15.09.2013 Views

Protection and treatment of hypothermia in ... - Umeå universitet

Protection and treatment of hypothermia in ... - Umeå universitet

Protection and treatment of hypothermia in ... - Umeå universitet

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

In prehospital trauma care active warm<strong>in</strong>g is recommended to aid <strong>in</strong> protection<br />

from further cool<strong>in</strong>g. However, scientific evidence <strong>of</strong> the effectiveness <strong>of</strong> active warm<strong>in</strong>g <strong>in</strong> a<br />

cl<strong>in</strong>ical sett<strong>in</strong>g is scarce. Also, evaluat<strong>in</strong>g the effectiveness <strong>of</strong> active warm<strong>in</strong>g, especially <strong>in</strong><br />

harsh ambient conditions, by objective measures, is difficult.<br />

To evaluate the effectiveness <strong>of</strong> field applicabe heat sources (I) <strong>and</strong> to evaluate<br />

active warm<strong>in</strong>g <strong>in</strong>tervention <strong>in</strong> a prehospital cl<strong>in</strong>ical sett<strong>in</strong>g (II <strong>and</strong> III).<br />

To evaluate reliability <strong>and</strong> validity <strong>of</strong> the Cold Discomfort Scale (CDS), a subjective<br />

judgement scale for assessment <strong>of</strong> the thermal state <strong>of</strong> patients <strong>in</strong> a cold environment (IV).<br />

In a laboratory trial, non-shiver<strong>in</strong>g hypothermic subjects (n=5), were cooled <strong>in</strong> 8<br />

ºC water followed by spontaneous warm<strong>in</strong>g, a charcoal heater, two flexible hot-water bags or<br />

two chemical heat pads, all applied to the chest <strong>and</strong> upper back (I). Oesophageal temperature,<br />

sk<strong>in</strong> temperature, heat flux, oxygen consumption, respiratory rate <strong>and</strong>, heart rate were<br />

measured.<br />

In two cl<strong>in</strong>ical r<strong>and</strong>omized trials, shiver<strong>in</strong>g patients dur<strong>in</strong>g road <strong>and</strong> air ambulance transport<br />

(II) <strong>and</strong> dur<strong>in</strong>g field <strong>treatment</strong> (III) were r<strong>and</strong>omized to either passive warm<strong>in</strong>g alone (n=22<br />

<strong>and</strong> n=9) or to passive warm<strong>in</strong>g with the addition <strong>of</strong> a chemical heat pad (n=26 <strong>and</strong> n=11).<br />

Body core temperature, respiratory rate, heart rate, blood pressure (II) <strong>and</strong> the patients’<br />

subjective sensation <strong>of</strong> thermal comfort (II <strong>and</strong> III) were measured.<br />

In a laboratory trial, shiver<strong>in</strong>g subjects were exposed to – 20 ºC (n=22). The CDS was<br />

evaluated regard<strong>in</strong>g reliability, def<strong>in</strong>ed as test-retest stability, <strong>and</strong> criterion validity, def<strong>in</strong>ed as<br />

the ability to detect changes <strong>in</strong> cold discomfort due to changes <strong>in</strong> cumulative cold stress (IV).<br />

In non-shiver<strong>in</strong>g hypothermic subjects postcool<strong>in</strong>g afterdrop was significantly less<br />

for the chemical heat pads, but not for the hot water bags <strong>and</strong> the charcoal heater, compared to<br />

spontaneous warm<strong>in</strong>g (I). Temperature drop dur<strong>in</strong>g the entire warm<strong>in</strong>g phase was<br />

significantly less for all the heat sources respectively, compared to spontaneous warm<strong>in</strong>g (I).<br />

Dur<strong>in</strong>g road <strong>and</strong> air ambulance transport, ear canal temperature was significantly <strong>in</strong>creased<br />

<strong>and</strong> cold discomfort significantly decreased, both <strong>in</strong> patients assigned to passive warm<strong>in</strong>g<br />

only, <strong>and</strong> <strong>in</strong> patients assigned to additional active warm<strong>in</strong>g (II). Dur<strong>in</strong>g field <strong>treatment</strong>, cold<br />

discomfort was significantly reduced <strong>in</strong> patients assigned to additional active warm<strong>in</strong>g, but<br />

rema<strong>in</strong>ed the same <strong>in</strong> patients assigned to passive warm<strong>in</strong>g only (III).<br />

Weighted kappa coefficient, describ<strong>in</strong>g test-retest stability, was 0.84 (IV). CDS rat<strong>in</strong>gs were<br />

significantly <strong>in</strong>creased dur<strong>in</strong>g each 30 m<strong>in</strong>utes <strong>in</strong>terval (IV).<br />

In non-shiver<strong>in</strong>g hypothermic subjects, heat sources were effective to attenuate<br />

afterdrop, when provid<strong>in</strong>g high heat content over a large surface area <strong>and</strong> effective to<br />

cont<strong>in</strong>ue to <strong>in</strong>crease body core temperature when provid<strong>in</strong>g susta<strong>in</strong>ed high heat content. In<br />

shiver<strong>in</strong>g trauma patients, adequate passive warm<strong>in</strong>g were sufficient <strong>treatment</strong> to prevent<br />

afterdrop, to slowly <strong>in</strong>crease body core temperature, <strong>and</strong> to reduce cold discomfort. If<br />

<strong>in</strong>adequate passive warm<strong>in</strong>g, additional active warm<strong>in</strong>g was required to reduce cold<br />

discomfort. The CDS, a subjective judgement scale for assessment <strong>of</strong> the thermal state <strong>of</strong><br />

patients <strong>in</strong> a cold environment seemed to be reliable regard<strong>in</strong>g test-retest stability <strong>and</strong> valid<br />

regard<strong>in</strong>g ability to detect change <strong>in</strong> cumulative cold stress.


This thesis is based on the follow<strong>in</strong>g studies, which will be referred to <strong>in</strong> the text by<br />

their Roman numerals:<br />

I Lundgren JP, Henriksson O, Pretorius T, Cahill F, Bristow G, Choch<strong>in</strong>ov A,<br />

Pretorius A, Bjornstig U, Giesbrecht GG. Field Torso Warm<strong>in</strong>g Modalities: A<br />

Comparative Study Us<strong>in</strong>g a Human Model. Prehosp Emerg Care 2009,3:371-<br />

378.<br />

II Lundgren P, Henriksson O, Naredi P, Bjornstig U. The effect <strong>of</strong> active<br />

warm<strong>in</strong>g <strong>in</strong> prehospital trauma care dur<strong>in</strong>g road <strong>and</strong> air ambulance<br />

transportation - a cl<strong>in</strong>ical r<strong>and</strong>omized trial. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma,<br />

Resuscitation <strong>and</strong> Emergency Medic<strong>in</strong>e 2011 19:59.<br />

III Lundgren P, Henriksson O, Naredi P, Bjornstig U. The Effect <strong>of</strong> Active<br />

Warm<strong>in</strong>g on Cold Discomfort <strong>in</strong> Field Treatment <strong>of</strong> Trauma Patients – a<br />

Cl<strong>in</strong>ical R<strong>and</strong>omized Trial. Manuscript.<br />

IV Lundgren P, Henriksson O, Kuklane K, Holmér I, Naredi P, Bjornstig U.<br />

Validity <strong>and</strong> Reliability <strong>of</strong> the Cold Discomfort Scale - a Subjective Judgement<br />

Scale for Assesssment <strong>of</strong> the Thermal State <strong>of</strong> Patients <strong>in</strong> a Cold Environment.<br />

Manuscript.<br />

Orig<strong>in</strong>al papers were repr<strong>in</strong>ted with approval from the publishers.


En skadad person löper stor risk att bli nedkyld, men redan <strong>in</strong>nan allmän<br />

nedkyln<strong>in</strong>g är ett faktum, aktiveras kroppens försvarsmekanismer i form av<br />

samm<strong>and</strong>ragn<strong>in</strong>g av ytliga blodlärl för att m<strong>in</strong>ska värmeförlusterna samt huttr<strong>in</strong>g för<br />

att öka värmeproduktionen. Detta <strong>in</strong>nebär, förutom ett ökat obehag, en stor<br />

fysiologisk belastn<strong>in</strong>g för kroppen som kan vara ödesdiger i komb<strong>in</strong>ation med <strong>and</strong>ra<br />

yttre skador. Om allmän nedkyln<strong>in</strong>g ändå <strong>in</strong>träffar medför detta ökad<br />

blödn<strong>in</strong>gsbenägenhet, vätskeförluster och risk att drabbas av livshot<strong>and</strong>e<br />

hjärtrytmrubbn<strong>in</strong>gar. Allmän nedkyln<strong>in</strong>g i samb<strong>and</strong> med allvarliga kroppsskador har<br />

visat sig vara en negativ prognostisk faktor associerad med ökad dödlighet. Vid<br />

omhändertag<strong>and</strong>e på skadeplats samt under transport <strong>in</strong> till sjukhus är det således av<br />

yttersta vikt att skydda skadade patienter mot ytterligare nedkyln<strong>in</strong>g och åtgärder för<br />

att förh<strong>in</strong>dra detta är prioriterade. Isoler<strong>in</strong>g mot yttre påverkan av väta, blåst och<br />

kyla utgör grunden för beh<strong>and</strong>l<strong>in</strong>g. Därtill rekommenderas i såväl nationella och<br />

<strong>in</strong>ternationella riktl<strong>in</strong>jer att någon form av extern värmekälla ska tillföras patienten<br />

redan på skadeplats och under transport som komplement till isoler<strong>in</strong>g i syfte att<br />

m<strong>in</strong>ska den fysiologiska belastn<strong>in</strong>gen på kroppen.<br />

De förhåll<strong>and</strong>en som råder utanför sjukhus sätter begränsn<strong>in</strong>gar avseende<br />

möjligheter att adekvat mäta hur kylan påverkar patienten. Det är svårt att med<br />

tillförlitliga medel mäta central kroppstemperatur på skadeplats eller under transport<br />

til sjuhus och det är än svårare att under dessa omständighetrer objektivt mäta<br />

graden av huttr<strong>in</strong>g.<br />

Utvärder<strong>in</strong>g av extern värmetillförsel på skadeplats samt under transport,<br />

avseende <strong>in</strong>verkan på fysiologisk samt även psykologisk belastn<strong>in</strong>g på kroppen.<br />

Specifikt var syftet att, under kontrollerade former i laboratorium, utvärdera och<br />

jämföra effekt av fältmässigt anpassad materiel för värmetillförsel (studie I) och att i<br />

kl<strong>in</strong>iska situationer (studie II och III) utvärdera utvärdera effekten av sådan materiel,<br />

som tillägg till ord<strong>in</strong>arie beh<strong>and</strong>l<strong>in</strong>g med isoler<strong>in</strong>g. Utöver detta var syftet även att<br />

utvärdera en alternativ mätmetod i form av en skala för subjektiv skattn<strong>in</strong>g av<br />

upplevelse av kyla, Cold Discomfort Scale (CDS), i syfte att kunna bedöma graden<br />

av kylapåverkan redan tidigt i förloppet.<br />

I ett laboratorium exponerades forskn<strong>in</strong>gspersoner (n = 5) för kyla i form av<br />

8 ºC vatten, för att därefter erhålla beh<strong>and</strong>l<strong>in</strong>g med en varm sovsäck och en av fyra<br />

olika beh<strong>and</strong>l<strong>in</strong>gsmetoder; en kolbricketdriven värmare, kemiska värmekuddar,<br />

varmvattensäckar, alternativt <strong>in</strong>gen värmebeh<strong>and</strong>l<strong>in</strong>g alls (studie I).<br />

Försökspersonernas huttr<strong>in</strong>g hämmades med läkemedel. Central kroppstemperatur,<br />

värmeöverför<strong>in</strong>g, syrgasförbrukn<strong>in</strong>g som ett mått på huttr<strong>in</strong>g samt <strong>and</strong>n<strong>in</strong>gs- och<br />

hjärtfrekvens mättes<br />

I två kl<strong>in</strong>iska studier av beh<strong>and</strong>l<strong>in</strong>g på skadeplats (studie II) och beh<strong>and</strong>l<strong>in</strong>g under<br />

transport till sjukhus (studie III) r<strong>and</strong>omiserades l<strong>in</strong>drigt skadade patienter till<br />

ant<strong>in</strong>gen ord<strong>in</strong>arie beh<strong>and</strong>l<strong>in</strong>g med endast isoler<strong>in</strong>g (n = 22 och n = 9) eller till<br />

beh<strong>and</strong>l<strong>in</strong>g ord<strong>in</strong>arie med tillägg av extern värmekälla (n = 26 och n = 11).


Kroppstemperatur, <strong>and</strong>n<strong>in</strong>gsfrekvens, hjärtfrekvens och blodtryck (studie II) samt<br />

patienternas upplevelse av kyla (studie III) mättes.<br />

Forskn<strong>in</strong>gspersoner (n = 22) exponerades vid två upprepade tillfällen med identiska<br />

förutsättn<strong>in</strong>gar för - 20 ºC i 60 m<strong>in</strong>uter. CDS utvärderades för reliabilitet avseende testretest<br />

stabilitet och för kriterievaliditet, def<strong>in</strong>ierad som förmåga att mäta skillnad i<br />

kumulativ kylapåverkan.<br />

Under förhåll<strong>and</strong>en där forskn<strong>in</strong>gspersonernas huttr<strong>in</strong>g hämmades med<br />

läkemedel sjönk kroppstemperaturen m<strong>in</strong>dre, avseende lägsta uppmätta<br />

kroppstemperatur (afterdrop), vid beh<strong>and</strong>l<strong>in</strong>g med de kemiska värmekuddarna, men<br />

<strong>in</strong>te vid beh<strong>and</strong>l<strong>in</strong>g med varmvattensäckar eller kolbrickettdriven värmare, jämfört<br />

med <strong>in</strong>gen värmebeh<strong>and</strong>l<strong>in</strong>g alls. Under hela beh<strong>and</strong>l<strong>in</strong>gsfasen, sjönk<br />

kroppstemperaturen m<strong>in</strong>dre vid beh<strong>and</strong>l<strong>in</strong>g med såväl de kemiska värmekuddarna,<br />

varmvattensäckarna som den kolbricketdrivna värmaren.<br />

Under transport till sjukhus ökade patienternas centrala kroppstemperatur, samtidigt<br />

som deras upplevelse av kyla m<strong>in</strong>skade signifikant både vid beh<strong>and</strong>l<strong>in</strong>g med endast<br />

ord<strong>in</strong>arie isoler<strong>in</strong>g och vid beh<strong>and</strong>l<strong>in</strong>g med tillägg av extern värmekälla (studie II).<br />

På skadeplats och under <strong>in</strong>led<strong>and</strong>e transport utomhus m<strong>in</strong>skade patienternas<br />

upplevelse av kyla signifikant vid beh<strong>and</strong>l<strong>in</strong>g med tillägg av extern värmekälla till<br />

ord<strong>in</strong>arie isoler<strong>in</strong>g, men den kvarstod däremot <strong>of</strong>örändrad vid beh<strong>and</strong>l<strong>in</strong>g med<br />

endast isoler<strong>in</strong>g.<br />

Viktad kappa koefficient, som mått på test-retest stabilitet, var 0.84. CDS visade<br />

signifikant ökad niva för upplevelse av kyla vid jämförelse av mätn<strong>in</strong>gar med 30<br />

m<strong>in</strong>uters mellanrum.<br />

Externa värmekällor som tillförde mycket värmeenergi över en stor<br />

kontaktyta var effektiva för att m<strong>in</strong>ska afterdrop och under förutsättn<strong>in</strong>g att de tillför<br />

denna värmeenergi under lång tid, även effektiva för att påbörja uppvärmn<strong>in</strong>g vid<br />

beh<strong>and</strong>l<strong>in</strong>g av patienter som har nedsatt huttr<strong>in</strong>gsförmåga. Avseende patienter som<br />

har bibehållen huttr<strong>in</strong>gsförmåga var adekvat mängd isoler<strong>in</strong>g tillräckligt för att<br />

motverka afterdrop, påbörja uppvärmn<strong>in</strong>g, och m<strong>in</strong>ska upplevelsen av kyla, men då<br />

isoler<strong>in</strong>gen, utifrån råd<strong>and</strong>e omgivn<strong>in</strong>gsförhåll<strong>and</strong>en, <strong>in</strong>te var adekvat krävdes<br />

tillägg av extern värmekälla för att m<strong>in</strong>ska upplevelsen av kyla. Subjektiv skattn<strong>in</strong>g<br />

av upplevelse av kyla enligt CDS uppvisade både god reliabilitet avseende test-retest<br />

stabilitet och god validitet avseende förmåga att påvisa skillnad i kumulativ<br />

kylapåverkan.


Kroppstemperatur, <strong>and</strong>n<strong>in</strong>gsfrekvens, hjärtfrekvens och blodtryck (studie II) samt<br />

patienternas upplevelse av kyla (studie III) mättes.<br />

Forskn<strong>in</strong>gspersoner (n = 22) exponerades vid två upprepade tillfällen med identiska<br />

förutsättn<strong>in</strong>gar för - 20 ºC i 60 m<strong>in</strong>uter. CDS utvärderades för reliabilitet avseende testretest<br />

stabilitet och för kriterievaliditet, def<strong>in</strong>ierad som förmåga att mäta skillnad i<br />

kumulativ kylapåverkan.<br />

Under förhåll<strong>and</strong>en där forskn<strong>in</strong>gspersonernas huttr<strong>in</strong>g hämmades med<br />

läkemedel sjönk kroppstemperaturen m<strong>in</strong>dre, avseende lägsta uppmätta<br />

kroppstemperatur (afterdrop), vid beh<strong>and</strong>l<strong>in</strong>g med de kemiska värmekuddarna, men<br />

<strong>in</strong>te vid beh<strong>and</strong>l<strong>in</strong>g med varmvattensäckar eller kolbrickettdriven värmare, jämfört<br />

med <strong>in</strong>gen värmebeh<strong>and</strong>l<strong>in</strong>g alls. Under hela beh<strong>and</strong>l<strong>in</strong>gsfasen, sjönk<br />

kroppstemperaturen m<strong>in</strong>dre vid beh<strong>and</strong>l<strong>in</strong>g med såväl de kemiska värmekuddarna,<br />

varmvattensäckarna som den kolbricketdrivna värmaren.<br />

Under transport till sjukhus ökade patienternas centrala kroppstemperatur, samtidigt<br />

som deras upplevelse av kyla m<strong>in</strong>skade signifikant både vid beh<strong>and</strong>l<strong>in</strong>g med endast<br />

ord<strong>in</strong>arie isoler<strong>in</strong>g och vid beh<strong>and</strong>l<strong>in</strong>g med tillägg av extern värmekälla (studie II).<br />

På skadeplats och under <strong>in</strong>led<strong>and</strong>e transport utomhus m<strong>in</strong>skade patienternas<br />

upplevelse av kyla signifikant vid beh<strong>and</strong>l<strong>in</strong>g med tillägg av extern värmekälla till<br />

ord<strong>in</strong>arie isoler<strong>in</strong>g, men den kvarstod däremot <strong>of</strong>örändrad vid beh<strong>and</strong>l<strong>in</strong>g med<br />

endast isoler<strong>in</strong>g.<br />

Viktad kappa koefficient, som mått på test-retest stabilitet, var 0.84. CDS visade<br />

signifikant ökad niva för upplevelse av kyla vid jämförelse av mätn<strong>in</strong>gar med 30<br />

m<strong>in</strong>uters mellanrum.<br />

Externa värmekällor som tillförde mycket värmeenergi över en stor<br />

kontaktyta var effektiva för att m<strong>in</strong>ska afterdrop och under förutsättn<strong>in</strong>g att de tillför<br />

denna värmeenergi under lång tid, även effektiva för att påbörja uppvärmn<strong>in</strong>g vid<br />

beh<strong>and</strong>l<strong>in</strong>g av patienter som har nedsatt huttr<strong>in</strong>gsförmåga. Avseende patienter som<br />

har bibehållen huttr<strong>in</strong>gsförmåga var adekvat mängd isoler<strong>in</strong>g tillräckligt för att<br />

motverka afterdrop, påbörja uppvärmn<strong>in</strong>g, och m<strong>in</strong>ska upplevelsen av kyla, men då<br />

isoler<strong>in</strong>gen, utifrån råd<strong>and</strong>e omgivn<strong>in</strong>gsförhåll<strong>and</strong>en, <strong>in</strong>te var adekvat krävdes<br />

tillägg av extern värmekälla för att m<strong>in</strong>ska upplevelsen av kyla. Subjektiv skattn<strong>in</strong>g<br />

av upplevelse av kyla enligt CDS uppvisade både god reliabilitet avseende test-retest<br />

stabilitet och god validitet avseende förmåga att påvisa skillnad i kumulativ<br />

kylapåverkan.


Kroppstemperatur, <strong>and</strong>n<strong>in</strong>gsfrekvens, hjärtfrekvens och blodtryck (studie II) samt<br />

patienternas upplevelse av kyla (studie III) mättes.<br />

Forskn<strong>in</strong>gspersoner (n = 22) exponerades vid två upprepade tillfällen med identiska<br />

förutsättn<strong>in</strong>gar för - 20 ºC i 60 m<strong>in</strong>uter. CDS utvärderades för reliabilitet avseende testretest<br />

stabilitet och för kriterievaliditet, def<strong>in</strong>ierad som förmåga att mäta skillnad i<br />

kumulativ kylapåverkan.<br />

Under förhåll<strong>and</strong>en där forskn<strong>in</strong>gspersonernas huttr<strong>in</strong>g hämmades med<br />

läkemedel sjönk kroppstemperaturen m<strong>in</strong>dre, avseende lägsta uppmätta<br />

kroppstemperatur (afterdrop), vid beh<strong>and</strong>l<strong>in</strong>g med de kemiska värmekuddarna, men<br />

<strong>in</strong>te vid beh<strong>and</strong>l<strong>in</strong>g med varmvattensäckar eller kolbrickettdriven värmare, jämfört<br />

med <strong>in</strong>gen värmebeh<strong>and</strong>l<strong>in</strong>g alls. Under hela beh<strong>and</strong>l<strong>in</strong>gsfasen, sjönk<br />

kroppstemperaturen m<strong>in</strong>dre vid beh<strong>and</strong>l<strong>in</strong>g med såväl de kemiska värmekuddarna,<br />

varmvattensäckarna som den kolbricketdrivna värmaren.<br />

Under transport till sjukhus ökade patienternas centrala kroppstemperatur, samtidigt<br />

som deras upplevelse av kyla m<strong>in</strong>skade signifikant både vid beh<strong>and</strong>l<strong>in</strong>g med endast<br />

ord<strong>in</strong>arie isoler<strong>in</strong>g och vid beh<strong>and</strong>l<strong>in</strong>g med tillägg av extern värmekälla (studie II).<br />

På skadeplats och under <strong>in</strong>led<strong>and</strong>e transport utomhus m<strong>in</strong>skade patienternas<br />

upplevelse av kyla signifikant vid beh<strong>and</strong>l<strong>in</strong>g med tillägg av extern värmekälla till<br />

ord<strong>in</strong>arie isoler<strong>in</strong>g, men den kvarstod däremot <strong>of</strong>örändrad vid beh<strong>and</strong>l<strong>in</strong>g med<br />

endast isoler<strong>in</strong>g.<br />

Viktad kappa koefficient, som mått på test-retest stabilitet, var 0.84. CDS visade<br />

signifikant ökad niva för upplevelse av kyla vid jämförelse av mätn<strong>in</strong>gar med 30<br />

m<strong>in</strong>uters mellanrum.<br />

Externa värmekällor som tillförde mycket värmeenergi över en stor<br />

kontaktyta var effektiva för att m<strong>in</strong>ska afterdrop och under förutsättn<strong>in</strong>g att de tillför<br />

denna värmeenergi under lång tid, även effektiva för att påbörja uppvärmn<strong>in</strong>g vid<br />

beh<strong>and</strong>l<strong>in</strong>g av patienter som har nedsatt huttr<strong>in</strong>gsförmåga. Avseende patienter som<br />

har bibehållen huttr<strong>in</strong>gsförmåga var adekvat mängd isoler<strong>in</strong>g tillräckligt för att<br />

motverka afterdrop, påbörja uppvärmn<strong>in</strong>g, och m<strong>in</strong>ska upplevelsen av kyla, men då<br />

isoler<strong>in</strong>gen, utifrån råd<strong>and</strong>e omgivn<strong>in</strong>gsförhåll<strong>and</strong>en, <strong>in</strong>te var adekvat krävdes<br />

tillägg av extern värmekälla för att m<strong>in</strong>ska upplevelsen av kyla. Subjektiv skattn<strong>in</strong>g<br />

av upplevelse av kyla enligt CDS uppvisade både god reliabilitet avseende test-retest<br />

stabilitet och god validitet avseende förmåga att påvisa skillnad i kumulativ<br />

kylapåverkan.


