>on</strong>-linear methods, however, all of those n<strong>on</strong>-linear methods has the<br />

same assumpti<strong>on</strong> of failure plane that this method c<strong>on</strong>siders n<strong>on</strong>-linear failure planes. One of<br />

these methods is called as Method of Slices. There are also many methods of slices developed<br />

by researcher such as General Formulati<strong>on</strong> developed by Fredlund <str<strong>on</strong>g>and</str<strong>on</strong>g> Krahn, Bishop’s<br />

Routine Method, Janbu’s Simplified Method, etc.<br />

Despite the fact that there are many methods of slices, however, they share the same principle<br />

that the <str<strong>on</strong>g>slope</str<strong>on</strong>g> being analyzed is divided into a number of slices. First of all, an assumed n<strong>on</strong>-<br />

linear failure plane is determined either circular or a combinati<strong>on</strong> between block <str<strong>on</strong>g>and</str<strong>on</strong>g> circular.<br />

Then, the slices are determined within the ground surface <str<strong>on</strong>g>and</str<strong>on</strong>g> the defined failure plane. The<br />

forces are resolved for every slice with the same principle as in infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g>.<br />

Depending <strong>on</strong> the method of slices, some of them are <strong>on</strong>ly c<strong>on</strong>siders vertical forces, while<br />

horiz<strong>on</strong>tal forces occurred <strong>on</strong> both side of a slice are assumed to be equal <str<strong>on</strong>g>and</str<strong>on</strong>g> thus, it was<br />

neglected such as Bishop’s routine method. Method of slices also c<strong>on</strong>siders moment balance<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 26<br />

based <strong>on</strong> an assumed central point of sliding. The safety factor is then determined as the<br />

balance between forces that ca<str<strong>on</strong>g>using</str<strong>on</strong>g> sliding against the central point <str<strong>on</strong>g>and</str<strong>on</strong>g> that of withst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing<br />

the block against failure.<br />

2.4.5 Model Based <strong>on</strong> Root Cohesi<strong>on</strong><br />

This method is adapted by M<strong>on</strong>tgomery <str<strong>on</strong>g>and</str<strong>on</strong>g> Dietrich (1994), Van Westen <str<strong>on</strong>g>and</str<strong>on</strong>g> Terlien (1996)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> de Vleeschauwer <str<strong>on</strong>g>and</str<strong>on</strong>g> De Smedt (2002), which combined the <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> with the<br />

cover type of the l<str<strong>on</strong>g>and</str<strong>on</strong>g>. Since, <str<strong>on</strong>g>stability</str<strong>on</strong>g> of a <str<strong>on</strong>g>slope</str<strong>on</strong>g> is not <strong>on</strong>ly depended <strong>on</strong> the internal factor<br />

but also external factors, the method adopt the effect of external factor such as surcharge<br />

pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> root cohesi<strong>on</strong>. By applying root cohesi<strong>on</strong>, it means that the method also take into<br />

account the possibility of translati<strong>on</strong>al failure because of l<str<strong>on</strong>g>and</str<strong>on</strong>g> cover type. This method can be<br />

expressed by the following formula:<br />

Cs<br />

+ C r γ w tan φ<br />

FS = + 1 − m<br />

(22 )<br />

γ Dsin<br />

i γ tan i<br />

e<br />

where, FS is the safety factor, Cs <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr are the effective soil <str<strong>on</strong>g>and</str<strong>on</strong>g> root cohesi<strong>on</strong> governed by<br />

the vegetati<strong>on</strong> type, respectively; D is the depth of the soil above failure plane; φ is the angle<br />

of internal fricti<strong>on</strong>; i is <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle; γw is the unit weight of water <str<strong>on</strong>g>and</str<strong>on</strong>g> γe is the effective unit<br />

weight of soil as defined by Westen <str<strong>on</strong>g>and</str<strong>on</strong>g> Terlien (1996).<br />

Actually, this method was developed based <strong>on</strong> infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g>, however there are differences in<br />

assumpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the philosophy behind the formula. First, the assumpti<strong>on</strong> of soil depth is taken<br />

as the thickness of soil above the failure plane <str<strong>on</strong>g>and</str<strong>on</strong>g> it is perpendicular to the failure plane,<br />

while in ordinary infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> the soil depth is the vertical depth against failure plane.<br />

Sec<strong>on</strong>dly, there is a new parameter introduced in the formula that is root cohesi<strong>on</strong>. By<br />

introducing this parameter, the formula are no l<strong>on</strong>ger satisfy ordinary infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> equati<strong>on</strong>,<br />

but it serves as a method that takes into account erosi<strong>on</strong>s as a factor ca<str<strong>on</strong>g>using</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g> of<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g>.<br />

2.5 L<str<strong>on</strong>g>and</str<strong>on</strong>g>slide Hazard Analysis with <str<strong>on</strong>g>GIS</str<strong>on</strong>g><br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazards assessment tools are becoming a popular tool not <strong>on</strong>ly for the disaster<br />

preventi<strong>on</strong> or mitigati<strong>on</strong> purposes but also for l<str<strong>on</strong>g>and</str<strong>on</strong>g> use planning, resources development <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

e


Chapter 2 : Literature Review 27<br />

infrastructure development (Joshi, 2002). The l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide potential mapping are becoming<br />

useful for watershed management <str<strong>on</strong>g>and</str<strong>on</strong>g> they are proving themselves a good assistant to help<br />

decisi<strong>on</strong> makers for careful development of hill <str<strong>on</strong>g>slope</str<strong>on</strong>g> which eventually can reduce the<br />

ec<strong>on</strong>omic <str<strong>on</strong>g>and</str<strong>on</strong>g> social losses, reducing the damage potential. Protecti<strong>on</strong> plans require the<br />

descripti<strong>on</strong> of scenarios that can be defined by means of simulati<strong>on</strong> with mathematical<br />

models, which incorporates the occurrence c<strong>on</strong>diti<strong>on</strong>s of the failure including the triggering<br />

mechanism<br />

Regi<strong>on</strong>al l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide evaluati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> mapping have been actively pursued by research<br />

instituti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> government agencies for a l<strong>on</strong>g time. Am<strong>on</strong>g different techniques of l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide<br />

hazard model such as statistical approach, <strong>on</strong>e widely used technique now a day is<br />

deterministic approach. This approach seems to be superior because it has direct linkage to<br />

physics. Evoluti<strong>on</strong> of fast processing computers <str<strong>on</strong>g>and</str<strong>on</strong>g> Geographic Informati<strong>on</strong> System (<str<strong>on</strong>g>GIS</str<strong>on</strong>g>)<br />

has enhanced its capacity of mapping. <str<strong>on</strong>g>GIS</str<strong>on</strong>g> technologies could provide a powerful tool to<br />

model the l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazards for their spatial <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> predicti<strong>on</strong>. This is because the<br />

collecti<strong>on</strong>, manipulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of the envir<strong>on</strong>mental data <strong>on</strong> l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard can be<br />

accomplished much more efficiently <str<strong>on</strong>g>and</str<strong>on</strong>g> cost effectively (Carrara <str<strong>on</strong>g>and</str<strong>on</strong>g> Guzzetti, 1999 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Guzzetti et al., 1999). Many <str<strong>on</strong>g>GIS</str<strong>on</strong>g>-based <str<strong>on</strong>g>analysis</str<strong>on</strong>g> models <str<strong>on</strong>g>and</str<strong>on</strong>g> quantitative predicti<strong>on</strong> models of<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard have been proposed since the beginning of <str<strong>on</strong>g>GIS</str<strong>on</strong>g> applicati<strong>on</strong> in geohazards<br />

research in the late 1980s (Carrara, 1983; Van Westen, 1994; Carrara et al., 1991; Carrara et<br />

al., 1995; Carrara <str<strong>on</strong>g>and</str<strong>on</strong>g> Guzzetti, 1999; Jade <str<strong>on</strong>g>and</str<strong>on</strong>g> Sarkar, 1993; Chung et al., 1995; Chung <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Fabbri, 1998 <str<strong>on</strong>g>and</str<strong>on</strong>g> Chung <str<strong>on</strong>g>and</str<strong>on</strong>g> Fabbri, 1999).<br />

2.5.1 Model C<strong>on</strong>cept<br />

The <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>using</str<strong>on</strong>g> <str<strong>on</strong>g>GIS</str<strong>on</strong>g> requires the overlying of various thematic maps such<br />

as <str<strong>on</strong>g>slope</str<strong>on</strong>g> map derived from the Digital Elevati<strong>on</strong> Model (DEM), l<str<strong>on</strong>g>and</str<strong>on</strong>g> use map <str<strong>on</strong>g>and</str<strong>on</strong>g> soil map.<br />

While for rainfall-triggered l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides, there are two main approaches for rainfall-triggered<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide predicti<strong>on</strong>: (1) use statistical correlati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> forecasting techniques to establish the<br />

empirical relati<strong>on</strong>ships between rainfall <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide; (2) use a deterministic model coupling<br />

mechanistic <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> model with a hydrological model to model groundwater recharge<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> pore water pressure changes caused by rainfall. Many researchers have been engaged in<br />

the <str<strong>on</strong>g>slope</str<strong>on</strong>g> failure or l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard <str<strong>on</strong>g>analysis</str<strong>on</strong>g> with models similar to sec<strong>on</strong>d approach (Dietrich<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 28<br />

et al., 1995; M<strong>on</strong>tgomery <str<strong>on</strong>g>and</str<strong>on</strong>g> Dietrich, 1994; Wu <str<strong>on</strong>g>and</str<strong>on</strong>g> Sidle, 1995 <str<strong>on</strong>g>and</str<strong>on</strong>g> Pack et al., 1998).<br />

However, most models are valuable for certain applicati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> certain regi<strong>on</strong>.<br />

The following secti<strong>on</strong>s discuss how the methods explained in Secti<strong>on</strong> 2.4 are applied for the<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> of <str<strong>on</strong>g>stability</str<strong>on</strong>g>. The study mainly focuses <strong>on</strong> the <str<strong>on</strong>g>stability</str<strong>on</strong>g> for cohesive soil with emphasis<br />

<strong>on</strong> Infinite Slope Method <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor Method by applying two stress cases, i.e. total <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

effective stress.<br />

2.5.1.1 Using Infinite Slope with Total <str<strong>on</strong>g>and</str<strong>on</strong>g> Effective Stress<br />

The difference between total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is the use of strength parameters <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the used of pore water pressures. For cohesive soil under effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, the<br />

cohesi<strong>on</strong> should be replaced by effective cohesi<strong>on</strong> (c’) <str<strong>on</strong>g>and</str<strong>on</strong>g> if the cohesive soil is subjected to<br />

internal fricti<strong>on</strong> angle, then it should be replaced by effective internal fricti<strong>on</strong> angle (φ’). On<br />

the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, for cohesive soil under total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength (cu)<br />

might be used <str<strong>on</strong>g>and</str<strong>on</strong>g> angle of internal fricti<strong>on</strong> (φ) equals to zero (Nash, 1987) with pore pressure<br />

being zero. Thus, the formulas for cohesive soil in dry c<strong>on</strong>diti<strong>on</strong> (Total Stress Analysis)<br />

becomes :<br />

c u<br />

FS = (23 )<br />

γ H sin i cos i<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>, the cohesive soil with groundwater influence (Effective Stress Analysis), the formula<br />

becomes:<br />

( γ − γ m)<br />

c'+<br />

w H cos i tan φ'<br />

FS = (24 )<br />

γ H sin i cos i<br />

For effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, m is the soil wetness index, which is defined the relative height<br />

of water above the slip plane. So, if m equals to <strong>on</strong>e, then the water table is at the ground<br />

surface, while if m equals to zero, then the water table is at the slip plane.<br />

2.5.1.2 Using Taylor Method<br />

For Taylor Method, the formula shown in Equati<strong>on</strong> (21) has shown the used of total stress<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> because there is no effect of pore water pressure. Thus, by <str<strong>on</strong>g>using</str<strong>on</strong>g> Taylor Method, the<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

2


Chapter 2 : Literature Review 29<br />

c<strong>on</strong>siderati<strong>on</strong> is <strong>on</strong>ly for total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. Equati<strong>on</strong> (21) can be used to estimate the safety<br />

factor by applying <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient as shown in Figure 10, which is depended <strong>on</strong> angle of<br />

the <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thickness of the stratum.<br />

2.5.1.3 Assessment of Stability Classes<br />

There is no general rule <strong>on</strong> how the safety factor should be classified. For instance, Van<br />

Westen <str<strong>on</strong>g>and</str<strong>on</strong>g> Terlien, 1996, categorized safety factor into 3 classes, below <strong>on</strong>e, which means<br />

unstable, between 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.5, which means moderately stable, <str<strong>on</strong>g>and</str<strong>on</strong>g> above 1.5, which means<br />

stable. SINMAP, Stability Index Mapping, an extensi<strong>on</strong> computed added modelling for <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

<str<strong>on</strong>g>stability</str<strong>on</strong>g> in ArcView, uses 6 classes for safety factor including divisi<strong>on</strong> of safety factor below<br />

1.<br />

In the design of <str<strong>on</strong>g>slope</str<strong>on</strong>g>s, the factor of safety <strong>on</strong> shear strength traditi<strong>on</strong>ally has several<br />

functi<strong>on</strong>s :<br />

1. To take into account uncertainty of shear strength parameters due to soil variability, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the relati<strong>on</strong>ship between the strength measured in the laboratory <str<strong>on</strong>g>and</str<strong>on</strong>g> the operati<strong>on</strong>al field<br />

strength.<br />

2. To take into account uncertainties in the loading <strong>on</strong> the <str<strong>on</strong>g>slope</str<strong>on</strong>g> such as surface loading, unit<br />

weight, pore pressures, etc.<br />

3. To take into account the uncertainties in the way the model represents the actual<br />

c<strong>on</strong>diti<strong>on</strong>s in the <str<strong>on</strong>g>slope</str<strong>on</strong>g>, which includes (a) the possibility that the critical failure<br />

mechanism is slightly different from the <strong>on</strong>e which has been identified, <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) that the<br />

model is not c<strong>on</strong>servative.<br />

4. To ensure deformati<strong>on</strong> within the <str<strong>on</strong>g>slope</str<strong>on</strong>g> are acceptable.<br />

Thus, a safety factor of 1 does not indicate that failure of a <str<strong>on</strong>g>slope</str<strong>on</strong>g> is necessarily imminent. The<br />

real safety factor is str<strong>on</strong>gly influenced by minor geological details, stress-strain<br />

characteristics of the soil, actual pore-pressure distributi<strong>on</strong>, initial stresses, progressive failure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> numerous other factors. However, in the practice, it is c<strong>on</strong>venient to assume that a safety<br />

factor of 1 is defined as the critical c<strong>on</strong>diti<strong>on</strong> where the forces in the c<strong>on</strong>diti<strong>on</strong> of balance.<br />

However, all of the classificati<strong>on</strong> proposed by researcher has a certain threshold safety factor,<br />

which is FS=1 <str<strong>on</strong>g>and</str<strong>on</strong>g> FS=1.5, the first explains the critical c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the former explains<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 30<br />

the stable c<strong>on</strong>diti<strong>on</strong>s. Safety factor classes used by Westen <str<strong>on</strong>g>and</str<strong>on</strong>g> Terlien (1996) is strictly<br />

categorized a <str<strong>on</strong>g>slope</str<strong>on</strong>g> being unstable, moderately stable or stable, however, for <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, it is<br />

necessary to quantify the area falls in safety factor between 1 to 1.5. Thus, it is c<strong>on</strong>venient to<br />

classify the safety factor in four classes as shown in Table 4.<br />

Table 4 : Stability Clases<br />

Safety Factor Slope Stability Class Remarks<br />

FS >1.5 Stable<br />

1.25 < FS < 1.5 Moderately Stable<br />

1 < FS < 1.25 Quasi Stable<br />

Only major destabilising factors lead to<br />

in<str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

Moderate destabilising factors lead to<br />

in<str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

Minor destabilising factors can lead to<br />

in<str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

FS < 1 Unstable Stabilising factors are needed for <str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

2.5.2 Hydrological Model<br />

One of the possible triggering mechanisms of <str<strong>on</strong>g>slope</str<strong>on</strong>g> failure is caused by the rapid increase of<br />

ground water table, which finally affect the increasing pore water pressure. Beven <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Kirkby, 1979, developed soil saturati<strong>on</strong> in functi<strong>on</strong> of hill <str<strong>on</strong>g>slope</str<strong>on</strong>g> topography as the wetness<br />

index as follow,<br />

a<br />

m = ln<br />

(25 )<br />

tan θ<br />

where a is the c<strong>on</strong>tributing area per unit c<strong>on</strong>tour length <str<strong>on</strong>g>and</str<strong>on</strong>g> θ is the <str<strong>on</strong>g>slope</str<strong>on</strong>g> of the pixel.<br />

However, this equati<strong>on</strong> does not c<strong>on</strong>sider the hydrological characteristic of the soil <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

rainfall events, which are in the case of <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g>, very important. Thus, the following<br />

formula is more appropriate to be used because it expresses the rainfall intensity.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 2 : Literature Review 31<br />

D<br />

+ R ⋅S<br />

m =<br />

2<br />

(26 )<br />

D<br />

where, D is depth of soil [m], R is recharge or maximum daily rainfall [m], <str<strong>on</strong>g>and</str<strong>on</strong>g> S is Specific<br />

Yield of soil [-].<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 32<br />

CHAPTER 3 : MATERIALS AND METHOD<br />

3.1 General<br />

As this study is the c<strong>on</strong>tinuati<strong>on</strong> of the previous study d<strong>on</strong>e by Ram Lakan Ray, 2004, thus,<br />

the necessary data for the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is collected by the previous <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. In general, the study<br />

area shown in Figure 11 has shown active l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides as reported by Ram Lakan Ray at<br />