ASHRAE American Society <strong>of</strong> Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, <strong>and</strong> Air-<br />

Condition<strong>in</strong>g Eng<strong>in</strong>eers<br />

ANOVA Analysis <strong>of</strong> Variance<br />

C Celsius<br />

CDS Cold Discomfort Scale<br />

CI Confidence <strong>in</strong>terval<br />

EMS Emergency Medical Services<br />

ICAR International Commission for Alp<strong>in</strong>e Rescue<br />

IQR Interquartile range<br />

NRS Numerical Rat<strong>in</strong>g Scale<br />

PLSD Protected Least Significant Differences<br />

SaR Search <strong>and</strong> Rescue<br />

SD St<strong>and</strong>ard deviation<br />

VAS Visual Analoude Scale<br />

VRS Verbal Rat<strong>in</strong>g Scale


In a prehospital rescue scenario, cold exposure poses a considerable risk for <strong>in</strong>jured<br />

or ill patients. Admission <strong>hypothermia</strong> is associated with worse outcome <strong>and</strong> higher<br />

mortality <strong>in</strong> trauma patients (1-8). The cold <strong>in</strong>duced stress response will also render<br />

considerable thermal discomfort which might <strong>in</strong>crease the experience <strong>of</strong> pa<strong>in</strong> <strong>and</strong><br />

anxiety, even <strong>in</strong> still normothermic patients (9). In Sweden the average temperature<br />

<strong>in</strong> January dur<strong>in</strong>g the period 1961 – 90 were between – 16 ºC <strong>in</strong> the northern part<br />

<strong>and</strong> – 1 ºC <strong>in</strong> the southern part <strong>of</strong> the country (10). In such environment, protection<br />

<strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong> <strong>in</strong> prehospital trauma care is vitally important.<br />

Dur<strong>in</strong>g the period 2001 – 2010, the median annual <strong>in</strong>cidence <strong>of</strong> fatal accidental<br />

<strong>hypothermia</strong> <strong>in</strong> Sweden (about 9,5 million <strong>in</strong>habitants) was 48 (range 37 – 63) (11).<br />

Hypothermia due to cold exposure as the primary cause (primary <strong>hypothermia</strong>)<br />

ma<strong>in</strong>ly affects two groups <strong>of</strong> patients; one group <strong>of</strong> elderly, most <strong>of</strong> them chronic<br />

abusers <strong>and</strong> under the <strong>in</strong>fluence <strong>of</strong> alcohol, <strong>and</strong> another group <strong>of</strong> younger, sober<br />

persons, perform<strong>in</strong>g outdoor leisure <strong>and</strong> sport<strong>in</strong>g activities (12).<br />

Although primary <strong>hypothermia</strong> is a rare diagnosis, secondary <strong>hypothermia</strong>, as a<br />

complication <strong>of</strong> systemic disorders, <strong>in</strong>clud<strong>in</strong>g trauma <strong>and</strong> sepsis, is common. In<br />

trauma patients, the overall medical condition <strong>and</strong> the adm<strong>in</strong>istration <strong>of</strong> analgesic or<br />

anaesthetic drugs act to impair thermoregulatory mechanisms (13-16). In addition,<br />

wet cloth<strong>in</strong>g, contact with cold surfaces, large bleed<strong>in</strong>gs <strong>and</strong> adm<strong>in</strong>istration <strong>of</strong> cold<br />

<strong>in</strong>travenous fluids contribute to the cold stress. Reported <strong>hypothermia</strong> <strong>in</strong>cidence <strong>in</strong><br />

the prehospital sett<strong>in</strong>g or upon arrival to hospital varies over a wide range (1, 4-8,<br />

17-19). Severity <strong>of</strong> <strong>in</strong>jury, the presence <strong>of</strong> haemorrhagic shock, prehospital<br />

<strong>in</strong>duction <strong>of</strong> anaesthesia <strong>and</strong> protracted evacuation are predictive variables <strong>of</strong><br />

admission <strong>hypothermia</strong> (1-5, 18, 20-22), reported <strong>hypothermia</strong> <strong>in</strong>cidence is therefore<br />

dependent on <strong>in</strong>clusion criteria <strong>of</strong> the trauma registers <strong>and</strong> also dependent on<br />

whether <strong>hypothermia</strong> is be<strong>in</strong>g def<strong>in</strong>ed as body core temperature < 35 ºC or < 36 ºC.<br />

In one retrospective study us<strong>in</strong>g the US National Trauma Data Bank <strong>in</strong>clud<strong>in</strong>g more<br />

than 700000 patients, Mart<strong>in</strong> et al. (4) found an <strong>hypothermia</strong> (< 35 ºC) <strong>in</strong>cidence <strong>of</strong><br />

about 2 %, whereas Helm et al (18), <strong>in</strong> a prospective study <strong>in</strong>clud<strong>in</strong>g 302 trauma<br />

patients treated dur<strong>in</strong>g primary helicopter rescue missions, found a <strong>hypothermia</strong> (<<br />

36 ºC) <strong>in</strong>cidence <strong>of</strong> about 50%.<br />

Induced <strong>hypothermia</strong> dim<strong>in</strong>ishes complications due to ischemia reperfusion<br />

<strong>in</strong>jury dur<strong>in</strong>g elective surgery (23). In laboratory studies, <strong>hypothermia</strong> has been<br />

shown to have beneficial effects dur<strong>in</strong>g <strong>and</strong> after hemorrhagic shock <strong>and</strong> traumatic<br />

bra<strong>in</strong> <strong>in</strong>jury (23-25). The reduced physiological stress due to shiver<strong>in</strong>g prevention <strong>in</strong><br />

<strong>in</strong>duced <strong>hypothermia</strong>, compared to the <strong>in</strong>creased physiological stress <strong>in</strong> accidental<br />

<strong>hypothermia</strong>, has been suggested a reason for these beneficial effects (23). In the<br />

cl<strong>in</strong>ical sett<strong>in</strong>g a few retrospective (19, 22) <strong>and</strong> prospective (17) observational<br />

<br />

<br />

1


studies, <strong>in</strong>vestigat<strong>in</strong>g a total <strong>of</strong> about 1200 trauma patients, have found no difference<br />

<strong>in</strong> adjusted mortality for hypothermic versus normothermic patients. However, other<br />

retrospective (1, 3-8) as well as prospective (2) observational cl<strong>in</strong>ical studies,<br />

<strong>in</strong>vestigat<strong>in</strong>g more than 750000 trauma patients have revealed that <strong>hypothermia</strong><br />

rema<strong>in</strong>s an <strong>in</strong>dependent determ<strong>in</strong>ant <strong>of</strong> mortality.<br />

Accord<strong>in</strong>gly, effective prehospital field protection <strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong>,<br />

is considered vitally important to improve the medical condition upon admission to<br />

hospital, <strong>and</strong> active warm<strong>in</strong>g <strong>in</strong> the field is considered one important part <strong>of</strong> such<br />

<strong>treatment</strong> (13-15, 26-32). Because the heat sources need to be portable <strong>and</strong> easily<br />

h<strong>and</strong>led by Search <strong>and</strong> Rescue (SaR) or Emergency Medical Services (EMS)<br />

personnel, there are limited <strong>treatment</strong> options <strong>in</strong> the field <strong>and</strong> dur<strong>in</strong>g prehospital<br />

transport. Chemical heat pads, hot water bottles, carbon-fiber resistive heat<strong>in</strong>g<br />

blankets, <strong>and</strong> charcoal fuelled heat pacs are commonly used <strong>and</strong> advised (13, 14, 26,<br />

28, 29, 32). There are some laboratory studies (33-37) evaluat<strong>in</strong>g such fieldapplicable<br />

devices (portable, not requir<strong>in</strong>g external electrical power supply), but to<br />

this author’s knowledge, only two r<strong>and</strong>omized cl<strong>in</strong>ical trials have evaluated the<br />

effectiveness <strong>of</strong> such heat sources <strong>in</strong> the field (38, 39).<br />

As part <strong>of</strong> primary trauma care, it is important to have accurate measures to<br />

evaluate the thermoregulatory state <strong>of</strong> the patient, both upon arrival <strong>of</strong> the rescue<br />

personnel <strong>and</strong> dur<strong>in</strong>g prehospital <strong>treatment</strong> <strong>and</strong> transport. In the field, especially <strong>in</strong><br />

harsh ambient conditions, this is <strong>of</strong>ten hard to achieve (14, 15). Measur<strong>in</strong>g body<br />

core temperature as well as sk<strong>in</strong> temperature might be difficult <strong>and</strong> measur<strong>in</strong>g<br />

oxygen consumption to assess shiver<strong>in</strong>g is, <strong>in</strong> most cl<strong>in</strong>ical scenarios, not possible.<br />

Thus, alternative measures, such as subjective judgement scales for assessment <strong>of</strong><br />

the thermal state <strong>of</strong> patients, might be <strong>of</strong> considerable importance <strong>in</strong> such scenarios,<br />

both for an <strong>in</strong>itial assessment <strong>of</strong> the patient <strong>and</strong> for evaluation <strong>of</strong> the <strong>treatment</strong><br />

provided. The judgement scales must be reliable <strong>and</strong> valid.<br />

This thesis primarily focuses on protection <strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong> <strong>in</strong><br />

prehospital trauma care, the emphasis be<strong>in</strong>g evaluation <strong>of</strong> active warm<strong>in</strong>g<br />

<strong>in</strong>tervention regard<strong>in</strong>g impact on thermoregulation. Subjective judgement scales for<br />

assessment <strong>of</strong> the thermal state <strong>of</strong> patients <strong>in</strong> a cold environment is also studied.<br />

2


Throughout history, accidental <strong>hypothermia</strong> is perhaps best documented <strong>in</strong> military<br />

history, where harsh ambient conditions have played a major role for the outcome <strong>of</strong><br />

numerous military campaigns. The list is long <strong>and</strong> dist<strong>in</strong>guished.<br />

Hannibal lost about 20000 <strong>of</strong> his 46000 soldiers <strong>in</strong> 218 B.C when cross<strong>in</strong>g the<br />

Pyrenees <strong>and</strong> Alps on his way towards Rome.<br />

In 1718 Carl Gustaf Armfeldt <strong>and</strong> his army were caught <strong>in</strong> a blizzard cross<strong>in</strong>g the<br />

mounta<strong>in</strong>s on their return from Norway to Sweden. Only 1700 <strong>of</strong> the 5100 soldiers<br />

survived.<br />

In 1812 Napoleon lost much <strong>of</strong> his army because <strong>of</strong> the cold while attempt<strong>in</strong>g to<br />

<strong>in</strong>vade Moscow.<br />

Dur<strong>in</strong>g the First World War 115000 British soldiers suffered local cold <strong>in</strong>juries or<br />

trench foot.<br />

Dur<strong>in</strong>g the Second World War 200000 German soldiers were disabled because <strong>of</strong><br />

cold <strong>in</strong>juries.<br />

When writ<strong>in</strong>g about <strong>hypothermia</strong> from a historical perspective, it is also<br />

important to mention the horrible crimes committed under the guise <strong>of</strong> medical<br />

experiments on prisoners <strong>in</strong> German concentration camps dur<strong>in</strong>g World War II. To<br />

establish the most effective <strong>treatment</strong> for victims <strong>of</strong> immersion, Germans conducted<br />

<strong>hypothermia</strong> experiments at the Dachau concentration camp <strong>in</strong> 1942 <strong>and</strong> 1943.<br />

Immediately after, the American Chief <strong>of</strong> Counsel for War Crimes prepared a 228<br />

page report after <strong>in</strong>vestigat<strong>in</strong>g the records <strong>of</strong> the experiments. This report, referred to<br />

as the Alex<strong>and</strong>er report (author: the American psychiatrist Leo Alex<strong>and</strong>er), was<br />

cited by some authors dur<strong>in</strong>g the first decades after the war. This is considered by<br />

most authors, <strong>in</strong>clud<strong>in</strong>g this author, strongly, ethically reprehensible. In addition,<br />

citations are <strong>in</strong>appropriate on scientific grounds (40) [Berger 1990].<br />

<br />

Traditionally, <strong>hypothermia</strong> has been def<strong>in</strong>ed as body core temperature < 35 ºC <strong>and</strong><br />

further classified <strong>in</strong>to levels <strong>of</strong> severity based on the physiological changes that<br />

occur because <strong>of</strong> decreased body core temperature (13-16). The levels are mild (32 –<br />

35 ºC), moderate (28 – 32 ºC), severe (20 – 28 ºC), <strong>and</strong> pr<strong>of</strong>ound <strong>hypothermia</strong> (< 20<br />

ºC). These def<strong>in</strong>itions were <strong>in</strong>troduced to describe <strong>hypothermia</strong> result<strong>in</strong>g from<br />

environmental exposure. However, more recently, due to the poor prognosis <strong>of</strong> the<br />

comb<strong>in</strong>ation <strong>of</strong> trauma <strong>and</strong> <strong>hypothermia</strong>, a revised classification has been developed<br />

for use <strong>in</strong> trauma care (27). In this classification, <strong>hypothermia</strong> is def<strong>in</strong>ed as body<br />

core temperature < 36 ºC <strong>and</strong> subsequently as 34 – 36 ºC for mild, 32 – 34 ºC for<br />

moderate, <strong>and</strong> < 32 ºC for severe <strong>hypothermia</strong>. Furthermore, <strong>in</strong> this context, it is<br />

<br />

<br />

3


important to stress that thermoregulatory responses are <strong>in</strong>duced long before body<br />

core temperature decl<strong>in</strong>es below the level def<strong>in</strong>ed as <strong>hypothermia</strong>. Beyond the two<br />

classifications mentioned above, to be more applicable <strong>in</strong> a prehospital rescue<br />

scenario, yet another method <strong>of</strong> stag<strong>in</strong>g hypothermic patients is recommended by<br />

the International Commission for Alp<strong>in</strong>e Rescue (ICAR) (28). Us<strong>in</strong>g this method,<br />

degree <strong>of</strong> consciousness, presence or absence <strong>of</strong> shiver<strong>in</strong>g, cardiac activity, <strong>and</strong><br />

body core temperature are taken <strong>in</strong>to consideration when decid<strong>in</strong>g <strong>hypothermia</strong><br />

level. Table 1.1.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

The human body ma<strong>in</strong>ta<strong>in</strong>s an average core temperature near 37 °C <strong>in</strong> various<br />

thermal conditions (41). However, extreme thermal exposure as well as certa<strong>in</strong><br />

medical conditions can lead rapidly to dangerous deterioration <strong>of</strong> body core<br />

temperature. Because the speed <strong>of</strong> chemical reactions vary with temperature <strong>and</strong><br />

because the enzyme systems <strong>of</strong> the body have narrow temperature ranges <strong>in</strong> which<br />

their function is optimal, normal body function depends on f<strong>in</strong>etuned temperature<br />

regulation. A deviation <strong>of</strong> about 2 °C above or below normal body core temperature<br />

is well tolerated but a deviation <strong>of</strong> about 3 °C beg<strong>in</strong>s to threaten normal body<br />

function.<br />

Thermoregulatory mechanisms are not fully developed until after puberty <strong>and</strong><br />

from about seventy years <strong>of</strong> age thermoregulatory capacity is decreased, hav<strong>in</strong>g the<br />

consequence that children <strong>and</strong> elderly are more vulnerable to cold stress (41).<br />

There are also differences between men <strong>and</strong> women (41). Women, as a group,<br />

have, compared to men, a greater surface-area-to-mass ratio, a greater percentage <strong>of</strong><br />

subcutaneous <strong>and</strong> total body fat, a greater rest<strong>in</strong>g vasoconstriction <strong>in</strong> h<strong>and</strong>s <strong>and</strong> feet,<br />

a higher setpo<strong>in</strong>t for cutaneous vasodilation <strong>and</strong> onset <strong>of</strong> sweat<strong>in</strong>g, <strong>and</strong> also cyclic<br />

hormonal changes that <strong>in</strong>fluence thermoregulation. However, when <strong>in</strong>dividual<br />

differences are accounted for, thermoregulatory gender differences are negligible.<br />

4


The human body ma<strong>in</strong>ta<strong>in</strong>s core temperature by a f<strong>in</strong>e balance between heat ga<strong>in</strong><br />

<strong>and</strong> heat loss. When heat ga<strong>in</strong> equals heat loss, a state <strong>of</strong> thermoneutrality exists, but<br />

if heat loss exceeds heat ga<strong>in</strong>, there is a risk <strong>of</strong> whole body cool<strong>in</strong>g <strong>and</strong> <strong>hypothermia</strong><br />

(13, 14, 16, 41-43).<br />

Factors govern<strong>in</strong>g heat exchange can be described by the heat balance equation:<br />

Htot = ± Hd ± Hc ± Hr ± He<br />

where<br />

Htot = total metabolic heat production<br />

Hd = conductive heat exchange<br />

Hc = convective heat exchange<br />

Hr = radiative heat exchange<br />

He = evaporative heat exchange<br />

Total metabolic heat production, which is about 70 W/m 2 (basal metabolism) <strong>in</strong> a<br />

rest<strong>in</strong>g 70 kg man, <strong>in</strong>creases with voluntary physical activity <strong>and</strong> <strong>in</strong>voluntary muscle<br />

contractions (shiver<strong>in</strong>g).<br />

Conductive heat exchange means heat transfer by direct contact to a surround<strong>in</strong>g<br />

medium, for example air, water, or solid ground (13, 41, 44, 45). The amount <strong>of</strong> heat<br />

flow is dependent on physical characteristics <strong>of</strong> the surround<strong>in</strong>g medium,<br />

temperature gradients, <strong>and</strong> the contact surface area. Air conducts heat poorly. Water<br />

conducts heat approximately twenty five times, <strong>and</strong> metals up to ten thous<strong>and</strong> times,<br />

greater than air.<br />

Convective heat exchange means heat transfer by movements <strong>of</strong> the boundary<br />

layer <strong>of</strong> the surround<strong>in</strong>g medium (air or water) (13, 41, 44, 45). The amount <strong>of</strong> heat<br />

exchange is ma<strong>in</strong>ly dependent on the relative velocity <strong>of</strong> the surround<strong>in</strong>g medium.<br />

Radiative heat exchange means heat transfer by <strong>in</strong>frared electromagnetic waves<br />

to objects, for example, cold stone walls <strong>of</strong> a build<strong>in</strong>g (13, 41, 44, 45). The amount<br />

<strong>of</strong> heat transfer is dependent on the physical characteristics <strong>of</strong> the objects <strong>and</strong><br />

temperature gradients.<br />

Evaporative heat exchange means heat transfer from evaporation <strong>of</strong> water on the<br />

sk<strong>in</strong> surface or the respiratory tract, where the amount <strong>of</strong> heat exchange is dependent<br />

on the amount <strong>of</strong> water evaporated (13, 41, 44, 45).<br />

Heat loss is caused primarily by convection, which is greatly <strong>in</strong>creased by w<strong>in</strong>d<br />

or movements (13, 41, 44, 45). To a smaller extent, heat is also lost through<br />

radiation to cold objects <strong>in</strong> the surround<strong>in</strong>g environment, or to the clear sky, <strong>and</strong> by<br />

<br />

<br />

5


evaporative <strong>and</strong> convective heat loss from the airways. Sweat<strong>in</strong>g <strong>and</strong> evaporative<br />

heat loss from the sk<strong>in</strong> is <strong>of</strong>ten m<strong>in</strong>imal <strong>in</strong> cold environments, but could be<br />

considerable <strong>in</strong> cases <strong>of</strong> wet cloth<strong>in</strong>g or sk<strong>in</strong> due to immersion or previous physical<br />

activity. In addition, if immersed, ly<strong>in</strong>g on the ground or <strong>in</strong> direct contact with a<br />

cold surface, conductive heat loss will be significant.<br />

<br />

<br />

<br />

Thermal receptors are widely distributed, especially <strong>in</strong> the sk<strong>in</strong>, but also <strong>in</strong> the<br />

abdom<strong>in</strong>al viscera, the sp<strong>in</strong>al cord, extrahypothalamic as well as hypothalamic<br />

portions <strong>of</strong> the bra<strong>in</strong> (13, 16, 41-43). The <strong>in</strong>formation from both peripheral <strong>and</strong><br />

central receptors is <strong>in</strong>tegrated <strong>in</strong> the preoptic nucleus – anterior hypothalamic area <strong>of</strong><br />

the bra<strong>in</strong>, which is considered the center <strong>of</strong> thermoregulation. In response to cool<strong>in</strong>g<br />

<strong>of</strong> peripheral or central receptors or both peripheral <strong>and</strong> central receptors, a<br />

sympathetic mediated thermoregulatory response is evoked, render<strong>in</strong>g<br />

vasoconstriction to preserve heat with<strong>in</strong> the body core <strong>and</strong> shiver<strong>in</strong>g to <strong>in</strong>crease<br />

endogenous metabolic heat production.<br />

Vasoconstriction is primarily due to the clos<strong>in</strong>g <strong>of</strong> the arteriovenous anastomoses<br />

<strong>of</strong> the h<strong>and</strong>s <strong>and</strong> feet result<strong>in</strong>g <strong>in</strong> decreased blood flow <strong>in</strong> the entire extremity (13,<br />

41, 42). Dur<strong>in</strong>g full vasoconstriction, blood flow through the f<strong>in</strong>gers <strong>and</strong> toes can<br />

decrease up to one hundredfold, from 80 -90 ml/m<strong>in</strong>/100ml <strong>of</strong> tissue dur<strong>in</strong>g full<br />

vasodilation to 0,5 – 1,0 ml/m<strong>in</strong>/100ml <strong>of</strong> tissue dur<strong>in</strong>g massive vasoconstriction<br />

(13). In addition to central regulation, tissue cool<strong>in</strong>g directly affects vasoconstriction<br />

by <strong>in</strong>creas<strong>in</strong>g cutaneous blood vessel sensitivity to cathecolam<strong>in</strong>es.<br />

In shiver<strong>in</strong>g, thermogenesis is due to <strong>in</strong>voluntary <strong>and</strong> unsyncronized muscle<br />

contractions (13, 41, 42). At maximum shiver<strong>in</strong>g, endogenous heat production can<br />

be <strong>in</strong>creased by as much as five times from rest<strong>in</strong>g levels (46). In mild <strong>hypothermia</strong><br />

(32 – 35 ºC), thermoregulatory responses are still <strong>in</strong>tact, but if body core<br />

temperature decl<strong>in</strong>es even further, thermoregulation, <strong>and</strong> thereby shiver<strong>in</strong>g, starts to<br />

fail <strong>and</strong> at about 30 - 32 °C the shiver<strong>in</strong>g response is lost.<br />

As a consequence <strong>of</strong> cold-<strong>in</strong>duced peripheral vasoconstriction, temperature <strong>in</strong><br />

peripheral parts <strong>of</strong> the body starts to decl<strong>in</strong>e long before body core temperature is<br />

affected (14, 41). Follow<strong>in</strong>g substantial cold exposure, there is temperature<br />

equalization between the warm body core <strong>and</strong> the cold peripheral parts, contribut<strong>in</strong>g<br />

to a cont<strong>in</strong>uous fall <strong>in</strong> body core temperature, designated the afterdrop phenomenon.<br />

Ma<strong>in</strong> contribut<strong>in</strong>g factors are conductive temperature equilibration between the<br />

colder periphery <strong>and</strong> the warmer body core <strong>and</strong> circulatory changes <strong>in</strong>volv<strong>in</strong>g<br />

counter current cool<strong>in</strong>g <strong>of</strong> warm blood circulat<strong>in</strong>g cold, previously vasoconstricted<br />

peripheral tissues. The magnitude <strong>of</strong> the afterdrop, which can be considerable <strong>and</strong><br />

amount to several degrees, is dependent on temperature gradients <strong>in</strong> the tissues,<br />

peripheral circulation, <strong>and</strong> endogenous heat production.<br />

6


In trauma patients, thermoregulation is <strong>of</strong>ten impaired, result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>creased<br />

vulnerability to cold exposure (13, 14, 16, 41). Injuries to the nervous system might<br />

affect both vasoconstriction <strong>and</strong> shiver<strong>in</strong>g because <strong>of</strong> both central <strong>and</strong> peripheral<br />

effects. Muscle <strong>in</strong>juries locally affect shiver<strong>in</strong>g ability. The adm<strong>in</strong>istration <strong>of</strong><br />

analgesics, anaesthetics or both <strong>in</strong>duces vasodilation <strong>and</strong> impedes shiver<strong>in</strong>g.<br />

Although lipid <strong>and</strong> prote<strong>in</strong> work as alternative fuels to carbohydrates <strong>in</strong> shiver<strong>in</strong>g<br />

thermogenesis, malnutritive states reduce shiver<strong>in</strong>g capacity.<br />

<br />

<br />

<br />

Psychological reactions to cold exposure is divided <strong>in</strong>to thermal comfort or<br />

discomfort <strong>and</strong> thermal sensation, where the fomer drives behaviour, while the latter<br />

drives autonomic thermoregulation, described above (47). However, <strong>in</strong> cl<strong>in</strong>ical<br />

reality it is difficult to differentiate between those modalities. Because <strong>of</strong> thermal<br />

comfort is driven by both physiological <strong>and</strong> psychological variables, whereas<br />

thermal sensation is driven by only physiological variables, <strong>in</strong> this thesis,<br />

psychological reactions to cold exposure is described as thermal comfort.<br />

Accord<strong>in</strong>g to the American Society <strong>of</strong> Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, <strong>and</strong> Air-<br />

Condition<strong>in</strong>g Eng<strong>in</strong>eers (ASHRAE), thermal comfort is described as a state <strong>of</strong> m<strong>in</strong>d<br />

that expresses satisfaction with the surround<strong>in</strong>g environment. Physiological<br />

variables affect<strong>in</strong>g thermal comfort <strong>in</strong>clude <strong>in</strong>formation from bra<strong>in</strong>, body core <strong>and</strong><br />

sk<strong>in</strong> temperature sensors as well as vasoconstriction <strong>and</strong> shiver<strong>in</strong>g (48-52). The<br />

psychological variables <strong>in</strong>clude previous experience with cold exposure, state <strong>of</strong><br />

m<strong>in</strong>d, social context, <strong>and</strong> behaviour (53).<br />

<br />

<br />

7


The follow<strong>in</strong>g section outl<strong>in</strong>es, the pathophysiological reactions <strong>and</strong> cl<strong>in</strong>ical picture<br />

due to cold stress <strong>and</strong> <strong>hypothermia</strong>. In this context, attentiveness to the occurrence<br />

<strong>of</strong> considerable <strong>in</strong>dividual differences is important. There are also differences<br />

dependent on whether <strong>hypothermia</strong> has developed rapidly (acute <strong>hypothermia</strong>) or<br />

over a longer period (chronic <strong>hypothermia</strong>) (14).<br />

Respiratory <strong>and</strong> cardiovasculatory changes. In response to the cold-<strong>in</strong>duced<br />

sympathetic mediated thermoregulatory stress response, respiratory <strong>and</strong> cardiac<br />

work is <strong>in</strong>creased. Shiver<strong>in</strong>g thermogenesis <strong>in</strong>creases oxygen dem<strong>and</strong> <strong>and</strong> peripheral<br />

vasoconstriction raises systemic blood pressure which further escalates cardiac<br />

workload. (13, 16, 41, 42, 46).<br />

As body core temperature decl<strong>in</strong>es, spontaneous depolarization <strong>of</strong> the pacemaker<br />

cells <strong>of</strong> the s<strong>in</strong>us node decreases, result<strong>in</strong>g <strong>in</strong> atrop<strong>in</strong>e-resistant bradycardia (16).<br />

Because <strong>hypothermia</strong> <strong>in</strong>creases duration <strong>of</strong> action potentials, <strong>and</strong> because the His-<br />

Purk<strong>in</strong>je system <strong>of</strong> the heart is more sensitive to cold than the myocardium itself,<br />

decelerated conduction might cause re-entry currents, result<strong>in</strong>g <strong>in</strong> ventricular<br />

arrhythmias. PR, QRS, <strong>and</strong> QT <strong>in</strong>tervals are prolonged (54-56). However, not<br />

pathognomonic <strong>of</strong> <strong>hypothermia</strong>, Osborn or J-waves, a dist<strong>in</strong>ctive deflection occur<strong>in</strong>g<br />

at the QRS-ST junction, are common <strong>in</strong> hypothermic patients. Osborn waves might<br />

pose a diagnostic difficulty, because they, when pronounced, resemble the elevation<br />

<strong>of</strong> the ST segment also seen <strong>in</strong> transmural myocardial <strong>in</strong>farction. Atrial as well as<br />

ventricular arrhythmias are encountered at body core temperatures below 32 °C <strong>and</strong><br />

spontaneous ventricular fibrillation is seen below 25 °C (15). The risk <strong>of</strong> develop<strong>in</strong>g<br />

cardiac arrhythmias is <strong>in</strong>creased by hypovolemia, tissue hypoxia, electrolyte <strong>and</strong><br />

acid balance disturbances, as well as rough h<strong>and</strong>l<strong>in</strong>g <strong>of</strong> the hypothermic patient.<br />

In chronic <strong>hypothermia</strong>, peripheral vasoconstriction, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>creased central<br />

blood volume, will lead to fluid extravasation <strong>and</strong> tissue oedema, <strong>in</strong>clud<strong>in</strong>g lung<br />

oedema <strong>and</strong> also to <strong>in</strong>creased diuresis due to raised renal perfusion pressure (14).<br />

Thus, patients exposed to prolonged cold stress should be considered hypovolemic,<br />

which is important to account for when peripheral circulation returns to normal<br />

dur<strong>in</strong>g rewarm<strong>in</strong>g.<br />

As for the heart rate, respiratory rate also decl<strong>in</strong>es with body core tempreature. In<br />

severely hypothermic patients, breath<strong>in</strong>g may be hard to detect s<strong>in</strong>ce it is very slow<br />

<strong>and</strong> shallow.<br />

Neurological changes. The cold-<strong>in</strong>duced sympathetic mediated stress response<br />

results <strong>in</strong> an <strong>in</strong>itial <strong>in</strong>crease <strong>in</strong> cerebral metabolism, but as body core temperature<br />

drops by more than 1 °C, cerebral metabolism will decl<strong>in</strong>e (15). This will result <strong>in</strong><br />

an <strong>in</strong>creas<strong>in</strong>gly deteriorated mental status, presented as impaired memory <strong>and</strong><br />

judgement, slurred speech, <strong>and</strong> decreased level <strong>of</strong> consciousness. Most patients are<br />

unconscious at a body core temperature below 30 °C (16).<br />

8


Muscle performance <strong>in</strong> the extremities is impaired both because <strong>of</strong> local tissue<br />

cool<strong>in</strong>g as a consequence <strong>of</strong> vasoconstriction <strong>and</strong> neurological malfunction. These<br />

comb<strong>in</strong>ed effects pose a substantial risk for development <strong>of</strong> local cold <strong>in</strong>juries (57,<br />

58).<br />

Blood chemistry changes. Haematocrit <strong>and</strong> also blood viscosity rises because <strong>of</strong><br />

fluid extravasation <strong>and</strong> <strong>in</strong>creased diuresis (15, 16). Platelet count is lowered due to<br />

bone marrow depression <strong>and</strong> sequestration <strong>in</strong> the spleen <strong>and</strong> liver. Platelet adhesion<br />

<strong>and</strong> aggregation is impaired. Coagulation enzyme activity is reduced to a level<br />

equivalent to 50 % <strong>of</strong> clott<strong>in</strong>g factor deficiency at temperatures below 33 °C (59,<br />

60). Already mild <strong>hypothermia</strong> <strong>in</strong>duces a general coagulopathy (61, 62) which can<br />

be reversed by active warm<strong>in</strong>g (63).<br />

Leukopenia, also due to bone marrow depression <strong>and</strong> sequestrian <strong>of</strong> leukocytes <strong>in</strong><br />

the spleen <strong>and</strong> liver, together with a general immune system depression, weakens the<br />

resistance to <strong>in</strong>fections(16).<br />

Serum electrolytes fluctuate over time <strong>and</strong> with body core temperature dur<strong>in</strong>g<br />

cool<strong>in</strong>g <strong>and</strong> rewarm<strong>in</strong>g (14, 16). Hypokalaemia due to an <strong>in</strong>tracellular redistribution<br />

<strong>of</strong> potassium, as well as hyperkalaemia, due to assumed cellular membrane<br />

dysfunction, is seen. Hyponatremia is common <strong>in</strong> chronic <strong>hypothermia</strong> due to<br />

osmolar diuresis.<br />

Neutral pH varies with temperature <strong>and</strong> rises with body core cool<strong>in</strong>g (14).<br />

Respiratory alkalosis due to <strong>in</strong>itial hyperventilation is common after sudden<br />

immersion <strong>in</strong> cold water. This is followed by respiratory <strong>and</strong> metabolic acidosis due<br />

to respiratory depression <strong>and</strong> also ketogenesis <strong>and</strong> lactate formation from shiver<strong>in</strong>g,<br />

reduced cardiac output <strong>and</strong> tissue hypoxia due to impaired peripheral circulation.<br />

Initially, blood glucose level rises because <strong>of</strong> glycogenolysis caused by the cold<strong>in</strong>duced<br />

stress response (14, 16). Dur<strong>in</strong>g prolonged cold stress glycogen stores will<br />

be depleted <strong>and</strong> hypoglycaemia might develop due to shiver<strong>in</strong>g <strong>and</strong> the cold-<strong>in</strong>duced<br />

glycosuria.<br />

<br />

<br />

<br />

Actions to reduce cold stress <strong>and</strong> prevent further heat loss are an important <strong>and</strong><br />

<strong>in</strong>tegrated part <strong>of</strong> prehospital trauma care. Initial measures should be taken to<br />

shelter, remove wet cloth<strong>in</strong>g, <strong>and</strong> <strong>in</strong>sulate the patient from ambient weather<br />

conditions <strong>and</strong> ground chill. Adequate w<strong>in</strong>dpro<strong>of</strong> <strong>and</strong> waterpro<strong>of</strong> <strong>in</strong>sulation<br />

ensembles (passive warm<strong>in</strong>g) are imperative. In addition, depend<strong>in</strong>g on the<br />

physiological status <strong>of</strong> the patient <strong>in</strong>clud<strong>in</strong>g body core temperature, available<br />

resources <strong>and</strong> expected duration <strong>of</strong> evacuation, the application <strong>of</strong> heat (active<br />

warm<strong>in</strong>g) is recommended by most authors as protection from further cool<strong>in</strong>g<br />

dur<strong>in</strong>g <strong>treatment</strong> <strong>and</strong> transport to def<strong>in</strong>itive care (13-15, 28-32). In a prehospital<br />

sett<strong>in</strong>g the primary objective <strong>of</strong> active warm<strong>in</strong>g is to reduce cold stress <strong>and</strong> further<br />

<br />

<br />

9


cool<strong>in</strong>g, not to rewarm the patient. Available, field applicable, heat sources all have<br />

limited heat<strong>in</strong>g capacity, render<strong>in</strong>g rapid rewarm<strong>in</strong>g <strong>in</strong> the field impossible. Too<br />

rapid rewarm<strong>in</strong>g, imply<strong>in</strong>g possible development <strong>of</strong> fluid, acid-base or electrolyte<br />

imbalances that would be difficult to control <strong>in</strong> the field, is therefore not considered<br />

a problem (14, 15, 29).<br />

Several studies on mildly hypothermic shiver<strong>in</strong>g subjects have found that<br />

exogenous sk<strong>in</strong> heat<strong>in</strong>g attenuates shiver<strong>in</strong>g heat production by an amount<br />

equivalent to the heat donated (34, 37, 64). Thus, <strong>in</strong> a mildly hypothermic, shiver<strong>in</strong>g<br />

patient, active external rewarm<strong>in</strong>g generally does not decrease afterdrop or <strong>in</strong>crease<br />

the rewarm<strong>in</strong>g rate more than shiver<strong>in</strong>g thermogenesis. However, thermogenesis<br />

from shiver<strong>in</strong>g dur<strong>in</strong>g passive warm<strong>in</strong>g alone can result <strong>in</strong> significant anaerobic<br />

metabolism <strong>and</strong> lactic acidosis, <strong>and</strong> active external warm<strong>in</strong>g might therefore present<br />

<strong>treatment</strong> advantages <strong>of</strong> decreased respiratory <strong>and</strong> cardiac workload, preserved<br />

substrate availability, <strong>and</strong> <strong>in</strong>creased comfort. Overall, additional active warm<strong>in</strong>g<br />

should be considered also when treat<strong>in</strong>g mildly hypothermic trauma patients.<br />

When shiver<strong>in</strong>g is dim<strong>in</strong>ished or absent, as <strong>in</strong> moderate to severe <strong>hypothermia</strong>, or<br />

is otherwise impaired because <strong>of</strong> the overall medical condition <strong>of</strong> the patient, active<br />

external or <strong>in</strong>ternal warm<strong>in</strong>g is required. Otherwise afterdrop will cont<strong>in</strong>ue <strong>and</strong> little<br />

or no warm<strong>in</strong>g will occur (35, 36, 65, 66).<br />

<br />

<br />

<br />

<br />

To be field applicable, warm<strong>in</strong>g modalities need to be portable <strong>and</strong> require no<br />

external electrical power supply. In a report summariz<strong>in</strong>g survey responses from<br />

from 41 Mounta<strong>in</strong> Rescue Association teams (67) the active warm<strong>in</strong>g methods most<br />

frequently used were warm IV fluids, chemical heat pads, body-to-body warm<strong>in</strong>g,<br />

charcoal heaters, <strong>and</strong> warm air or oxygen <strong>in</strong>halation. Some <strong>of</strong> these methods are<br />

extensively studied, others are not. Regardless <strong>of</strong> the warm<strong>in</strong>g method, most <strong>of</strong> the<br />

studies are laboratory studies, only a few have been conducted <strong>in</strong> a prehospital<br />

environment, which might be a considerable limitation when mak<strong>in</strong>g decisions<br />

about prehospital trauma care.<br />

In the follow<strong>in</strong>g section, field applicable warm<strong>in</strong>g methods, i.e. warm<strong>in</strong>g methods<br />

that are portable <strong>and</strong> require no external electrical power supply, are described.<br />

Exercise. Moderately to severly hypothermic patients are likely to be physically<br />

<strong>and</strong> metabolically exhausted <strong>and</strong> have an altered level <strong>of</strong> consciousness. In these<br />

patients, movements might also <strong>in</strong>duce ventricular fibrillation (13-16). Thus,<br />

excercise is not a <strong>treatment</strong> alternative. However, <strong>in</strong> mild <strong>hypothermia</strong>, <strong>in</strong>creas<strong>in</strong>g<br />

endogenous heat production by exercise has been suggested for warm<strong>in</strong>g purposes.<br />

In one study on subjects cooled to 33 °C, Giesbrecht et al. (34) found that the post<br />

cool<strong>in</strong>g rewarm<strong>in</strong>g rate for exercise was significantly higher than for shiver<strong>in</strong>g, but<br />

not higher than for external heat. However, exercise, as well as external heat,<br />

10


significantly <strong>in</strong>creased both length <strong>and</strong> amount <strong>of</strong> afterdrop compared to shiver<strong>in</strong>g,<br />

result<strong>in</strong>g <strong>in</strong> no difference between the three <strong>treatment</strong> alternatives regard<strong>in</strong>g total<br />

recovery time. In another study on shiver<strong>in</strong>g subjects, Giesbrecht et al (68)<br />

postponed exercise until afterdrop was complete <strong>and</strong> found that dur<strong>in</strong>g exercise<br />

there was a second afterdrop <strong>of</strong> similiar, but not greater, magnitude as dur<strong>in</strong>g the<br />

<strong>in</strong>itial shiver<strong>in</strong>g period.<br />

Body-to-body warm<strong>in</strong>g. Direct body-to-body contact with a m<strong>in</strong>imally clothed<br />

euthermic heat donor used to be widely recommended for warm<strong>in</strong>g hypothermic<br />

patients <strong>in</strong> the field (69-71). As it is also shown for other active external heat<br />

sources (34, 37), body-to-body warm<strong>in</strong>g has no beneficial effect on body core<br />

warm<strong>in</strong>g compared to shiver<strong>in</strong>g thermogenesis alone (64, 72). However, if shiver<strong>in</strong>g<br />

is dim<strong>in</strong>ished or absent, as <strong>in</strong> moderate to severe <strong>hypothermia</strong>, or otherwise<br />

impaired because <strong>of</strong> the overall medical condition <strong>of</strong> the patient, heat donated by<br />

body-to-body contact will, as other external heat sources, <strong>in</strong>crease heat ga<strong>in</strong> (36).<br />

Heat packs. Warm water bottles, chemical heat pads, or the HeatPac®; a<br />

charcoal heater (Normeca AS, Oslo, Norway), are widely used (67) for active<br />

external warm<strong>in</strong>g <strong>in</strong> the field. Such devices are portable <strong>and</strong> easy to h<strong>and</strong>le for the<br />

rescue personnel, but heat content is limited. In order facilitate heat transfer, heat<br />

sources should be applied <strong>in</strong> proximity (precautions should be taken to avoid burn<br />

<strong>in</strong>juries) to the sk<strong>in</strong> on areas with high heat transfer such as the chest (36), neck,<br />

axillae, <strong>and</strong> gro<strong>in</strong>s.<br />

In mildly hypothermic shiver<strong>in</strong>g subjects, laboratory studies <strong>of</strong> the Heat Pac®<br />

(34, 37) have shown no beneficial effect on body core rewarm<strong>in</strong>g compared to<br />

shiver<strong>in</strong>g thermogenesis alone. This is <strong>in</strong> accordance with studies on other active<br />

external warm<strong>in</strong>g modalities (64, 72). In one laboratory study on human subjects,<br />

where shiver<strong>in</strong>g was suppressed pharmacologically to resemble moderate to severe<br />

<strong>hypothermia</strong>, the HeatPac® was significantly more efficient than body-to-body<br />

rewarm<strong>in</strong>g <strong>in</strong> m<strong>in</strong>imiz<strong>in</strong>g afterdrop <strong>and</strong> facilitat<strong>in</strong>g body core rewarm<strong>in</strong>g (36). The<br />

HeatPac® consists <strong>of</strong> a combustion chamber, charcoal fuel, <strong>and</strong> a branched;<br />

re<strong>in</strong>forced, but flexible, heat<strong>in</strong>g duct <strong>and</strong> produces 250 W <strong>of</strong> heat. It is placed on the<br />

patient’s chest <strong>and</strong> the heat<strong>in</strong>g ducts are applied dorsally over the shoulders <strong>and</strong> then<br />

anteriorly under the axillae cross<strong>in</strong>g over the lower chest. Total sk<strong>in</strong> contact surface<br />

area <strong>of</strong> the chamber (23 × 12 × 6 cm, 1100 g) <strong>and</strong> ducts is about 1500 cm2. Because<br />

there are no cl<strong>in</strong>ical studies us<strong>in</strong>g the HeatPac®, practical aspects, such as ignition<br />

<strong>of</strong> the charcoal fuel <strong>in</strong> field conditions <strong>and</strong> the potential risk <strong>of</strong> the charcoal fuel<br />

burn<strong>in</strong>g <strong>in</strong> proximity to or even <strong>in</strong>side vehicles, has not been evaluated. However, a<br />

safety concern regard<strong>in</strong>g carbon monoxide contam<strong>in</strong>ation has been presented (37).<br />

In a prehospital cl<strong>in</strong>ical r<strong>and</strong>omized trial by Watts et al (39), chemical heat pads<br />

were applied <strong>in</strong> at least two locations (on top <strong>of</strong> the head, under the patient aga<strong>in</strong>st<br />

the lower back, or under either axilla with the hot pack aga<strong>in</strong>st the chest wall) This<br />

<strong>treatment</strong> was compared to five other <strong>treatment</strong> alternatives (no <strong>in</strong>tervention, passive<br />

rewarm<strong>in</strong>g, reflective blankets, warmed IV fluids, <strong>and</strong> warmed IV fluid plus<br />

<br />

11


eflective blanket). Trauma patients who received hotpack warm<strong>in</strong>g showed a mean<br />

<strong>in</strong>crease <strong>in</strong> body core temperature dur<strong>in</strong>g transport (0.7 °C) (measure <strong>of</strong> variation<br />

not reported), while all other groups (no <strong>in</strong>tervention, passive warm<strong>in</strong>g, reflective<br />

blankets, warmed IV fluids, warmed IV fluid plus reflective blanket) showed a mean<br />

decrease <strong>in</strong> temperature dur<strong>in</strong>g transport (- 0.2 °C to - 0.4 °C), the difference was<br />

statistically significant. The chemical heat pad Hot Cycle 1 (Sign Manufactur<strong>in</strong>g<br />

Corporation, Fairfield CA) is activated by break<strong>in</strong>g an <strong>in</strong>ternal chamber <strong>and</strong> it<br />

reach<strong>in</strong>g a temperature <strong>of</strong> 54.5 °C. To avoid burn <strong>in</strong>juries <strong>of</strong> the sk<strong>in</strong> the chemical<br />

heat pads were rolled <strong>in</strong> towels before application.<br />

Resistive heat<strong>in</strong>g. In a laboratory study on human subjects by Greif et al (35),<br />

where shiver<strong>in</strong>g was suppressed pharmacologically to resemble moderate to severe<br />

<strong>hypothermia</strong>, a carbon-fiber resistive heat<strong>in</strong>g blanket was evaluated. Both total body<br />

heat content <strong>and</strong> body core rewarm<strong>in</strong>g rate were <strong>in</strong>creased compared to passive<br />

warm<strong>in</strong>g alone. In contrast to the passive warm<strong>in</strong>g group that presented a small,<br />

although not statistically significant afterdrop, there was no afterdrop <strong>in</strong> the carbonfiber<br />

resistive heat<strong>in</strong>g blanket group. The carbon-fiber resistive heat<strong>in</strong>g blanket<br />

measures 80 x 200 cm, with the actively heated section be<strong>in</strong>g 40 x 148 cm. The<br />

batteries weigh 0.5 kg, each last<strong>in</strong>g 30 – 40 m<strong>in</strong>utes.<br />

In a prehospital cl<strong>in</strong>ical r<strong>and</strong>omized trial by Kober et al (38)[Kober 2001] the<br />

same carbon-fiber resistive heat<strong>in</strong>g blanket was compared to passive warm<strong>in</strong>g alone.<br />

In trauma patients receiv<strong>in</strong>g passive warm<strong>in</strong>g alone mean body core temperature<br />

decreased by 0.4 °C/h (95% CI; 0.3 – 0.5 °C/h), whereas <strong>in</strong> patients receiv<strong>in</strong>g<br />

additional carbon-fiber resistive heat<strong>in</strong>g, mean body core temperature <strong>in</strong>creased by<br />

0.8 °C/h (95% CI; 0.7 – 0.9 °C/h), the difference between groups be<strong>in</strong>g statistically<br />

significant.<br />

Inhalation warm<strong>in</strong>g. The effectiveness <strong>of</strong> <strong>in</strong>halation rewarm<strong>in</strong>g has been<br />

somewhat equivocal. In some studies (73-76), beneficial effects on body core<br />

temperature have been reported, whereas <strong>in</strong> other (37, 77, 78), <strong>in</strong>clud<strong>in</strong>g one study<br />

on non-shiver<strong>in</strong>g human subjects (66), no body core warm<strong>in</strong>g advantages have been<br />

found. Benefits <strong>of</strong> <strong>in</strong>halation warm<strong>in</strong>g such as rehydration, stimulation <strong>of</strong><br />

mucociliary activity <strong>in</strong> the respiratory tract <strong>and</strong> direct heat transfer from the upper<br />

airways to the hypothalamus, bra<strong>in</strong> stem, <strong>and</strong> other bra<strong>in</strong> structures have been<br />

suggested (75).<br />

Warm <strong>in</strong>travenous fluids. Intravenous fluids should be heated to 40 - 42 °C<br />

dur<strong>in</strong>g <strong>hypothermia</strong> resuscitations (32). Cold fluid resuscitation <strong>of</strong> hypovolemic<br />

patients can <strong>in</strong>duce <strong>hypothermia</strong>, <strong>in</strong>fusion warm<strong>in</strong>g devices are therefore m<strong>and</strong>atory<br />

dur<strong>in</strong>g massive volume resuscitations (79, 80).<br />

12


To have accurate measures to evaluate the thermal state <strong>of</strong> patients <strong>in</strong> the prehospital<br />

sett<strong>in</strong>g is vitally important. In the field, especially <strong>in</strong> harsh ambient conditions, this<br />

is <strong>of</strong>ten hard to achieve (41). Adequate measurements <strong>of</strong> body core temperature as<br />

well as sk<strong>in</strong> temperature might be difficult to obta<strong>in</strong> (14, 41), <strong>and</strong> measur<strong>in</strong>g oxygen<br />

consumption for assessment <strong>of</strong> shiver<strong>in</strong>g is, <strong>in</strong> most rescue scenarios, not possible.<br />

Thus, alternative measures such as subjective judgement scales for assessment <strong>of</strong><br />

the patient’s thermal state might be <strong>of</strong> considerable importance, both for an <strong>in</strong>itial<br />

assessment <strong>of</strong> the patient <strong>and</strong> for evaluation <strong>of</strong> the <strong>treatment</strong> provided.<br />

<br />

The temperature <strong>of</strong> the pulmonary artery is considered the best reference<br />

temperature for deep body core temperature (41). However, pulmonary artery<br />

catheterization is not an option <strong>in</strong> the field.<br />

In the follow<strong>in</strong>g section, non-<strong>in</strong>vasive generally accepted sites for measur<strong>in</strong>g<br />

body core temperature are listed, all <strong>of</strong> various degrees <strong>of</strong> usefulness <strong>in</strong> the field.<br />

Oesophagus. Oesophageal temperature is obta<strong>in</strong>ed by plac<strong>in</strong>g a temperature<br />

probe <strong>in</strong>to the distal portion <strong>of</strong> the oesophagus, usually via nasal passage, to the<br />

level <strong>of</strong> the heart (81). The proximity <strong>of</strong> the oesophagus to the descend<strong>in</strong>g aorta <strong>and</strong><br />

the left auricle is the anatomical basis for an accurate measurement <strong>of</strong> deep body<br />

core temperature. It is an accurate method for deep body core temperature (82, 83).<br />

However, this method is, for educational <strong>and</strong> practical reasons, also not an option <strong>in</strong><br />

many prehospital rescue scenarios.<br />

Closed ear canal. Closed ear canal temperature is obta<strong>in</strong>ed by plac<strong>in</strong>g a<br />

temperature probe <strong>in</strong> the mid to distal portion <strong>of</strong> the ear canal, which is then sealed<br />

from the ambient environment by <strong>in</strong>sulation cover<strong>in</strong>g the ear. The proximity <strong>of</strong> the<br />

ear canal to the <strong>in</strong>ternal carotid artery makes it an ideal site for measur<strong>in</strong>g body core<br />

temperature. This method has been shown to correlate well with oesophageal<br />

temperature (84, 85). Although these results are ma<strong>in</strong>ly based on data from <strong>in</strong>door<br />

operat<strong>in</strong>g theatre environments, Walpoth et al. (84) have shown that, if properly<br />

sealed from the ambient air, closed ear canal temperature is also reliable <strong>in</strong> sub-zero<br />

<strong>and</strong> w<strong>in</strong>d conditions. As the reliability <strong>of</strong> closed ear canal temperature is dependent<br />

on position<strong>in</strong>g with<strong>in</strong> the ear canal, there is a risk <strong>of</strong> false low record<strong>in</strong>gs. However,<br />

if measurements are made over a period <strong>of</strong> time with the probe left <strong>in</strong> position <strong>in</strong> the<br />

ear canal, which is st<strong>and</strong>ard procedure, temperature change over that period <strong>of</strong> time<br />

should be reliable.<br />

Tympanic membrane. Tympanic membrane temperature is obta<strong>in</strong>ed by<br />

reflect<strong>in</strong>g <strong>in</strong>frared electromagnetic waves from the tympanic membrane <strong>and</strong> the ear<br />

canal. It is a simple field applicable method but has been shown not reliable (86-88).<br />

<br />

13


Rectum. Rectal temperature is an accurate method for measur<strong>in</strong>g deep body core<br />

temperature <strong>in</strong> steady state conditions (41). However, when deep body core<br />

temperature changes, there is a delay <strong>in</strong> rectal temperature change.<br />

Ur<strong>in</strong>ary bladder. Ur<strong>in</strong>ary bladder temperature is an accurate method for<br />

measur<strong>in</strong>g deep body core temperature <strong>and</strong> as many patients need a ur<strong>in</strong>ary catheter,<br />

the catheter can be used for measur<strong>in</strong>g temperature (89).<br />

Oral cavity. Oral temperature is obta<strong>in</strong>ed by plac<strong>in</strong>g the probe <strong>in</strong> the subl<strong>in</strong>gual<br />

pocket which is well perfused. Provided that the patients can keep their mouths<br />

closed, it is a simple field applicable method, but has also been shown not reliable<br />

(88).<br />

<br />

<br />

The most common s<strong>in</strong>gle item judgement scales are Visual Analouge Scales (VAS),<br />

Numerical Rat<strong>in</strong>g Scales (NRS) <strong>and</strong> Verbal Rat<strong>in</strong>g Scales (VRS). A VAS consists<br />

<strong>of</strong> a visual l<strong>in</strong>e, usually 100 mm long, where the ends <strong>of</strong> that l<strong>in</strong>e are labeled with<br />

descriptions for the extremes <strong>of</strong> the studied modality. The respondent places a mark<br />

on the l<strong>in</strong>e represent<strong>in</strong>g his or her level <strong>of</strong> experienced <strong>in</strong>tensity <strong>in</strong> relation to the<br />

described extremes. Instead <strong>of</strong> a visual l<strong>in</strong>e, a NRS consists <strong>of</strong> a range <strong>of</strong> numbers,<br />

usually 0 – 10, <strong>and</strong> a VRS consists <strong>of</strong> a list <strong>of</strong> words or phrases, describ<strong>in</strong>g various<br />

degrees <strong>of</strong> the studied modality.<br />

The <strong>in</strong>ternational st<strong>and</strong>ard BS EN ISO 10551:2001 (90) outlays general<br />

pr<strong>in</strong>ciples for construction <strong>of</strong> subjective judgement scales for assessment <strong>of</strong> the<br />

<strong>in</strong>fluence <strong>of</strong> the environment on the thermal state <strong>of</strong> the patient. These general<br />

pr<strong>in</strong>ciples, ma<strong>in</strong>ly used for <strong>in</strong>door or near isothermal environments, recommend<br />

symmetrical 7 to 9-degree rat<strong>in</strong>g scales compris<strong>in</strong>g a central <strong>in</strong>difference po<strong>in</strong>t <strong>and</strong><br />

two times 3 or 4 degrees <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensity for both hot <strong>and</strong> cold. The two most<br />

well-known scales are the Bedford scale (91) <strong>and</strong> the ASHRAE scale (92). In 1936<br />

Bedford (91) collected data on almost 2000 <strong>in</strong>dustrial workers to correlate subjective<br />

judgements <strong>of</strong> their thermal comfort to objective measurements <strong>of</strong> the thermal<br />

environment. The responses <strong>of</strong> the workers were measured accord<strong>in</strong>g to a seven<br />

degree VRS, called the Bedford scale, <strong>and</strong> to be able to use statistics on the data,<br />

numerical values were assigned to the different levels <strong>of</strong> the scale. In 1971 Rohles et<br />

al. (92) collected data on 1600 college students to correlate subjective judgement <strong>of</strong><br />

thermal comfort to ambient air temperature, humidity, length <strong>of</strong> exposure <strong>and</strong><br />

gender. The scale developed for those studies is also a VRS, called the ASHRAE<br />

scale.<br />

14


The overall objective <strong>of</strong> this thesis was to evaluate prehospital active external<br />

warm<strong>in</strong>g <strong>in</strong>tervention regard<strong>in</strong>g impact on thermophysiological <strong>and</strong> psycological<br />

reactions. Reliability <strong>and</strong> validity <strong>of</strong> the Cold Discomfort Scale (CDS), a subjective<br />

judgement scale for assessment <strong>of</strong> the thermal state <strong>of</strong> patients <strong>in</strong> a cold environment<br />

was also studied.<br />

Specific objectives were to evaluate:<br />

the warm<strong>in</strong>g effectiveness <strong>of</strong> three different portable heat sources, none <strong>of</strong> them<br />

requir<strong>in</strong>g external electrical power supply, <strong>and</strong> spontaneous warm<strong>in</strong>g (control<br />

condition) regard<strong>in</strong>g their impact on post-cool<strong>in</strong>g body core temperature <strong>in</strong>clud<strong>in</strong>g<br />

afterdrop <strong>in</strong> a laboratory sett<strong>in</strong>g (study I).<br />

external warm<strong>in</strong>g <strong>in</strong>tervention, us<strong>in</strong>g a previously evaluated (study I) heat source<br />

as additional <strong>treatment</strong> to a st<strong>and</strong>ard protocol <strong>of</strong> passive warm<strong>in</strong>g <strong>in</strong> a prehospital<br />

cl<strong>in</strong>ical sett<strong>in</strong>g, both dur<strong>in</strong>g transport <strong>and</strong> <strong>treatment</strong> <strong>in</strong> a heated road ambulance or<br />

helicopter (study II) <strong>and</strong> dur<strong>in</strong>g outdoor field <strong>treatment</strong> <strong>and</strong> transport (study III),<br />

regard<strong>in</strong>g impact on body core temperature (study II) <strong>and</strong> thermal comfort (study II<br />