Krishna Bhir. It is covered not <strong>on</strong>ly by soil but also rocks (cliff), however, the existence of<br />

rock is very small compared to soil. Besides, due to this study mainly focuses <strong>on</strong> clayey soils,<br />

thus the existence of rock does not affect the result.<br />

Figure 11 : Locati<strong>on</strong> of the Study Area (Ray, 2004)<br />

The study mainly focuses <strong>on</strong> the applicability of total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> method by<br />

applying infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor methods <strong>on</strong> the study area. To be able to compare<br />

objectively between the two analyses cases, the study is <strong>on</strong>ly c<strong>on</strong>ducted <strong>on</strong> a clayey soil. Even<br />

though, effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is also applicable for n<strong>on</strong>-cohesive soil.<br />

This chapter discusses the materials used <str<strong>on</strong>g>and</str<strong>on</strong>g> the method applied <strong>on</strong> the study area. It is<br />

covered how the available data derived by previous study <str<strong>on</strong>g>and</str<strong>on</strong>g> also how both of the analyses<br />

cases are applied <strong>on</strong> the study area.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 33<br />

3.2 Data Availability<br />

Analyzing <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> <strong>on</strong> a regi<strong>on</strong>al area requires two types of data, i.e. geotechnical<br />

including topographical <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrological data. Both of the data are equally important since<br />

the geotechnical data represent the characteristics of the materials, while the hydrological data<br />

represent the amount of rainfall in the area. However, sometimes it is difficult to collect such<br />

informati<strong>on</strong> especially in rural area of a developing country, where informati<strong>on</strong> <strong>on</strong> earth<br />

resources is always c<strong>on</strong>nected to the budget provided <str<strong>on</strong>g>and</str<strong>on</strong>g> development priority given by the<br />

government. It is also the case that research <str<strong>on</strong>g>and</str<strong>on</strong>g> collecti<strong>on</strong> of data in a developing country are<br />

not well organized.<br />

Unfortunately, the situati<strong>on</strong> is the same in Nepal for the study area. There is no soil map, l<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

use map, records of soil parameter <str<strong>on</strong>g>and</str<strong>on</strong>g> meteorological stati<strong>on</strong> inside the study area. The soil<br />

map was then interpreted based <strong>on</strong> the Project Report prepared by Department of Roads<br />

(DoR), Ministry of Works <str<strong>on</strong>g>and</str<strong>on</strong>g> Transport, Nepal. For l<str<strong>on</strong>g>and</str<strong>on</strong>g> use map, it was produced by aerial<br />

photographs prepared by Department of Survey. While for hydrological data, it was derived<br />

from four meteorological stati<strong>on</strong>s around the study area, which is located at Dhading, Aru<br />

Ghat, Gorkha <str<strong>on</strong>g>and</str<strong>on</strong>g> Rampur.<br />

Since there is no actual measurement <strong>on</strong> soil parameters for this study area, thus, the soil<br />

parameters were interpreted <str<strong>on</strong>g>and</str<strong>on</strong>g> adapted from various relevant books <str<strong>on</strong>g>and</str<strong>on</strong>g> papers. Even<br />

though, the interpretati<strong>on</strong> for soil parameters from various publicati<strong>on</strong>s is quite useful to be<br />

used for the <str<strong>on</strong>g>analysis</str<strong>on</strong>g>; however, the approach might not be accurate <str<strong>on</strong>g>and</str<strong>on</strong>g> involve a big<br />

assumpti<strong>on</strong> due to the variati<strong>on</strong> of soil parameters <strong>on</strong> the site.<br />

For this study, the available data used from the previous study c<strong>on</strong>sist of four maps <str<strong>on</strong>g>and</str<strong>on</strong>g> a set<br />

of hydrological data. The maps are DEM, <str<strong>on</strong>g>slope</str<strong>on</strong>g> map, l<str<strong>on</strong>g>and</str<strong>on</strong>g> use map <str<strong>on</strong>g>and</str<strong>on</strong>g> soil map, while the<br />

hydrological data has been calculated <str<strong>on</strong>g>using</str<strong>on</strong>g> statistical software as explained in Secti<strong>on</strong> 3.2.2.<br />

3.2.1 Available DEM <str<strong>on</strong>g>and</str<strong>on</strong>g> Raster Maps<br />

The available DEM map has a grid size of 20 m covering an area of 341 km 2 with an<br />

elevati<strong>on</strong> ranging from 245 m to 1895 m as shown in Figure 12. From the <str<strong>on</strong>g>slope</str<strong>on</strong>g> map, the<br />

study area has a <str<strong>on</strong>g>slope</str<strong>on</strong>g> ranging from 0.011° to 61° as shown in Figure 13. The maps have 701<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 34<br />

rows <str<strong>on</strong>g>and</str<strong>on</strong>g> 1237 columns, covering the area between 561524m to 586264 m Easting <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

3070318 m to 3084338m Northing. The unit of the map is in meters.<br />

Figure 12 : Digital Elevati<strong>on</strong> Model (DEM) of the Study Area (Ray, 2004)<br />

Figure 13 : Slope Map of the Study Area<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 35<br />

From the soil map, it was identified that the study area is covered by 11 soil types as shown in<br />

Figure 14. There are three types of cohesive soil in the study area, i.e. Inorganic Silt, Organic<br />

Silt <str<strong>on</strong>g>and</str<strong>on</strong>g> S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay as shown in Figure 15, covering a total area about 84.057 km 2 .<br />

Figure 14 : Soil Map of the Study Area (Ray, 2004)<br />

Figure 15 : Clayey Soil in the Study Area<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 36<br />

Table 5 : Various Types of Soils <str<strong>on</strong>g>and</str<strong>on</strong>g> Corresp<strong>on</strong>ding Slope Angle<br />

Soil-Code Soil Type Count Area (km2)<br />

Angle (degree)<br />

Min Max<br />

1 Clayey S<str<strong>on</strong>g>and</str<strong>on</strong>g> 241513 96.6052 0.0591 49.9658<br />

2 Poorly G. S<str<strong>on</strong>g>and</str<strong>on</strong>g> 82881 33.1524 0.3526 51.0144<br />

3 Silty Gravel 107882 43.1528 0.1908 59.7071<br />

4 Gravelly S<str<strong>on</strong>g>and</str<strong>on</strong>g> 20053 8.0212 0.0106 50.925<br />

5 S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay 117980 47.192 0.2843 60.945<br />

6 Rock 1408 0.5632 1.7308 46.4667<br />

7 Inorganic Silt 85819 34.3276 0.0193 57.7121<br />

8 Poorly G. Gravel 35238 14.0952 0.244 57.958<br />

9 Organic Silt 6344 2.5376 1.2014 43.4273<br />

10 Silty S<str<strong>on</strong>g>and</str<strong>on</strong>g> 84749 33.8996 0.1215 52.2431<br />

11 Clayey Gravel 68815 27.526 0.3208 60.4487<br />

Total 852682 341.0728<br />

From the l<str<strong>on</strong>g>and</str<strong>on</strong>g> use map, it was identified that the study area is covered by 9 types of l<str<strong>on</strong>g>and</str<strong>on</strong>g> use<br />

as shown in Figure 16. The study area is covered majority by three types of l<str<strong>on</strong>g>and</str<strong>on</strong>g> cover,<br />

agricultural l<str<strong>on</strong>g>and</str<strong>on</strong>g>, bush l<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> forest with percentage of 48 %, 29 % <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 %, respectively.<br />

Figure 16 : L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Map of the Study Area (Ray, 2004)<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 37<br />

3.2.2 Available Hydrological Data<br />

There are four meteorological stati<strong>on</strong>s surrounding the study area. Of the four meteorological<br />

stati<strong>on</strong>s surrounding the study area, <strong>on</strong>ly three of them were analyzed for developing<br />

hydrograph. The data derived from meteorological stati<strong>on</strong>s at Rampur was not c<strong>on</strong>sidered<br />

because it is located in a plain area where climate <str<strong>on</strong>g>and</str<strong>on</strong>g> rainfall patterns are completely<br />

different than the study area. However, <strong>on</strong>ly the closest rainfall stati<strong>on</strong>s to the study area were<br />

c<strong>on</strong>sidered, i.e. Dhading. The rainfall data collected from the Department of Hydrology,<br />

HMG, Nepal, c<strong>on</strong>sists of yearly rainfall data from 1956 to 1996. The rainfall frequency<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> is developed <str<strong>on</strong>g>using</str<strong>on</strong>g> SMADA 6.0 software with a Log Pears<strong>on</strong> Type III distributi<strong>on</strong>.<br />

Table 6 presents the results for the study area.<br />

Table 6 : Rainfall Predicti<strong>on</strong> of Study Area with SMADA 6 Software (Ray, 2004)<br />

Exceedence Return Period Daily Rainfall St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

Probability (years) (mm) Deviati<strong>on</strong> (mm)<br />

0.995 200 370 102<br />

0.990 100 322 74<br />

0.980 50 277 52<br />

0.960 25 235 35<br />

0.900 10 185 20<br />

0.800 5 150 13<br />

0.667 3 124 9<br />

0.500 2 103 8<br />

3.3 Applied Methodology<br />

As explained in the previous chapters, the safety factor for a regi<strong>on</strong>al area can be derived with<br />

the use of <str<strong>on</strong>g>GIS</str<strong>on</strong>g> where the informati<strong>on</strong> related to the spatial data is stored in various map such<br />

as topography, soil <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> use map. The spatial informati<strong>on</strong> of a map in <str<strong>on</strong>g>GIS</str<strong>on</strong>g> is stored in<br />

attribute tables of the respective map. Then the calculati<strong>on</strong> of the safety factor for every grid<br />

cell is d<strong>on</strong>e by applying the method in every grid.<br />

As the study is mainly focused <strong>on</strong> cohesive soil, two methods are used for determining the<br />

safety factor of cohesive soil in the study area. The methods are the Taylor method <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> method. The Taylor method is <strong>on</strong>ly applicable for total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, while the<br />

infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> method can be applied to both total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. As the method<br />

is applied <strong>on</strong> the same cohesive soil, a comparis<strong>on</strong> between the methods is easy.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 38<br />

As explained in Chapter 2, the Taylor method is a total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> where the safety factor<br />

is calculated based <strong>on</strong> a <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient (Ns) expressed in Equati<strong>on</strong> (21). The <str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

coefficient developed by Taylor (1948) is expressed in terms of <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle with different<br />

thickness of soil. For this study, the thickness of the soil is assumed to be infinite <str<strong>on</strong>g>and</str<strong>on</strong>g> thus<br />

<strong>on</strong>ly <strong>on</strong>e line of the <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient developed by Taylor is used, i.e. the line with D = ∞.<br />

To be able to calculate the <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient in spatial <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, the <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient for<br />

D = ∞ was first digitized. The data were then correlated <str<strong>on</strong>g>using</str<strong>on</strong>g> polynomial regressi<strong>on</strong> to be<br />

able to derive the mathematical equati<strong>on</strong>s. As shown in Figure 10, the <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient for<br />

D = ∞ can be divided into two parts, i.e. c<strong>on</strong>stant <str<strong>on</strong>g>and</str<strong>on</strong>g> a polynomial functi<strong>on</strong>, for <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle<br />

of 0° to 52.8° <str<strong>on</strong>g>and</str<strong>on</strong>g> above 52.8°, respectively. The mathematical equati<strong>on</strong>s derived from the<br />

polynomial regressi<strong>on</strong> for <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient of D = ∞ are as follow:<br />

Ns = 0.183 for 0 < β ≤ 52.8° (27 )<br />

Ns = 6.10 -7 β 3 – 10 -4 β 2 + 0.0079 β - 0.0263 for β > 52.8° (28 )<br />

For infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> methods, both total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> are applied with different<br />

soil parameters. Total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> applied <strong>on</strong> infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> uses <str<strong>on</strong>g>undrained</str<strong>on</strong>g> cohesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

φ = 0, while effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> applied <strong>on</strong> infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> uses effective shear strengths.<br />

3.3.1 Soil Parameters Determinati<strong>on</strong><br />

As explained previously, soil parameters for the study area were not available, thus, to<br />

estimate the soil parameters, published references were used. There are many references<br />

related to soil parameters of cohesive soil. Three strength parameters should be determined<br />

<str<strong>on</strong>g>using</str<strong>on</strong>g> the available references, i.e. <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength (su), effective cohesi<strong>on</strong> (c’) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

effective angle of internal fricti<strong>on</strong> (φ’), for three cohesive soil types identified in the study<br />

area. The three cohesive soils identified in the study area are S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay (CL), Inorganic Silts<br />

(ML or MH) <str<strong>on</strong>g>and</str<strong>on</strong>g> Organic Silts (ML).<br />

For <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength (su), the available correlati<strong>on</strong>s explained in Chapter 2 are based<br />

<strong>on</strong> either Liquidity Index (LI) or Plasticity Index (PI), given by Deoja et al. (1991). For the<br />

three cohesive soils, the liquid limit (LL) ranges from 30% to 68% with plastic limit (PL)<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 39<br />

ranging from 17 % to 38 % <str<strong>on</strong>g>and</str<strong>on</strong>g> thus, the plasticity index (PI) ranges from 4 % to 30 % as<br />

shown in Table 7.<br />

Soil<br />

Code<br />

5<br />

7<br />

9<br />

Soil<br />

Code<br />

5<br />

7<br />

9<br />

Table 7 : Index Properties of Soil Based <strong>on</strong> Deoja et al. (1991)<br />

Soil Type Classificati<strong>on</strong> Water<br />

C<strong>on</strong>tent<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y<br />

Clay<br />

Inorganic<br />

Silts<br />

Organic<br />

Silts<br />

Soil Type Classificati<strong>on</strong><br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y<br />

Clay<br />

Inorganic<br />

Silts<br />

Organic<br />

Silts<br />

Unit Weight Atterberg Limit (%)<br />

Total Dry<br />

Liquid<br />

Limit<br />

(LL)<br />

Plastic<br />

Limit<br />

(PL)<br />

Plasticity<br />

Index<br />

(PI)<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Liquidity<br />

Index<br />

(LI)<br />

(%) (kN/m 3 ) (kN/m 3 ) (%) (%) (%) (-)<br />

CL 19 18.50 15.55 33 17 16 0.1 - 0.4<br />

ML 27 18.50 14.60 30 26 4 0.2 - 0.4<br />

MH 48 17.00 11.49 68 38 30 0.3 - 0.5<br />

OL 24 13.50 10.89 42 29 13 0.4 - 0.7<br />

Table 8 : Undrained Shear Strength from Various References<br />

Plasticity<br />

Index<br />

(PI)<br />

Liquidity<br />

Index<br />

(LI)<br />

Soil<br />

Thickness Skempt<strong>on</strong><br />

Undrained Shear Strength (su)<br />

Bjerrum<br />

&<br />

Sim<strong>on</strong>s<br />

(1953)<br />

Carter &<br />

Bentley<br />

(1959)<br />

(%) (%) (m) (kN/m 2 ) (kN/m 2 ) (kN/m 2 )<br />

CL 16 0.1-0.4<br />

ML 4 0.2-0.4<br />

MH 30 0.3-0.5<br />

OL 13 0.4-0.7<br />

1 3.13 3.24<br />

2 6.26 6.48<br />

3 9.39 9.71<br />

4 12.52 12.95<br />

1 2.31 1.85<br />

2 4.62 3.70<br />

3 6.93 5.55<br />

4 9.24 7.40<br />

1 1.59 1.66<br />

2 3.18 3.31<br />

3 4.77 4.97<br />

4 6.36 6.62<br />

1 0.58 0.59<br />

2 1.17 1.18<br />

3 1.75 1.78<br />

4 2.34 2.37<br />

20 - 60<br />

20 - 40<br />

15 - 30<br />

10 - 20


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 40<br />

Based <strong>on</strong> the atterberg limit derived from Deoja et al. (1991), the <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strengths<br />

were determined <str<strong>on</strong>g>using</str<strong>on</strong>g> the available correlati<strong>on</strong>s. Undrained shear strengths given by Bjerrum<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Sim<strong>on</strong>s (1960) <str<strong>on</strong>g>and</str<strong>on</strong>g> Skempt<strong>on</strong> (1957) share the same correlati<strong>on</strong> based <strong>on</strong> the effective<br />

overburden pressures. However, those correlati<strong>on</strong>s show very low value as shown in Table 8<br />

compared to the <strong>on</strong>e given by Carter <str<strong>on</strong>g>and</str<strong>on</strong>g> Bentley (1959). This is caused by the fact that both<br />

of correlati<strong>on</strong>s are mainly applicable <strong>on</strong>ly for normally c<strong>on</strong>solidated clay or marine clay,<br />

which is not applicable for this mountainous area. Thus, the correlati<strong>on</strong>s developed by Carter<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Bentley (1991) are more appropriate to be used.<br />

The effective internal fricti<strong>on</strong> angle (φ’) was determined from the correlati<strong>on</strong> chart explained<br />

in Chapter 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> compared to the <strong>on</strong>e given by Deoja et al. (1991). Again, the correlati<strong>on</strong>s<br />

given by NAVFAC DM7 are higher compared to the <strong>on</strong>e given by Deoja et al. (1991).<br />

However, the effective internal fricti<strong>on</strong> angle given by Deoja et al. (1991) seems to be at the<br />

lower bound of the correlati<strong>on</strong>s given by NAVFAC DM7. Thus, the average values of the<br />

correlati<strong>on</strong>s between both are used for further <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. Table 10 presents the parameters of<br />

the soil used for the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of safety factor.<br />

Soil<br />

Code<br />

5<br />

7<br />

9<br />

Soil<br />

Type<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y<br />

Clay<br />

Table 9 : Effective Stress Parameters for the Study Area<br />

Classificati<strong>on</strong><br />

Plasticity<br />

Index<br />

(PI)<br />

Effective Strength<br />

from Deoja, et. al<br />

(1991)<br />

Fricti<strong>on</strong><br />

Cohesi<strong>on</strong><br />

Angle<br />

Effective<br />

Fricti<strong>on</strong><br />

Angle *<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Used<br />

Effective<br />

Fricti<strong>on</strong><br />

Angle<br />

(%) (kN/m 2 ) (°) (°) (°)<br />

CL 16 20 28 32 30<br />

Inorganic ML 4 7 32 35<br />

Silts MH 30 10 25 28<br />

Organic<br />

Silts<br />

Note: * Determined from NAVFAC DM7<br />

OL 13 10 25 33 28<br />

30


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 41<br />

Soil<br />

Code<br />

5<br />

7<br />

9<br />

Soil<br />

Type<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y<br />

Clay<br />

Classificati<strong>on</strong><br />

Inorganic ML<br />

Silts MH<br />

Organic<br />

Silts<br />

3.3.2 Model Development<br />

Table 10 : Soil Parameter Used for the Analysis<br />

Total<br />

Unit<br />

Weight<br />

Undrained<br />

Shear<br />

Strength<br />

(su)<br />

Effective Strength<br />

Cohesi<strong>on</strong> Fricti<strong>on</strong><br />

Angle<br />

Specific<br />

Yield<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

C<strong>on</strong>ductivity<br />

(kN/m 3 ) (kN/m 2 ) (kN/m 2 ) (°) (m/day)<br />

CL 18.5 20 - 60 20 30 0.12 1.E-08<br />

18.5 20 - 40 10 30 0.18 1.E-05<br />

OL 13.5 10 - 20 10 28 0 1.E-06<br />

The current study follows the flow chart illustrated in Figure 17. Basically, there are 2 groups<br />

of map produced, i.e. the critical height (Hc) maps <str<strong>on</strong>g>and</str<strong>on</strong>g> safety factor (FS) maps. The critical<br />

height maps are determined based <strong>on</strong> total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> by applying either<br />

taylor method <strong>on</strong> total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> (TSA) or infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> method <strong>on</strong> total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective<br />

stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> (ESA). However, the critical height maps for ESA are <strong>on</strong>ly calculated for<br />

c<strong>on</strong>diti<strong>on</strong>s of dry, half saturated <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated. For safety factor maps, the same analyses<br />

are also applied with TSA for Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> methods <str<strong>on</strong>g>and</str<strong>on</strong>g> ESA for infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g>.<br />

The assumpti<strong>on</strong> of soil depth for the present study is that the base of the soil or the top surface<br />

of the rigid layer is infinite. With this assumpti<strong>on</strong>, the slip plane may occur within the ground<br />

surface <str<strong>on</strong>g>and</str<strong>on</strong>g> the top surface of the rigid layer. Since the calculati<strong>on</strong> of <str<strong>on</strong>g>stability</str<strong>on</strong>g> requires a<br />

thickness of soil where the slip plane takes place, thus the calculati<strong>on</strong> of safety factors for the<br />

present study was d<strong>on</strong>e by assuming various depth of slip planes. The various depths of slip<br />

planes were expressed by taking various soil thicknesses. The calculati<strong>on</strong> of the safety factor<br />

was then stopped when all of the study area became unstable. Figure 18 explains the<br />

difference between the previous <str<strong>on</strong>g>and</str<strong>on</strong>g> the present study related to the assumpti<strong>on</strong> taken for the<br />

soil thickness.


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 42<br />

For effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, besides safety factor maps for dry, half saturated <str<strong>on</strong>g>and</str<strong>on</strong>g> completely<br />

saturated c<strong>on</strong>diti<strong>on</strong>s, the safety factor maps for different return periods were also calculated.<br />

The wetness index (m) for the infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> method was developed <strong>on</strong> the basis of Equati<strong>on</strong><br />

(26).<br />

The calculati<strong>on</strong> of safety factor <str<strong>on</strong>g>and</str<strong>on</strong>g> critical height maps was d<strong>on</strong>e with the help of ArcView<br />

3.2. The development of both maps in the envir<strong>on</strong>ment of ArcView is a kind of repetiti<strong>on</strong><br />

process where different scenarios were c<strong>on</strong>ducted <str<strong>on</strong>g>using</str<strong>on</strong>g> map calculator in ArcView. Some of<br />

the calculati<strong>on</strong> <str<strong>on</strong>g>using</str<strong>on</strong>g> map calculator are shown in Figure 19 to Figure 23.<br />

#<br />

#<br />

!<br />

# #<br />

$<br />

#<br />

!<br />

#<br />

!<br />

! "<br />

!<br />

!<br />

&<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

#<br />

!<br />

$<br />

# #<br />

Figure 17 : Flow Chart for the Present Study<br />

#<br />

#<br />

#<br />

! ! %


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 43<br />

`<br />

ι<br />

1<br />

ι<br />

2<br />

(a) Previous Study Assumpti<strong>on</strong> (b) Present Study Assumpti<strong>on</strong><br />

Figure 18 : Previous <str<strong>on</strong>g>and</str<strong>on</strong>g> Present Study Assumpti<strong>on</strong> <strong>on</strong> Soil Thickness<br />

Figure 19 : Map Calculati<strong>on</strong> for Stability Coefficient (Ns)<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

ι<br />

1<br />

ι 2


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 44<br />

Figure 20 : Map Calculati<strong>on</strong> for Critical Height with Taylor Method<br />

Figure 21 : Map Calculati<strong>on</strong> for Critical Height with Infinite Slope<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 3 : Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods 45<br />

Figure 22 : Map Calculati<strong>on</strong> for Safety Factor with Infinite Slope <str<strong>on</strong>g>and</str<strong>on</strong>g> TSA<br />

Figure 23 : Map Calculati<strong>on</strong> for Safety Factor in Dry C<strong>on</strong>diti<strong>on</strong><br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 46<br />

CHAPTER 4 : RESULT AND DISCUSSION<br />

4.1 General<br />

There were two types of maps produced in the current study that focuses <strong>on</strong> cohesive soil, i.e.<br />

Critical Height (Hc) maps <str<strong>on</strong>g>and</str<strong>on</strong>g> Safety Factor (FS) maps. Both of the maps were developed by<br />

total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress maps by applying Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> methods <strong>on</strong> TSA <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

applying infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> methods <strong>on</strong> ESA. For the development of safety factor maps in quasi<br />

dynamic c<strong>on</strong>diti<strong>on</strong>, the hydrological model based <strong>on</strong> rainfall direct infiltrati<strong>on</strong> was used for<br />

calculating wetness index of different return periods. While steady state c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> ESA,<br />

three c<strong>on</strong>diti<strong>on</strong>s were c<strong>on</strong>sidered with completely dry c<strong>on</strong>diti<strong>on</strong>s (m = 0), half saturated soils<br />

(m = 0.5) <str<strong>on</strong>g>and</str<strong>on</strong>g> completely saturated c<strong>on</strong>diti<strong>on</strong>s (m = 1). Since the depth of the rigid base in this<br />

study was assumed to be infinite (see Figure 18), thus the calculati<strong>on</strong> for the safety factor<br />

maps was based <strong>on</strong> different depth of slip plane, i.e. different soil thicknesses. The calculati<strong>on</strong><br />

was stopped until the area being studied was completely unstable or until the maximum<br />

critical height identified by TSA was reached.<br />

4.2 Ground C<strong>on</strong>diti<strong>on</strong> at the Study Area<br />

Three types of cohesive soils were identified at the study area as presented in Table 10. In<br />

total, the three soil types covered about 25 % of the total area of 341 km 2 . Of the three soil<br />

types, s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic silts have the biggest area of 47 km 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 34 km 2 , respectively,<br />

while <strong>on</strong>ly about 3 km 2 of the study area is covered by organic silts. The rest of the study area<br />

of 257 km 2 is covered by granular soils.<br />

Table 11 : Tabulated Area of Soil Types for each L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Types<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g> use Type S<str<strong>on</strong>g>and</str<strong>on</strong>g>y<br />

Clay<br />

Inorganic<br />

Silts<br />

Area (km 2 )<br />

Organic<br />

Silts<br />

Total<br />

Built up Area 0 0 0.1 0.1<br />

Agricultural<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

28.1 24.4 1.0 53.5<br />

Forest 0.6 5.7 1.4 7.8<br />

Grass 0 0.1 0 0.1<br />

Bush 18.4 4.1 0 22.5<br />

Barren L<str<strong>on</strong>g>and</str<strong>on</strong>g> 0 0 0 0<br />

Total 47.2 34.3 2.5 84.1<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 47<br />

Based <strong>on</strong> the l<str<strong>on</strong>g>and</str<strong>on</strong>g> use type, there were 9 types of l<str<strong>on</strong>g>and</str<strong>on</strong>g> use, however <strong>on</strong>ly 6 types of l<str<strong>on</strong>g>and</str<strong>on</strong>g> use<br />

were present <strong>on</strong> the cohesive soil. These were built up area, agricultural l<str<strong>on</strong>g>and</str<strong>on</strong>g>, forest, grass<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>, bush <str<strong>on</strong>g>and</str<strong>on</strong>g> barren l<str<strong>on</strong>g>and</str<strong>on</strong>g> as listed in Table 11. Am<strong>on</strong>g the 6 types of l<str<strong>on</strong>g>and</str<strong>on</strong>g> use, agricultural<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g> has the biggest area of 53.5 km 2 , while bush l<str<strong>on</strong>g>and</str<strong>on</strong>g> use type is <strong>on</strong>ly about 22.5 km 2 . Forest<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g> use type found in the study area was <strong>on</strong>ly about 8 km 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the rest of the l<str<strong>on</strong>g>and</str<strong>on</strong>g> use was<br />

less than 1 km 2 .<br />

Agricultural l<str<strong>on</strong>g>and</str<strong>on</strong>g> has the biggest area <strong>on</strong> the study area <str<strong>on</strong>g>and</str<strong>on</strong>g> most of this l<str<strong>on</strong>g>and</str<strong>on</strong>g> use type falls<br />

within cohesive soil as shown in Figure 24. Forest l<str<strong>on</strong>g>and</str<strong>on</strong>g> use type is mainly covered by organic<br />

silts, while bush l<str<strong>on</strong>g>and</str<strong>on</strong>g> use type is covered by s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay. As much as 24 % of the total area of<br />

cohesive soil falls within the <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle of 20° to 30° as shown in Figure 25. This <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

magnitude occurs within agricultural l<str<strong>on</strong>g>and</str<strong>on</strong>g> cover. However, higher <str<strong>on</strong>g>slope</str<strong>on</strong>g> magnitudes were also<br />

identified with less percentage within forest, bush <str<strong>on</strong>g>and</str<strong>on</strong>g> agricultural l<str<strong>on</strong>g>and</str<strong>on</strong>g> cover.<br />

Percentage of Area against Total<br />

Area of Each Soil Type (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Built up Area<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Agricultural L<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Forest<br />

Grass<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Type<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Bush<br />

Barren L<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Figure 24 : Percentage Area of Each Soil Type for each L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Types


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 48<br />

Percentage Area against Total<br />

Area of Cohesive Soil (%)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

4.3 Critical Height Maps<br />

0<br />

Built up Area Agricultural L<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Forest Grass<br />

Bush Barren L<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 > 60<br />

Slope Range (degree)<br />

Figure 25 : Slope Magnitude within the L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Type<br />

The critical height (Hc) maps can be used as an indicati<strong>on</strong> <strong>on</strong> how the <str<strong>on</strong>g>slope</str<strong>on</strong>g> behaves without<br />

support <str<strong>on</strong>g>and</str<strong>on</strong>g> it also explains the ability of a <str<strong>on</strong>g>slope</str<strong>on</strong>g> to withst<str<strong>on</strong>g>and</str<strong>on</strong>g> imbalances. The critical height<br />

can be assumed as the height when safety factor equals to 1. For this study, the critical height<br />

maps were determined <str<strong>on</strong>g>using</str<strong>on</strong>g> TSA <str<strong>on</strong>g>and</str<strong>on</strong>g> ESA with the Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> the infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> methods.<br />

4.3.1 Based <strong>on</strong> Total Stress Analysis (TSA)<br />

The critical height maps produced by means of TSA were based <strong>on</strong> Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> Infinite Slope<br />

Methods. The map produced by Infinite Slope Method was analyzed by taking the angle of<br />

internal fricti<strong>on</strong> as zero. However, these maps were <strong>on</strong>ly produced for steady state c<strong>on</strong>diti<strong>on</strong>s,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the results are explained below.<br />

4.3.1.1 Using Taylor Method<br />

The critical height under TSA shows that the critical height for the cohesive soil ranges from<br />

4 m to 6 m <str<strong>on</strong>g>and</str<strong>on</strong>g> from 8 m to 18 m <str<strong>on</strong>g>using</str<strong>on</strong>g> lower <str<strong>on</strong>g>and</str<strong>on</strong>g> upper <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength,<br />

respectively. However, most of the area falls within critical height of 5.5 m to 6 m for lower<br />

<str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength <str<strong>on</strong>g>and</str<strong>on</strong>g> 10 m to 11 m <str<strong>on</strong>g>and</str<strong>on</strong>g> 17 m to 18 m for upper <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear<br />

strength as shown in Table 12. Due to the majority occurrence of the <str<strong>on</strong>g>slope</str<strong>on</strong>g> magnitude in<br />

cohesive soils falls below 52.8°, the <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient (Ns) becomes c<strong>on</strong>stant throughout the<br />

study area as shown in Figure 26. As a c<strong>on</strong>sequent the critical height did also show a c<strong>on</strong>stant<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 49<br />

value throughout the area with some small variati<strong>on</strong> due to different lower <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear<br />

strength used as shown in Figure 27.<br />

Table 12 : Summary of Critical Height Using Taylor Method<br />

Critical Height<br />

Class (m)<br />

Undrained Shear<br />

Strength Used<br />

Area (km 2 )<br />

4.0 - 4.5 Lower 2.5<br />

4.5 - 5.0 Lower 0<br />

5.0 - 5.5 Lower 0.1<br />

5.5 - 6.0 Lower 81.4<br />

8.0 - 9.0 Upper 2.5<br />

9.0 - 10.0 Upper 0<br />

10.0 - 11.0 Upper 34.3<br />

14.0 - 15.0 Upper 0<br />

15.0 - 16.0 Upper 0.1<br />

16.0 - 17.0 Upper 0<br />

17.0 - 18.0 Upper 47.1<br />

Figure 26 : Stability Coefficient Map for Taylor Method<br />

Total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is very good in giving an indicati<strong>on</strong> to which extends the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> should<br />

be c<strong>on</strong>ducted in terms of soil thickness. Usually, the effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> gives lower<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 50<br />

safety factor, thus the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> c<strong>on</strong>ducted with infinite soil thickness can be d<strong>on</strong>e within the<br />

critical height derived from total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>.<br />

4.3.1.2 Using Infinite Slope Method<br />

Figure 27 : Critical Height based <strong>on</strong> Taylor Method<br />

The critical height derived with the infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> method shows that for cohesive soil the<br />

critical height ranges from 1 m to greater than 10 m for both lower <str<strong>on</strong>g>and</str<strong>on</strong>g> upper <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear<br />

strength. However, most of the cohesive soil has a critical height between 2 m to 4 m <str<strong>on</strong>g>using</str<strong>on</strong>g><br />

lower <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength. Total areas covered by this critical height are about 40 km 2<br />

within s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay soil, about 45% total area of cohesive soil, <str<strong>on</strong>g>and</str<strong>on</strong>g> about 25 km 2 present within<br />

inorganic silts soil, about 30% of total area of cohesive soil. Lower <str<strong>on</strong>g>and</str<strong>on</strong>g> higher critical height<br />

than this range also occurred with total area less than 20 km 2 . While <str<strong>on</strong>g>using</str<strong>on</strong>g> upper <str<strong>on</strong>g>undrained</str<strong>on</strong>g><br />

shear strength, the critical height ranges mostly between 6 m to 8 m with significant areas<br />

falling within critical height of 4 m to 6m <str<strong>on</strong>g>and</str<strong>on</strong>g> 8 m to greater than 10 m. Figure 28 presents the<br />

area of critical height for each soil types <str<strong>on</strong>g>using</str<strong>on</strong>g> lower <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength.<br />

Agricultural <str<strong>on</strong>g>and</str<strong>on</strong>g> bush l<str<strong>on</strong>g>and</str<strong>on</strong>g> have a critical height of 2 m to 4 m with area of about 40 km 2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

20 km 2 , respectively, as shown in Figure 29. Figure 30 presents the map of critical height<br />

<str<strong>on</strong>g>using</str<strong>on</strong>g> lower <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 51<br />

Table 13 : Summary of Critical Height <str<strong>on</strong>g>using</str<strong>on</strong>g> Infinite Slope Method<br />

Critical Height<br />

Class (m)<br />

Area (km 2 )<br />

Area (km 2 ) <str<strong>on</strong>g>using</str<strong>on</strong>g> Undrained Shear<br />

Strength<br />

Lower Upper<br />

1 - 2 1.5 -<br />

2 - 4 66. 6 6.4<br />

4 - 6 9.5 18.1<br />

6 - 8 2.7 31.5<br />

8 - 10 1. 12.6<br />

> 10 2.6 15.4<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

H = 1 - 2m H = 2 - 4m<br />

H = 4 - 6m H = 6 - 8m<br />

H = 8 - 10m H > 10m<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silt Organic Silts<br />