<strong>and</strong> III).<br />

the CDS, a subjective judgement scale for assessment <strong>of</strong> the thermal state <strong>of</strong><br />

patients <strong>in</strong> a cold environment, regard<strong>in</strong>g reliability, def<strong>in</strong>ed as test – retest stability,<br />

<strong>and</strong> criterion validity, def<strong>in</strong>ed as ability to detect changes <strong>in</strong> cumulative cold stress<br />

(study IV)<br />

.<br />

<br />

15


Because <strong>of</strong> small study populations, especially <strong>in</strong> the laboratory studies, where study<br />

populations also are relatively homogenous, the limited external validity must be<br />

considerd when conclusions are drawn based on the results <strong>of</strong> these studies.<br />

<br />

<br />

<br />

<br />

16


The CDS was evaluated <strong>in</strong> a laboratory environment regard<strong>in</strong>g reliability, def<strong>in</strong>ed as<br />

test-retest stability <strong>and</strong> criterion validity, which is def<strong>in</strong>ed as the ability to detect<br />

changes <strong>in</strong> cold discomfort due to changes <strong>in</strong> cumulative cold stress (study IV).<br />

Twentytwo healthy subjects participated <strong>in</strong> two trials each, on two separate<br />

occasions, at about the same time <strong>of</strong> day, approximately one week apart. Conditions<br />

were identical dur<strong>in</strong>g both trials, subjects were exposed to -20 °C for 60 m<strong>in</strong>utes<br />

wear<strong>in</strong>g only light cloth<strong>in</strong>g. CDS rat<strong>in</strong>gs were recorded every five m<strong>in</strong>utes, both<br />

dur<strong>in</strong>g 10 m<strong>in</strong>utes <strong>of</strong> base l<strong>in</strong>e data collection <strong>and</strong> dur<strong>in</strong>g the 60 m<strong>in</strong>utes <strong>of</strong> cold<br />

exposure. The CDS is a subjective judgement scale for assessment <strong>of</strong> the thermal<br />

state <strong>of</strong> patients <strong>in</strong> a cold environment. It is designed as a NRS, where the subjects<br />

assess the thermal state <strong>of</strong> their whole body, not specific body parts, <strong>and</strong> provide<br />

<strong>in</strong>teger values from 0 to 10, where 0 means not be<strong>in</strong>g cold at all <strong>and</strong> 10 means be<strong>in</strong>g<br />

unbearably cold.<br />

<br />

<br />

Pre-study calculations <strong>in</strong>dicated a m<strong>in</strong>imal sample size <strong>of</strong> 18 to detect a difference <strong>in</strong><br />

Cold Discomfort Scale rat<strong>in</strong>gs <strong>of</strong> 2 or more IQR; 2) presupposed 80% statistical<br />

power at an -level <strong>of</strong> 0.05. Reliability <strong>of</strong> the CDS was analysed for test-retest<br />

stability us<strong>in</strong>g weighted kappa coefficient, compar<strong>in</strong>g median CDS rat<strong>in</strong>gs between<br />

the two trials. This <strong>in</strong>cluded all the measurements made every five m<strong>in</strong>utes <strong>and</strong> also,<br />

separately, every s<strong>in</strong>gle measurement.<br />

Criterion validity was analysed by compar<strong>in</strong>g median CDS rat<strong>in</strong>gs over a mov<strong>in</strong>g<br />

30 m<strong>in</strong>utes <strong>in</strong>terval (5-35 m<strong>in</strong>utes; 10-40 m<strong>in</strong>utes; 15-45 m<strong>in</strong>utes etc) us<strong>in</strong>g<br />

Wilcoxon signed ranks test. Statistical significance was def<strong>in</strong>ed as p < 0.05, <strong>and</strong>, <strong>in</strong><br />

analysis <strong>of</strong> criterion validity, after correction for multiple comparisons accord<strong>in</strong>g to<br />

Bonferroni as p < 0.008 (two-sided).<br />

<br />

Because the test <strong>and</strong> retest were conducted <strong>in</strong> a laboratory environment, ambient<br />

conditions were controlled <strong>and</strong> identical for both the test <strong>and</strong> retest. Subjects also<br />

served as their own controls. However, it is always difficult to achieve identical<br />

conditions <strong>in</strong> a test-retest design when measur<strong>in</strong>g subjective parameters. Even<br />

though all arrangements are made to match, the subjects might react differently to<br />

the same cold exposure at two different occasions. There might also be a habituation<br />

which can either <strong>in</strong>crease or decrease the sensitivity to the exposure.<br />

Evaluation <strong>of</strong> criterion validity is dependent on how it is def<strong>in</strong>ed <strong>and</strong> conclusions<br />

about criterion validity therefore, must be based on that def<strong>in</strong>ition. It might<br />

<br />

17


sometimes be hard to appraise if the chosen def<strong>in</strong>ition is relevant, which then<br />

complicates <strong>in</strong>terpretation <strong>of</strong> results.<br />

In this study, criterion validity was def<strong>in</strong>ed as the ability to detect changes <strong>in</strong> cold<br />

discomfort due to changes <strong>in</strong> cumulative cold stress by subjects exposed to -20 °C<br />

wear<strong>in</strong>g only light cloth<strong>in</strong>g, over a mov<strong>in</strong>g 30-m<strong>in</strong>ute <strong>in</strong>terval. The time <strong>in</strong>terval<br />

was chosen based upon what, under prevail<strong>in</strong>g conditions, was appraised a cl<strong>in</strong>ically<br />

significant change <strong>in</strong> cumulative cold stress. A mov<strong>in</strong>g 30-m<strong>in</strong>ute <strong>in</strong>terval was<br />

chosen <strong>in</strong> attempt to cover early as well as late changes with<strong>in</strong> the evaluation period<br />

<strong>of</strong> 60 m<strong>in</strong>utes.<br />

<br />

<br />

In a laboratory environment, three different portable exogenous heat sources, none<br />

<strong>of</strong> them requir<strong>in</strong>g external electrical power supply, <strong>and</strong> spontaneous warm<strong>in</strong>g<br />

(control condition) were compared (study I). Five human subjects participated <strong>in</strong><br />

four trials each, one trial for every condition, thereby serv<strong>in</strong>g as their own controls.<br />

To mimic moderate to severe <strong>hypothermia</strong> <strong>and</strong> also to achieve equal conditions <strong>of</strong><br />

endogenous heat production for each condition, shiver<strong>in</strong>g was suppressed<br />

pharmacologically us<strong>in</strong>g a human model previously evaluated <strong>in</strong> several studies (36,<br />

65, 66). An <strong>in</strong>itial cool<strong>in</strong>g phase, <strong>in</strong> which subjects were exposed to 8 º C water for<br />

10-30 m<strong>in</strong>utes, was followed by a 120-m<strong>in</strong>utes <strong>treatment</strong> phase <strong>in</strong>clud<strong>in</strong>g passive<br />

warm<strong>in</strong>g with the addition <strong>of</strong> either one <strong>of</strong> three exogenous heat sources or<br />

spontaneous warm<strong>in</strong>g. Prior to the trials, 30 mg <strong>of</strong> orally adm<strong>in</strong>istered buspirone,<br />

<strong>and</strong> dur<strong>in</strong>g the last 10 m<strong>in</strong>utes <strong>of</strong> the cool<strong>in</strong>g phase, <strong>and</strong> also if needed dur<strong>in</strong>g<br />

rewarm<strong>in</strong>g, <strong>in</strong>travenously adm<strong>in</strong>istered meperid<strong>in</strong>e to a maximum cumulative dose<br />

<strong>of</strong> 3,5 mg/kg, was used to supress shiver<strong>in</strong>g. Oesophageal temperature (81-83), sk<strong>in</strong><br />

heat transfer, sk<strong>in</strong> temperature, oxygen consumption, respiratory rate <strong>and</strong> heart rate<br />

were cont<strong>in</strong>uously monitored <strong>and</strong> recorded dur<strong>in</strong>g the trials. The exogenous heat<br />

sources applied to the chest <strong>and</strong> upper back, were a charcoal heater, HeatPac®,<br />

(Normeca AS, Oslo, Norway), two chemical heat<strong>in</strong>g pads (Dorcas AB, Skattkarr,<br />

Sweden) <strong>and</strong> two flexible water bags (Mounta<strong>in</strong> Safety Research, Seattle, WA) each<br />

filled with 2 litres <strong>of</strong> 55 °C water replenished every 20 m<strong>in</strong>utes.<br />

<br />

Cont<strong>in</strong>uous data, considered normally distributed, were <strong>in</strong>itially compared us<strong>in</strong>g<br />

repeated measures analysis <strong>of</strong> variance (ANOVA). If statistical significance was<br />

revealed, Student´s t-test for pair-wise post hoc analysis with Fisher’s protected least<br />

significant difference (PLSD) for multiple comparisons test was used to identify <strong>and</strong><br />

quantify differences between <strong>in</strong>dividual conditions. Statistical significance was<br />

def<strong>in</strong>ed as p < 0.05 (two-sided).<br />

18


The human model, <strong>in</strong> which shiver<strong>in</strong>g is suppressed pharmacologically, is designed<br />

to thermophysiologically mimic a scenario <strong>of</strong> moderate to severe <strong>hypothermia</strong>. It has<br />

been evaluated <strong>in</strong> several studies (36, 65, 66). Beyond the ability to evaluate<br />

different <strong>treatment</strong> alternatives <strong>in</strong> a thermophysiologically hypothermic subject,<br />

which, for safety reasons, would otherwise be impossible, this model also makes<br />

comparisons between <strong>treatment</strong> alternatives almost perfectly fair regard<strong>in</strong>g <strong>in</strong>fluence<br />

<strong>of</strong> endogenous heat production. This is because endogenous heat production is kept<br />

at a constantly low rate <strong>and</strong> also is controlled for. If there are differences <strong>in</strong><br />

endogenous heat production, this will be revealed <strong>and</strong> impact on the overall result<br />

will be possible to analyse.<br />

The human model for severe <strong>hypothermia</strong> elim<strong>in</strong>ates <strong>and</strong> controls for shiver<strong>in</strong>g.<br />

However, it does not account for other physiological or psychological changes that<br />

come with moderate to severe <strong>hypothermia</strong> such as, respiratory, circulatory,<br />

neurological, <strong>and</strong> blood chemistry changes.<br />

In this study, because <strong>of</strong> safety considerations, the amount <strong>of</strong> meperid<strong>in</strong>e<br />

adm<strong>in</strong>istered to <strong>in</strong>hibit shiver<strong>in</strong>g was limited to a cumulative dose <strong>of</strong> 3.5 mg/kg for<br />

each trial. Therefore, the cool<strong>in</strong>g phase had to be adjusted for the subjects’ body<br />

composition, result<strong>in</strong>g <strong>in</strong> a relatively longer cool<strong>in</strong>g phase <strong>in</strong> subjects with a higher<br />

percentage <strong>of</strong> body fat. However, because subjects served as their own control <strong>and</strong><br />

the cool<strong>in</strong>g phase was identical for each subject for all conditions, this should have<br />

very limited impact on the results.<br />

Parametric statistical tests were used for ratio <strong>and</strong> <strong>in</strong>terval scale data, despite<br />

small study population, because data were considered normally distributed.<br />

However, consider<strong>in</strong>g the small study population, the use <strong>of</strong> parametric statistics is<br />

controversial <strong>and</strong> therefore, results are also presented for non-parametric statistics<br />

us<strong>in</strong>g Friedman test <strong>and</strong> Wilcoxon signed rank test <strong>in</strong>stead <strong>of</strong> ANOVA <strong>and</strong> PLSD<br />

respectively.<br />

<br />

<br />

<br />

<br />

<br />

In two r<strong>and</strong>omized cl<strong>in</strong>ical trials, chemical heat pads (Dorcas AB, Skattkarr,<br />

Sweden), the same chemical heat pads as previously evaluated on non-shiver<strong>in</strong>g<br />

subjects (study I) were used to evaluate the impact <strong>of</strong> active warm<strong>in</strong>g on<br />

thermoregulation <strong>in</strong> mildly hypothermic trauma patients with preserved shiver<strong>in</strong>g<br />

capacity dur<strong>in</strong>g transport <strong>and</strong> <strong>treatment</strong> <strong>in</strong> a heated road ambulance or helicopter<br />

(study II) or dur<strong>in</strong>g outdoor field <strong>treatment</strong> <strong>and</strong> transport by ski patrol units (study<br />

III). Sequential trauma patients, age 18 years, who had susta<strong>in</strong>ed an outdoor<br />

<strong>in</strong>jury, were enrolled. Patients were excluded if <strong>in</strong>itial level <strong>of</strong> consciousness was<br />

affected, (Glasgow Coma Scale < 15), if duration <strong>of</strong> transport or <strong>treatment</strong> was<br />

expected to be shorter than 10 m<strong>in</strong>utes, if active warm<strong>in</strong>g already had been <strong>in</strong>itiated,<br />

<br />

19


if they had been taken <strong>in</strong>doors for more than 10 m<strong>in</strong>utes before ambulance or ski<br />

patrol unit arrival or had an <strong>in</strong>itial cold discomfort rat<strong>in</strong>g 2.<br />

If enrolled, patients were r<strong>and</strong>omized to either passive warm<strong>in</strong>g with blankets<br />

accord<strong>in</strong>g to an exist<strong>in</strong>g protocol alone (study II: n = 22, study III n = 9) or to<br />

passive warm<strong>in</strong>g with blankets accord<strong>in</strong>g to the exist<strong>in</strong>g protocol with the addition<br />

<strong>of</strong> one chemical heat pad applied on the anterior chest (study II: n = 26: study III: n<br />

= 11). In study II, after load<strong>in</strong>g <strong>in</strong>to the ambulance or helicopter, <strong>in</strong>itial<br />

measurements <strong>of</strong> closed ear canal temperature (84, 85), respiratory rate, heart rate,<br />

blood pressure, <strong>and</strong> patients’ subjective sensation <strong>of</strong> thermal comfort accord<strong>in</strong>g to<br />

the CDS were made. In study III, at the scene <strong>of</strong> <strong>in</strong>jury, an <strong>in</strong>itial measurement <strong>of</strong><br />

patients’ subjective sensation <strong>of</strong> thermal comfort accord<strong>in</strong>g to the CDS was made.<br />

In both studies <strong>in</strong>itial measurements were made before eventual application <strong>of</strong> the<br />

chemical heat pad. Measurements were then cont<strong>in</strong>uously made every 30 m<strong>in</strong>utes<br />

<strong>and</strong> at the receiv<strong>in</strong>g hospital (study II), first aid centre or EMS unit arrival (study<br />

III).<br />

<br />

Pre-study sample size calculations, estimat<strong>in</strong>g a difference <strong>in</strong> body core temperature<br />

<strong>of</strong> 0.5 °C <strong>and</strong> <strong>in</strong> CDS rat<strong>in</strong>gs <strong>of</strong> 2 between the two <strong>in</strong>tervention groups, an<br />

alpha <strong>of</strong> 0.05 <strong>and</strong> a beta <strong>of</strong> 0.10 revealed a m<strong>in</strong>imum study population <strong>of</strong> 42<br />

patients. This was for both studies II <strong>and</strong> III s<strong>in</strong>ce CDS was the restrict<strong>in</strong>g variable.<br />

For comparison between groups the Mann Whitney U test was used for <strong>in</strong>terval<br />

<strong>and</strong> ord<strong>in</strong>al data <strong>and</strong> Chi square or Fisher’s exact test for nom<strong>in</strong>al data. In addition,<br />

CDS rat<strong>in</strong>gs were characterized as <strong>in</strong>creased, unchanged or decreased <strong>and</strong> the<br />

difference between groups was analysed us<strong>in</strong>g Fisher’s exact test. For comparisons<br />

with<strong>in</strong> groups, Wilcoxon signed rank test was used for <strong>in</strong>terval <strong>and</strong> ord<strong>in</strong>al data.<br />

Statistical significance was def<strong>in</strong>ed as p < 0.05 (two-sided).<br />

<br />

The rescue personnel used the st<strong>and</strong>ard protocol for all patients; participation <strong>in</strong> the<br />

studies <strong>in</strong>volved no <strong>in</strong>terfer<strong>in</strong>g <strong>in</strong>structions. Application <strong>of</strong> the chemical heat pad to<br />

the anterior thorax for those assigned to additional active warm<strong>in</strong>g was the only<br />

difference between groups. This study design thus enables a fair comparison<br />

between study groups. The active warm<strong>in</strong>g <strong>in</strong>tervention be<strong>in</strong>g evaluated <strong>in</strong> a proper<br />

environment must also be considered a great strength <strong>of</strong> the study. A laboratory<br />

environment results <strong>in</strong> a high degree <strong>of</strong> control when conduct<strong>in</strong>g the study,<br />

<strong>in</strong>clud<strong>in</strong>g control <strong>of</strong> evaluated <strong>in</strong>tervention <strong>and</strong> record<strong>in</strong>gs. This might be more<br />

difficult to achieve <strong>in</strong> a prehospital cl<strong>in</strong>ical sett<strong>in</strong>g <strong>and</strong> it is important to be aware <strong>of</strong><br />

such possible sources <strong>of</strong> errors when <strong>in</strong>terpret<strong>in</strong>g results. Although, if considered,<br />

that must not entail a limitation.<br />

Closed ear canal temperature (84, 85) was used for measurement <strong>of</strong> body core<br />

temperature. Because the absolute value <strong>of</strong> closed ear canal temperature is<br />

somewhat dependent on placement with<strong>in</strong> the ear canal, those values might not be<br />

20


completely accurate. However, if the ear canal is properly <strong>in</strong>sulated from the<br />

ambient environment <strong>and</strong> if the temperature sensor is kept <strong>in</strong> the same place dur<strong>in</strong>g<br />

the entire trial, record<strong>in</strong>gs <strong>of</strong> temperature changes will be accurate.<br />

CDS was used for assessment <strong>of</strong> thermal comfort. The reliability (def<strong>in</strong>ed as test<br />

– retest stability) <strong>and</strong> criterion validity (def<strong>in</strong>ed as ability to detect an <strong>in</strong>crease <strong>in</strong><br />

cumulative cold stress) <strong>of</strong> CDS is discussed below.<br />

In study II, fourteen day <strong>and</strong> night manned road ambulance units <strong>and</strong> one<br />

helicopter ambulance unit participated dur<strong>in</strong>g the entire, or part, <strong>of</strong> an <strong>in</strong>clusion<br />

period <strong>of</strong> two <strong>and</strong> a half years. There are 125 000 <strong>in</strong>habitants <strong>in</strong> the catchment area<br />

<strong>of</strong> the participat<strong>in</strong>g ambulance units <strong>and</strong>, due to tourism, the population <strong>in</strong>creases<br />

dur<strong>in</strong>g w<strong>in</strong>ter time. In study III, ski patrols from three ski resorts <strong>in</strong> the northern<br />

parts <strong>of</strong> Sweden participated <strong>in</strong> the study dur<strong>in</strong>g two consecutive w<strong>in</strong>ter seasons.<br />

There were a total number <strong>of</strong> 1 803 000, person-ski days dur<strong>in</strong>g that period. Still, the<br />

study population was relatively small, which might be due to several factors. The<br />

compliance <strong>of</strong> the rescue personnel to <strong>in</strong>clude patients <strong>in</strong> the study might have been<br />

low. The doctors <strong>in</strong> charge <strong>of</strong> the studies, Lundgren <strong>and</strong> Henriksson, visited every<br />

unit about twice a year <strong>and</strong> above that carried out monthly phone calls to make sure<br />

the study proceeded as planned, but that might not have been adequate.<br />

The <strong>in</strong>clusion <strong>and</strong> exclusion criteria were also somewhat narrow, which also<br />

might have had an <strong>in</strong>fluence on the size <strong>of</strong> the study population. Reports from the<br />

ambulance personnel <strong>in</strong>dicated that many <strong>of</strong> the patients <strong>in</strong>jured outside had already<br />

been moved <strong>in</strong>side, while wait<strong>in</strong>g for the ambulance to arrive <strong>and</strong>, due to long<br />

distances, the time limit <strong>of</strong> ten m<strong>in</strong>utes <strong>of</strong> <strong>in</strong>door stay or active warm<strong>in</strong>g <strong>treatment</strong><br />

was exceeded. Reports from ski patrol units <strong>in</strong>dicated that many <strong>of</strong> the patients<br />

<strong>in</strong>jured <strong>and</strong> <strong>in</strong> need <strong>of</strong> <strong>treatment</strong> on the ski slopes were rapidly transported to an<br />

<strong>in</strong>door medical facility, thereby outdoor <strong>treatment</strong> <strong>and</strong> transport time were less than<br />

the required 10 m<strong>in</strong>utes.<br />

Patients hav<strong>in</strong>g an <strong>in</strong>itial CDS rat<strong>in</strong>g <strong>of</strong> 2 were also excluded s<strong>in</strong>ce they were<br />

not considered cold stressed.<br />

However, presented <strong>in</strong>clusion <strong>and</strong> exclusion criteria were considered necessary to<br />

limit the study population to those actually considered cold stressed, even if some<br />

patients who also could have been considered cold stressed might have been left out,<br />

<strong>and</strong> the result<strong>in</strong>g consequenses was a small study population.<br />

Study II was term<strong>in</strong>ated when the required number <strong>of</strong> <strong>in</strong>cluded patients had been<br />

reached accord<strong>in</strong>g to prestudy sample size calculation. Statistical analysis <strong>of</strong><br />

outcome variables was performed until the second measurement, at an average <strong>of</strong> 26<br />

± 7 m<strong>in</strong>utes, s<strong>in</strong>ce at that po<strong>in</strong>t, all 48 subjects were <strong>in</strong>cluded, whereas at the third<br />

measurement, performed at an average <strong>of</strong> 58 ± 5 m<strong>in</strong>utes only 12 subjects rema<strong>in</strong>ed.<br />

Study III was term<strong>in</strong>ated before the required number <strong>of</strong> <strong>in</strong>cluded patients had<br />

been reached accord<strong>in</strong>g to pre-study sample size calculations, s<strong>in</strong>ce differences <strong>in</strong><br />

CDS between groups proved to be larger than expected when mak<strong>in</strong>g those<br />

calculations.<br />

<br />

21


CDS data was considered ord<strong>in</strong>al scale data. In study II, non-parametric statistics<br />

wass used also for <strong>in</strong>terval scale data as the study population was small.<br />

22


In total, forty-four trials were completed; all twenty-two subjects participated <strong>in</strong> two<br />

trials each. Median CDS <strong>in</strong>creased from 0 (IQR; 0 – 0) dur<strong>in</strong>g base l<strong>in</strong>e to 7 (IQR; 5<br />

– 7) at the end <strong>of</strong> the first trial (test) <strong>and</strong> to 6 (IQR; 5 – 7) dur<strong>in</strong>g the second trial<br />

(retest) (Figure 2).<br />

<br />

<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 10 20 30 40 50 60<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

23


Reliability analysed for test-retest stability, us<strong>in</strong>g weighted kappa coefficient, which<br />

<strong>in</strong>cluded all the measurements made every five m<strong>in</strong>utes, was 0.84 <strong>and</strong> separated for<br />

every s<strong>in</strong>gle measurement between 0.48 <strong>and</strong> 0.86 (Table 3).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

24


Criterion validity analysed by compar<strong>in</strong>g median CDS rat<strong>in</strong>gs (n = 22) over a<br />

mov<strong>in</strong>g 30-m<strong>in</strong>ute <strong>in</strong>terval, revealed that CDS rat<strong>in</strong>gs were significantly <strong>in</strong>creased<br />

dur<strong>in</strong>g each 30-m<strong>in</strong>ute <strong>in</strong>terval (5-35 m<strong>in</strong>utes; 10-40 m<strong>in</strong>utes;15-45 m<strong>in</strong>utes etc)<br />

(Table 4).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

25


Metabolic heat production <strong>in</strong>creased from 116 ± 17 W (mean ± SD) dur<strong>in</strong>g basel<strong>in</strong>e<br />

to 195 ± 51 W dur<strong>in</strong>g the last 10 m<strong>in</strong>utes before meperid<strong>in</strong>e <strong>in</strong>jection. Meperid<strong>in</strong>e<br />

suppressed shiver<strong>in</strong>g <strong>and</strong> heat production returned to 114 ± 21 W dur<strong>in</strong>g the first 40<br />

m<strong>in</strong>utes <strong>of</strong> <strong>treatment</strong> <strong>and</strong> subsequently fell to 97 ± 17 W throughout the rema<strong>in</strong><strong>in</strong>g<br />

80 m<strong>in</strong>utes <strong>of</strong> <strong>treatment</strong> (Figure 3). There were no significant differences <strong>in</strong><br />

metabolic heat production for the different conditions either dur<strong>in</strong>g the cool<strong>in</strong>g or<br />

the <strong>treatment</strong> phase.<br />

<br />

<br />

<br />

<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120<br />

<br />

<br />

<br />

<br />

26


Parametric statistics: The post-cool<strong>in</strong>g afterdrop was significantly less for the<br />

chemical heat pads <strong>and</strong> the hot water bags, but not for the charcoal heater, compared<br />

to spontaneous warm<strong>in</strong>g. Time to temperature nadir <strong>and</strong> temperature drop dur<strong>in</strong>g the<br />

entire <strong>treatment</strong> phase (0 to 120 m<strong>in</strong>utes) was significantly less for all three heat<br />

sources compared to spontaneous warm<strong>in</strong>g.<br />

Non parametric statistics: The postcool<strong>in</strong>g afterdrop was significantly less for the<br />

chemical heat pads, but not for the hot water bags or the charcoal heater, compared<br />

to spontaneous warm<strong>in</strong>g. Time to temperature nadir <strong>and</strong> temperature drop dur<strong>in</strong>g the<br />

entire <strong>treatment</strong> phase (0 to 120 m<strong>in</strong>utes) was significantly less for all three heat<br />

sources compared to spontaneous warm<strong>in</strong>g. (Table 5)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

27


Change <strong>in</strong> core temperature (°C)<br />

<br />

<br />

Change <strong>in</strong> core temperature (°C)<br />

<br />

1,0<br />

0,0<br />

-1,0<br />

-2,0<br />

-3,0<br />

1,0 <br />

0,0<br />

-1,0<br />

-2,0<br />

<br />

<br />

-40 -20 0 20 40<br />

Time (m<strong>in</strong>)<br />

60 80 100 120<br />

<br />

<br />

Change <strong>in</strong> core temperature (°C)<br />

Change <strong>in</strong> core temperature (°C)<br />

<br />

1,0<br />

0,0<br />

-1,0<br />

-2,0<br />

-3,0<br />

0,0<br />

-1,0<br />

-2,0<br />

-40 -20 0 20 40<br />

Time (m<strong>in</strong>)<br />

60 80 100 120<br />

1,0<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-3,0<br />

-40 -20 0 20 40 60 80 100 120<br />

<br />

Time (m<strong>in</strong>)<br />

<br />

<br />

<br />

<br />

<br />

28<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-3,0<br />

-40 -20 0 20 40<br />

Time (m<strong>in</strong>)<br />

60 80 100 120


The mean time from <strong>in</strong>jury to the arrival <strong>of</strong> ambulance personnel arrival was 64 (95<br />

% CI; 41 – 88) m<strong>in</strong>utes <strong>in</strong> patients assigned to passive warm<strong>in</strong>g only <strong>and</strong> 81 (95 %<br />

CI; 61 – 101) m<strong>in</strong>utes <strong>in</strong> patients assigned to additional active warm<strong>in</strong>g with no<br />

significant differences between the two groups.<br />

Dur<strong>in</strong>g road <strong>and</strong> air ambulance transport ear canal temperature was significantly<br />

<strong>in</strong>creased <strong>and</strong> CDS rat<strong>in</strong>gs was significantly decreased, both <strong>in</strong> patients assigned to<br />

passive warm<strong>in</strong>g only, <strong>and</strong> <strong>in</strong> patients assigned to additional active warm<strong>in</strong>g (Table<br />

6).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

However, when change <strong>in</strong> cold discomfort was characterized as <strong>in</strong>creased,<br />

unchanged or decreased, 15 out <strong>of</strong> 21 <strong>in</strong> the group assigned to passive warm<strong>in</strong>g only<br />

presented a decrease <strong>in</strong> CDS rat<strong>in</strong>g, whereas all 26 patients <strong>in</strong> the group assigned to<br />

additional active warm<strong>in</strong>g presented a decrease <strong>in</strong> CDS rat<strong>in</strong>gs. This difference <strong>in</strong><br />

CDS rat<strong>in</strong>g change between groups was statistically significant (p < 0.05).<br />

The time from <strong>in</strong>jury to ski patrol arrival was 11 ± 7 m<strong>in</strong>utes (mean ± SD) <strong>in</strong><br />

patients assigned to passive warm<strong>in</strong>g only <strong>and</strong> 16 ± 9 m<strong>in</strong>utes <strong>in</strong> patients assigned to<br />

additional active warm<strong>in</strong>g, with no significant differences between the two groups.<br />

Dur<strong>in</strong>g field <strong>treatment</strong>, CDS rat<strong>in</strong>gs were significantly reduced <strong>in</strong> patients<br />

assigned to additional active warm<strong>in</strong>g, but rema<strong>in</strong>ed the same <strong>in</strong> patients assigned to<br />

passive warm<strong>in</strong>g only (Table 7).<br />

29


In addition, when change <strong>in</strong> cold discomfort was characterized as <strong>in</strong>creased,<br />

unchanged, or decreased, 9 <strong>of</strong> 11 patients assigned to additional active warm<strong>in</strong>g<br />

presented a decrease <strong>in</strong> cold discomfort <strong>and</strong> two rema<strong>in</strong>ed at their <strong>in</strong>itial cold<br />

discomfort whereas only 3 <strong>of</strong> 9 patients assigned to passive warm<strong>in</strong>g alone<br />

presented a decrease <strong>in</strong> cold discomfort; one rema<strong>in</strong>ed at <strong>in</strong>itial cold discomfort <strong>and</strong><br />

5 presented an <strong>in</strong>crease <strong>in</strong> cold discomfort, this difference <strong>in</strong> cold discomfort change<br />

between groups be<strong>in</strong>g statistically significant (p < 0.05).<br />

30


Admission <strong>hypothermia</strong> is an <strong>in</strong>dependent risk factor associated with worse outcome<br />

<strong>in</strong> trauma patients, retrospective (1, 3-8) as well as prospective (2) observational<br />

cl<strong>in</strong>ical studies have revealed that <strong>hypothermia</strong> rema<strong>in</strong>s an <strong>in</strong>dependent determ<strong>in</strong>ant<br />

<strong>of</strong> mortality after correction for severity <strong>of</strong> <strong>in</strong>jury. Actions to reduce cold exposure<br />

<strong>and</strong> prevent further heat loss are therefore an important <strong>and</strong> <strong>in</strong>tegrated part <strong>of</strong><br />

prehospital trauma care. Active warm<strong>in</strong>g is by most authors recommended to aid <strong>in</strong><br />

protection from further cool<strong>in</strong>g dur<strong>in</strong>g <strong>treatment</strong> <strong>and</strong> transport to def<strong>in</strong>itive care (13-<br />

15, 28-32). Prehospital active external warm<strong>in</strong>g <strong>treatment</strong>, aims primarily at<br />

reduc<strong>in</strong>g further heat loss <strong>and</strong> to counteract the post cool<strong>in</strong>g afterdrop.<br />

<br />

<br />

<br />

Chemical heat pads <strong>and</strong> warm water bottles are commonly used <strong>and</strong> advised for<br />

prehospital active warm<strong>in</strong>g <strong>treatment</strong>. However, unlike the HeatPack® charcoal<br />

heater, these heat sources have never before been evaluated regard<strong>in</strong>g their impact<br />

on thermoregulation <strong>in</strong> non-shiver<strong>in</strong>g hypothermic subjects. Although all the<br />

evaluated heat sources were applied on the chest <strong>and</strong> upper back, provid<strong>in</strong>g their<br />

heat content conductively to the sk<strong>in</strong> <strong>and</strong> underly<strong>in</strong>g tissues, they displayed some<br />

important differences that affected warm<strong>in</strong>g effectiveness.<br />

Chemical heat pads were most effective <strong>in</strong> attenuat<strong>in</strong>g afterdrop amount. This<br />

was most likely due to their high <strong>in</strong>itial heat delivery to a relatively large surface<br />

area. The charcoal heater, also with a high <strong>in</strong>itial heat production but a relatively<br />

small surface area, had less effect on afterdrop amount compared to spontaneous<br />

warm<strong>in</strong>g than the chemical heat pads.<br />

The charcoal heater, like the hot water bags (replenished every 20 m<strong>in</strong>utes),<br />

provided high cont<strong>in</strong>uous heat delivery. The heat delievery <strong>of</strong> the chemical heat<br />

pads decl<strong>in</strong>ed over time. Therefore, the charcoal heater also, like the chemical heat<br />

pads <strong>and</strong> the warm water bottles, presented a significant difference <strong>in</strong> body core<br />

temperature change over the entire warm<strong>in</strong>g phase, compared to spontaneous<br />

warm<strong>in</strong>g. Thus, all heat sources presented a statistical significant lower body core<br />

temperature drop compared to spontaneous warm<strong>in</strong>g dur<strong>in</strong>g the warm<strong>in</strong>g phase <strong>and</strong><br />

this is also <strong>in</strong> accordance with f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> large afterdrop amounts <strong>and</strong> little or no<br />

warm<strong>in</strong>g, when exogenous heat is left out (35, 36, 65, 66).<br />

In summary, heat sources applied on the chest <strong>and</strong> upper back were effective to<br />

attenuate afterdrop when provid<strong>in</strong>g high heat content over a large surface area, <strong>and</strong><br />

<br />

31


effective to cont<strong>in</strong>ue to <strong>in</strong>crease body core temperature when provid<strong>in</strong>g susta<strong>in</strong>ed<br />

high heat content.<br />

However, it could be discussed whether recorded differences <strong>in</strong> body core<br />

temperature <strong>of</strong> about 1˚C is cl<strong>in</strong>ically relevant. Nevertheless, prehospital active<br />

warm<strong>in</strong>g aims primarily at reduc<strong>in</strong>g heat loss <strong>and</strong> to reverse a cont<strong>in</strong>u<strong>in</strong>g fall <strong>in</strong><br />

body core temperature. Thus, especially at critical temperature levels at about 30 ˚C<br />

where the heart becomes susceptible to arrhythmias, every degree might be<br />

important or even lifesav<strong>in</strong>g.<br />

All <strong>of</strong> the evaluated warm<strong>in</strong>g modalities are portable, require no external power<br />

supply <strong>and</strong> are easily used by laypersons, Search <strong>and</strong> Rescue (SaR) personnel, or<br />

Emergency Medical Services (EMS) crew members without significant tra<strong>in</strong><strong>in</strong>g.<br />

They are suitable for different cl<strong>in</strong>ical scenarios.<br />

The charcoal heater, which is lightweight <strong>and</strong> provides heat over 8–12 hours, has<br />

advantages <strong>in</strong> protracted evacuation <strong>and</strong> rescue operations because <strong>of</strong> susta<strong>in</strong>ed heat<br />

production.<br />

Water bags, which <strong>of</strong>ten are lightweight <strong>and</strong> easy to br<strong>in</strong>g dur<strong>in</strong>g backcountry<br />

excursions are better suited for scenarios <strong>in</strong> which the patient will rema<strong>in</strong> on the<br />

scene <strong>of</strong> the accident wait<strong>in</strong>g for evacuation, because an external heat source <strong>and</strong><br />

significant effort are required for replenish<strong>in</strong>g the water bags.<br />

Chemical heat<strong>in</strong>g pads, although heavier <strong>and</strong> requir<strong>in</strong>g more space than the other<br />

modalities can be easily transported <strong>in</strong> a vehicle such as <strong>in</strong> ground or air ambulance<br />

units. As they are effective <strong>in</strong> revers<strong>in</strong>g the <strong>in</strong>itial fall <strong>in</strong> body core temperature, they<br />

might prove valuable for <strong>in</strong>itial thermal stabilization <strong>of</strong> a cold patient, <strong>and</strong> if<br />

replaced at sufficient <strong>in</strong>tervals, also for cont<strong>in</strong>uous heat delivery.<br />

<br />

<br />

<br />

<br />

Passive warm<strong>in</strong>g accord<strong>in</strong>g to st<strong>and</strong>ard <strong>treatment</strong> protocol was effective <strong>in</strong><br />

prevent<strong>in</strong>g afterdrop <strong>and</strong> slowly <strong>in</strong>creas<strong>in</strong>g body core temperature dur<strong>in</strong>g transport<br />

to def<strong>in</strong>itive care (study II). Additional active warm<strong>in</strong>g composed no beneficial<br />

effect on body core temperature <strong>in</strong> this study on cold stressed trauma patients with<br />

an <strong>in</strong>itial body core temperature <strong>of</strong> about 35°C <strong>and</strong> preserved shiver<strong>in</strong>g capacity.<br />

This is <strong>in</strong> accordance with previous laboratory studies on mildly hypothermic<br />

shiver<strong>in</strong>g subjects, where exogenous sk<strong>in</strong> heat<strong>in</strong>g has been shown to attenuate<br />

shiver<strong>in</strong>g heat production by an amount equivalent to the heat donated (34, 37, 64,<br />

72). Passive warm<strong>in</strong>g was also effective <strong>in</strong> reduc<strong>in</strong>g cold discomfort. However, only<br />

2/3 <strong>of</strong> the patients assigned to passive warm<strong>in</strong>g, whereas all patients assigned to<br />

additional active warm<strong>in</strong>g presented a decrease <strong>in</strong> cold discomfort dur<strong>in</strong>g transport.<br />

This beneficial effect on thermal comfort by application <strong>of</strong> a chemical heat pad to<br />

the upper torso is probably expla<strong>in</strong>ed by a comb<strong>in</strong>ation <strong>of</strong> reduction <strong>of</strong> shiver<strong>in</strong>g<br />

thermogenesis <strong>and</strong> <strong>in</strong>creased sk<strong>in</strong> temperature.<br />

32


Contrary to this study, two other r<strong>and</strong>omized cl<strong>in</strong>ical trials found a decrease <strong>in</strong><br />

body core temperature with passive warm<strong>in</strong>g only, whereas with additional active<br />

warm<strong>in</strong>g us<strong>in</strong>g either resistive heat<strong>in</strong>g blankets (38) or multiple chemical heat pads<br />

(39), body core temperature was <strong>in</strong>creased dur<strong>in</strong>g transport. Because effective<br />

passive warm<strong>in</strong>g requires adequate <strong>in</strong>sulation materials <strong>in</strong> relation to ambient<br />

conditions <strong>and</strong> <strong>in</strong>tact shiver<strong>in</strong>g thermogenesis, differences regard<strong>in</strong>g these factors<br />

might expla<strong>in</strong> differences between studies.<br />

Dur<strong>in</strong>g field <strong>treatment</strong> additional active external warm<strong>in</strong>g rendered improved<br />

thermal comfort, whereas passive warm<strong>in</strong>g alone did not (study III).<br />

This is a difference compared to study II, where passive warm<strong>in</strong>g alone was<br />

enough to reduce cold discomfort, even though additional active warm<strong>in</strong>g was even<br />

more efficient. In both studies, the number <strong>of</strong> blankets used for passive warm<strong>in</strong>g<br />

was about the same, but <strong>in</strong> study II, the evaluation was conducted dur<strong>in</strong>g <strong>treatment</strong><br />

<strong>and</strong> transport <strong>in</strong> a heated ambulance or helicopter, whereas <strong>in</strong> study III evaluation<br />

was conducted dur<strong>in</strong>g <strong>treatment</strong> <strong>and</strong> transport <strong>in</strong> the outdoors. This probably<br />

resulted <strong>in</strong> a greater cold stress dur<strong>in</strong>g the evaluation period for patients <strong>in</strong> study III<br />

than <strong>in</strong> study II, <strong>and</strong> thereby, probably also <strong>in</strong> <strong>in</strong>creased shiver<strong>in</strong>g thermogenesis <strong>and</strong><br />

lower sk<strong>in</strong> temperature. Although, an equal amount <strong>of</strong> <strong>in</strong>sulation was present <strong>in</strong> both<br />

studies, the realative cold stress seemed to be greater <strong>in</strong> study III. If cold stress<br />

<strong>in</strong>creases, dem<strong>and</strong>s on shiver<strong>in</strong>g thermogenesis dur<strong>in</strong>g passive warm<strong>in</strong>g also<br />

<strong>in</strong>creases. In a scenario with trauma patients <strong>in</strong>jured on the ski slopes, where<br />

extensive shiver<strong>in</strong>g might be harmful, additional active warm<strong>in</strong>g seemed to be<br />

beneficial.<br />

Increased thermal comfort <strong>of</strong> patients <strong>in</strong> both study II <strong>and</strong> study III <strong>in</strong>dicates a<br />

beneficial effect on thermoregulation <strong>of</strong> additional active warm<strong>in</strong>g compared to<br />

passive warm<strong>in</strong>g alone. This is most probably due to an <strong>in</strong>crease <strong>of</strong> sk<strong>in</strong> temperature<br />

<strong>and</strong> to a reduction <strong>in</strong> dem<strong>and</strong>s on shiver<strong>in</strong>g thermogenesis <strong>and</strong> also consistent with<br />

previous studies demonstrat<strong>in</strong>g that exogenous sk<strong>in</strong> heat<strong>in</strong>g attenuates shiver<strong>in</strong>g by<br />

an amount equivalent to the heat donated (34, 37, 64, 72).<br />

<br />

Cl<strong>in</strong>ical r<strong>and</strong>omized trials presented <strong>in</strong> this thesis <strong>in</strong>dicate beneficial<br />

thermophysiologic effects from active warm<strong>in</strong>g <strong>in</strong>tervention. However, s<strong>in</strong>ce body<br />

core temperature rema<strong>in</strong>s stable if shiver<strong>in</strong>g <strong>and</strong> adequate passive warm<strong>in</strong>g are<br />

<strong>in</strong>tact, these results were based on subjective judgements <strong>of</strong> <strong>in</strong>cluded patients.<br />

Cl<strong>in</strong>ical studies, that, besides body core temperature, also <strong>in</strong>vestigate other objective<br />

parameters <strong>and</strong> early predictors <strong>of</strong> cold <strong>in</strong>duced stress, such as oxygen consumption,<br />

are desirable.<br />

Although probably due to different degrees <strong>of</strong> severity <strong>of</strong> <strong>in</strong>juries <strong>of</strong> <strong>in</strong>cluded<br />

patients as well as different heat sources <strong>and</strong> different amounts <strong>of</strong> passive warm<strong>in</strong>g,<br />

<br />

33


esults from these <strong>and</strong> the few prior studies on active warm<strong>in</strong>g <strong>in</strong>tervention <strong>in</strong> a<br />

prehospital cl<strong>in</strong>ical sett<strong>in</strong>g (38, 39) are diverg<strong>in</strong>g. Therefore, <strong>and</strong> also because all<br />

studies are relatively small, more <strong>and</strong> larger studies are desirable.<br />

Future prehospital studies should also address more severely <strong>in</strong>jured patients<br />

suffer<strong>in</strong>g from moderate or severe <strong>hypothermia</strong> to evaluate effects <strong>of</strong> active<br />

warm<strong>in</strong>g <strong>in</strong>tervention regard<strong>in</strong>g requirements <strong>of</strong> hospital <strong>treatment</strong>, morbidity <strong>and</strong><br />

mortality.<br />

<br />

To have accurate measures to evaluate the thermal state <strong>of</strong> patients <strong>in</strong> the prehospital<br />

sett<strong>in</strong>g is vitally important. In the field, especially <strong>in</strong> harsh ambient conditions, this<br />

is <strong>of</strong>ten hard to achieve (14, 41). Thus, alternative measures to body core<br />

temperature, sk<strong>in</strong> temperature, <strong>and</strong> oxygen consumption, such as subjective<br />

judgement scales for assessment <strong>of</strong> the patient’s thermal state, might be <strong>of</strong><br />

considerable importance <strong>in</strong> such scenarios, both for an <strong>in</strong>itial assessment <strong>of</strong> the<br />

patient <strong>and</strong> for evaluation <strong>of</strong> the <strong>treatment</strong> provided. Such assessment <strong>of</strong> the thermal<br />

state <strong>of</strong> the patient might also be an early predictor <strong>of</strong> cold stress, <strong>and</strong> therefore may<br />

be used to evaluate the risk <strong>of</strong> develop<strong>in</strong>g <strong>hypothermia</strong>.<br />

It is important not to underestimate evaluation <strong>of</strong> the patient’s subjective<br />

experience <strong>of</strong> medical care. Improved thermal comfort might have the potential <strong>of</strong><br />

reliev<strong>in</strong>g psychological stress such as the experience <strong>of</strong> pa<strong>in</strong> <strong>and</strong> anxiety (9), which<br />

might comprise a considerable physiological stress to the patient by <strong>in</strong>creas<strong>in</strong>g<br />

respiratory <strong>and</strong> cardiovascular workload.<br />

<br />

In a laboratory sett<strong>in</strong>g the test-retest stability <strong>of</strong> median CDS rat<strong>in</strong>gs showed<br />

moderate to very good agreement. CDS rat<strong>in</strong>gs were generally somewhat higher<br />

dur<strong>in</strong>g test compared to retest, this difference might be a result <strong>of</strong> a decreased<br />

sensitivity to the cold exposure from previous experience, <strong>and</strong> therefore be<strong>in</strong>g less<br />

anxious, about exposure to the cold the second time, compared to the first time. This<br />

tendency to habituation from repeated exposure might be a weakness <strong>of</strong> reliability <strong>of</strong><br />

the CDS. However, there was only one week between test <strong>and</strong> retest <strong>and</strong> if a longer<br />

period would have passed between test <strong>and</strong> retest, reliability might have been even<br />

better.<br />

Criterion validity, when def<strong>in</strong>ed as the ability to detect changes <strong>in</strong> cold<br />

discomfort due to <strong>in</strong>creased cumulative cold stress from 30 m<strong>in</strong>utes <strong>in</strong> - 20°C w<strong>in</strong>d<br />

still conditions, was good. CDS rat<strong>in</strong>gs proved to be statistical significantly<br />

<strong>in</strong>creased for every 30 m<strong>in</strong>utes <strong>of</strong> cold exposure. However, dur<strong>in</strong>g the last 20<br />

34


m<strong>in</strong>utes it seemed that CDS rat<strong>in</strong>gs did not <strong>in</strong>crease as much as dur<strong>in</strong>g the first 40<br />

m<strong>in</strong>utes. This tendency to habituation dur<strong>in</strong>g exposure might be an <strong>in</strong>dication <strong>of</strong> a<br />

limitation to detect differences <strong>in</strong> cumulative cold stress when cold exposure is<br />

protracted.<br />

Bedford (91) <strong>and</strong> also Rholes (92) evaluated subjective judgement scales for<br />

assessment <strong>of</strong> the thermal environment regard<strong>in</strong>g construct validity, try<strong>in</strong>g to<br />

correlate subjective judgements <strong>of</strong> thermal comfort to objective measurements <strong>of</strong> the<br />

thermal environment. Different from that, the CDS is evaluated for criterion validity,<br />

def<strong>in</strong>ed as the ability to detect changes <strong>in</strong> cold discomfort due to changes <strong>in</strong><br />

cumulative cold stress, <strong>and</strong> therefore should be used to monitor changes <strong>in</strong> cold<br />

discomfort over time. The CDS can not be used to measure <strong>and</strong> rank the level <strong>of</strong><br />

cold stress the patients are exposed to <strong>and</strong> that is the reason, why it is not possible to<br />

make any comparisons between CDS rat<strong>in</strong>gs at different occasions.<br />

<br />

<br />

<br />

This study is the first to evaluate reliability <strong>and</strong> criterion validity <strong>of</strong> a subjective<br />

judgement scale for assessment <strong>of</strong> the thermal state <strong>of</strong> patients <strong>in</strong> an extreme cold<br />

environment. Further studies <strong>in</strong>clud<strong>in</strong>g larger study populations, to confirm these<br />

results would be desirable. Evaluat<strong>in</strong>g the CDS <strong>in</strong> different ambient conditions <strong>and</strong><br />

when us<strong>in</strong>g warm<strong>in</strong>g <strong>in</strong>tervention would also be desirable.<br />

<br />

35


Active external warm<strong>in</strong>g<br />

<br />

Active external warm<strong>in</strong>g is recommended for protection from further cool<strong>in</strong>g <strong>and</strong><br />

<strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong> <strong>in</strong> prehospital trauma care.<br />

In non-shiver<strong>in</strong>g hypothermic subjects, heat sources applied on the chest <strong>and</strong><br />

upper back were effective to attenuate afterdrop, when provid<strong>in</strong>g high heat content<br />

over a large surface area <strong>and</strong> effective to cont<strong>in</strong>ue <strong>in</strong>creas<strong>in</strong>g body core temperature<br />

when provid<strong>in</strong>g susta<strong>in</strong>ed high heat content.<br />

In cold stressed, shiver<strong>in</strong>g trauma patients, adequate passive warm<strong>in</strong>g was<br />

sufficient <strong>treatment</strong> to prevent afterdrop <strong>and</strong> slowly <strong>in</strong>crease body core temperature.<br />

Adequate passive warm<strong>in</strong>g also seemed sufficient to reduce cold discomfort, even<br />

though additional active warm<strong>in</strong>g was even more efficient. When passive warm<strong>in</strong>g<br />

was <strong>in</strong>adequate, additional active warm<strong>in</strong>g was required to reduce cold discomfort.<br />

Prehospital monitor<strong>in</strong>g<br />

In a prehospital rescue scenario subjective judgement scales might be a valuable<br />

measure for assessment <strong>of</strong> the thermal state <strong>of</strong> conscious patients.<br />

The Cold Discomfort Scale, a subjective judgement scale for assessment <strong>of</strong> the<br />

thermal state <strong>of</strong> patients <strong>in</strong> a cold environment seemed to be reliable, regard<strong>in</strong>g testretest<br />

stability, <strong>and</strong> valid, regard<strong>in</strong>g ability to detect change <strong>in</strong> cumulative cold<br />

stress.<br />

<br />

36


Dur<strong>in</strong>g these years <strong>of</strong> research I have met <strong>and</strong> collaborated with so many great<br />

people. All <strong>of</strong> you have, <strong>in</strong> one way or another, contributed to this thesis <strong>and</strong> I will<br />

always be grateful for all your help. I will now, <strong>in</strong> Swedish, mention some <strong>of</strong> them,<br />

who have been especially important along the way.<br />

Jag vill börja med att rikta mitt största tack till Otto Henriksson, m<strong>in</strong> gode vän<br />

och kollega som jag jobbat tillsammans med under hela denna tid. Vi har upplevt<br />

mycket, alltifrån fjällräddn<strong>in</strong>gsövn<strong>in</strong>gar, forskn<strong>in</strong>gsvistelser i W<strong>in</strong>nipeg och Lund,<br />

otaliga resor till ambulansstationer och skidanläggn<strong>in</strong>gar samt v<strong>in</strong>terövn<strong>in</strong>gar i<br />

Arvidsjaur och det har varit ett sant och stort nöje hela tiden.<br />

Tack Otto!<br />

Jag fortsätter där det hela började, nämligen i L<strong>in</strong>köp<strong>in</strong>g, där jag och Otto<br />

tillbr<strong>in</strong>gade en stor del av vår studietid på Katastr<strong>of</strong>medic<strong>in</strong>skt centrum (KMC) och<br />

där vi lärde känna många trevliga och duktiga personer. Jag särskilt vill nämna några<br />

som har blivit både mentorer och goda vänner.<br />

Thomas Axelsson, Anders Sillén och Fawzi al-Ayoubi, äldrekursare, som<br />

<strong>in</strong>troducerade mig och Otto i katastr<strong>of</strong>medic<strong>in</strong>en och forskn<strong>in</strong>gens värld. Ingrid<br />

Björklund, lärare i katastr<strong>of</strong>medic<strong>in</strong>, numera pensionär, som tog h<strong>and</strong> om både mig<br />

och Otto som nykoml<strong>in</strong>gar på KMC och som har gett oss många goda råd på vägen.<br />

N<strong>in</strong>a Widfeldt, första h<strong>and</strong>ledaren, som på ett entusiastiskt och okomplicerat sätt<br />

visade på att möjligheterna alltid är större än svårigheterna. Till sist men def<strong>in</strong>itivt<br />

<strong>in</strong>te m<strong>in</strong>st i raden av betydelsefulla personer från L<strong>in</strong>köp<strong>in</strong>g; ToreVikström,<br />

huvudh<strong>and</strong>ledare under denna tid, chef på KMC, vars engagemang och stöd var den<br />

avgör<strong>and</strong>e anledn<strong>in</strong>gen till att jag och Otto påbörjade vår forskn<strong>in</strong>g.<br />

Om man sedan fortsätter ut i den prehospitala verkligheten så skulle jag vilja<br />

börja med att nämna Johnnie Bengtsson, som öppnade dörrarna till en organisation,<br />

Fjällräddn<strong>in</strong>gen, som arbetar med sjukvård i dess allra mest prehospitala form, och<br />

som har blivit en god vän under dessa år. Inom Fjällräddn<strong>in</strong>gen vill jag också tacka<br />

sjukårds<strong>in</strong>struktörerna Staffan Isberg och Callis Blom, snö- och lav<strong>in</strong><strong>in</strong>struktörerna<br />