Soil Type<br />

Figure 28 : Area of Critical Height for Each Soil Types Using Lower Undrained Shear Strength<br />

Area (km2)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Built up Area<br />

Agricultural L<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Forest<br />

Grass<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Type<br />

H = 1 - 2m H = 2 - 4m<br />

H = 4 - 6m H = 6 - 8m<br />

H = 8 - 10m H > 10m<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Bush<br />

Barren L<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Figure 29 : Area of Critical Height for Each L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Types Using Lower Undrained Shear Strength


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 52<br />

Figure 30 : Critical Height Map with TSA<br />

Table 14 presents the summary of critical height class <str<strong>on</strong>g>and</str<strong>on</strong>g> their respective area <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

angle <str<strong>on</strong>g>using</str<strong>on</strong>g> lower <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength. As shown in the table, about 66.5 km 2 of the<br />

study area is occupied by critical height of 2 m to 4 m with <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle ranging from 11° to<br />

61°. About 13 km 2 of the study area is occupied by critical height of 4 m to 10 m <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly<br />

about 2.5 km 2 of the area is occupied by critical height of greater than 10 m with <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle<br />

ranging from 0° to 6°.<br />

Range of<br />

Critical Height<br />

(m)<br />

Table 14 : Range of Critical Height, Area <str<strong>on</strong>g>and</str<strong>on</strong>g> Slope Angle<br />

Area (km2)<br />

Angle (degree)<br />

Min Max<br />

1 - 2 1.539 23.9125 43.4273<br />

2 - 4 66.558 10.8803 60.945<br />

4 - 6 9.530 7.195 16.3685<br />

6 - 8 2.690 5.3424 10.5664<br />

8 - 10 1.190 4.3061 7.8435<br />

> 10 2.550 0.0193 6.2438<br />

4.3.2 Based <strong>on</strong> Effective Stress Analysis (ESA)<br />

The critical height for effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> was developed <strong>on</strong>ly for steady state c<strong>on</strong>diti<strong>on</strong>s<br />

with completely dry c<strong>on</strong>diti<strong>on</strong> (m = 0), half saturated c<strong>on</strong>diti<strong>on</strong> (m = 0.5) <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 53<br />

c<strong>on</strong>diti<strong>on</strong> (m = 1). The shear strength parameters, i.e. cohesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> angle of internal fricti<strong>on</strong>,<br />

use effective stress parameters, i.e. effective cohesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> effective angle of internal fricti<strong>on</strong>.<br />

The critical height based <strong>on</strong> ESA ranges from 1 m to greater than 10 m for all steady state<br />

cases. The calculati<strong>on</strong> of critical height with ESA results in negative value of the critical<br />

height because the term (tan i – tan φ) in Equati<strong>on</strong> (14) becomes negative when the <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

angle is less than the angle of internal fricti<strong>on</strong>. In this case, the negative value should be<br />

c<strong>on</strong>sidered as infinite critical depth, because if the <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle is less than the angle of internal<br />

fricti<strong>on</strong>, the failure is unlikely to occur. As shown in Figure 31, most of the study area for<br />

completely dry <str<strong>on</strong>g>and</str<strong>on</strong>g> half saturated c<strong>on</strong>diti<strong>on</strong>s, almost 60% <str<strong>on</strong>g>and</str<strong>on</strong>g> 40%, respectively, has an<br />

infinite critical height. For fully saturated c<strong>on</strong>diti<strong>on</strong>, most of the study area has a critical<br />

height between 2 m to 4 m. The figure also shows that the area with infinite critical depth<br />

decreases when the soil becomes more saturated. For instance, completely full saturated<br />

c<strong>on</strong>diti<strong>on</strong> has a larger area for critical depth between 2 m to 4 m than that of infinite critical<br />

depth.<br />

Area (km 2 )<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

H = Infinite<br />

H = 1 - 2 m<br />

H = 2 - 4 m<br />

H = 4 - 6 m<br />

H = 6 - 8 m<br />

Critical Height Class (m)<br />

Dry Half Fully<br />

H = 8 - 10 m<br />

Figure 31 : Area of Critical Height based <strong>on</strong> ESA<br />

Under different soil types, most of the soil types have an infinite critical height as shown in<br />

Figure 32. For s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay under different steady state c<strong>on</strong>diti<strong>on</strong>s, the critical height ranges<br />

from 2 m to greater than 10 m. As shown in Table 15, the range of <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle in which the<br />

critical depth is infinite decreases from dry to fully saturated c<strong>on</strong>diti<strong>on</strong>s. Thus, the most<br />

unstable c<strong>on</strong>diti<strong>on</strong> is fully saturated c<strong>on</strong>diti<strong>on</strong>s.<br />

H > 10 m<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 54<br />

Area (km 2 )<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

H = ~ H = 1 - 2m<br />

H = 2 - 4m H = 4 - 6m<br />

H = 6 - 8m H = 8 - 10m<br />

H > 10m<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silt Organic Silts<br />

Soil Type<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Area (km 2 )<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

H = ~ H = 1 - 2m<br />

H = 2 - 4m H = 4 - 6m<br />

H = 6 - 8m H = 8 - 10m<br />

H > 10m<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silt Organic Silts<br />

Soil Type<br />

(a) Completely Dry C<strong>on</strong>diti<strong>on</strong> (b) Half Saturated C<strong>on</strong>diti<strong>on</strong><br />

Area (km 2 )<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

H = ~ H = 1 - 2m<br />

H = 2 - 4m H = 4 - 6m<br />

H = 6 - 8m H = 8 - 10m<br />

H > 10m<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silt Organic Silts<br />

Soil Type<br />

(c ) Completely Saturated C<strong>on</strong>diti<strong>on</strong><br />

Figure 32 : Area of Critical Height for Each Soil Types under Different Steady State C<strong>on</strong>diti<strong>on</strong>s<br />

Table 15 : Critical Height <str<strong>on</strong>g>and</str<strong>on</strong>g> Slope Angle under Different Steady State C<strong>on</strong>diti<strong>on</strong><br />

Critical<br />

Height<br />

Class (m)<br />

Slope Angle (degree)<br />

Dry C<strong>on</strong>diti<strong>on</strong> Half Saturated Full Saturated<br />

Min Max Min Max Min Max<br />

Infinite 0 30.0 0.0 23.0 0.0 15.2<br />

1 - 2 52.8 57.7 42.8 57.7 33.4 57.7<br />

2 - 4 38.6 60.9 30.5 60.9 19.5 60.9<br />

4 - 6 35.5 52.7 26.2 42.8 15.6 33.4<br />

6 - 8 33.6 42.1 24.2 34.6 13.7 26.4<br />

8 - 10 32.4 38.6 23.1 31.4 12.6 23.4<br />

> 10 28.0 36.7 18.7 29.6 8.3 21.6


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 55<br />

4.4 Safety Factor Maps<br />

The safety factor maps are used as an indicati<strong>on</strong> for <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g>, which can be used by<br />

planner <str<strong>on</strong>g>and</str<strong>on</strong>g> government official as a preliminary judgment when c<strong>on</strong>structi<strong>on</strong> is needed in a<br />

certain area. However, different safety factor maps may indicate different usages of the maps<br />

depending <strong>on</strong> the type of <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, method <str<strong>on</strong>g>and</str<strong>on</strong>g> assumpti<strong>on</strong> used for developing the maps.<br />

In this study, two types of analyses were used with two different methods. The analyses being<br />

used were total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> with the Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> the Infinite Slope Methods.<br />

For effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> where groundwater effect presented, two c<strong>on</strong>diti<strong>on</strong>s were<br />

c<strong>on</strong>sidered, i.e. steady state c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> quasi steady state c<strong>on</strong>diti<strong>on</strong>s with different return<br />

periods as discussed in the following secti<strong>on</strong>s.<br />

4.4.1 Total Stress Analysis<br />

For total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> Infinite Slope Methods were used for developing safety<br />

factor maps. The Taylor Method follows Equati<strong>on</strong> (21) with <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficient developed by<br />

Taylor, shown in Figure 10. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, Infinite Slope Method follows equati<strong>on</strong>s (23)<br />

with cu (= su) as <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength.<br />

4.4.1.1 Using Taylor Method<br />

The safety factor under Taylor Method is completely governed by thickness of the soil due to<br />

the <str<strong>on</strong>g>stability</str<strong>on</strong>g> coefficients (Ns) are almost c<strong>on</strong>stant throughout the study area because areas<br />

having <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle larger than 52.8° are limited. While the other parameters, su <str<strong>on</strong>g>and</str<strong>on</strong>g> unit<br />

weight, are c<strong>on</strong>stant for a certain soil type. Thus, the results show that for the soil thickness up<br />

to 3 m, the study area is mostly in stable c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly a small area being in moderately<br />

stable c<strong>on</strong>diti<strong>on</strong> because of the small <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength used. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, for a<br />

soil thickness of 6 m, the entire study area becomes completely unstable.<br />

The total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is very good in defining the influence depth of <str<strong>on</strong>g>stability</str<strong>on</strong>g> due to its<br />

simplicity. Thus, this method can be used to determine the extent to which the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> should<br />

be c<strong>on</strong>ducted. For this study area, it is shown in Figure 33 that the <str<strong>on</strong>g>stability</str<strong>on</strong>g> should be<br />

analyzed at least up to 5 m depth, where at this soil thickness the study area is quasi stable.<br />

This critical height was produced <str<strong>on</strong>g>using</str<strong>on</strong>g> lower <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength. Figure 34 presents<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 56<br />

<strong>on</strong>e of the safety factor maps by the Taylor Method with soil thickness of 5 m <str<strong>on</strong>g>using</str<strong>on</strong>g> lower<br />

<str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength.<br />

Area (km 2 )<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

H = 1m<br />

H = 2m<br />

H = 3m<br />

H = 4m<br />

H = 5m<br />

H = 6m<br />

Unstable Quasi Stable Mod. Stable Stable<br />

Safety Factor Class<br />

Figure 33 : Area within Safety Factor Class with Taylor Methods<br />

Figure 34 : Safety Factor Map of Taylor Method with H = 5 m<br />

However, total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> based <strong>on</strong> Taylor method does not express the safety factor in<br />

terms of <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle for <str<strong>on</strong>g>slope</str<strong>on</strong>g> magnitude less than 52.8°. Thus, the effect of <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle in<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 57<br />

medium magnitude of 20° to 52.8° is not taken into account in the calculati<strong>on</strong>. So, this<br />

calculati<strong>on</strong> should be used with cauti<strong>on</strong> whenever the <str<strong>on</strong>g>slope</str<strong>on</strong>g> magnitude in the area is medium,<br />

the calculati<strong>on</strong> might lead to over estimati<strong>on</strong> since this range of <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle might also cause<br />

failure.<br />

4.4.1.2 Using Infinite Slope Method<br />

Infinite Slope Method with total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> might result in more reliable safety factor<br />

map, since the method takes into account the <str<strong>on</strong>g>slope</str<strong>on</strong>g> magnitude. As shown in Equati<strong>on</strong> (23), the<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g> magnitude inversely affects the safety factor. Thus, the smaller the <str<strong>on</strong>g>slope</str<strong>on</strong>g> the higher the<br />

safety factor will be.<br />

Based <strong>on</strong> the Infinite Slope Method with TSA <str<strong>on</strong>g>using</str<strong>on</strong>g> lower bound of <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength,<br />

the <str<strong>on</strong>g>slope</str<strong>on</strong>g> tends to be unstable whenever the soil thickness is greater than 2 m as shown in<br />

Figure 35. The study area is in completely stable c<strong>on</strong>diti<strong>on</strong>s for soil thickness of 1 m, however<br />

if the soil thickness becomes larger, the area exp<strong>on</strong>entially decreases in stable, quasi stable<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> moderately stable c<strong>on</strong>diti<strong>on</strong>s. When <str<strong>on</strong>g>using</str<strong>on</strong>g> upper bound of <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength, the<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g> starts to be unstable from soil thickness of 4 m <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is completely stable for<br />

soil thickness of 1 m <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 m as shown in Figure 35(b).<br />

Area (km 2 )<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

H = 1m H = 2m<br />

H = 3m H = 4m<br />

H = 5m H = 6m<br />

Unstable Quasi Stable Mod. Stable Stable<br />

Stability Class<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Area (km 2 )<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

H = 1m H = 2m<br />

H = 3m H = 4m<br />

H = 5m H = 6m<br />

Unstable Quasi Stable Mod. Stable Stable<br />

Stability Class<br />

(a) Using Lower bound Undrained Shear Strength (b) Using Upper Bound Undrained Shear Strength<br />

Figure 35 : Area of Stability Class under Different Soil Thickness for Infinite Slope Method with TSA<br />

Figure 36 presents area of each <str<strong>on</strong>g>stability</str<strong>on</strong>g> class for each soil type <str<strong>on</strong>g>using</str<strong>on</strong>g> lower bound <str<strong>on</strong>g>undrained</str<strong>on</strong>g><br />

shear strength. The safety factor for s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay tends to be greater than 1 for soil thickness up<br />

to 2 m, while for inorganic silts <str<strong>on</strong>g>and</str<strong>on</strong>g> organic silts, the safety factor tends to be less than 1


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 58<br />

when the soil thickness is 3 m as shown in Figure 36. The shifting from quasi stable c<strong>on</strong>diti<strong>on</strong><br />

to unstable c<strong>on</strong>diti<strong>on</strong>s seems to exp<strong>on</strong>entially increase for all types of soil.<br />

Area (km 2 )<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

(a) H = 2m (b) H = 3 m<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

(c) H = 4m (d) H = 5 m<br />

Figure 36 : Stability Area under Different Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Thickness with Infinite Slope <str<strong>on</strong>g>and</str<strong>on</strong>g> TSA<br />

Figure 37 : Range of Slope Angle against Stability Class for Different Soil Thickness


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 59<br />

Figure 37 presents typical range of <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle for various <str<strong>on</strong>g>stability</str<strong>on</strong>g> class developed <str<strong>on</strong>g>using</str<strong>on</strong>g><br />

lower bound <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength. The mean angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> unstable c<strong>on</strong>diti<strong>on</strong>s are about<br />

30° for different soil thickness as shown in Figure 37. Under quasi stable, moderately stable<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> stable c<strong>on</strong>diti<strong>on</strong>s, the mean angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> those c<strong>on</strong>diti<strong>on</strong>s exp<strong>on</strong>entially decreases. The<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g> angle below 6° can be c<strong>on</strong>sidered as a limit line for all <str<strong>on</strong>g>stability</str<strong>on</strong>g> class under different soil<br />

thickness. Figure 38 shows an example of safety factor map developed with the Infinite Slope<br />

Method <str<strong>on</strong>g>and</str<strong>on</strong>g> TSA for soil thickness of 2 m <str<strong>on</strong>g>using</str<strong>on</strong>g> lower bound of <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength.<br />

Figure 38 : Safety Factor Map with Infinite Slope Method (TSA) for H = 2 m<br />

4.4.2 Effective Stress Analysis<br />

Effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is used when c<strong>on</strong>sidering l<strong>on</strong>g-term applicati<strong>on</strong>s where <str<strong>on</strong>g>slope</str<strong>on</strong>g> failure<br />

is usually caused by the movement of water. It is also the case in natural <str<strong>on</strong>g>slope</str<strong>on</strong>g> where the<br />

changing of loading results in a change of pore water pressure in the soil mass. The changing<br />

itself is rapid compared to the c<strong>on</strong>solidati<strong>on</strong> time for the soil, particularly in cohesive soil<br />

where permeability is very small. Thus, the excess pore water pressure is not able to be<br />

dissipated <str<strong>on</strong>g>and</str<strong>on</strong>g> causes decreasing shear strength. In the l<strong>on</strong>g term, the pore pressures will<br />

increase to their equilibrium values, thus resulting in a further reducti<strong>on</strong> in the effective<br />

stresses in the clay, <str<strong>on</strong>g>and</str<strong>on</strong>g> hence a reducti<strong>on</strong> in its strength <str<strong>on</strong>g>and</str<strong>on</strong>g> thus in the <str<strong>on</strong>g>stability</str<strong>on</strong>g> of the <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

(Nash, 1987).<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 60<br />

In this study, the effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> was c<strong>on</strong>ducted for steady state <str<strong>on</strong>g>and</str<strong>on</strong>g> quasi dynamic<br />

c<strong>on</strong>diti<strong>on</strong>s. For steady state c<strong>on</strong>diti<strong>on</strong>, three cases were c<strong>on</strong>sidered with completely dry, half<br />

saturated <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated c<strong>on</strong>diti<strong>on</strong>s. Quasi dynamic c<strong>on</strong>diti<strong>on</strong>s were c<strong>on</strong>sidered by<br />

applying wetness index with different return periods of rainfall.<br />

4.4.2.1 Completely Dry C<strong>on</strong>diti<strong>on</strong><br />

Theoretically, the completely dry c<strong>on</strong>diti<strong>on</strong> is not realistic in a hilly area with tropical climate<br />

such as Nepal. However, this c<strong>on</strong>diti<strong>on</strong> can be c<strong>on</strong>sidered as the most stable c<strong>on</strong>diti<strong>on</strong> as there<br />

is no effect of excess pore water pressures that decreases the soil strength. Under this<br />

c<strong>on</strong>diti<strong>on</strong>, the safety factor is governed <strong>on</strong>ly by cohesi<strong>on</strong>, angle of internal fricti<strong>on</strong>, <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

magnitude <str<strong>on</strong>g>and</str<strong>on</strong>g> soil thickness. Am<strong>on</strong>g those three parameters within <strong>on</strong>e soil type, <strong>on</strong>ly <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

angle <str<strong>on</strong>g>and</str<strong>on</strong>g> soil thickness can be different from <strong>on</strong>e to another locati<strong>on</strong>. Thus, the <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

magnitude <str<strong>on</strong>g>and</str<strong>on</strong>g> soil thickness might govern the safety factor for the study area. A very steep<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g>, under very low effective soil strength parameters, can result in a very low safety factor<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> large thickness of soil will also result in a very low safety factor.<br />

As there is no saturati<strong>on</strong> influencing the <str<strong>on</strong>g>slope</str<strong>on</strong>g>s, the parcels with stable c<strong>on</strong>diti<strong>on</strong> occupy the<br />

largest area. However, the area occupied by stable c<strong>on</strong>diti<strong>on</strong> reduces, due to the effect of soil<br />

thickness as shown in Figure 39. This is caused by the fact that soil thickness governs the<br />

safety factor for dry c<strong>on</strong>diti<strong>on</strong>. The larger the soil thickness, the smaller the safety factor will<br />

be.<br />

Area (km 2 )<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

H = 1m H = 2m H = 3m<br />

H = 4m H = 5m H = 6m<br />

H = 7m H = 8m H = 10m<br />

H = 12m H = 15m H = 20m<br />

Unstable Quasi Stable Mod. Stable Stable<br />

Stability Class<br />

Figure 39 : Area of Stability Class for Dry C<strong>on</strong>diti<strong>on</strong> with ESA<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 61<br />

The relati<strong>on</strong>ship between area occupied by <str<strong>on</strong>g>stability</str<strong>on</strong>g> class <str<strong>on</strong>g>and</str<strong>on</strong>g> the respective soil thickness is<br />

best described by Figure 40. As shown in the figure, for stable c<strong>on</strong>diti<strong>on</strong>, the relati<strong>on</strong>ship<br />

decreases exp<strong>on</strong>entially towards infinite.<br />

Area (km 2 )<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Area (km 2 )<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

0<br />

0 20 40 60 80 100 120<br />

Soil Thickness (m)<br />

Figure 40 : Relati<strong>on</strong>ship between Area Occupied by Stability Class <str<strong>on</strong>g>and</str<strong>on</strong>g> Soil Thickness<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

(a) H = 2m (b) H = 3m<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

(c) H = 4m (d) H = 5m<br />

Figure 41 : Stability Area under Different Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Thickness in Dry C<strong>on</strong>diti<strong>on</strong>


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 62<br />

Under dry c<strong>on</strong>diti<strong>on</strong>, s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay becomes unstable when the soil thickness is greater than 4 m,<br />

while inorganic silts tend to be unstable when the soil thickness is greater than 2 m. On the<br />

other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, organic silts were found to be the most unstable in the study area in which for soil<br />

thickness of 2 m the safety factor start to be less than 1 as shown in Figure 41.<br />

Figure 42 : Range of Slope Angle against Stability Class under Different Soil Thickness (Dry)<br />

Figure 43 : Safety Factor Map of Completely Dry C<strong>on</strong>diti<strong>on</strong> for H = 4 m<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 63<br />

The mean angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> unstable c<strong>on</strong>diti<strong>on</strong>s is about 42° for different soil thickness as shown<br />

in Figure 42. Under quasi stable, moderately stable <str<strong>on</strong>g>and</str<strong>on</strong>g> stable c<strong>on</strong>diti<strong>on</strong>s, the mean angle<br />

ca<str<strong>on</strong>g>using</str<strong>on</strong>g> those c<strong>on</strong>diti<strong>on</strong>s decreases for different soil thickness. The <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle below 24° can<br />

be c<strong>on</strong>sidered as a safe limit line for all <str<strong>on</strong>g>stability</str<strong>on</strong>g> class under soil thickness up to 6 m. Figure<br />

43 shows an example of safety factor map under dry c<strong>on</strong>diti<strong>on</strong> with soil thickness of 4 m.<br />

4.4.2.2 Half Saturated C<strong>on</strong>diti<strong>on</strong><br />

Half saturated c<strong>on</strong>diti<strong>on</strong> may describe the real c<strong>on</strong>diti<strong>on</strong> at the site, where the rise of ground<br />

water from other parcels or direct infiltrati<strong>on</strong> of rain from the surface occurs. This case is also<br />

more reliable for tropical areas such as Nepal. However, the assumpti<strong>on</strong> of wetness index<br />

being half for the entire study area seems to be illogical. Thus, the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> result will <strong>on</strong>ly<br />

serve as an indicati<strong>on</strong> of <str<strong>on</strong>g>slope</str<strong>on</strong>g> failure under the influence of groundwater being half saturated.<br />

With half saturated c<strong>on</strong>diti<strong>on</strong>, the lower <str<strong>on</strong>g>and</str<strong>on</strong>g> upper most safety factor ranges from 0.564 to<br />

1.554 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1985 to 3326, respectively, for soil thickness ranging from 1 m to 6 m. About 27.5<br />

km 2 of the cohesive soils are associated with stable c<strong>on</strong>diti<strong>on</strong> under 6 m soil thickness as<br />

shown in Figure 44. This value accounts for about 55.6%, 43.2% <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.3% within s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay,<br />

inorganic silts <str<strong>on</strong>g>and</str<strong>on</strong>g> organic silts, respectively.<br />

Area (km 2 )<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

H = 1m H = 2m H = 3m<br />

H = 4m H = 5m H = 6m<br />

Unstable Quasi Stable Mod. Stable Stable<br />

Stability Class<br />

Figure 44 : Area of Stability Class for Full Saturated C<strong>on</strong>diti<strong>on</strong> with ESA<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 64<br />

Area (km 2 )<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

(a) H = 2m (b) H = 3m<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

(c) H = 4m (d) H = 5m<br />

Figure 45 : Stability Area under Different Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Thickness in Half Saturated C<strong>on</strong>diti<strong>on</strong><br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y clays are the str<strong>on</strong>gest cohesive soils in the study area in which the safety factor<br />

becomes less than 1 when the soil thickness is greater than 3 m for half saturated c<strong>on</strong>diti<strong>on</strong>.<br />

This value accounts for less than the <strong>on</strong>e show by dry c<strong>on</strong>diti<strong>on</strong> case. Inorganic silts <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

organic silts, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, are not able to support imbalances for soil thickness greater<br />

than 2 m as some parcel tend to be unstable for soil thickness of 2 m as shown in Figure 45.<br />

An average mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle of 38° will cause unstable c<strong>on</strong>diti<strong>on</strong>s for different soil thickness<br />

as shown in Figure 46. Under quasi stable, moderately stable <str<strong>on</strong>g>and</str<strong>on</strong>g> stable c<strong>on</strong>diti<strong>on</strong>s, the mean<br />

angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> these c<strong>on</strong>diti<strong>on</strong>s decreases for different soil thickness. The <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle below<br />

17° can be c<strong>on</strong>sidered as a safe limit for all <str<strong>on</strong>g>stability</str<strong>on</strong>g> class under soil thickness up to 6 m. An<br />

example of safety factor map under half saturated c<strong>on</strong>diti<strong>on</strong> with soil thickness of 5 m is<br />

given in Figure 47.


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 65<br />

Figure 46 : Range of Slope Angle against Stability Class under Different Soil Thickness (Half)<br />

Figure 47 : Safety Factor Map of Half Saturated C<strong>on</strong>diti<strong>on</strong> for H=5m<br />

4.4.2.3 Fully Saturated C<strong>on</strong>diti<strong>on</strong><br />

Once more, fully saturated c<strong>on</strong>diti<strong>on</strong> is not a real c<strong>on</strong>diti<strong>on</strong>, especially in mountainous areas<br />

where failure usually occurs before saturati<strong>on</strong> is reached. Thus, this c<strong>on</strong>diti<strong>on</strong> serves as the<br />

worst c<strong>on</strong>diti<strong>on</strong> ever happening in mountainous areas. This c<strong>on</strong>diti<strong>on</strong> will then <strong>on</strong>ly serve as<br />

the lower limit of safety factor for the study area. Thus, the safety factor in reality should be<br />

larger than the safety factor shown by this c<strong>on</strong>diti<strong>on</strong>.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 66<br />

Under fully saturated c<strong>on</strong>diti<strong>on</strong>, the cohesive soil shows moderately stable <str<strong>on</strong>g>and</str<strong>on</strong>g> stable<br />

c<strong>on</strong>diti<strong>on</strong> for soil thickness of 1 m. The cohesive soil becomes unstable when the soil<br />

thickness is 2 m or higher as shown in Figure 48. However, up to 6 m height of soil thickness,<br />

the cohesive soil still shows stable c<strong>on</strong>diti<strong>on</strong> with an approximate area of about 14 km 2 . This<br />

area bel<strong>on</strong>gs to s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay, inorganic silts <str<strong>on</strong>g>and</str<strong>on</strong>g> organic silts with approximate percentage of 10<br />

%, 7 % <str<strong>on</strong>g>and</str<strong>on</strong>g> less than 1 % of the total area of cohesive soil, respectively.<br />

Area (km 2 )<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

H = 1m H = 2m H = 3m<br />

H = 4m H = 5m H = 6m<br />

Unstable Quasi Stable Mod. Stable Stable<br />

Stability Class<br />

Figure 48 : Area of Stability Class for Full Saturated C<strong>on</strong>diti<strong>on</strong> with ESA<br />

Although s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clays are the str<strong>on</strong>gest cohesive soils in the study area, the capability of<br />

supporting its weight under fully saturated c<strong>on</strong>diti<strong>on</strong> is no l<strong>on</strong>ger superior. The safety factor<br />

becomes less than 1 showing this phenomen<strong>on</strong> when the soil thickness is 3 m or higher as<br />

shown in Figure 49. This value accounts for the lowest value for all steady state c<strong>on</strong>diti<strong>on</strong>s.<br />

Inorganic silts <str<strong>on</strong>g>and</str<strong>on</strong>g> organic silts, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, are not able to support imbalances for soil<br />

thickness of 2 m or higher as some parcel tend to be unstable for soil thickness of 2 m.<br />

As this c<strong>on</strong>diti<strong>on</strong> serves as the worst case, the average mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> unstable<br />

c<strong>on</strong>diti<strong>on</strong> also shows the lowest value of 34° than the other two steady state cases as shown in<br />

Figure 50. Under quasi stable, moderately stable <str<strong>on</strong>g>and</str<strong>on</strong>g> stable c<strong>on</strong>diti<strong>on</strong>s, the mean angle<br />

ca<str<strong>on</strong>g>using</str<strong>on</strong>g> these c<strong>on</strong>diti<strong>on</strong>s decreases for different soil thickness. The <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle below 10° can<br />

be c<strong>on</strong>sidered as a safe limit line for all <str<strong>on</strong>g>stability</str<strong>on</strong>g> class under soil thickness up to 6 m. An<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 67<br />

example of safety factor map under half saturated c<strong>on</strong>diti<strong>on</strong> with soil thickness of 6 m is<br />

given in Figure 51.<br />

Area (km 2 )<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

(a) H = 2m (b) H = 3m<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

Area (km 2 )<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Unstable Quasi Stable<br />

Mod. Stable Stable<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

(c) H = 4m (d) H = 5m<br />

Figure 49 : Stability Area under Different Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Thickness in Full Saturated C<strong>on</strong>diti<strong>on</strong><br />

Figure 50 : Range of Slope Angle against Stability Class under Different Soil Thickness (Full)


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 68<br />

Figure 51 : Safety Factor Map of Full Saturated C<strong>on</strong>diti<strong>on</strong> for H = 6 m<br />

4.4.2.4 Based <strong>on</strong> Different Return Periods<br />

This secti<strong>on</strong> deals with the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of safety factor <str<strong>on</strong>g>using</str<strong>on</strong>g> wetness index based <strong>on</strong> different<br />

rainfall return periods explained in the preceding chapters. The <str<strong>on</strong>g>analysis</str<strong>on</strong>g> incorporates wetness<br />

index with return periods of 2, 10, 25 <str<strong>on</strong>g>and</str<strong>on</strong>g> 50 years. The wetness index is developed <str<strong>on</strong>g>using</str<strong>on</strong>g><br />

formulas based <strong>on</strong> direct infiltrati<strong>on</strong> of rainfall.<br />

The difference between steady state c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quasi dynamic c<strong>on</strong>diti<strong>on</strong> is the wetness<br />

index (m) that is calculated by means of direct rainfall infiltrati<strong>on</strong>. For this <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, the<br />

wetness index c<strong>on</strong>trols the safety factor calculati<strong>on</strong>. Unfortunately, the wetness index for the<br />

study area is not very much different for various soil thicknesses as shown in Figure 52. The<br />

highest <str<strong>on</strong>g>and</str<strong>on</strong>g> lowest wetness index occurs in inorganic silts <str<strong>on</strong>g>and</str<strong>on</strong>g> organic silts soils with m value<br />

ranging from 0.52 to 0.56 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5 to 0.505, respectively, under different return periods. These<br />

insignificant differences are caused by the fact that the calculated rainfall values based <strong>on</strong><br />

statistics are also not significantly different for the return periods as shown in Figure 53. This<br />

wetness index was not different from the wetness index for steady state c<strong>on</strong>diti<strong>on</strong> with half<br />

saturated c<strong>on</strong>diti<strong>on</strong>, for which the m value is 0.5.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 69<br />

Wetness Index<br />

0.57<br />

0.56<br />

0.55<br />

0.54<br />

0.53<br />

0.52<br />

0.51<br />

0.5<br />

H = 1 m H = 2 m<br />

H = 3 m H = 4 m<br />

H = 5 m H = 6 m<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

Return Periods (years)<br />

0.5<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Wetness Index<br />

0.57<br />

0.56<br />

0.55<br />

0.54<br />

0.53<br />

0.52<br />

0.51<br />

H = 1 m H = 2 m<br />

H = 3 m H = 4 m<br />

H = 5 m H = 6 m<br />

Return Periods (years)<br />

(a) S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clays (b) Inorganic Silts<br />

Wetness Index<br />

0.57<br />

0.56<br />

0.55<br />

0.54<br />

0.53<br />

0.52<br />

0.51<br />

H = 1 m H = 2 m<br />

H = 3 m H = 4 m<br />

H = 5 m H = 6 m<br />

0.5<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

Return Periods (years)<br />

(c) Organic Silts<br />

Figure 52 : Wetness Index for Various Soil Thickness <str<strong>on</strong>g>and</str<strong>on</strong>g> Soil Types<br />

Rainfall (mm)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 50 100 150 200 250<br />

Return Periods (years)<br />

Figure 53 : Rainfall Intensity with Various Return Periods


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 70<br />

Although there are differences between wetness indices of different return periods, the<br />

difference is not significant to affect drastically the safety factor. As shown in Figure 54, the<br />

difference in area occupied by various <str<strong>on</strong>g>stability</str<strong>on</strong>g> classes with various return periods <str<strong>on</strong>g>and</str<strong>on</strong>g> with<br />

various soil thicknesses is relatively small. However, the effect of soil thickness still<br />

c<strong>on</strong>sistently shows that the higher the soil thickness the higher the safety factor will be, shown<br />

by the amount of area occupied by that safety factor. Significant decrease of area occupied by<br />

stable c<strong>on</strong>diti<strong>on</strong> is also noticed for soil thickness of 1 m to 3 m as shown in Figure 54(d).<br />

Area (km 2 )<br />

Area (km 2 )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

H = 1m H = 2m H = 3m H = 4m<br />

H = 5m H = 6m<br />

RP 2 yr RP 10 yr RP 25 yr RP 50 yr<br />

Return Periods (year)<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Area (km 2 )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

H = 1m H = 2m H = 3m H = 4m<br />

H = 5m H = 6m<br />

RP 2 yr RP 10 yr RP 25 yr RP 50 yr<br />

Return Periods (year)<br />

(a) Unstable C<strong>on</strong>diti<strong>on</strong> (b) Quasi Stable C<strong>on</strong>diti<strong>on</strong><br />

H = 1m H = 2m H = 3m H = 4m<br />

H = 5m H = 6m<br />

RP 2 yr RP 10 yr RP 25 yr RP 50 yr<br />

Return Periods (year)<br />

Area (km 2 )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

H = 1m H = 2m H = 3m H = 4m<br />

H = 5m H = 6m<br />

RP 2 yr RP 10 yr RP 25 yr RP 50 yr<br />

Return Periods (year)<br />

(c) Moderately Stable C<strong>on</strong>diti<strong>on</strong> (d) Stable C<strong>on</strong>diti<strong>on</strong><br />

Figure 54 : Area of Safety Factor with Various Return Periods<br />

The same tendency also shows if the area of each soil type is plotted against <str<strong>on</strong>g>stability</str<strong>on</strong>g> class for<br />

various return periods that insignificant difference occur. Figure 55 shows relatively small<br />

differences of area occupied by stable c<strong>on</strong>diti<strong>on</strong> with various return periods for soil thickness<br />

of 2 m. This is caused by the fact that there are relatively small differences between safety<br />

factors <str<strong>on</strong>g>using</str<strong>on</strong>g> various return periods.