Kurt Övre och Rickard Svedjesten samt polischeferna Bengt-Göran Wiik och<br />

Bengt Engwall för gott samarbete.<br />

<br />

37


I en prehospital verklighet arbetar även i allra högsta grad skidpatrullerna på<br />

Hamrafjället, i Hemavan och på Idre Fjäll samt ambulansbesättn<strong>in</strong>garna i<br />

Funäsdalen, Hede, Vemdalen, Svenstavik, Åre, Järpen, Krokom, Strömsund,<br />

Backe, Gäddede, Skellefteå samt på ambulanshelikoptern i Östersund som alla<br />

har gjort ett ovärderligt arbete i våra kl<strong>in</strong>iska studier. Jag vill här framförallt tacka<br />

Marie Nordgren, ansvarig för sjukvårdssutbildn<strong>in</strong>g <strong>in</strong>om SLAO (Svenska<br />

Liftanläggn<strong>in</strong>gars Organisation), Jocke Nyberg, sjukvårdsansvarig i skidpatrullen<br />

på Hamrafjället som tragiskt omkom i en lav<strong>in</strong>olycka denna v<strong>in</strong>ter, Johan af<br />

Ekenstam, sjukvårdsansvarig i skidpatrullen i Hemavan, Jonny Persson,<br />

sjukvårdsansvarig i skidpatrullen på Idre Fjäll samt Peter Mattsson, Britt-Marie<br />

Stolth, Anton Dahlmark, Christer Eriksson, Rol<strong>and</strong> Olsson och Erik<br />

S<strong>and</strong>ström, samtliga vid ambulanssjukvården i Jämtl<strong>and</strong> och Härjedalen och<br />

Magnus Strömqvist vid ambulanssjukvården i Västerbotten.<br />

Praktiska aspekter på skydd mot kyla har jag haft det stora nöjet att få lära mig<br />

mer om av m<strong>in</strong> vän och kollega vid Försvarsmaktens V<strong>in</strong>terenhet i Arvidsjaur, Tony<br />

Gustafsson.<br />

In want to thank Gordon Giesbrecht, for the great collaboration over these<br />

years, especially for the two month stay <strong>in</strong> W<strong>in</strong>nipeg. It was a pleasure work<strong>in</strong>g <strong>in</strong><br />

the Cold Lab <strong>and</strong> I learned a lot about research methodology.<br />

I Norge har Gunnar Vangberg och Haakon Nordseth varit viktiga<br />

samarbetspartners.<br />

Jag vill tacka Ingvar Holmér, Kalev Kuklane, Chuansi Gao och Fam<strong>in</strong>g<br />

Wang vid Laboratoriet för termisk miljö i Lund för trevligt och mycket lärorikt<br />

samarbete. Jag vill också rikta ett speciellt tack till Kalev som har lagt mängder med<br />

tid, energi och tålamod på att ordna bästa tänkbara förutsättn<strong>in</strong>gar i laboratoriet.<br />

Jag har under hela denna tid kännt ett stort stöd från m<strong>in</strong> ord<strong>in</strong>arie arbetsplats,<br />

Hall<strong>and</strong>s sjukhus, Halmstad, där m<strong>in</strong>a kollegor med <strong>in</strong>tresse och engagemang<br />

uppmuntrat mig till forskn<strong>in</strong>g och jag vill i detta sammanhang framför allt nämna<br />

m<strong>in</strong> chef på Medic<strong>in</strong>kl<strong>in</strong>iken Berne Eriksson, schemaläggare Anders Bengtsson<br />

och m<strong>in</strong> kl<strong>in</strong>iske h<strong>and</strong>ledare David Löfgren.<br />

Jag har fått ovärderlig hjälp av Ulf Strömberg, Anders Holmén och Amir Baigi<br />

FoUU-enheten, Hall<strong>and</strong>s sjukhus med det komplexa och <strong>in</strong>tressanta ämnet statistik.<br />

38


<strong>Umeå</strong> <strong>universitet</strong> har varit basen för m<strong>in</strong> forskn<strong>in</strong>g under doktor<strong>and</strong>studierna<br />

även om jag <strong>in</strong>te fysiskt befunnit mig där så <strong>of</strong>ta. Jag vill utöver forskargruppen på<br />

Kunskapscentrum för katastr<strong>of</strong>medic<strong>in</strong> speciellt tacka ett antal personer som jag <strong>in</strong>te<br />

hade klarat mig utan under denna tid.<br />

Anna Lundgren, som alltid på ett både engagerat och vänligt sätt har hjälpt till att<br />

lösa alla tänkbara problem av adm<strong>in</strong>istrativ karaktär.<br />

Peter Naredi, h<strong>and</strong>ledare under de senaste två åren, som med stort engagemang har<br />

tagit sig an den uppgiften och som med s<strong>in</strong> stora kunskap och erfarenhet har lämnat<br />

ett mycket värdefullt bidrag till arbetet med såväl artiklar som denna avh<strong>and</strong>l<strong>in</strong>g.<br />

Ulf Björnstig, huvudh<strong>and</strong>ledare, som med s<strong>in</strong> stora kunskap och erfarenhet,<br />

komb<strong>in</strong>erat med ett vänligt lugn och en aldrig s<strong>in</strong><strong>and</strong>e entusiasm har varit en sann<br />

<strong>in</strong>spiratör under hela denna tid. Om Tore var en avgör<strong>and</strong>e anledn<strong>in</strong>g till att jag och<br />

Otto började med vår forskn<strong>in</strong>g så har Ulf varit en avgör<strong>and</strong>e anledn<strong>in</strong>g till att vi<br />

har fortsatt och kommer att fortsätta med forskn<strong>in</strong>g.<br />

Jag hade tänkt att jag i detta avsnitt skulle hålla mig <strong>in</strong>om pr<strong>of</strong>essionen, men det<br />

går <strong>in</strong>te.<br />

Jag vill avsluta med dem som står mig allra närmast, de som betyder allra mest,<br />

de som utgör den allra största källan till <strong>in</strong>spiration, de som funnits med såväl <strong>in</strong>nan,<br />

som under tiden och framförallt på slutet av detta arbete, m<strong>in</strong>a vänner och allra<br />

viktigast, m<strong>in</strong> familj.<br />

<br />

39


This work was supported by the National Board <strong>of</strong> Health <strong>and</strong> Welfare, Emergency<br />

Preparedness Unit.<br />

40


1: Volunteer subject wear<strong>in</strong>g light cloth<strong>in</strong>g <strong>in</strong> - 20°C (Study IV)<br />

<br />

41


42<br />

3: Chemical heat pad (study I)<br />

4: Hot-water bag (study I)<br />

5: Charcoal heater (study I)


6: The author <strong>in</strong> a prehospital sett<strong>in</strong>g<br />

43


1. Arthurs Z, Cuadrado D, Beekley A, Grathwohl K, Perk<strong>in</strong>s J, Rush R, et al. The<br />

impact <strong>of</strong> <strong>hypothermia</strong> on trauma care at the 31st combat support hospital. American<br />

journal <strong>of</strong> surgery. 2006;191(5):610-4.<br />

2. Irel<strong>and</strong> S, Endacott R, Cameron P, Fitzgerald M, Paul E. The <strong>in</strong>cidence <strong>and</strong><br />

significance <strong>of</strong> accidental <strong>hypothermia</strong> <strong>in</strong> major trauma--a prospective observational<br />

study. Resuscitation. 2011;82(3):300-6.<br />

3. Jurkovich GJ, Greiser WB, Luterman A, Curreri PW. Hypothermia <strong>in</strong> trauma<br />

victims: an om<strong>in</strong>ous predictor <strong>of</strong> survival. The Journal <strong>of</strong> trauma. 1987;27(9):1019-<br />

24.<br />

4. Mart<strong>in</strong> RS, Kilgo PD, Miller PR, Hoth JJ, Meredith JW, Chang MC. Injuryassociated<br />

<strong>hypothermia</strong>: an analysis <strong>of</strong> the 2004 National Trauma Data Bank. Shock.<br />

2005;24(2):114-8.<br />

5. Shafi S, Elliott AC, Gentilello L. Is <strong>hypothermia</strong> simply a marker <strong>of</strong> shock <strong>and</strong><br />

<strong>in</strong>jury severity or an <strong>in</strong>dependent risk factor for mortality <strong>in</strong> trauma patients?<br />

Analysis <strong>of</strong> a large national trauma registry. The Journal <strong>of</strong> trauma.<br />

2005;59(5):1081-5.<br />

6. Waibel BH, Schlitzkus LL, Newell MA, Durham CA, Sagraves SG, Rotondo MF.<br />

Impact <strong>of</strong> <strong>hypothermia</strong> (below 36 degrees C) <strong>in</strong> the rural trauma patient. Journal <strong>of</strong><br />

the American College <strong>of</strong> Surgeons. 2009;209(5):580-8.<br />

7. Wang HE, Callaway CW, Peitzman AB, Tisherman SA. Admission <strong>hypothermia</strong><br />

<strong>and</strong> outcome after major trauma. Critical care medic<strong>in</strong>e. 2005;33(6):1296-301.<br />

8. Aitken LM, Hendrikz JK, Dulhunty JM, Rudd MJ. Hypothermia <strong>and</strong> associated<br />

outcomes <strong>in</strong> seriously <strong>in</strong>jured trauma patients <strong>in</strong> a predom<strong>in</strong>antly sub-tropical<br />

climate. Resuscitation. 2009;80(2):217-23.<br />

9. Rob<strong>in</strong>son S, Benton G. Warmed blankets: an <strong>in</strong>tervention to promote comfort for<br />

elderly hospitalized patients. Geriatric nurs<strong>in</strong>g. 2002;23(6):320-3.<br />

10. Swedish Meteorological <strong>and</strong> Hydrological Institute. Klimatdata.<br />

http://www.smhi.se/klimatdata/meteorologi/temperatur; 2012 [2012-04-01].<br />

11. Socialstyrelsen. Register <strong>of</strong> causes <strong>of</strong> death.<br />

http://www.socialstyrelsen.se/register/dodsorsaksregistret; 2011 [2012-04-01].<br />

44


12. Albi<strong>in</strong> N, Eriksson A. Fatal accidental <strong>hypothermia</strong> <strong>and</strong> alcohol. Alcohol <strong>and</strong><br />

alcoholism. 1984;19(1):13-22.<br />

13. Giesbrecht GG. Hypothermia, frostbite, <strong>and</strong> other cold <strong>in</strong>juries : prevention,<br />

survival, rescue <strong>and</strong> <strong>treatment</strong>. Seattle, WA: Mounta<strong>in</strong>eers Books; 2006.<br />

14. Socialstyrelsen. Hypothermia, cold <strong>in</strong>juries <strong>and</strong> cold water near drown<strong>in</strong>g.<br />

Stockholm: The National Board <strong>of</strong> Health <strong>and</strong> Welfare (Socialstyrelsen); 2002.<br />

15. Danzl DF. Accidental <strong>hypothermia</strong>. In: Auerbach PS, editor. Wilderness medic<strong>in</strong>e.<br />

Philadelphia: Mosby Elsevier; 2007. p. 125-59.<br />

16. Mallet ML. Pathophysiology <strong>of</strong> accidental <strong>hypothermia</strong>. QJM : monthly journal <strong>of</strong><br />

the Association <strong>of</strong> Physicians. 2002;95(12):775-85.<br />

17. Beilman GJ, Blondet JJ, Nelson TR, Nathens AB, Moore FA, Rhee P, et al. Early<br />

<strong>hypothermia</strong> <strong>in</strong> severely <strong>in</strong>jured trauma patients is a significant risk factor for<br />

multiple organ dysfunction syndrome but not mortality. Annals <strong>of</strong> surgery.<br />

2009;249(5):845-50.<br />

18. Helm M, Lampl L, Hauke J, Bock KH. [Accidental <strong>hypothermia</strong> <strong>in</strong> trauma patients.<br />

Is it relevant to precl<strong>in</strong>ical emergency <strong>treatment</strong>?]. Der Anaesthesist.<br />

1995;44(2):101-7. Akzidentelle Hypothermie bei Traumapatienten. Von Relevanz<br />

bei der prakl<strong>in</strong>ischen Notfallversorgung?<br />

19. Ste<strong>in</strong>emann S, Shackford SR, Davis JW. Implications <strong>of</strong> admission <strong>hypothermia</strong> <strong>in</strong><br />

trauma patients. The Journal <strong>of</strong> trauma. 1990;30(2):200-2.<br />

20. Husum H, Olsen T, Murad M, Heng YV, Wisborg T, Gilbert M. Prevent<strong>in</strong>g post<strong>in</strong>jury<br />

<strong>hypothermia</strong> dur<strong>in</strong>g prolonged prehospital evacuation. Prehospital <strong>and</strong><br />

disaster medic<strong>in</strong>e. 2002;17(1):23-6.<br />

21. Langhelle A, Lockey D, Harris T, Davies G. Body temperature <strong>of</strong> trauma patients on<br />

admission to hospital: a comparison <strong>of</strong> anaesthetised <strong>and</strong> non-anaesthetised patients.<br />

Emergency medic<strong>in</strong>e journal : EMJ. 2012;29(3):239-42.<br />

22. Seekamp A, Ziegler M, Van Griensven M, Grotz M, Regel G. The role <strong>of</strong><br />

<strong>hypothermia</strong> <strong>in</strong> trauma patients. European journal <strong>of</strong> emergency medic<strong>in</strong>e : <strong>of</strong>ficial<br />

journal <strong>of</strong> the European Society for Emergency Medic<strong>in</strong>e. 1995;2(1):28-32.<br />

23. Hildebr<strong>and</strong> F, Giannoudis PV, van Griensven M, Chawda M, Pape HC.<br />

Pathophysiologic changes <strong>and</strong> effects <strong>of</strong> <strong>hypothermia</strong> on outcome <strong>in</strong> elective surgery<br />

<strong>and</strong> trauma patients. American journal <strong>of</strong> surgery. 2004;187(3):363-71.<br />

45


24. Tisherman SA. Hypothermia <strong>and</strong> <strong>in</strong>jury. Current op<strong>in</strong>ion <strong>in</strong> critical care.<br />

2004;10(6):512-9.<br />

25. Tsuei BJ, Kearney PA. Hypothermia <strong>in</strong> the trauma patient. Injury. 2004;35(1):7-15.<br />

26. Johnson CF. Oxford h<strong>and</strong>book <strong>of</strong> expedition <strong>and</strong> wilderness medic<strong>in</strong>e. Oxford:<br />

Oxford University Press; 2008.<br />

27. National Association <strong>of</strong> Emergency Medical Technicians (U.S.). Pre-Hospital<br />

Trauma Life Support Committee., American College <strong>of</strong> Surgeons. Committee on<br />

Trauma. PHTLS : Prehospital Trauma Life Support. 7th ed. St. Louis, Mo.: Mosby<br />

Jems/Elsevier; 2011. 618 p. p.<br />

28. Durrer B, Brugger H, Syme D, International Commission for Mounta<strong>in</strong> Emergency<br />

M. The medical on-site <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong>: ICAR-MEDCOM<br />

recommendation. High altitude medic<strong>in</strong>e & biology. 2003;4(1):99-103.<br />

29. Giesbrecht GG. Prehospital <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong>. Wilderness & environmental<br />

medic<strong>in</strong>e. 2001;12(1):24-31.<br />

30. Mills WJ. Field care <strong>of</strong> the hypothermic patient. International journal <strong>of</strong> sports<br />

medic<strong>in</strong>e. 1992;13 Suppl 1:S199-202.<br />

31. Peng RY, Bongard FS. Hypothermia <strong>in</strong> trauma patients. Journal <strong>of</strong> the American<br />

College <strong>of</strong> Surgeons. 1999;188(6):685-96.<br />

32. Department <strong>of</strong> Health <strong>and</strong> Social Services;Alaska So. State <strong>of</strong> Alaska, Cold <strong>in</strong>juries<br />

gudiel<strong>in</strong>es.<br />

http://www.hss.state.ak.us/dph/emergency/ems/assets/Downloads/AKColdInj2005.p<br />

df; 2005 [2012-01-04].<br />

33. Allen PB, Salyer SW, Dubick MA, Holcomb JB, Blackbourne LH. Prevent<strong>in</strong>g<br />

<strong>hypothermia</strong>: comparison <strong>of</strong> current devices used by the US Army <strong>in</strong> an <strong>in</strong> vitro<br />

warmed fluid model. The Journal <strong>of</strong> trauma. 2010;69 Suppl 1:S154-61.<br />

34. Giesbrecht GG, Bristow GK, U<strong>in</strong> A, Ready AE, Jones RA. Effectiveness <strong>of</strong> three<br />

field <strong>treatment</strong>s for <strong>in</strong>duced mild (33.0 degrees C) <strong>hypothermia</strong>. Journal <strong>of</strong> applied<br />

physiology (Bethesda, Md : 1985). 1987;63(6):2375-9.<br />

35. Greif R, Rajek A, Lac<strong>in</strong>y S, Bastanmehr H, Sessler DI. Resistive heat<strong>in</strong>g is more<br />

effective than metallic-foil <strong>in</strong>sulation <strong>in</strong> an experimental model <strong>of</strong> accidental<br />

<strong>hypothermia</strong>: A r<strong>and</strong>omized controlled trial. Annals <strong>of</strong> emergency medic<strong>in</strong>e.<br />

2000;35(4):337-45.<br />

46


36. Hultzer MV, Xu X, Marrao C, Bristow G, Choch<strong>in</strong>ov A, Giesbrecht GG. Prehospital<br />

torso-warm<strong>in</strong>g modalities for severe <strong>hypothermia</strong>: a comparative study<br />

us<strong>in</strong>g a human model. Cjem. 2005;7(6):378-86.<br />

37. Sterba JA. Efficacy <strong>and</strong> safety <strong>of</strong> prehospital rewarm<strong>in</strong>g techniques to treat<br />

accidental <strong>hypothermia</strong>. Annals <strong>of</strong> emergency medic<strong>in</strong>e. 1991;20(8):896-901.<br />

38. Kober A, Scheck T, Fulesdi B, Lieba F, Vlach W, Friedman A, et al. Effectiveness<br />

<strong>of</strong> resistive heat<strong>in</strong>g compared with passive warm<strong>in</strong>g <strong>in</strong> treat<strong>in</strong>g <strong>hypothermia</strong><br />

associated with m<strong>in</strong>or trauma: a r<strong>and</strong>omized trial. Mayo Cl<strong>in</strong>ic proceed<strong>in</strong>gs Mayo<br />

Cl<strong>in</strong>ic. 2001;76(4):369-75.<br />

39. Watts DD, Roche M, Tricarico R, Poole F, Brown JJ, Jr., Colson GB, et al. The<br />

utility <strong>of</strong> traditional prehospital <strong>in</strong>terventions <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g thermostasis.<br />

Prehospital emergency care : <strong>of</strong>ficial journal <strong>of</strong> the National Association <strong>of</strong> EMS<br />

Physicians <strong>and</strong> the National Association <strong>of</strong> State EMS Directors. 1999;3(2):115-22.<br />

40. Berger RL. Nazi science--the Dachau <strong>hypothermia</strong> experiments. The New Engl<strong>and</strong><br />

journal <strong>of</strong> medic<strong>in</strong>e. 1990;322(20):1435-40.<br />

41. Crawshaw LI. Thermoregulation. In: Auerbach PS, editor. Wilderness medic<strong>in</strong>e.<br />

Philadelphia: Mosby Elsevier; 2007. p. 110-24.<br />

42. Parsons KC. Human thermal physiology <strong>and</strong> thermoregulation. In: Parsons KC,<br />

editor. Human thermal environments : the effects <strong>of</strong> hot, moderate <strong>and</strong> cold<br />

environments on human health, comfort <strong>and</strong> performance. 2nd ed. ed. London:<br />

Taylor & Francis; 2003. p. 31-48.<br />

43. Webb P. The physiology <strong>of</strong> heat regulation. The American journal <strong>of</strong> physiology.<br />

1995;268(4 Pt 2):R838-50.<br />

44. Holmer I. <strong>Protection</strong> aga<strong>in</strong>st cold. In: Shishoo R, editor. Textiles <strong>in</strong> sport.<br />

Cambridge, Engl<strong>and</strong>: Woodhead Pub; 2005. p. 262-86.<br />

45. Parsons KC. Human thermal environments. In: Parsons KC, editor. Human thermal<br />

environments : the effects <strong>of</strong> hot, moderate <strong>and</strong> cold environments on human health,<br />

comfort <strong>and</strong> performance. 2nd ed. ed. London: Taylor & Francis; 2003. p. 1-30.<br />

46. Eyolfson DA, Tikuisis P, Xu X, Weseen G, Giesbrecht GG. Measurement <strong>and</strong><br />

prediction <strong>of</strong> peak shiver<strong>in</strong>g <strong>in</strong>tensity <strong>in</strong> humans. European journal <strong>of</strong> applied<br />

physiology. 2001;84(1-2):100-6.<br />

47


47. Flouris AD. Functional architecture <strong>of</strong> behavioural thermoregulation. European<br />

journal <strong>of</strong> applied physiology. 2011;111(1):1-8.<br />

48. Kuno S OH, Nakahara N. A two-dimensional model express<strong>in</strong>g thermal sensation <strong>in</strong><br />

transitional conditions. ASHRAE Transactions. 1987(93):396-406.<br />

49. Flouris AD CS. Human conscious response to thermal <strong>in</strong>put is adjusted to changes<br />

<strong>in</strong> mean body temperature. British journal <strong>of</strong> sports medic<strong>in</strong>e. 2008(43):199-203.<br />

50. Attia M EP. Thermal pleasantness sensation: an <strong>in</strong>dicator <strong>of</strong> thermal stress.<br />

European journal <strong>of</strong> applied physiology. 1982(50):55-70.<br />

51. Attia M EP, Hildebr<strong>and</strong>t G. Quantification <strong>of</strong> thermal comfort parameters us<strong>in</strong>g a<br />

behavioural <strong>in</strong>dicator. Physiol Behav. 1980(24):901-9.<br />

52. H H. Thermoreception <strong>and</strong> Temperature Regulation. London, UK: Academic Press;<br />

1981.<br />

53. Parsons KC. Psychological responses. In: Parsons KC, editor. Human thermal<br />

environments : the effects <strong>of</strong> hot, moderate <strong>and</strong> cold environments on human health,<br />

comfort <strong>and</strong> performance. 2nd ed. ed. London: Taylor & Francis; 2003. p. 49-70.<br />

54. Aslam AF, Aslam AK, Vasavada BC, Khan IA. Hypothermia: evaluation,<br />

electrocardiographic manifestations, <strong>and</strong> management. The American journal <strong>of</strong><br />

medic<strong>in</strong>e. 2006;119(4):297-301.<br />

55. Vassallo SU DK, H<strong>of</strong>fman RS, Slater W, Goldfrank LR. A prospective evaluation<br />

<strong>of</strong> the electrographic manifestations <strong>of</strong> <strong>hypothermia</strong>. Academic emergency<br />

medic<strong>in</strong>e: <strong>of</strong>ficial journal <strong>of</strong> the Society for Academic Emergency Medic<strong>in</strong>e.<br />

1999(6):1121-6.<br />

56. Shaikh N MS, Gowda RM, Kahn IA. Electrographic features <strong>of</strong> <strong>hypothermia</strong><br />

<strong>hypothermia</strong>. Cardiology. 2005(103):118-9.<br />

57. Oksa J. Neuromuscular performance limitations <strong>in</strong> cold. International journal <strong>of</strong><br />

circumpolar health. 2002;61(2):154-62.<br />

58. R<strong>in</strong>tamaki H. Performance <strong>and</strong> energy expenditure <strong>in</strong> cold environments. Alaska<br />

medic<strong>in</strong>e. 2007;49(2 Suppl):245-6.<br />

59. Johnston TD, Chen Y, Reed RL, 2nd. Functional equivalence <strong>of</strong> <strong>hypothermia</strong> to<br />

specific clott<strong>in</strong>g factor deficiencies. The Journal <strong>of</strong> trauma. 1994;37(3):413-7.<br />

48


60. Wolberg AS, Meng ZH, Monroe DM, 3rd, H<strong>of</strong>fman M. A systematic evaluation <strong>of</strong><br />

the effect <strong>of</strong> temperature on coagulation enzyme activity <strong>and</strong> platelet function. The<br />

Journal <strong>of</strong> trauma. 2004;56(6):1221-8.<br />

61. Rajagopalan S, Mascha E, Na J, Sessler DI. The effects <strong>of</strong> mild perioperative<br />

<strong>hypothermia</strong> on blood loss <strong>and</strong> transfusion requirement. Anesthesiology.<br />

2008;108(1):71-7.<br />

62. Schmied H, Kurz A, Sessler DI, Kozek S, Reiter A. Mild <strong>hypothermia</strong> <strong>in</strong>creases<br />

blood loss <strong>and</strong> transfusion requirements dur<strong>in</strong>g total hip arthroplasty. Lancet.<br />

1996;347(8997):289-92.<br />

63. W<strong>in</strong>kler M, Akca O, Birkenberg B, Hetz H, Scheck T, Arkilic CF, et al. Aggressive<br />

warm<strong>in</strong>g reduces blood loss dur<strong>in</strong>g hip arthroplasty. Anesthesia <strong>and</strong> analgesia.<br />

2000;91(4):978-84.<br />

64. Giesbrecht GG, Sessler DI, Mekjavic IB, Schroeder M, Bristow GK. Treatment <strong>of</strong><br />

mild immersion <strong>hypothermia</strong> by direct body-to-body contact. Journal <strong>of</strong> applied<br />

physiology (Bethesda, Md : 1985). 1994;76(6):2373-9.<br />

65. Giesbrecht GG, Goheen MS, Johnston CE, Kenny GP, Bristow GK, Hayward JS.<br />

Inhibition <strong>of</strong> shiver<strong>in</strong>g <strong>in</strong>creases core temperature afterdrop <strong>and</strong> attenuates<br />

rewarm<strong>in</strong>g <strong>in</strong> hypothermic humans. Journal <strong>of</strong> applied physiology (Bethesda, Md :<br />

1985). 1997;83(5):1630-4.<br />

66. Goheen MS, Ducharme MB, Kenny GP, Johnston CE, Frim J, Bristow GK, et al.<br />

Efficacy <strong>of</strong> forced-air <strong>and</strong> <strong>in</strong>halation rewarm<strong>in</strong>g by us<strong>in</strong>g a human model for severe<br />

<strong>hypothermia</strong>. Journal <strong>of</strong> applied physiology (Bethesda, Md : 1985).<br />

1997;83(5):1635-40.<br />

67. Hamilton RS PB. The diagnosis <strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong> by mounta<strong>in</strong> rescue<br />

teams: a survey. Wilderness Environ Med. 1996(7):28-37.<br />

68. Giesbrecht GG, Bristow GK. The convective afterdrop component dur<strong>in</strong>g<br />

hypothermic exercise decreases with delayed exercise onset. Aviation, space, <strong>and</strong><br />

environmental medic<strong>in</strong>e. 1998;69(1):17-22.<br />

69. TG L. Hypothermia: Killer <strong>of</strong> the Unprepared. Portl<strong>and</strong>: Mazamas; 1975.<br />

70. Mills W J HP, Schoene RB, Roach R, Mills W I. Treatment <strong>of</strong> Hypothermia <strong>in</strong> the<br />