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 71<br />

Area (km 2 )<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

RP 2 yr RP 10 yr<br />

RP 25 yr RP 50 yr<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay Inorganic Silts Organic Silts<br />

Soil Types<br />

Figure 55 : Stable Area with Various Soil Types <str<strong>on</strong>g>and</str<strong>on</strong>g> Return Periods with Soil Thickness of 2m<br />

Compared to the result given by steady state with half saturated c<strong>on</strong>diti<strong>on</strong> in which the<br />

wetness index was 0.5, the calculati<strong>on</strong>s of safety factor based <strong>on</strong> various rainfall return<br />

periods give similar result. Thus, the steady state with half saturated c<strong>on</strong>diti<strong>on</strong> can serve as a<br />

general safety factor map for this study area with various return periods. The wetness indices<br />

for various return periods of rainfall are not significantly different from the <strong>on</strong>e obtained with<br />

half saturated c<strong>on</strong>diti<strong>on</strong>. The differences are <strong>on</strong>ly about 0.06.<br />

4.5 Discussi<strong>on</strong><br />

Owing to the ever-increasing capabilities of hardware <str<strong>on</strong>g>and</str<strong>on</strong>g> software, electr<strong>on</strong>ic geographical<br />

data processing is becoming a comm<strong>on</strong> tool in a wide range of research or producti<strong>on</strong><br />

activities. This technology has brought <str<strong>on</strong>g>GIS</str<strong>on</strong>g> for evaluating natural hazards such as l<str<strong>on</strong>g>and</str<strong>on</strong>g> slides.<br />

However, the extent to which this technology is applicable still remains a big issue for users<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> researchers. Actually, the crucial issue in hazard assessment is the input data which<br />

remain fundamentally inadequate in quantity <str<strong>on</strong>g>and</str<strong>on</strong>g> quality for the task to be accomplished.<br />

Thus, a good underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing of geology, hydrology, <str<strong>on</strong>g>and</str<strong>on</strong>g> soil properties is central to applying<br />

<str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> principles properly. Analyses must be based up<strong>on</strong> a model that accurately<br />

represents site subsurface c<strong>on</strong>diti<strong>on</strong>s, ground behavior, <str<strong>on</strong>g>and</str<strong>on</strong>g> applied loads. Good judgments<br />

regarding acceptable risk or safety factors must be made to assess the results of analyses.<br />

4.5.1 Total <str<strong>on</strong>g>and</str<strong>on</strong>g> Effective Stress Analyses<br />

It is clear from the theory of the difference between total <str<strong>on</strong>g>and</str<strong>on</strong>g> stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> that total stress<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> does not take into account pore water pressure effect in the calculati<strong>on</strong>s. This also<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 72<br />

means that loss of strength in time does not take that into c<strong>on</strong>siderati<strong>on</strong>s, as there is possibility<br />

of strength loss in time due to fluctuati<strong>on</strong> of groundwater or dissipati<strong>on</strong> of excess pore water<br />

pressure. Therefore, both safety factor <str<strong>on</strong>g>and</str<strong>on</strong>g> critical height based <strong>on</strong> this principle should result<br />

in a higher value.<br />

However, the calculati<strong>on</strong> for total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> shown above with lower bound <str<strong>on</strong>g>undrained</str<strong>on</strong>g><br />

shear strength (TSA-Inf.-Lower) gives lower result compared to effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> as<br />

indicated in Figure 56(a). The reas<strong>on</strong> behind this phenomena is that the <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear<br />

strengths are used as a c<strong>on</strong>stant value when applying into Equati<strong>on</strong> (23), while the<br />

denominator (γ × H × sin i × cos i) can increase with depth <str<strong>on</strong>g>and</str<strong>on</strong>g> thus give lower value of safety<br />

factor or critical height.<br />

As shown in Figure 56(a), the result given by total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> with infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>using</str<strong>on</strong>g><br />

upper bound <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength is higher than effective stress with completely dry<br />

c<strong>on</strong>diti<strong>on</strong>. However, after a certain soil thickness, the area for stable c<strong>on</strong>diti<strong>on</strong> becomes less<br />

than for completely dry c<strong>on</strong>diti<strong>on</strong>. The same tendency is also seen for the Taylor Method if<br />

higher values of <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength were used. However, the result was not shown in<br />

Figure 56.<br />

Percentage of Stable Area (%)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Taylor TSA-Inf.-Lower<br />

TSA-Inf.-Upper ESA-Inf-Dry<br />

ESA-Inf-Half ESA-Inf-Full<br />

H = 1m H = 2m H = 3m H = 4m H = 5m H = 6m<br />

Soil Thickness<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Percentage of Unstable Area (%)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Taylor TSA-Inf.-Lower<br />

TSA-Inf-Upper ESA-Inf-Dry<br />

ESA-Inf-Half ESA-Inf-Full<br />

H = 1m H = 2m H = 3m H = 4m H = 5m H = 6m<br />

Soil Thickness<br />

(a) Stable C<strong>on</strong>diti<strong>on</strong> (b) Unstable C<strong>on</strong>diti<strong>on</strong><br />

Figure 56 : Comparis<strong>on</strong> between Various Method Results<br />

Hence, the Taylor Method might be not applicable since it is giving very high values of safety<br />

for small soil thickness, while in reality, failure reported in this study area occurs for small<br />

soil thickness. Therefore, it is <strong>on</strong>ly applicable for identifying the depth of influence for further<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g>. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, the results given by the Infinite Slope Method with TSA


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 73<br />

produces lower <str<strong>on</strong>g>and</str<strong>on</strong>g> higher safety factors if lower <str<strong>on</strong>g>and</str<strong>on</strong>g> upper <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strengths are<br />

used. In this case, this model can <strong>on</strong>ly be applied as the uppermost <str<strong>on</strong>g>and</str<strong>on</strong>g> lower most safety<br />

factor for the area. The two models should also be c<strong>on</strong>firmed with l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide occurrence at the<br />

site. However, it was not possible to calibrate the two models because there is no informati<strong>on</strong><br />

about failure <strong>on</strong> cohesive soil that was recorded. Failure occurring at this study area happened<br />

<strong>on</strong> the granular soils.<br />

The three models resulting from effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> showed a good result with a<br />

tendency of decreasing <str<strong>on</strong>g>stability</str<strong>on</strong>g> with soil thickness. Completely dry c<strong>on</strong>diti<strong>on</strong> gives the<br />

highest value compared to the other two c<strong>on</strong>diti<strong>on</strong>s. It is also c<strong>on</strong>firmed by the results that<br />

fully dry c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> with upper <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength of TSA are close<br />

together, except for soil thickness higher than 4 m.<br />

4.5.2 Influence of Depth<br />

The <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> has been found to be directly influenced by the depth of the soil.<br />

Generally, all the models c<strong>on</strong>sistently show that the safety factor decreases against soil<br />

thickness as also shown in Figure 56. Especially the result given by Taylor method is clearly<br />

shown in this relati<strong>on</strong>ship; the <str<strong>on</strong>g>slope</str<strong>on</strong>g> is safe up to soil thickness of 3 m, however, when the soil<br />

thickness is larger than 3 m, the safety factor becomes completely unstable.<br />

The model given by the Infinite Slope Method with TSA (TSA-Inf.-Upper) also clearly shows<br />

the influence of depth as shown in Figure 56(a). The results indicate that up to 4 m soil<br />

thickness, the relati<strong>on</strong>ship between safety factor <str<strong>on</strong>g>and</str<strong>on</strong>g> soil thickness gradually decreases.<br />

However, for soil thickness greater than 4 m, the decrease of safety factor becomes very large<br />

as the line of this model is crossing the other models. The reas<strong>on</strong> is that the soil thickness<br />

plays a major role in total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> with infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g>. In Equati<strong>on</strong> (23) the numerator is<br />

a c<strong>on</strong>stant value <str<strong>on</strong>g>and</str<strong>on</strong>g> the denominator increases with depth.<br />

4.5.3 Slope Angle<br />

Range of mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle for various <str<strong>on</strong>g>stability</str<strong>on</strong>g> class <str<strong>on</strong>g>and</str<strong>on</strong>g> analyses methods are presented in<br />

Table 16. In general, the Infinite Slope Method with completely dry c<strong>on</strong>diti<strong>on</strong>s gives the<br />

highest values of mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle, while total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> with infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> give the<br />

lowest mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angles. The mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle is also observed decreasing from dry to fully<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 74<br />

saturated c<strong>on</strong>diti<strong>on</strong>s. The same tendency is also observed for average mean angle to cause<br />

in<str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lower most <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle for stable c<strong>on</strong>diti<strong>on</strong> that it decreased from fully dry to<br />

completely saturated c<strong>on</strong>diti<strong>on</strong>s as summarized in Table 17.<br />

Stability<br />

Class<br />

TSA-Inf.-<br />

Lower<br />

Table 16 : Range of Mean Slope Angle<br />

TSA-Inf.-<br />

Upper<br />

Mean Angle (degree)<br />

ESA-Inf-Dry ESA-Inf-Half ESA-Inf-Full<br />

Unstable 28 - 32 42 - 37 41 - 55 37 - 45 32 - 38<br />

Quasi<br />

Stable<br />

12 - 36 33 - 29 35 - 42 29 - 37 22 - 33<br />

Mod. Stable 9 - 42 42 - 34 30 - 36 24 - 49 18 - 40<br />

Stable 5 - 26 26 - 24 18 - 26 14 - 26 10 - 25<br />

Descripti<strong>on</strong><br />

Average mean <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> In<str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

Lower most <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle<br />

ca<str<strong>on</strong>g>using</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

Lower most <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle<br />

for stable C<strong>on</strong>diti<strong>on</strong><br />

4.5.4 Selecti<strong>on</strong> of Maps<br />

Table 17 : Slope Angle for Unstable <str<strong>on</strong>g>and</str<strong>on</strong>g> Stable C<strong>on</strong>diti<strong>on</strong>s<br />

TSA-Inf.-<br />

Lower<br />

TSA-Inf.-<br />

Upper<br />

ESA-Inf-<br />

Dry<br />

ESA-Inf-<br />

Half<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

ESA-Inf-<br />

Full<br />

30 37 43 38 34<br />

9 24 36 26 16<br />

6 14 24 17 10<br />

This secti<strong>on</strong> deals with the choice of critical height maps <str<strong>on</strong>g>and</str<strong>on</strong>g> safety factor maps that are<br />

applicable for the study area. As there are many methods that can be applied for l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide<br />

assessment, the issues still remains which of those represent general c<strong>on</strong>diti<strong>on</strong>s for the study<br />

area <str<strong>on</strong>g>and</str<strong>on</strong>g> to which extend these maps can be used. The selecti<strong>on</strong> itself depends <strong>on</strong> several<br />

factors such as the applicati<strong>on</strong> of the map <str<strong>on</strong>g>and</str<strong>on</strong>g> method used for developing the map.<br />

4.5.4.1 Critical Height Map<br />

A critical height map can serve as a general guidance to facilitate planners <str<strong>on</strong>g>and</str<strong>on</strong>g> administrators<br />

to c<strong>on</strong>struct correct decisi<strong>on</strong>s at the planning stage of a development project. This map<br />

explains the behavior of the ground under no supporting structure to which extend the soil is


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 75<br />

able to withst<str<strong>on</strong>g>and</str<strong>on</strong>g> imbalance forces. It can serve also as a general guidance to decide to which<br />

height a <str<strong>on</strong>g>slope</str<strong>on</strong>g> can be cut without failure. Furthermore, the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> can also identify under<br />

which magnitude the <str<strong>on</strong>g>slope</str<strong>on</strong>g> will not fail.<br />

In this study two methods have been used for assessing critical height map: the Taylor<br />

Method <str<strong>on</strong>g>and</str<strong>on</strong>g> the Infinite Slope Method with total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. Under total<br />

stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, two method were used, i.e. the Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> the Infinite Slope Methods, while<br />

under effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, the Infinite Slope Method was applied as summarized in Table<br />

18.<br />

Type of Stress<br />

Analysis<br />

Total Stress<br />

(Lower su)<br />

Effective Stress Infinite Slope<br />

Table 18 : Summary of Critical Height<br />

Method Case<br />

Critical Height, H c (m)<br />

Ranges<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Most<br />

Occurrence<br />

Taylor - 4 - 6 4 - 6<br />

Infinite Slope - 1 - >10 2 - 4<br />

Dry 2 - ∞ Infinite<br />

Half Saturated 1 - ∞ Infinite<br />

Fully Saturated 1 - ∞ 2 - 4<br />

The result for all type of analyses shows that the critical height ranges from 1 m to infinite.<br />

However, the infinite critical depth resulting from the effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> when the <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

magnitudes are less than the angle of internal fricti<strong>on</strong> results in an infinite critical height value<br />

as for a flat area also. Thus, the infinite critical height should not be c<strong>on</strong>sidered as a general<br />

rule for assessing critical height in this area.<br />

Generally, the critical height for cohesive soil in this study area ranges from 2 m to 4 m <str<strong>on</strong>g>and</str<strong>on</strong>g> 4<br />

m to 6 m based <strong>on</strong> result given by the Infinite Slope <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor Methods, respectively, as<br />

shown in Table 18. Although there are differences in applying stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, a critical height<br />

of 2 m to 4 m can be used as a rule of thumb for critical height of cohesive soil in the study<br />

area. Meanwhile, the result given by the Taylor Method can be used as a general guidance to<br />

which extent the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> of safety factor should be c<strong>on</strong>ducted.


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 76<br />

Even though general guidance given by the Taylor Method is very useful, the methods were<br />

not able to explain any spatial distributi<strong>on</strong> of critical height. An infinite <str<strong>on</strong>g>slope</str<strong>on</strong>g> maps give a<br />

better descripti<strong>on</strong> of the distributi<strong>on</strong> of critical height over the study area. Comparis<strong>on</strong> result<br />

between the Infinite Slope with total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress analyses shows that the result given<br />

by total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> is the most c<strong>on</strong>servative. Finally, it is c<strong>on</strong>cluded that this map can<br />

serve as base map of critical height for the study area as shown in Figure 30.<br />

4.5.4.2 Safety Factor Map<br />

Stability c<strong>on</strong>diti<strong>on</strong>s of a <str<strong>on</strong>g>slope</str<strong>on</strong>g> <strong>on</strong> a regi<strong>on</strong>al scale can be accessed through safety factor map.<br />

Planners <str<strong>on</strong>g>and</str<strong>on</strong>g> administrators both from government or private offices might use this map for<br />

early planning of a project. This will certainly provide useful informati<strong>on</strong> of the <str<strong>on</strong>g>stability</str<strong>on</strong>g> <strong>on</strong> a<br />

project site in the early stage where necessary remedial acti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> design can be taken to<br />

avoid <str<strong>on</strong>g>slope</str<strong>on</strong>g> failure. In return, a good design <str<strong>on</strong>g>and</str<strong>on</strong>g> remedial acti<strong>on</strong> will reduce the budget <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

also provide security for the project <str<strong>on</strong>g>and</str<strong>on</strong>g> society living nearby the project.<br />

The same simulati<strong>on</strong>s as for critical height map have been applied for the safety factor map.<br />

The result from total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> can be c<strong>on</strong>sidered as a short term safety factor map. Short<br />

term safety factor map refers to <str<strong>on</strong>g>stability</str<strong>on</strong>g> factors within a short time frame, as for instance<br />

short term c<strong>on</strong>structi<strong>on</strong> periods. While the result from effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> can be<br />

c<strong>on</strong>sidered as l<strong>on</strong>g term safety factor map due to its nature that allows decreasing of soil<br />

strengths in l<strong>on</strong>g term periods.<br />

Short term safety factor map resulted from the Taylor Method is c<strong>on</strong>sidered inapplicable<br />

because it does not take into account <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle less than 52.8°. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, the<br />

Infinite Slope Method is more reliable as <str<strong>on</strong>g>slope</str<strong>on</strong>g> magnitudes are taken into account. However,<br />

both of the methods express the same depth of influence of about 6 m in which the entire<br />

study area becomes unstable as shown in Table 19.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 77<br />

Soil<br />

Thickness Unstable<br />

Table 19 : Percentage of Total Area of Safety Factor for TSA Result<br />

Infinite Slope Method (Lower Bound Su) Taylor Method<br />

Quasi<br />

Stable<br />

Mod.<br />

Stable<br />

Stable Unstable Quasi<br />

Stable<br />

Mod.<br />

Stable<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Stable<br />

H = 1m 0 0 0 100 0 0 0 100<br />

H = 2m 2 37 23 38 0 0 0 100<br />

H = 3m 62 16 8 14 0 0 3 97<br />

H = 4m 81 8 4 8 0 3 97 0<br />

H = 5m 89 4 2 5 3 97 0 0<br />

H = 6m 92 3 1 4 100 0 0 0<br />

L<strong>on</strong>g term safety factor maps should be developed with effective stress parameters <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

performed by effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. Three steady state c<strong>on</strong>diti<strong>on</strong>s were performed with<br />

varying soil thickness, while under quasi dynamic c<strong>on</strong>diti<strong>on</strong>s, the result is c<strong>on</strong>sidered similar<br />

as the <strong>on</strong>e showed by steady state c<strong>on</strong>diti<strong>on</strong> with half saturated case. The summary of the<br />

results from steady state c<strong>on</strong>diti<strong>on</strong> are shown in Table 20.<br />

In general, the three c<strong>on</strong>diti<strong>on</strong>s can serve as a base map for practical used as the safety factor<br />

will not exceed this range, i.e. within dry <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated c<strong>on</strong>diti<strong>on</strong>. However, it should be<br />

noted that this is under hypothesis that the assumpti<strong>on</strong> taken related to soil strength<br />

parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> soil types are reliable. In this case, dry <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated c<strong>on</strong>diti<strong>on</strong>s serve as<br />

the upper <str<strong>on</strong>g>and</str<strong>on</strong>g> lower limit of safety factor in the study area, respectively. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

half saturated safety factor map can be used as a general safety factor map in the study area.


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 78<br />

H (m)<br />

Table 20 : Percentage of Total Area of Safety Factor for ESA Result<br />

Completely Dry Half Saturated Fully Saturated<br />

Ust. Qst. Mst. St. Ust. Qst. Mst. St. Ust. Qst. Mst. St.<br />

1 0 0 0 100 0 0 0 100 0 0 5 95<br />

2 0 2 7 91 1 8 10 82 8 11 18 63<br />

3 1 7 16 76 7 16 21 56 21 27 18 34<br />

4 3 14 19 64 14 24 19 43 40 23 12 25<br />

5 6 19 19 56 23 24 16 37 52 18 10 20<br />

6 9 21 19 51 30 23 14 33 60 15 8 17<br />

Note : H = Soil Thickness Mst. = Moderately Stable<br />

Ust. = Unstable St. = Stable<br />

Qst. = Quasi Stable<br />

4.5.5 Comparis<strong>on</strong> with Root Cohesi<strong>on</strong> Method<br />

The previous study c<strong>on</strong>ducted by Ray (2004) was based <strong>on</strong> the model with root cohesi<strong>on</strong><br />

developed by M<strong>on</strong>tgomery <str<strong>on</strong>g>and</str<strong>on</strong>g> Dietrich (1994), Van Westen <str<strong>on</strong>g>and</str<strong>on</strong>g> Terlien (1996) <str<strong>on</strong>g>and</str<strong>on</strong>g> de<br />

Vleeschauwer <str<strong>on</strong>g>and</str<strong>on</strong>g> De Smedt (2002). This model combines cohesi<strong>on</strong> between soil <str<strong>on</strong>g>and</str<strong>on</strong>g> root<br />

cohesi<strong>on</strong>s as explained in Equati<strong>on</strong> (22). The study also assumed c<strong>on</strong>stant soil depth<br />

according to a depth factor of 1, 0.75 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5 for <str<strong>on</strong>g>slope</str<strong>on</strong>g>s up to 30°, 30° to 45° <str<strong>on</strong>g>and</str<strong>on</strong>g> 45° to 61°,<br />

respectively. Thus, as shown in Table 21, soil thickness assumpti<strong>on</strong> for the previous study<br />

ranges from 1 m to 2 m. This means almost 73% of cohesive soil falls within soil thickness of<br />

2 m. Moreover, it can be c<strong>on</strong>cluded that the previous study was c<strong>on</strong>ducted with effective<br />

stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> with different steady state c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> quasi dynamic c<strong>on</strong>diti<strong>on</strong>s.<br />

Table 21 : Previous Study Assumpti<strong>on</strong> <strong>on</strong> Soil Thickness for Cohesive Soil<br />

Soil Type<br />

Total<br />

Area<br />

(km 2 )<br />

Minimum<br />

(m)<br />

Coverage<br />

Area<br />

(km 2 )<br />

Soil Depth<br />

Maximum<br />

(m)<br />

Coverage<br />

Area<br />

(km 2 )<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Clay 47. 2 1 18.4 2 28.8<br />

Inorganic Silts 34.3 1 4.2 2 30.1<br />

Organic Silts 2.5 2 2.5 2 2.5<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 79<br />

The difference between the previous <str<strong>on</strong>g>and</str<strong>on</strong>g> the present study besides the model being used is the<br />

assumpti<strong>on</strong> of the soil depth as depicted in Figure 18. The previous study assumed c<strong>on</strong>stant<br />

soil depth, while the present study assumed infinite soil depth. As a c<strong>on</strong>sequence, the<br />

evaluati<strong>on</strong> of the safety factor for both of the studies was also different. As the depth of the<br />

soil was assumed to be c<strong>on</strong>stant for the previous study, then the safety factor was evaluated at<br />

the base of the soil layer. C<strong>on</strong>trary, as the depth of the soil was assumed infinite for the<br />

present study, so the evaluati<strong>on</strong> of safety factor was based <strong>on</strong> different slip plane or soil<br />

thickness. Therefore, in order to compare the previous <str<strong>on</strong>g>and</str<strong>on</strong>g> the present studies, the<br />

comparis<strong>on</strong>s c<strong>on</strong>ducted in this study were <strong>on</strong>ly d<strong>on</strong>e for soil thickness of 2 m as this soil<br />

thickness covered almost 73% of cohesive soil in the previous study. The comparis<strong>on</strong> was<br />

d<strong>on</strong>e by evaluating the area occupied by a certain <str<strong>on</strong>g>stability</str<strong>on</strong>g> class within cohesive soil <strong>on</strong>ly<br />

under various steady state c<strong>on</strong>diti<strong>on</strong>s.<br />

In completely dry c<strong>on</strong>diti<strong>on</strong>, about 42 km 2 , 32 km 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 km 2 for s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay, inorganic silts<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> organic silts respectively, were reported previously to be in stable c<strong>on</strong>diti<strong>on</strong>s. It was also<br />

c<strong>on</strong>cluded that clayey s<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay types of soils are more stable even <strong>on</strong> steep <str<strong>on</strong>g>slope</str<strong>on</strong>g><br />

with unmanaged cultivati<strong>on</strong> practice (Ray, 2004). The present study also indicates the same<br />

tendency, where in completely dry c<strong>on</strong>diti<strong>on</strong> the area occupied by s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay is about 47 km 2<br />

with soil thickness of 2 m. However, slightly differences in area occupied by s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay were<br />

observed of about 5 km 2 . It was also c<strong>on</strong>firmed by the present study that the s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay soil<br />

were more stable due to the fact that up to 5 m soil thickness about 60% of s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay soil<br />

was still in stable c<strong>on</strong>diti<strong>on</strong> (Figure 41).<br />

However, the previous study c<strong>on</strong>cluded that the <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g> is 37° for all<br />

soil types, while the present study c<strong>on</strong>cluded that the average mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle is 43° for<br />

cohesive soil <strong>on</strong>ly. However, the lower most <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g> identified in this<br />

study is very similar with the previous study as shown in Table 22.<br />

The difference becomes significant when half <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated c<strong>on</strong>diti<strong>on</strong>s are compared. As<br />

shown in Table 23, about 20% <str<strong>on</strong>g>and</str<strong>on</strong>g> 26% of differences are observed for half <str<strong>on</strong>g>and</str<strong>on</strong>g> fully<br />

saturated c<strong>on</strong>diti<strong>on</strong>s, respectively, <strong>on</strong> s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay soils. However, the difference observed in<br />

inorganic silts was less than 10% for both of cases. A significant difference of stable area in<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 80<br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay soils might be caused by the low value strength parameters used by the previous<br />

study. Thus when pore water pressure was c<strong>on</strong>sidered, the shear stresses become less than the<br />

normal stress. Hence, this would result in low safety factor for the previous study.<br />

Table 22 : Lower Most Slope Angle Ca<str<strong>on</strong>g>using</str<strong>on</strong>g> In<str<strong>on</strong>g>stability</str<strong>on</strong>g> for Previous <str<strong>on</strong>g>and</str<strong>on</strong>g> Present Study<br />

Steady State<br />

C<strong>on</strong>diti<strong>on</strong>s<br />

Lower Most Slope Angle<br />

Ca<str<strong>on</strong>g>using</str<strong>on</strong>g> In<str<strong>on</strong>g>stability</str<strong>on</strong>g><br />

Previous<br />

Study<br />

Present<br />

Study<br />

Dry 37 36<br />

Half Saturated 27 26<br />

Fully Saturated 21 16<br />

In terms of <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g>, according to previous study, <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle of 27° <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

21° was observed for half <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated c<strong>on</strong>diti<strong>on</strong>s. The present study indicates that<br />

average mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle of 37° <str<strong>on</strong>g>and</str<strong>on</strong>g> 34° causes in<str<strong>on</strong>g>stability</str<strong>on</strong>g> of <str<strong>on</strong>g>slope</str<strong>on</strong>g> for half <str<strong>on</strong>g>and</str<strong>on</strong>g> fully<br />

saturated c<strong>on</strong>diti<strong>on</strong>s. However, the lower most <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle ca<str<strong>on</strong>g>using</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g> give similar<br />

result for half saturated but not in fully saturated case as shown in Table 22.<br />

Soil<br />

Types<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>y<br />

Clay<br />

Inorganic<br />

Silts<br />

Total<br />

Area<br />

Total<br />

Area<br />

(km2)<br />

Table 23 : Summary Comparis<strong>on</strong> between Previous <str<strong>on</strong>g>and</str<strong>on</strong>g> Present Study<br />

Ray<br />

(2004)<br />

Stable Area Occupied for Each Steady State C<strong>on</strong>diti<strong>on</strong>s<br />

Fully Dry C<strong>on</strong>diti<strong>on</strong> Half Saturated C<strong>on</strong>diti<strong>on</strong> Full Saturated C<strong>on</strong>diti<strong>on</strong><br />

Present<br />

Study<br />

%<br />

Difference<br />

Ray<br />

(2004)<br />

Present<br />

Study<br />

%<br />

Difference<br />

Ray<br />

(2004)<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale<br />

Present<br />

Study<br />

%<br />

Difference<br />

47.192 42 47 6 30 46 20 17 38 26<br />

34.3276 32 27 6 27 21 8 15 14 1<br />

81.5196<br />

Both results from the present <str<strong>on</strong>g>and</str<strong>on</strong>g> the previous study share the same tendency that models<br />

developed based <strong>on</strong> direct infiltrati<strong>on</strong> produced similar result with model based <strong>on</strong> half<br />

saturated c<strong>on</strong>diti<strong>on</strong>. As the rainfall intensity for various return periods developed with<br />

statistical software does not significantly different, so the wetness index was not significantly


Chapter 4 : Result <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> 81<br />

discrete also. As a c<strong>on</strong>sequence, the safety factor resulted from this wetness index is not<br />

significantly different. Thus, it is c<strong>on</strong>cluded that for present study area, the wetness index<br />

does not significantly affect the safety factor, since the amount of rainfall is not significantly<br />

discrete.<br />

Another explanati<strong>on</strong> of similar result between models based <strong>on</strong> various return periods <str<strong>on</strong>g>and</str<strong>on</strong>g> half<br />

saturated c<strong>on</strong>diti<strong>on</strong>s is basically due to the c<strong>on</strong>cept <str<strong>on</strong>g>and</str<strong>on</strong>g> philosophy of cohesive soil.<br />

Theoretically, cohesive soil is different than cohesi<strong>on</strong>less soil in terms of shapes <str<strong>on</strong>g>and</str<strong>on</strong>g> reacti<strong>on</strong><br />

against water. These two important differences distinguish the behaviour of the soils in shear.<br />

Cohesive particles are normally plate-formed, while cohesi<strong>on</strong>less particles are normally<br />

rounded-formed. As the shape between these two particle types is different, it c<strong>on</strong>stitutes<br />

different phenomena whenever there is a movement of water. The movement of water inside<br />

of soil particles is determined by its permeability. In terms of permeability, cohesive soil<br />

reserves a lower value than cohesi<strong>on</strong>less soil. As the permeability of cohesive soil is very<br />

small, the movement of water in clay particles is very slow. In hydrology, the movement of<br />

water affected <strong>on</strong>ly by gravitati<strong>on</strong> force is explained by its specific yield, which also shares<br />

the same tendency as permeability.<br />

Shortly, specific yield phenomen<strong>on</strong> in cohesive soil has a very small affects <strong>on</strong> the movement<br />

of water from rainfall to reach the groundwater. This caused the amount of rainfall falls<br />

within clayey soil is reduced by the specific yield to reach the groundwater. As a<br />

c<strong>on</strong>sequence, the wetness index is not very much different.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 5 : C<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Recommendati<strong>on</strong> 82<br />

CHAPTER 5 : CONCLUSIONS AND RECOMMENDATIONS<br />

5.1 C<strong>on</strong>clusi<strong>on</strong>s<br />

Natural <str<strong>on</strong>g>slope</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g> is a major c<strong>on</strong>cern in a mountainous area where failures might cause<br />

catastrophic destructi<strong>on</strong> <strong>on</strong> the surrounding area. The failures might be triggered by internal<br />

or external factors that cause imbalance natural forces. Internal triggering factor is the factor<br />

that causes failure due to internal changes, such as increasing pore water pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> or<br />

imbalance forces developed due to expansi<strong>on</strong> of soil mass. External triggering factor, <strong>on</strong> the<br />

other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, might be either caused by human activities or natural events, such as earthquakes.<br />

This study is the c<strong>on</strong>tinuati<strong>on</strong> of the previous study d<strong>on</strong>e by Ram Lakhan Ray, 2004, that<br />

applied <str<strong>on</strong>g>stability</str<strong>on</strong>g> model <strong>on</strong> an area of 341 km 2 of Dhading district, Nepal. In this study, a<br />

spatial distributed physically based <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> model was presented <str<strong>on</strong>g>and</str<strong>on</strong>g> applied <strong>on</strong> 84 km 2<br />

area located in the same study area. It covered <strong>on</strong>ly about 25% of the original study area as<br />

the present study was mainly c<strong>on</strong>ducted <strong>on</strong>ly <strong>on</strong> cohesive soil present in the study area. Two<br />

methods of <str<strong>on</strong>g>analysis</str<strong>on</strong>g> were performed, i.e. the total <str<strong>on</strong>g>and</str<strong>on</strong>g> effective stress analyses <str<strong>on</strong>g>and</str<strong>on</strong>g> the Taylor<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the Infinite Slope Methods were applied <strong>on</strong> the <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. Critical height <str<strong>on</strong>g>and</str<strong>on</strong>g> safety factor<br />

maps were produced based <strong>on</strong> those analyses. Steady state <str<strong>on</strong>g>and</str<strong>on</strong>g> quasi dynamic c<strong>on</strong>diti<strong>on</strong>s were<br />

c<strong>on</strong>sidered for the present study with varying soil thickness. For quasi dynamic c<strong>on</strong>diti<strong>on</strong>s,<br />

wetness index was applied based <strong>on</strong> direct rainfall infiltrati<strong>on</strong>s.<br />

It is c<strong>on</strong>cluded that total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> give a good indicati<strong>on</strong> of the depth to which extend<br />

the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> should be c<strong>on</strong>ducted. Theoretically, a total stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> should give the most<br />

critical case, however, due to lack of soil strength parameters, the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> resulted in str<strong>on</strong>gly<br />

varying results if the lower or upper bound of <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength was used <str<strong>on</strong>g>and</str<strong>on</strong>g> applied<br />

<strong>on</strong> the Infinite Slope Method. In this case, the model can be used to find the upper most <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

lower most of safety factor. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, the Taylor Method which also applied <strong>on</strong> this<br />

study area, produce a very large safety factor for very small soil thickness. This means that<br />

the method is not useful to examine <str<strong>on</strong>g>stability</str<strong>on</strong>g> when failure normally occurs with shallow<br />

depth. Effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g> with steady state c<strong>on</strong>diti<strong>on</strong>s gave more realistic results with a<br />

tendency of decreasing safety with increasing soil thickness. Complete dry c<strong>on</strong>diti<strong>on</strong> gives the<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 5 : C<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Recommendati<strong>on</strong> 83<br />

highest safety factor, while fully saturated c<strong>on</strong>diti<strong>on</strong> gives the lowest safety factor, as<br />

expected.<br />

In general, all models c<strong>on</strong>sistently show decreasing safety factors with increase of soil<br />

thickness. However, the influence of soil thickness is more str<strong>on</strong>gly shown in total stress<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> than in effective stress <str<strong>on</strong>g>analysis</str<strong>on</strong>g>. Again, due to lack of soil parameters, the<br />

assumpti<strong>on</strong>s taken for the strength parameters might not represent natural c<strong>on</strong>diti<strong>on</strong>s at the<br />

site, which in return will affect the safety factor c<strong>on</strong>siderably.<br />

Slope angles of 38° <str<strong>on</strong>g>and</str<strong>on</strong>g> 17° can be c<strong>on</strong>sidered as the average mean <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle to cause<br />

in<str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the lower most <str<strong>on</strong>g>slope</str<strong>on</strong>g> angle for stable c<strong>on</strong>diti<strong>on</strong>s respectively. These values<br />

were derived from the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> based <strong>on</strong> half saturated c<strong>on</strong>diti<strong>on</strong>s. It is also c<strong>on</strong>cluded that<br />

these cases can serve as general c<strong>on</strong>diti<strong>on</strong>s for a safety factor map because similar results are<br />

obtained with models based <strong>on</strong> different return periods.<br />

The root cohesi<strong>on</strong> method c<strong>on</strong>ducted by the previous study gave lower results compared to<br />

the present study. The comparis<strong>on</strong> was c<strong>on</strong>ducted <strong>on</strong>ly for cohesive soil with a soil thickness<br />

of 2 m. The difference between the previous <str<strong>on</strong>g>and</str<strong>on</strong>g> the present study might be caused by the<br />

different c<strong>on</strong>cept <str<strong>on</strong>g>and</str<strong>on</strong>g> principle. The root cohesi<strong>on</strong> method uses small values of soil cohesi<strong>on</strong>,<br />

but in additi<strong>on</strong> it adds root cohesi<strong>on</strong>. Even though, there are differences in the c<strong>on</strong>cept, the<br />

result shown for completely dry c<strong>on</strong>diti<strong>on</strong>s gave similar result.<br />

This l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard map is made based <strong>on</strong> the Infinite Slope Method, which is predominantly<br />

applied <strong>on</strong>ly for translati<strong>on</strong>al slides <strong>on</strong> the c<strong>on</strong>tact of the upper soil <str<strong>on</strong>g>and</str<strong>on</strong>g> the underlying bedrock.<br />

Hence, this map is <strong>on</strong>ly applied for determining translati<strong>on</strong>al slides hazard within the study area.<br />