Field. In: Sutton JR HC, Coates G, editor. Hypoxia <strong>and</strong> Cold. New York: Praeger;<br />

1987. p. 271-85.<br />

49


71. Collis ML. Treatment <strong>of</strong> the Hypothermic Subject. In: Greene B, editor. Cold Water<br />

Symposium; Toronto: Life Sav<strong>in</strong>g Society Canada; 1976. p. 31-2.<br />

72. Harnett RM, O'Brien EM, Sias FR, Pruitt JR. Initial <strong>treatment</strong> <strong>of</strong> pr<strong>of</strong>ound<br />

accidental <strong>hypothermia</strong>. Aviation, space, <strong>and</strong> environmental medic<strong>in</strong>e.<br />

1980;51(7):680-7.<br />

73. Collis ML, Ste<strong>in</strong>man AM, Chaney RD. Accidental <strong>hypothermia</strong>: an experimental<br />

study <strong>of</strong> practical rewarm<strong>in</strong>g methods. Aviation, space, <strong>and</strong> environmental<br />

medic<strong>in</strong>e. 1977;48(7):625-32.<br />

74. Danzl DF, Pozos RS, Auerbach PS, Glazer S, Goetz W, Johnson E, et al.<br />

Multicenter <strong>hypothermia</strong> survey. Annals <strong>of</strong> emergency medic<strong>in</strong>e. 1987;16(9):1042-<br />

55.<br />

75. Hayward JS, Ste<strong>in</strong>man AM. Accidental <strong>hypothermia</strong>: an experimental study <strong>of</strong><br />

<strong>in</strong>halation rewarm<strong>in</strong>g. Aviation, space, <strong>and</strong> environmental medic<strong>in</strong>e.<br />

1975;46(10):1236-40.<br />

76. Miller JW, Danzl DF, Thomas DM. Urban accidental <strong>hypothermia</strong>: 135 cases.<br />

Annals <strong>of</strong> emergency medic<strong>in</strong>e. 1980;9(9):456-61.<br />

77. Mekjavic IB, Eiken O. Inhalation rewarm<strong>in</strong>g from <strong>hypothermia</strong>: an evaluation <strong>in</strong> -20<br />

degrees C simulated field conditions. Aviation, space, <strong>and</strong> environmental medic<strong>in</strong>e.<br />

1995;66(5):424-9.<br />

78. Romet TT, Hosk<strong>in</strong> RW. Temperature <strong>and</strong> metabolic responses to <strong>in</strong>halation <strong>and</strong> bath<br />

rewarm<strong>in</strong>g protocols. Aviation, space, <strong>and</strong> environmental medic<strong>in</strong>e. 1988;59(7):630-<br />

4.<br />

79. Br<strong>and</strong>on Bravo LJ. Thermodynamic modell<strong>in</strong>g <strong>of</strong> <strong>hypothermia</strong>. European journal <strong>of</strong><br />

emergency medic<strong>in</strong>e : <strong>of</strong>ficial journal <strong>of</strong> the European Society for Emergency<br />

Medic<strong>in</strong>e. 1999;6(2):123-7.<br />

80. Silbergleit R, Satz W, Lee DC, McNamara RM. Hypothermia from realistic fluid<br />

resuscitation <strong>in</strong> a model <strong>of</strong> hemorrhagic shock. Annals <strong>of</strong> emergency medic<strong>in</strong>e.<br />

1998;31(3):339-43.<br />

81. Mekjavic IB, Rempel ME. Determ<strong>in</strong>ation <strong>of</strong> esophageal probe <strong>in</strong>sertion length<br />

based on st<strong>and</strong><strong>in</strong>g <strong>and</strong> sitt<strong>in</strong>g height. Journal <strong>of</strong> applied physiology (Bethesda, Md :<br />

1985). 1990;69(1):376-9.<br />

50


82. Cooper KE, Kenyon JR. A comparison <strong>of</strong> temperatures measured <strong>in</strong> the rectum,<br />

oesophagus, <strong>and</strong> on the surface <strong>of</strong> the aorta dur<strong>in</strong>g <strong>hypothermia</strong> <strong>in</strong> man. The British<br />

journal <strong>of</strong> surgery. 1957;44(188):616-9.<br />

83. Hayward JS, Eckerson JD, Kemna D. Thermal <strong>and</strong> cardiovascular changes dur<strong>in</strong>g<br />

three methods <strong>of</strong> resuscitation from mild <strong>hypothermia</strong>. Resuscitation. 1984;11(1-<br />

2):21-33.<br />

84. Walpoth BH, Galdikas J, Leupi F, Muehlemann W, Schlaepfer P, Althaus U.<br />

Assessment <strong>of</strong> <strong>hypothermia</strong> with a new "tympanic" thermometer. Journal <strong>of</strong> cl<strong>in</strong>ical<br />

monitor<strong>in</strong>g. 1994;10(2):91-6.<br />

85. Webb P. Heat storage <strong>and</strong> body temperature dur<strong>in</strong>g cool<strong>in</strong>g <strong>and</strong> rewarm<strong>in</strong>g.<br />

European journal <strong>of</strong> applied physiology <strong>and</strong> occupational physiology.<br />

1993;66(1):18-24.<br />

86. Duberg T LC, Holmberg H. Ear thermometer not an adequate alternative to rectal<br />

thermometer. A comparativestudy shows big temperature discrepancies <strong>of</strong> ear<br />

temperature measurements. Lakartidn<strong>in</strong>gen. 2007;May 9-15(104(19)):1479-82.<br />

87. Ducharme MB, Frim J, Bourdon L, Giesbrecht GG. Evaluation <strong>of</strong> <strong>in</strong>frared tympanic<br />

thermometers dur<strong>in</strong>g normothermia <strong>and</strong> <strong>hypothermia</strong> <strong>in</strong> humans. Annals <strong>of</strong> the New<br />

York Academy <strong>of</strong> Sciences. 1997;813:225-9.<br />

88. Edl<strong>in</strong>g L CR, Magnuson A, Holmberg H. . Läkartidn<strong>in</strong>gen. 2009 ;:. Rectal<br />

thermometers still best for body temperature measurement. Comparative study <strong>of</strong><br />

tympanic <strong>and</strong> oral thermometers. Lakartidn<strong>in</strong>gen. 2009;Oct 14-20(106(42)):2680-3.<br />

89. Lilly JK, Bol<strong>and</strong> JP, Zekan S. Ur<strong>in</strong>ary bladder temperature monitor<strong>in</strong>g: a new <strong>in</strong>dex<br />

<strong>of</strong> body core temperature. Critical care medic<strong>in</strong>e. 1980;8(12):742-4.<br />

90. ISO-10551. Ergonomics <strong>of</strong> the thermal environment - Assessment <strong>of</strong> the <strong>in</strong>fluence<br />

<strong>of</strong> the thermal environment us<strong>in</strong>g subjective judgement scales. Geneva: International<br />

St<strong>and</strong>ards Organisation; 2001.<br />

91. Bedford. The warmth factor <strong>in</strong> comfort at work. MRC Industrial Health Board<br />

Report HMSO. London, UK: 1936.<br />

92. Rohles. The nature <strong>of</strong> thermal comfort for sedentary man. ASHRAE Transactions,<br />

ashrae org. 1971;77 (1):239-46.<br />

51


PRELIMINARY REPORT<br />

FIELD TORSO-WARMING MODALITIES<br />

ACOMPARATIVE STUDY USING A HUMAN MODEL<br />

J. Peter Lundgren, MD, Otto Henriksson, MD, Thea Pretorius, MSc, Farrell Cahill, BK<strong>in</strong>,<br />

Gerald Bristow, MD, Alecs Choch<strong>in</strong>ov, MD, Alex<strong>and</strong>er Pretorius, MD, Ulf Bjornstig, MD, PhD,<br />

Gordon G. Giesbrecht, PhD<br />

ABSTRACT<br />

Objective. To compare four field-appropriate torso-warm<strong>in</strong>g<br />

modalities that do not require alternat<strong>in</strong>g-current (AC)<br />

electrical power, us<strong>in</strong>g a human model <strong>of</strong> nonshiver<strong>in</strong>g <strong>hypothermia</strong>.<br />

Methods. Five subjects, serv<strong>in</strong>g as their own controls,<br />

were cooled four times <strong>in</strong> 8 ◦ C water for 10–30 m<strong>in</strong>utes.<br />

Shiver<strong>in</strong>g was <strong>in</strong>hibited by buspirone (30 mg) taken<br />

orally prior to cool<strong>in</strong>g <strong>and</strong> <strong>in</strong>travenous (IV) meperid<strong>in</strong>e<br />

(1.25 mg/kg) at the end <strong>of</strong> immersion. Subjects were hoisted<br />

out <strong>of</strong> the water, dried, <strong>and</strong> <strong>in</strong>sulated <strong>and</strong> then underwent<br />

120 m<strong>in</strong>utes <strong>of</strong> one <strong>of</strong> the follow<strong>in</strong>g: spontaneous warm<strong>in</strong>g<br />

only; a charcoal heater on the chest; two flexible hotwater<br />

bags (total 4 liters <strong>of</strong> water at 55 ◦ C, replenished every<br />

20 m<strong>in</strong>utes) applied to the chest <strong>and</strong> upper back; or<br />

two chemical heat<strong>in</strong>g pads applied to the chest <strong>and</strong> upper<br />

back. Supplemental meperid<strong>in</strong>e (maximum cumulative dose<br />

<strong>of</strong> 3.5 mg/kg) was adm<strong>in</strong>istered as required to <strong>in</strong>hibit shiver<strong>in</strong>g.<br />

Results. The postcool<strong>in</strong>g afterdrop (i.e., the cont<strong>in</strong>ued<br />

decrease <strong>in</strong> body core temperature dur<strong>in</strong>g the early period<br />

<strong>of</strong> warm<strong>in</strong>g), compared with spontaneous warm<strong>in</strong>g (2.2 ◦ C),<br />

Received December 3, 2008, from the Division <strong>of</strong> Surgery, Department<br />

<strong>of</strong> Surgery <strong>and</strong> Perioperative Sciences (JPL, OH, UB), Ume˚a<br />

University, Ume˚a, Sweden; the Laboratory for Exercise <strong>and</strong> Environmental<br />

Medic<strong>in</strong>e (TP, FCBK, GB, GGG), Department <strong>of</strong> Anesthesia,<br />

Faculty <strong>of</strong> Medic<strong>in</strong>e (GB, GGG), <strong>and</strong> Department <strong>of</strong> Emergency<br />

Medic<strong>in</strong>e, Faculty <strong>of</strong> Medic<strong>in</strong>e (AC), University <strong>of</strong> Manitoba, W<strong>in</strong>nipeg,<br />

Manitoba, Canada; <strong>and</strong> the Department <strong>of</strong> Anesthesia, Grace<br />

Hospital (AP), W<strong>in</strong>nipeg, Manitoba, Canada. Revision received<br />

January 14, 2009; accepted for publication January 30, 2009.<br />

Supported by the Natural Sciences <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g Research Council<br />

<strong>of</strong> Canada <strong>and</strong> the National Board <strong>of</strong> Health <strong>and</strong> Welfare <strong>and</strong><br />

Jamtl<strong>and</strong> County Council, Sweden.<br />

The authors report no conflicts <strong>of</strong> <strong>in</strong>terest. The authors alone are responsible<br />

for the content <strong>and</strong> writ<strong>in</strong>g <strong>of</strong> the paper.<br />

Address correspondence <strong>and</strong> repr<strong>in</strong>t requests to: Dr. J. Peter Lundgren,<br />

Division <strong>of</strong> Surgery, Department <strong>of</strong> Surgery <strong>and</strong> Perioperative<br />

Sciences, Ume˚a University, SE-90185 Ume˚a, Sweden. e-mail: lundgren.jp@hotmail.com<br />

doi: 10.1080/10903120902935348<br />

371<br />

was less for the chemical heat<strong>in</strong>g pads (1.5◦C) <strong>and</strong> the hotwater<br />

bags (1.6◦C, p < 0.05) <strong>and</strong> was 1.8◦C for the charcoal<br />

heater. Subsequent core rewarm<strong>in</strong>g rates for the hot-water<br />

bags (0.7◦C/h) <strong>and</strong> the charcoal heater (0.6◦C/h) tended to be<br />

higher than that for the chemical heat<strong>in</strong>g pads (0.2◦C/h) <strong>and</strong><br />

were significantly higher than that for spontaneous warm<strong>in</strong>g<br />

rate (0.1◦C/h, p < 0.05). Conclusion. In subjects with<br />

shiver<strong>in</strong>g suppressed, greater sources <strong>of</strong> external heat were<br />

effective <strong>in</strong> attenuat<strong>in</strong>g core temperature afterdrop, whereas<br />

susta<strong>in</strong>ed sources <strong>of</strong> external heat effectively established core<br />

rewarm<strong>in</strong>g. Depend<strong>in</strong>g on the scenario <strong>and</strong> available resources,<br />

we recommend the use <strong>of</strong> charcoal heaters, chemical<br />

heat<strong>in</strong>g pads, or hot-water bags as effective means for treat<strong>in</strong>g<br />

cold patients <strong>in</strong> the field or dur<strong>in</strong>g transport to def<strong>in</strong>itive<br />

care. Key words: <strong>hypothermia</strong>; body temperature regulation;<br />

rewarm<strong>in</strong>g; emergency medical services<br />

PREHOSPITAL EMERGENCY CARE 2009;13:371–378<br />

INTRODUCTION<br />

A major concern <strong>in</strong> the prehospital care <strong>of</strong> patients exposed<br />

to a cold environment, either through cold air<br />

or cold water immersion, is to reduce cold stress <strong>and</strong><br />

avoid further heat loss, thereby dim<strong>in</strong>ish<strong>in</strong>g the risk <strong>of</strong><br />

cold-<strong>in</strong>duced cardiac or respiratory failure. Initial measures<br />

should be taken to <strong>in</strong>sulate the patient from the<br />

ground, remove wet cloth<strong>in</strong>g if possible, <strong>and</strong> conta<strong>in</strong><br />

endogenous heat production with<strong>in</strong> a vapor barrier<br />

<strong>and</strong> adequate w<strong>in</strong>d- <strong>and</strong> waterpro<strong>of</strong> <strong>in</strong>sulation. Application<br />

<strong>of</strong> some form <strong>of</strong> exogenous heat should then<br />

be considered to reduce the depth <strong>and</strong> duration <strong>of</strong> the<br />

core temperature (Tco) afterdrop (i.e., the cont<strong>in</strong>ued decrease<br />

<strong>in</strong> body temperature dur<strong>in</strong>g the early period <strong>of</strong><br />

rewarm<strong>in</strong>g) <strong>and</strong> establish a steady moderate rate <strong>of</strong> Tco<br />

rewarm<strong>in</strong>g. 1−7<br />

For the mildly hypothermic victim (Tco = 35–32 ◦ C)<br />

who is physiologically stable, spontaneous warm<strong>in</strong>g<br />

due to shiver<strong>in</strong>g heat production provides reduction<br />

<strong>of</strong> afterdrop <strong>and</strong> establishes a safe <strong>and</strong> efficient<br />

rewarm<strong>in</strong>g rate. 2,3,8−13 Several studies on mildly


372 PREHOSPITAL EMERGENCY CARE JULY/SEPTEMBER 2009 VOLUME 13 / NUMBER 3<br />

hypothermic shiver<strong>in</strong>g subjects have found that exogenous<br />

sk<strong>in</strong> heat<strong>in</strong>g attenuates shiver<strong>in</strong>g heat production<br />

by an amount equivalent to the heat donated. 8−13<br />

Accord<strong>in</strong>gly, body-to-body warm<strong>in</strong>g, 9,11 forced-air<br />

warm<strong>in</strong>g, 10 application <strong>of</strong> electrical <strong>and</strong> hot-waterperfused<br />

heat<strong>in</strong>g pads, 11,12 <strong>and</strong> charcoal heaters 8,13<br />

have produced reduction <strong>of</strong> afterdrop <strong>and</strong> established<br />

rewarm<strong>in</strong>g rates similar to that <strong>of</strong> spontaneous shiver<strong>in</strong>g<br />

alone. Thus, <strong>in</strong> a mildly hypothermic shiver<strong>in</strong>g<br />

victim, external warm<strong>in</strong>g generally does not decrease<br />

afterdrop or <strong>in</strong>crease the rewarm<strong>in</strong>g rate; however, it<br />

might provide other advantages, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>creased<br />

comfort, decreased cardiac work, <strong>and</strong> preserved substrate<br />

availability.<br />

When shiver<strong>in</strong>g is dim<strong>in</strong>ished or absent <strong>in</strong> moderate<br />

(Tco = 32–28 ◦ C) to severe (Tco < 28 ◦ C) <strong>hypothermia</strong> or<br />

otherwise impaired because <strong>of</strong> the overall medical condition<br />

<strong>of</strong> the patient (i.e., old age, alcohol or drug <strong>in</strong>gestion,<br />

head or sp<strong>in</strong>al <strong>in</strong>jury, severe trauma, or depleted<br />

metabolic energy substrates), some form <strong>of</strong> exogenous<br />

external or <strong>in</strong>ternal heat is required; otherwise, afterdrop<br />

will cont<strong>in</strong>ue <strong>and</strong> little or no rewarm<strong>in</strong>g will occur.<br />

This was demonstrated us<strong>in</strong>g a human model <strong>of</strong><br />

nonshiver<strong>in</strong>g <strong>hypothermia</strong>, where meperid<strong>in</strong>e was adm<strong>in</strong>istered<br />

to <strong>in</strong>hibit shiver<strong>in</strong>g <strong>in</strong> mildly hypothermic<br />

subjects. 14−16 With metabolic <strong>and</strong> thermal responses<br />

similar to those <strong>in</strong> actual severe hypothermic conditions,<br />

subjects us<strong>in</strong>g spontaneous warm<strong>in</strong>g only experienced<br />

an <strong>in</strong>creased afterdrop, with rewarm<strong>in</strong>g either<br />

attenuated or elim<strong>in</strong>ated compared with that <strong>in</strong> subjects<br />

receiv<strong>in</strong>g an exogenous heat supply.<br />

In a summary <strong>of</strong> survey responses from 41 Mounta<strong>in</strong><br />

Rescue Association teams, the most common protocols<br />

for <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong> were chemical heat<strong>in</strong>g<br />

pads (46%), body-to-body warm<strong>in</strong>g (39%), <strong>and</strong> hotwater<br />

bottles applied to the trunk (32%). 17 Although<br />

chemical heat<strong>in</strong>g pads <strong>and</strong> hot-water bottles are commonly<br />

used <strong>and</strong> recommended, scientific verification<br />

<strong>of</strong> their effectiveness is m<strong>in</strong>imal or nonexistent. In fact,<br />

these measures are recommended <strong>in</strong> some prehospital<br />

<strong>treatment</strong> guidel<strong>in</strong>es 4,6 but discouraged <strong>in</strong> others. 7,18<br />

Effective prehospital field warm<strong>in</strong>g is considered <strong>of</strong><br />

utmost importance to improve the medical condition<br />

<strong>of</strong> severely hypothermic patients on admission to the<br />

emergency department. 1−7 It is therefore important to<br />

quantify the thermal effectiveness <strong>of</strong> those modalities<br />

that could be used <strong>in</strong> the field by laypersons, search<br />

<strong>and</strong> rescue (SAR) personnel, or the emergency medical<br />

services (EMS) system.<br />

We therefore decided to use a human model for nonshiver<strong>in</strong>g<br />

<strong>hypothermia</strong> 14,15 to evaluate the thermal effectiveness<br />

<strong>of</strong> chemical heat<strong>in</strong>g pads <strong>and</strong> hot-water<br />

bottles. To <strong>in</strong>crease the surface area <strong>in</strong> contact with the<br />

sk<strong>in</strong>, flexible nylon water bags were used <strong>in</strong>stead <strong>of</strong><br />

rigid bottles. For comparative reasons, the previously<br />

evaluated charcoal heater <strong>and</strong> spontaneous warm<strong>in</strong>g<br />

were selected. These torso-warm<strong>in</strong>g modalities, be<strong>in</strong>g<br />

Subject Gender<br />

TABLE 1. Characteristics <strong>of</strong> the Subjects<br />

Age,<br />

years<br />

Height,<br />

cm<br />

Weight,<br />

kg<br />

Body<br />

fat ∗ ,%<br />

BSA † ,<br />

m 2<br />

BMI ‡ ,<br />

kg/m 2<br />

1 Male 35 174 78 26 1.9 26<br />

2 Male 27 173 91 29 2.1 31<br />

3 Male 40 175 110 30 2.2 36<br />

4 Male 29 180 73 21 1.9 22<br />

5 Male 28 175 68 13 1.8 22<br />

Mean 32 175 84 24 2.0 27<br />

SD 6 3 17 7 0.2 6<br />

∗ 19<br />

Calculated accord<strong>in</strong>g to Durn<strong>in</strong> <strong>and</strong> Womersley.<br />

† 20<br />

Calculated accord<strong>in</strong>g to Dubois <strong>and</strong> Dubois.<br />

‡ 21<br />

Calculated accord<strong>in</strong>g to McArdle et al.<br />

BSA = body surface area; BMI = body mass <strong>in</strong>dex; SD = st<strong>and</strong>ard deviation.<br />

portable <strong>and</strong> requir<strong>in</strong>g no external electrical power, are<br />

all suited for prehospital field care.<br />

METHODS<br />

Design, Sett<strong>in</strong>g, <strong>and</strong> Subjects<br />

The study was approved by the Education/Nurs<strong>in</strong>g<br />

Research Ethics Board <strong>of</strong> the University <strong>of</strong> Manitoba.<br />

Five male subjects volunteered for participation (Table<br />

1). They had no history <strong>of</strong> allergy to or current use <strong>of</strong><br />

narcotics. Written <strong>in</strong>formed consent was obta<strong>in</strong>ed from<br />

all patients. Studies were conducted <strong>in</strong> the Laboratory<br />

for Exercise <strong>and</strong> Environmental Medic<strong>in</strong>e at the University<br />

<strong>of</strong> Manitoba <strong>in</strong> February <strong>and</strong> March 2006.<br />

Monitor<strong>in</strong>g<br />

Esophageal temperature (Tes), 22,23 oxygen consumption<br />

(Vo2), respiratory exchange ratio (RER), electrocardiography<br />

(ECG), heart rate (HR), <strong>and</strong> arterial oxygen<br />

saturation were cont<strong>in</strong>uously monitored <strong>and</strong> recorded<br />

dur<strong>in</strong>g the trials as described previously. 14,15 Endogenous<br />

heat production (M) <strong>in</strong> watts (W) was calculated<br />

from VO2 <strong>and</strong> RER accord<strong>in</strong>g to the follow<strong>in</strong>g equation:<br />

M(W)= VO2 (L/ m<strong>in</strong>)<br />

× 69.7(4.686 + [(RER − 0.707) × 1.232])<br />

where M represents heat production <strong>and</strong> W represents<br />

watts.<br />

Sk<strong>in</strong> heat transfer (Qsk<strong>in</strong>; W·m −2 ) <strong>and</strong> sk<strong>in</strong> temperature<br />

( ◦ C) were measured from 12 sites us<strong>in</strong>g thermal<br />

flux transducers (Concept Eng<strong>in</strong>eer<strong>in</strong>g, Old Saybrook,<br />

CT). Sk<strong>in</strong> heat transfer for a specific body part<br />

(Qbody part; W) was then calculated us<strong>in</strong>g heat flux values<br />

for each transducer (W/m 2 ) accord<strong>in</strong>g to the follow<strong>in</strong>g<br />

equation:<br />

Qbody part(W) = transducer flux (W/m 2 ) × BSA(m 2 )<br />

× body part percentage


Lundgren et al. FIELD TORSO-WARMING MODALITIES 373<br />

where BSA represents body surface area; the body part<br />

percentage was estimated accord<strong>in</strong>g to Layton et al. 24<br />

Intravenous (IV) access was obta<strong>in</strong>ed <strong>in</strong> the right<br />

forearm or h<strong>and</strong> for the purpose <strong>of</strong> drug <strong>and</strong>/or sal<strong>in</strong>e<br />

adm<strong>in</strong>istration.<br />

Protocol<br />

Each subject served as his or her own control for comparative<br />

evaluation <strong>of</strong> each <strong>of</strong> the warm<strong>in</strong>g modalities,<br />

<strong>and</strong> was cooled at the same time <strong>of</strong> day on four<br />

separate occasions. The order <strong>of</strong> the trials followed<br />

a balanced design. Subjects dressed <strong>in</strong> a bath<strong>in</strong>g suit<br />

<strong>and</strong> sat quietly at an ambient temperature <strong>of</strong> approximately<br />

22 ◦ C for 10 m<strong>in</strong>utes <strong>of</strong> basel<strong>in</strong>e data collection<br />

after monitors were applied. To enhance the effect <strong>of</strong><br />

meperid<strong>in</strong>e, the subjects took buspirone (30 mg orally)<br />

dur<strong>in</strong>g the <strong>in</strong>strumentation period. They were then immersed<br />

to the level <strong>of</strong> the sternal notch <strong>in</strong> a stirred water<br />

bath. The temperature <strong>of</strong> the water was lowered,<br />

by rapid <strong>in</strong>flow <strong>of</strong> 2 ◦ C water from a large reservoir,<br />

from 21 ◦ Cto8 ◦ C over a period <strong>of</strong> 5 m<strong>in</strong>utes. Subjects<br />

were immersed for 10 to 30 m<strong>in</strong>utes depend<strong>in</strong>g<br />

on their body mass, with their immersion time be<strong>in</strong>g<br />

based on the results <strong>of</strong> prior pilot studies. Immersion<br />

time was the same for all conditions for each subject<br />

<strong>and</strong> was limited by the highest amount <strong>of</strong> body cool<strong>in</strong>g<br />

that could occur for which the subject’s shiver<strong>in</strong>g<br />

could be successfully <strong>in</strong>hibited by the prescribed maximal<br />

dose <strong>of</strong> meperid<strong>in</strong>e.<br />

Dur<strong>in</strong>g the last 10 m<strong>in</strong>utes <strong>of</strong> immersion, subjects<br />

were given 1.25 mg/kg <strong>of</strong> IV meperid<strong>in</strong>e (diluted<br />

<strong>in</strong> five 2-mL aliquots <strong>and</strong> <strong>in</strong>jected over successive 2m<strong>in</strong>ute<br />

<strong>in</strong>tervals). Subjects were then hoisted out <strong>of</strong> the<br />

water, towel dried, <strong>and</strong> placed <strong>in</strong> a sleep<strong>in</strong>g bag, with<br />

the head covered, for 120 m<strong>in</strong>utes <strong>of</strong> warm<strong>in</strong>g. Postimmersion<br />

supplemental <strong>in</strong>jections <strong>of</strong> meperid<strong>in</strong>e to<br />

a maximum cumulative dose <strong>of</strong> 3.5 mg/kg were adm<strong>in</strong>istered<br />

based on Vo2 <strong>and</strong> the subject’s sensation <strong>of</strong><br />

shiver<strong>in</strong>g <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> shiver<strong>in</strong>g suppression.<br />