In reality, any forms of sliding might happen due to natural activities, such as block sliding,<br />

circular sliding or topple. C<strong>on</strong>sequently, the resulting map should be used with cauti<strong>on</strong>. Any<br />

sliding occurring within the study area should be carefully examined whether it is correlated to<br />

this map <str<strong>on</strong>g>and</str<strong>on</strong>g> further study is required in order to determine appropriate l<str<strong>on</strong>g>and</str<strong>on</strong>g> slide hazard maps.<br />

Furthermore, soil strength parameters in this study were taken to be c<strong>on</strong>stant for certain soil<br />

types. Even though, this assumpti<strong>on</strong> was useful in predicting <str<strong>on</strong>g>slope</str<strong>on</strong>g> in<str<strong>on</strong>g>stability</str<strong>on</strong>g>, this does not<br />

represent the spatial variability of strength parameters throughout the study area or even<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Chapter 5 : C<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Recommendati<strong>on</strong> 84<br />

within <strong>on</strong>e soil type. Although, this assumpti<strong>on</strong> might give c<strong>on</strong>servative values for the safety<br />

factor due to c<strong>on</strong>servative soil parameters being used, the results will be over estimated.<br />

C<strong>on</strong>servative value used in the <str<strong>on</strong>g>analysis</str<strong>on</strong>g> might also lead to in-correct c<strong>on</strong>clusi<strong>on</strong>s that the<br />

effect of other factors might not be seen due to the fact that their effect is masked.<br />

5.2 Recommendati<strong>on</strong>s<br />

Detailed soil explorati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrological investigati<strong>on</strong>s are str<strong>on</strong>gly recommended this<br />

active l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide area. Detailed soil explorati<strong>on</strong>s should include developing soil maps <str<strong>on</strong>g>and</str<strong>on</strong>g> soil<br />

parameter data-bases, while hydrological studies should include spatial variability of rainfall<br />

data.<br />

However, for a detailed explorati<strong>on</strong>, large amount of budgets are needed. Therefore, soil<br />

explorati<strong>on</strong> could be organized with <strong>on</strong>ly shallow depths of 2 m to 4 m, which was indicated<br />

by the present study as the major critical depth within cohesive soil. Laboratory test <strong>on</strong><br />

undisturbed soil samples may be c<strong>on</strong>ducted to determine soil strength or can be replaced by<br />

in-situ measurements as the St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Penetrati<strong>on</strong> Test or C<strong>on</strong>e Penetrati<strong>on</strong> Test. In-situ<br />

measurement of soil c<strong>on</strong>sistency does not measure strength parameters such as performed in<br />

the laboratory by means of triaxial compressi<strong>on</strong> tests. However, there are many correlati<strong>on</strong>s<br />

that have been scientifically proved, such as corresp<strong>on</strong>dence between St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Penetrati<strong>on</strong><br />

Test <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>undrained</str<strong>on</strong>g> shear strength.<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g>slide inventory throughout the area is also very important to identify the behaviour <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

type of sliding occurring within the area. Occurring l<str<strong>on</strong>g>and</str<strong>on</strong>g>slides should be compared with the<br />

available safety factor models for obtaining a more accurate safety factor map for the study<br />

area.<br />

Natural hazard, such as earthquakes, has been widely reported as a cause of <str<strong>on</strong>g>slope</str<strong>on</strong>g> failure.<br />

Even though, the occurrence of an earthquake is excepti<strong>on</strong>al, the damage caused by<br />

earthquakes is tremendous <str<strong>on</strong>g>and</str<strong>on</strong>g> sometimes hazardous to human life, especially in a<br />

mountainous area such as Nepal. Hence, for a good hazard map the effects of earthquakes<br />

should be included in the hazard map (Van Westen <str<strong>on</strong>g>and</str<strong>on</strong>g> Terlien, 1996).<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


References ix<br />

REFERENCES<br />

Acharya, G., 2003. <str<strong>on</strong>g>GIS</str<strong>on</strong>g> approach for <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> risk <str<strong>on</strong>g>analysis</str<strong>on</strong>g>: a case study from Nepal.<br />

MSc. thesis in Physical L<str<strong>on</strong>g>and</str<strong>on</strong>g> Resources, Vrije Universiteit Brussels: 114 pp.<br />

Beven, K.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kirkby, M.J., 1979. A physically based variable c<strong>on</strong>tributing area model of<br />

basin hydrology. Hydrological Science Bulletin, 24(1): 43-49.<br />

Bjerrum, L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Sim<strong>on</strong>s, N.E., 1960. Comparis<strong>on</strong> of shear strength characteristics of normally<br />

c<strong>on</strong>solidated clays. Proceedings of Research C<strong>on</strong>ference <strong>on</strong> Shear Strength of Cohesive<br />

Soils, Boulder, Colorado. ASCE, pp. 711-724.<br />

Burt<strong>on</strong>, A. & Bathurst, J.C., 1998. Physically based modelling of shallow l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide sediment<br />

yield at a catchment scale. Envir<strong>on</strong>mental Geology 35(2-3): 89-99.<br />

British St<str<strong>on</strong>g>and</str<strong>on</strong>g>ards Instituti<strong>on</strong>. BS 8004: 1986. British st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard code of practice for<br />

foundati<strong>on</strong>s. BSI, L<strong>on</strong>d<strong>on</strong>.<br />

Carrara, A., 1983. Multivariate methods for l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard evaluati<strong>on</strong>. Mathematical<br />

Geology 15, pp. 403–426.<br />

Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V. <str<strong>on</strong>g>and</str<strong>on</strong>g> Reichenbach, P., 1991. <str<strong>on</strong>g>GIS</str<strong>on</strong>g><br />

techniques <str<strong>on</strong>g>and</str<strong>on</strong>g> statistical models in evaluating l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard. Earth Surface Processes<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g>forms 16, pp. 427–445.<br />

Carrara, A., Cardinali, M., Guzzetti, F. <str<strong>on</strong>g>and</str<strong>on</strong>g> Reichenbach, P., 1995. <str<strong>on</strong>g>GIS</str<strong>on</strong>g> technology in<br />

mapping l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard. In: Carrara, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Guzzetti, F., Editors, 1995. Geographical<br />

Informati<strong>on</strong> Systems in Assessing Natural Hazards, Kluwer Academic Publishers,<br />

Dordrecht, The Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, pp. 135–175.<br />

Carrara, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Guzzetti, F., 1999. Use of <str<strong>on</strong>g>GIS</str<strong>on</strong>g> technology in the predicti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>itoring of<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard. Natural Hazards 20, pp. 117–135.<br />

Carter, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bentley, S.P., 1991. Correlati<strong>on</strong>s of Soil Properties. Pentech Press Limited.<br />

L<strong>on</strong>d<strong>on</strong>.<br />

Cernica, J.N., 1995. Geotechnical Engineering: Soil Mechanics. John Wiley & S<strong>on</strong>s, Inc.<br />

USA. 453 pp.<br />

Chung, C.F., Fabbri, A.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Van Westen, C.J., 1995. Multivariate regressi<strong>on</strong> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> for<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard z<strong>on</strong>ati<strong>on</strong>. In: Carrara, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Guzzetti, F., Editors, 1995. Geographical<br />

Informati<strong>on</strong> Systems in Assessing Natural Hazards, Kluwer Academic Publishers,<br />

Dordrecht, The Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, pp. 107–133.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


References x<br />

Chung, C.F. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fabbri, A.G., 1998. Three Bayesian predicti<strong>on</strong> models for l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard.<br />

In: Buccianti, A., Editor, 1998. Proceedings of Internati<strong>on</strong>al Associati<strong>on</strong> for<br />

Mathematical Geology 1998 Annual Meeting (IAMG.98), Ischia, Italy, October 3–7,<br />

1998, pp. 204–211.<br />

Chung, C.F. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fabbri, A.G., 1999. Probabilistic predicti<strong>on</strong> models for l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard<br />

mapping. Photogrammetric Engineering <str<strong>on</strong>g>and</str<strong>on</strong>g> Remote Sensing (PE&RS) 65 12, pp.<br />

1388–1399.<br />

Craig, R. F., 2004. Craig’s Soil Mechanics, Seventh Editi<strong>on</strong>. Sp<strong>on</strong> Press, Taylor & Francis<br />

Group, L<strong>on</strong>d<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> New York, pp. 347-372.<br />

Chinese Railway Research Institute (CRRI), 1976, 1979. Collected Papers <strong>on</strong> L<str<strong>on</strong>g>and</str<strong>on</strong>g>slides.<br />

Vol. 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2. Chinese Railway Research Institute, Lanzhou, China.<br />

De Vleeschauwer, C. <str<strong>on</strong>g>and</str<strong>on</strong>g> De Smedt, F., 2002. Modelling <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> <str<strong>on</strong>g>using</str<strong>on</strong>g> <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a<br />

regi<strong>on</strong>al scale, Proceeding of the first Geological Belgica Internati<strong>on</strong>al Meeting,<br />

Leuven, 11-15 September 2002. Aardkundige Mededelingen, 12: 253-256.<br />

Deoja, B.B., Dhital, M., Thapa, B. <str<strong>on</strong>g>and</str<strong>on</strong>g> Wagner, A., 1991. Mountain risk engineering<br />

h<str<strong>on</strong>g>and</str<strong>on</strong>g>book. Internati<strong>on</strong>al Centre for Integrated Mountain Development (ICIMOD),<br />

Kathm<str<strong>on</strong>g>and</str<strong>on</strong>g>y: 875 pp.<br />

Dietrich, E.W., Reisss, R., Hsu, M.L. <str<strong>on</strong>g>and</str<strong>on</strong>g> M<strong>on</strong>tgomery, D.R., 1995. A process-based model<br />

for colluvial soil depth <str<strong>on</strong>g>and</str<strong>on</strong>g> shallow l<str<strong>on</strong>g>and</str<strong>on</strong>g>sliding <str<strong>on</strong>g>using</str<strong>on</strong>g> digital elevati<strong>on</strong> data.<br />

Hydrological Processes 9, pp. 383–400.<br />

Gibs<strong>on</strong>, R.E., 1953. Experimental Determinati<strong>on</strong> of the True Cohesi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> True<br />

Angle of Internal Fricti<strong>on</strong> in Clays. Proceedings of 3rd Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> Soil Mechanics <str<strong>on</strong>g>and</str<strong>on</strong>g> Foundati<strong>on</strong> Engineering, Zurich, pp 126-130<br />

Guzzetti, F., Carrara, A., Cardinali, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Reichenbach, P., 1999. L<str<strong>on</strong>g>and</str<strong>on</strong>g>slide evaluati<strong>on</strong>: a<br />

review of current techniques <str<strong>on</strong>g>and</str<strong>on</strong>g> their applicati<strong>on</strong> in a multi-scale study, Central Italy.<br />

Geomorphology 31, pp. 181–216<br />

Jade, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Sarkar, S., 1993. Statistical models for <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> classificati<strong>on</strong>. Engineering<br />

Geology 36, pp. 91–98.<br />

Joshi J., 2002. Shallow L<str<strong>on</strong>g>and</str<strong>on</strong>g>slide Hazard Mapping Based <strong>on</strong> Slope Stability Analysis Using<br />

<str<strong>on</strong>g>GIS</str<strong>on</strong>g>, Ph. D. Thesis, Kyushu University, Japan.<br />

M<strong>on</strong>tgomery, D.R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Dietrich, W.E., 1994. A physically based model for the topographic<br />

c<strong>on</strong>trol <strong>on</strong> shallow l<str<strong>on</strong>g>and</str<strong>on</strong>g>sliding. Water Resources Research 30 4, pp. 1153–1171.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


References xi<br />

Nash, D., 1987. A Comparative Review of Limit Equilibrium Methods of Stability Analysis.<br />

In : Anders<strong>on</strong>, M.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Richards, K. S (Editors), Slope Stability Geotechnical<br />

Engineering <str<strong>on</strong>g>and</str<strong>on</strong>g> Geomorphology, 1. John Wiley & S<strong>on</strong>s Ltd., Great Britain, pp. 11-75.<br />

Naval Facilities Engineering Comm<str<strong>on</strong>g>and</str<strong>on</strong>g> (NAVFAC), 1986. Design Manual 7. Virginia, USA.<br />

Pack, R.T., Tarbot<strong>on</strong>, D.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Goodwin, C.N., 1998. The SINMAP approach to terrain<br />

<str<strong>on</strong>g>stability</str<strong>on</strong>g> mapping. In: Proceedings of 8th C<strong>on</strong>gress of the Internati<strong>on</strong>al Associati<strong>on</strong> of<br />

Engineering Geology, Vancouver, British Columbia, Canada, pp. 1157–1165.<br />

Ramiah, B. K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Chickanagappa, L. S., 1990. H<str<strong>on</strong>g>and</str<strong>on</strong>g>book of Soil Mechanics <str<strong>on</strong>g>and</str<strong>on</strong>g> Foundati<strong>on</strong><br />

Engineering. A. A. Balkema, Roterdam, pp. 390-413.<br />

Ray, R. L., 2004. Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> Regi<strong>on</strong>al Scale : A Case Study from<br />

Dhading, Nepal. MSc. Thesis in Physical L<str<strong>on</strong>g>and</str<strong>on</strong>g> Resources, Vrije Universiteit Brussels:<br />

99 pp.<br />

Sim<strong>on</strong>s, N. <str<strong>on</strong>g>and</str<strong>on</strong>g> Menzies, B., 1977. A shourth course in Foundati<strong>on</strong> Engineering. Sec<strong>on</strong>d<br />

Editi<strong>on</strong>. Thomas Telford Ltd., L<strong>on</strong>d<strong>on</strong><br />

Skempt<strong>on</strong>, A.W., <str<strong>on</strong>g>and</str<strong>on</strong>g> Delory, F.A., 1957. Stability of natural <str<strong>on</strong>g>slope</str<strong>on</strong>g>s in L<strong>on</strong>d<strong>on</strong> clay.<br />

Proceeding 4 th Internati<strong>on</strong>al C<strong>on</strong>ference SMFE, L<strong>on</strong>d<strong>on</strong>, 2, 378-81.<br />

Skempt<strong>on</strong>, A.W., 1964. L<strong>on</strong>g-term <str<strong>on</strong>g>stability</str<strong>on</strong>g> of clay <str<strong>on</strong>g>slope</str<strong>on</strong>g>s. Geotechnique, v. 14, no. 2, pp. 77-<br />

102.<br />

Skempt<strong>on</strong>, A.W., 1985. Residual Strength of Clays in L<str<strong>on</strong>g>and</str<strong>on</strong>g>slides, Folded Strata <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

Laboratory, Geotechnique, 35, 1-18.<br />

Van Westen, C.J., 1994. <str<strong>on</strong>g>GIS</str<strong>on</strong>g> in l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide hazard z<strong>on</strong>ati<strong>on</strong>: a review with examples from the<br />

Colombian Andes. In: Price, M.F. <str<strong>on</strong>g>and</str<strong>on</strong>g> Heywood, D.I., Editors, 1994. , Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Francis, L<strong>on</strong>d<strong>on</strong>, pp. 35–65.<br />

Van Westen, C. J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Terlien, M. T. J., 1995. An Approach Towards Deterministic L<str<strong>on</strong>g>and</str<strong>on</strong>g>slide<br />

Hazard Analysis in <str<strong>on</strong>g>GIS</str<strong>on</strong>g>. A Case Study from Manizales (Colombia). Earth Surface<br />

Processes <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g> Forms, Vol. 21, pp. 853-868.<br />

Van Westen, C.J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Terlien, M.T.J., 1996. An approach towards deterministic l<str<strong>on</strong>g>and</str<strong>on</strong>g>slide<br />

hazard <str<strong>on</strong>g>analysis</str<strong>on</strong>g> in <str<strong>on</strong>g>GIS</str<strong>on</strong>g>: a case study from Manizales (Colombia). Earth Surface Process.<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g>forms 21: 853-868.<br />

Varnes, D.J., 1958. L<str<strong>on</strong>g>and</str<strong>on</strong>g>slide types <str<strong>on</strong>g>and</str<strong>on</strong>g> processes, in Eckel, E.B., ed., L<str<strong>on</strong>g>and</str<strong>on</strong>g>slides <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

engineering practice: Highway Research Board, Special Report 29, NAS-NRC<br />

Publicati<strong>on</strong> 544: 20-47.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


References xii<br />

Varnes, D.J., 1975. Slope movements in the western United States, in Mass Wasting:<br />

Geoabstracts, Norwich: 1-17 pp.<br />

Wu, W. <str<strong>on</strong>g>and</str<strong>on</strong>g> Sidle, R.C., 1995. A distributed <str<strong>on</strong>g>slope</str<strong>on</strong>g> <str<strong>on</strong>g>stability</str<strong>on</strong>g> model for steep forested<br />

watersheds. Water Resources Research 31 8, pp. 2097–2110.<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Appendices xiii<br />

APPENDICES<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Appendices xiv<br />

Critical Height (Hc) Map based <strong>on</strong> Infinite Slope Method with Total Stress Analysis<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Appendices xv<br />

Safety Factor Map based <strong>on</strong> Infinite Slope Method with Total Stress Analysis for H = 2 m<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Appendices xvi<br />

Safety Factor Map of Completely Dry C<strong>on</strong>diti<strong>on</strong> for H = 4 m<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Appendices xvii<br />

Safety Factor Map of Half Saturated C<strong>on</strong>diti<strong>on</strong> for H = 5 m<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale


Appendices xviii<br />

Safety Factor Map of Full Saturated C<strong>on</strong>diti<strong>on</strong> for H = 6 m<br />

<str<strong>on</strong>g>Drained</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Undrained Slope Stability Analysis Using <str<strong>on</strong>g>GIS</str<strong>on</strong>g> <strong>on</strong> a Regi<strong>on</strong>al Scale

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!