Each trial was term<strong>in</strong>ated after 120 m<strong>in</strong>utes <strong>of</strong> warm<strong>in</strong>g,<br />

a duration sufficient to establish a steady rate <strong>of</strong><br />

core temperature change. Subjects were then immersed<br />

<strong>in</strong> 42 ◦ C water until their Tes rose to a normothermic<br />

level.<br />

Warm<strong>in</strong>g Modalities<br />

No exogenous heat source was used <strong>in</strong> the spontaneous<br />

warm<strong>in</strong>g trials. The materials <strong>and</strong> protocols for<br />

the warm<strong>in</strong>g modalities are as described <strong>in</strong> the sections<br />

that follow.<br />

Charcoal Heater<br />

The heater consisted <strong>of</strong> a combustion chamber, charcoal<br />

fuel, <strong>and</strong> a branched, re<strong>in</strong>forced, but flexible, heat-<br />

FIGURE 1. Top:charcoalheater<strong>in</strong>use;middle: hot-water bags <strong>in</strong> use;<br />

<strong>and</strong> bottom: chemical heat<strong>in</strong>g pads <strong>in</strong> use.<br />

<strong>in</strong>g duct (Normeca AS, Oslo, Norway) <strong>and</strong> produced<br />

250 W <strong>of</strong> heat (1,800 kJ over 120 m<strong>in</strong>utes). The combustion<br />

chamber was placed on the subject’s chest <strong>and</strong><br />

the heat<strong>in</strong>g ducts were applied dorsally over the shoulders,<br />

<strong>and</strong> then anteriorly under the axillae to cross over<br />

the lower chest (Fig. 1, top). The total sk<strong>in</strong> contact surface<br />

area <strong>of</strong> the chamber (23 × 12 × 6 cm, 1,100 g) <strong>and</strong>


374 PREHOSPITAL EMERGENCY CARE JULY/SEPTEMBER 2009 VOLUME 13 / NUMBER 3<br />

ducts was about 1,500 cm 2 . The heater was ignited <strong>and</strong><br />

set to the “high” sett<strong>in</strong>g 15–30 m<strong>in</strong>utes before be<strong>in</strong>g<br />

applied to the subject. The heater could produce maximum<br />

heat for approximately eight hours. Subjects laid<br />

their h<strong>and</strong>s on the heater dur<strong>in</strong>g warm<strong>in</strong>g.<br />

Hot-Water Bags<br />

Two 6-liter flexible water bags (Mounta<strong>in</strong> Safety Research,<br />

Seattle, WA) were each filled with 2 liters <strong>of</strong><br />

55 ◦ C water. This volume <strong>of</strong> water was used because<br />

a total <strong>of</strong> 4 liters was considered a realistic volume that<br />

could be heated <strong>in</strong> the field, <strong>and</strong>, filled with this volume<br />

<strong>of</strong> water, the water bag lay flat, allow<strong>in</strong>g virtually<br />

all <strong>of</strong> one side <strong>of</strong> it to contact the sk<strong>in</strong>. Each bag (45 ×<br />

25 cm, 120 g) had a sk<strong>in</strong>-contact surface area <strong>of</strong> about<br />

1,100 cm 2 . A towel was placed between each bag <strong>and</strong><br />

the sk<strong>in</strong> to prevent burn <strong>in</strong>jury. Subjects lay with one<br />

<strong>of</strong> the bags placed under their upper back, while the<br />

other bag was placed on the upper chest (Fig. 1, middle).<br />

Every 20 m<strong>in</strong>utes, both bags were refilled with<br />

55 ◦ C water. Subjects laid their h<strong>and</strong>s on the top <strong>of</strong> the<br />

chest water bag as soon as it was comfortable.<br />

Chemical Heat<strong>in</strong>g Pads<br />

Two chemical heat<strong>in</strong>g pads (Dorcas AB, Skattkarr,<br />

Sweden) were activated 2 m<strong>in</strong>utes prior to use. Each<br />

pad (42 × 25 × 2 cm, 1,400 g) had a sk<strong>in</strong> contact surface<br />

area <strong>of</strong> about 1,100 cm2 . Subjects lay with one<br />

<strong>of</strong> the pads placed under their upper back, while the<br />

other pad was placed on the upper chest (Fig. 1, bottom).<br />

Surface temperature on the sk<strong>in</strong> side <strong>of</strong> the pads<br />

reached approximately 50◦C with<strong>in</strong> 2 m<strong>in</strong>utes after activation<br />

<strong>and</strong> then gradually decl<strong>in</strong>ed. Initially a towel<br />

was placed between each pad <strong>and</strong> the sk<strong>in</strong> to prevent<br />

burn <strong>in</strong>jury. The towel was removed after 30 m<strong>in</strong>utes,<br />

as pad surface temperature had decreased to a<br />

level where sk<strong>in</strong> temperature could rema<strong>in</strong> below the<br />

threshold (∼43◦C) for burn <strong>in</strong>jury. 25 Subjects laid their<br />

h<strong>and</strong>s on the chest pad dur<strong>in</strong>g warm<strong>in</strong>g.<br />

Data Analysis<br />

Data were compared us<strong>in</strong>g a repeated-measures analysis<br />

<strong>of</strong> variance (ANOVA) with post hoc analysis with<br />

Fisher’s protected least significant difference (PLSD)<br />

test to identify significant differences. Results are reported<br />

as means ± st<strong>and</strong>ard deviation (SD), <strong>and</strong> p <<br />

0.05 was the threshold def<strong>in</strong>ed for statistically significant<br />

differences.<br />

RESULTS<br />

Endogenous Heat Production<br />

Metabolic heat production <strong>in</strong>creased from 116 ± 17 W<br />

dur<strong>in</strong>g basel<strong>in</strong>e to 195 ± 51 W dur<strong>in</strong>g the last 10<br />

m<strong>in</strong>utes before meperid<strong>in</strong>e <strong>in</strong>jection. Meperid<strong>in</strong>e suppressed<br />

shiver<strong>in</strong>g, with heat production return<strong>in</strong>g to<br />

114 ± 21 W dur<strong>in</strong>g the first 40 m<strong>in</strong>utes after cool<strong>in</strong>g<br />

<strong>and</strong> then subsequently fall<strong>in</strong>g to 97 ± 17 W throughout<br />

the rema<strong>in</strong><strong>in</strong>g 80 m<strong>in</strong>utes <strong>of</strong> warm<strong>in</strong>g. There were<br />

no differences <strong>in</strong> heat production for the different conditions.<br />

Heart Rate, Respiratory Rate, <strong>and</strong> Sk<strong>in</strong><br />

Temperature<br />

Heart rate <strong>and</strong> respiratory rate <strong>in</strong>creased dur<strong>in</strong>g cool<strong>in</strong>g<br />

from basel<strong>in</strong>e values <strong>of</strong> 74 ± 13 beats/m<strong>in</strong> <strong>and</strong><br />

19 ± 5 breaths/m<strong>in</strong> to 87 ± 19 beats/m<strong>in</strong> <strong>and</strong> 21<br />

± 7 breaths/m<strong>in</strong>, respectively, just before meperid<strong>in</strong>e<br />

adm<strong>in</strong>istration. Postimmersion heart rate <strong>and</strong> respiratory<br />

rate decl<strong>in</strong>ed to 66 ± 13 beats/m<strong>in</strong> <strong>and</strong> 17 ± 6<br />

breaths/m<strong>in</strong>, respectively. There were no significant<br />

differences between the different conditions.<br />

Sk<strong>in</strong> temperature on the chest <strong>and</strong> upper back<br />

reached maximum values <strong>of</strong> 41.6 ◦ C for the charcoal<br />

heater, 42.3 ◦ C for the hot-water bags, <strong>and</strong> 42.8 ◦ Cfor<br />

the chemical heat<strong>in</strong>g pads.<br />

Body Core Temperature<br />

There were no significant differences <strong>in</strong> <strong>in</strong>itial cool<strong>in</strong>g<br />

rate (−10 to 0 m<strong>in</strong>) for the different conditions<br />

(Table 2 <strong>and</strong> Fig. 2). The postcool<strong>in</strong>g afterdrop compared<br />

with spontaneous warm<strong>in</strong>g (2.2◦C) was significantly<br />

less for the chemical heat<strong>in</strong>g pads (1.5◦C) <strong>and</strong><br />

the hot-water bags (1.6◦C, p < 0.05), but not for the<br />

charcoal heater (1.8◦C). The time to Tes nadir was significantly<br />

less for all other modalities compared with<br />

spontaneous warm<strong>in</strong>g (p < 0.05). Subsequent core rewarm<strong>in</strong>g<br />

rates for the hot-water bags (0.7◦C/h) <strong>and</strong> the<br />

charcoal heater (0.6◦C/h) tended to be higher than that<br />

for the chemical heat<strong>in</strong>g pads (0.2◦C/h) <strong>and</strong> were significantly<br />

greater than that for spontaneous warm<strong>in</strong>g<br />

(0.1◦C/h, p < 0.05).<br />

Exogenous Heat Delivery<br />

The heat ga<strong>in</strong> dur<strong>in</strong>g active warm<strong>in</strong>g on the chest<br />

<strong>and</strong> upper back (each be<strong>in</strong>g 9% <strong>of</strong> body surface area)<br />

is shown <strong>in</strong> Figure 3. The charcoal heater provided<br />

a steady heat ga<strong>in</strong> primarily to the chest. The water<br />

bottles donated heat to both the chest <strong>and</strong> upper<br />

back, with heat transfer be<strong>in</strong>g slightly greater on the<br />

back than the chest; the amount <strong>of</strong> heat transferred<br />

transiently <strong>in</strong>creased each time water was replaced.<br />

The chemical heat<strong>in</strong>g pads also donated heat to both<br />

the chest <strong>and</strong> upper back, with the amount <strong>of</strong> heat<br />

transferred decreas<strong>in</strong>g for the <strong>in</strong>itial 30 m<strong>in</strong>utes. Once<br />

the towels were removed, heat transfer transiently <strong>in</strong>creased<br />

<strong>and</strong> then aga<strong>in</strong> decreased to m<strong>in</strong>imal levels


Lundgren et al. FIELD TORSO-WARMING MODALITIES 375<br />

Modality<br />

Cool<strong>in</strong>g Rate<br />

(−10 to 0 m<strong>in</strong>),<br />

◦ C/h<br />

TABLE 2. Core Temperature Responses ∗<br />

Afterdrop<br />

Amount,<br />

◦ C<br />

Time to<br />

Tes Nadir,<br />

m<strong>in</strong><br />

Rewarm<strong>in</strong>g<br />

Rate (60–120 m<strong>in</strong>),<br />

◦ C/h<br />

Change <strong>in</strong><br />

Tes<br />

(0–120 m<strong>in</strong>), ◦C Charcoal heater −0.8 (1.4) −1.8 (0.4) 51 (30) † 0.6 (0.5) † −1.1 (0.6) †<br />

Hot-water bags −0.8 (1.3) −1.6 (0.2) † 44 (23) † 0.7 (0.3) † −0.6 (0.6) †‡<br />

Chemical heat<strong>in</strong>g pads −0.4 (1.6) −1.5 (0.4) † 46 (23) † 0.2 (0.3) −0.9 (0.7) †<br />

Spontaneous warm<strong>in</strong>g −0.9 (1.7) −2.2 (0.3) 88 (38) 0.1 (0.8) −1.7 (0.8)<br />

∗Values are mean ± st<strong>and</strong>ard deviation.<br />

† Significantly different from spontaneous warm<strong>in</strong>g (p < 0.05).<br />

‡ Significantly different from charcoal heater (p < 0.05).<br />

Tes = esophageal temperature.<br />

Change <strong>in</strong> core temperature (°C)<br />

Change <strong>in</strong> core temperature (°C)<br />

1,0<br />

0,0<br />

-1,0<br />

-2,0<br />

1,0<br />

0,0<br />

-1,0<br />

-2,0<br />

Start<br />

cool<strong>in</strong>g<br />

-3,0<br />

-40 -20 0 20 40<br />

Time (m<strong>in</strong>)<br />

60 80 100 120<br />

Start<br />

cool<strong>in</strong>g<br />

Start active<br />

warm<strong>in</strong>g<br />

First dose <strong>of</strong><br />

meperid<strong>in</strong>e<br />

Start active<br />

warm<strong>in</strong>g<br />

First dose <strong>of</strong><br />

meperid<strong>in</strong>e<br />

Hot-Water Bags<br />

Charcoal Heater<br />

-3,0<br />

-40 -20 0 20 40<br />

Time (m<strong>in</strong>)<br />

60 80 100 120<br />

b<br />

c<br />

Change <strong>in</strong> core temperature (°C)<br />

Change <strong>in</strong> core temperature (°C)<br />

1,0<br />

0,0<br />

-1,0<br />

-2,0<br />

-3,0<br />

-40 -20 0 20 40<br />

Time (m<strong>in</strong>)<br />

60 80 100 120<br />

1,0<br />

0,0<br />

-1,0<br />

-2,0<br />

Start<br />

cool<strong>in</strong>g<br />

Start active<br />

warm<strong>in</strong>g<br />

Start<br />

cool<strong>in</strong>g<br />

First dose <strong>of</strong><br />

meperid<strong>in</strong>e<br />

Start active<br />

warm<strong>in</strong>g<br />

First dose <strong>of</strong><br />

meperid<strong>in</strong>e<br />

Chemical Heat<strong>in</strong>g<br />

Pads<br />

-3,0<br />

-40 -20 0 20 40<br />

Time (m<strong>in</strong>)<br />

60 80 100 120<br />

a<br />

b<br />

Spontaneous<br />

Warm<strong>in</strong>g<br />

FIGURE 2. Change <strong>in</strong> esophageal temperature (Tes) dur<strong>in</strong>g four warm<strong>in</strong>g protocols (mean, n = 5). a Afterdrop amount <strong>and</strong> b time to Tes nadir less<br />

than spontaneous warm<strong>in</strong>g; c f<strong>in</strong>al Tes significantly greater than spontaneous warm<strong>in</strong>g; d f<strong>in</strong>al Tes significantly greater than charcoal heater (p <<br />

0.05). CP = chemical heat<strong>in</strong>g pads; HP = charcoal heater; SP = spontaneous warm<strong>in</strong>g; WB = hot-water bags.<br />

c


376 PREHOSPITAL EMERGENCY CARE JULY/SEPTEMBER 2009 VOLUME 13 / NUMBER 3<br />

Chest Cutaneous Heat Ga<strong>in</strong> (W)<br />

75<br />

50<br />

25<br />

0<br />

SP CP WB HP<br />

-25<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

80 100 120<br />

Upper Back Cutaneous Heat Ga<strong>in</strong> (W)<br />

75<br />

50<br />

25<br />

0<br />

SP CP WB HP<br />

-25<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

80 100 120<br />

FIGURE 3. Cutaneous heat ga<strong>in</strong> on the chest <strong>and</strong> upper back dur<strong>in</strong>g four warm<strong>in</strong>g protocols (mean, n = 5). CP = chemical heat<strong>in</strong>g pads; HP =<br />

charcoal heater; SP = spontaneous warm<strong>in</strong>g; WB = hot-water bags (note the sawtooth pattern due to replenish<strong>in</strong>g the water).<br />

over the next 90 m<strong>in</strong>utes. Dur<strong>in</strong>g spontaneous warm<strong>in</strong>g<br />

there was a small, cont<strong>in</strong>uous steady heat loss from<br />

the upper torso. Total cumulative energy transfer to the<br />

chest <strong>and</strong> upper back dur<strong>in</strong>g 120 m<strong>in</strong>utes <strong>of</strong> warm<strong>in</strong>g<br />

was 536 ± 56 kJ for the hot-water bags, 246 ± 71 kJ for<br />

the chemical heat<strong>in</strong>g pads, 230 ± 50 kJ for the charcoal<br />

heater, <strong>and</strong> −50 ± 28 kJ for spontaneous warm<strong>in</strong>g, <strong>and</strong><br />

this was significantly different for each <strong>of</strong> the warm<strong>in</strong>g<br />

modalities except chemical heat<strong>in</strong>g pads vs. charcoal<br />

heater (p < 0.05).<br />

DISCUSSION<br />

This study was unique <strong>in</strong> that it used a human model<br />

for nonshiver<strong>in</strong>g <strong>hypothermia</strong> to evaluate relative efficacy<br />

<strong>of</strong> torso-warm<strong>in</strong>g procedures that could be used<br />

<strong>in</strong> the field <strong>and</strong> dur<strong>in</strong>g transport to the hospital. Hotwater<br />

bags <strong>and</strong> chemical heat<strong>in</strong>g pads, which to our<br />

knowledge have not been quantified before, reduced<br />

both the amount <strong>and</strong> the duration <strong>of</strong> the subsequent<br />

afterdrop follow<strong>in</strong>g removal from cold stress. The<br />

charcoal heater had little effect on afterdrop amount<br />

compared with spontaneous warm<strong>in</strong>g, although it significantly<br />

shortened the duration <strong>of</strong> the afterdrop. Hotwater<br />

bags <strong>and</strong> the charcoal heater then both provided<br />

efficient <strong>and</strong> steady rewarm<strong>in</strong>g rates, whereas the rewarm<strong>in</strong>g<br />

rate was small with chemical heat<strong>in</strong>g pads<br />

<strong>and</strong> almost negligible with spontaneous warm<strong>in</strong>g.<br />

Possible Mechanisms for the F<strong>in</strong>d<strong>in</strong>gs<br />

When the amount <strong>of</strong> heat accessible is limited such as<br />

<strong>in</strong> a prehospital sett<strong>in</strong>g, external heat should be ap-<br />

plied to the torso <strong>and</strong> areas with high surface heat<br />

transfer (axillae, neck, <strong>and</strong> gro<strong>in</strong>). 4−7,11,12,16 In a previous<br />

torso-warm<strong>in</strong>g study, where different modalities<br />

<strong>of</strong> forced-air warm<strong>in</strong>g were compared with a charcoal<br />

heater <strong>and</strong> body-to-body rewarm<strong>in</strong>g, application<br />

<strong>of</strong> heat to the torso effectively decreased afterdrop <strong>and</strong><br />

<strong>in</strong>creased core rewarm<strong>in</strong>g. 16 This is likely due to the<br />

close proximity <strong>of</strong> the heat source(s) to the heart <strong>and</strong><br />

lung circulation, <strong>and</strong> the fact that sk<strong>in</strong> blood flow on<br />

the torso is generally unaffected by temperature, unlike<br />

the distal arms <strong>and</strong> legs. In this present study all<br />

heat sources were therefore applied to the upper torso.<br />

Although the evaluated heat sources were similar <strong>in</strong><br />

provid<strong>in</strong>g their heat content conductively to the sk<strong>in</strong><br />

<strong>and</strong> underly<strong>in</strong>g tissues, there were some important differences,<br />

which affected warm<strong>in</strong>g effectiveness. Hotwater<br />

bags <strong>and</strong> chemical heat<strong>in</strong>g pads, with their high<br />

<strong>in</strong>itial heat delivery to a relatively large surface area,<br />

were both effective <strong>in</strong> attenuat<strong>in</strong>g afterdrop amount<br />

<strong>and</strong> duration. The charcoal heater, with its similarly<br />

high heat production but smaller surface area, had<br />

less effect on afterdrop amount compared with spontaneous<br />

warm<strong>in</strong>g, although it too significantly shortened<br />

the duration <strong>of</strong> the afterdrop. Heat delivery from<br />

the chemical heat<strong>in</strong>g pads then gradually decl<strong>in</strong>ed<br />

<strong>and</strong>, therefore, the subsequent core rewarm<strong>in</strong>g rate<br />

was small. Hot-water bags <strong>and</strong> the charcoal heater,<br />

on the other h<strong>and</strong>, provided high cont<strong>in</strong>uous heat delivery<br />

<strong>and</strong> rendered effective rewarm<strong>in</strong>g rates. Conclusively,<br />

high <strong>in</strong>itial heat delivery to a large surface<br />

area effectively decreased the afterdrop, whereas<br />

consistent high heat delivery was required for core<br />

rewarm<strong>in</strong>g.


Lundgren et al. FIELD TORSO-WARMING MODALITIES 377<br />

Practical Implications<br />

Several prehospital guidel<strong>in</strong>es <strong>and</strong> review references<br />

recommend active prehospital warm<strong>in</strong>g <strong>of</strong> cold patients,<br />

especially if the patient is severely hypothermic<br />

<strong>and</strong> endogenous shiver<strong>in</strong>g heat production is<br />

<strong>in</strong>hibited. 1−7 Previous studies have shown that nonshiver<strong>in</strong>g<br />

moderately to severely hypothermic patients<br />

have a dist<strong>in</strong>ct thermal disadvantage because<br />

their shiver<strong>in</strong>g heat production defense is abolished<br />

<strong>and</strong> their basal metabolic rate is lower than normal,<br />

thus the postcool<strong>in</strong>g afterdrop will be large <strong>and</strong><br />

protracted. 14−16 In mildly hypothermic shiver<strong>in</strong>g patients,<br />

exogenous sk<strong>in</strong> heat<strong>in</strong>g attenuates shiver<strong>in</strong>g<br />

heat production by an amount equivalent to the heat<br />

donated. In these patients, the application <strong>of</strong> external<br />

heat, although it might not decrease afterdrop<br />

or <strong>in</strong>crease the core rewarm<strong>in</strong>g rate, 8−13 might provide<br />

other important advantages, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>creased<br />

comfort, decreased cardiac work, <strong>and</strong> preservation <strong>of</strong><br />

substrate availability. Accord<strong>in</strong>gly, the application <strong>of</strong><br />

external heat might also be beneficial for <strong>in</strong>itially normothermic<br />

victims exposed to a cold environment.<br />

In nonshiver<strong>in</strong>g hypothermic subjects, this study<br />

demonstrated that chemical heat<strong>in</strong>g pads <strong>and</strong> hotwater<br />

bags significantly decreased afterdrop at an<br />

amount <strong>of</strong> about 0.6–0.7 ◦ C <strong>and</strong> that the charcoal heater<br />

<strong>and</strong> hot-water bags significantly <strong>in</strong>creased the rewarm<strong>in</strong>g<br />

rate compared with spontaneous warm<strong>in</strong>g<br />

by 0.5–0.6 ◦ C/h. All <strong>of</strong> the torso-warm<strong>in</strong>g modalities<br />

also significantly decreased the time to Tes nadir <strong>and</strong><br />

the revers<strong>in</strong>g <strong>of</strong> core cool<strong>in</strong>g from about 88 m<strong>in</strong>utes<br />

with spontaneous warm<strong>in</strong>g to about 46–51 m<strong>in</strong>utes<br />

with active warm<strong>in</strong>g.<br />

Previous retrospective analyses <strong>of</strong> trauma<br />

registries 26,27 as well as prospective cl<strong>in</strong>ical<br />

studies 28−30 have reported significant changes <strong>in</strong><br />

physiologic variables, such as <strong>in</strong>creased oxygen consumption,<br />

depletion <strong>of</strong> energy stores, disruption <strong>of</strong><br />

blood clott<strong>in</strong>g mechanisms, <strong>in</strong>creased fluid resuscitation<br />

requirements, immune suppression, <strong>and</strong> development<br />

<strong>of</strong> organ failure already at mild hypothermic<br />

states compared with normothermic trauma victims.<br />

Mild <strong>hypothermia</strong> is also demonstrated to <strong>in</strong>crease<br />

the risk <strong>of</strong> death <strong>in</strong> trauma patients, <strong>in</strong>dependent <strong>of</strong><br />

<strong>in</strong>jury severity. 26,27,31 A significant correlation between<br />

decreased duration <strong>of</strong> <strong>hypothermia</strong> by active core<br />

rewarm<strong>in</strong>g <strong>and</strong> <strong>in</strong>creased likelihood <strong>of</strong> successful<br />

resuscitation <strong>and</strong> survival after trauma has also been<br />

demonstrated. 28 Thus, dim<strong>in</strong>ish<strong>in</strong>g or even revers<strong>in</strong>g a<br />

fall <strong>in</strong> core temperature, <strong>in</strong> an efficient yet safe manner,<br />

is desirable <strong>in</strong> the field <strong>and</strong> dur<strong>in</strong>g prehospital care<br />

<strong>and</strong> transportation <strong>in</strong> order to improve the patient’s<br />

condition upon admission to the emergency department.<br />

Accord<strong>in</strong>gly, although the cl<strong>in</strong>ical significance <strong>of</strong><br />

the differences <strong>in</strong> core temperature afterdrop or subsequent<br />

rewarm<strong>in</strong>g rate measured <strong>in</strong> this study is not yet<br />

fully known, we believe the impact <strong>of</strong> these prehospital<br />

torso-warm<strong>in</strong>g modalities might be <strong>of</strong> great benefit<br />

for an already compromised patient. To confirm the<br />

cl<strong>in</strong>ical significance <strong>of</strong> our f<strong>in</strong>d<strong>in</strong>gs, we encourage<br />

further prospective <strong>in</strong>terventional cl<strong>in</strong>ical trials.<br />

All <strong>of</strong> the evaluated torso-warm<strong>in</strong>g modalities are<br />

portable, require no external power supply, <strong>and</strong> can<br />

easily be used by laypersons, SAR personnel, or EMS<br />

crew members without significant tra<strong>in</strong><strong>in</strong>g. The charcoal<br />

heater has a durable design yet is lightweight, is<br />

easy to h<strong>and</strong>le even under harsh conditions, <strong>and</strong> provides<br />

heat over 8–12 hours us<strong>in</strong>g only one charcoal<br />

fuel cell at high (250-W) sett<strong>in</strong>gs. In protracted evacuation<br />

<strong>and</strong> rescue operations, the charcoal heater therefore<br />

has the advantage <strong>of</strong> susta<strong>in</strong>ed heat production.<br />

Water bags are <strong>of</strong>ten available dur<strong>in</strong>g backcountry<br />

excursions or expeditions <strong>and</strong> do not take extra space<br />

or effort to transport. Although it is certa<strong>in</strong>ly possible<br />

<strong>and</strong> realistic for one person to reheat 4 liters <strong>of</strong> water<br />

every 20 m<strong>in</strong>utes as <strong>in</strong> this study, an external heat<br />

source <strong>and</strong> significant effort are required for replenish<strong>in</strong>g<br />

the water bags. They would therefore be more appropriate<br />

for scenarios <strong>in</strong> which the patient will rema<strong>in</strong><br />

on the scene <strong>of</strong> the accident, wait<strong>in</strong>g for evacuation.<br />

Chemical heat<strong>in</strong>g pads are somewhat heavier <strong>and</strong><br />

take up more space than the other modalities but can<br />

easily be transported <strong>in</strong> a vehicle such as <strong>in</strong> ground<br />

or air ambulance units. Be<strong>in</strong>g effective <strong>in</strong> revers<strong>in</strong>g the<br />

<strong>in</strong>itial fall <strong>in</strong> body core temperature, chemical heat<strong>in</strong>g<br />

pads might prove valuable for <strong>in</strong>itial thermal stabilization<br />

<strong>of</strong> a cold victim. However, s<strong>in</strong>ce the energy content<br />

is limited, for cont<strong>in</strong>uous heat delivery we would<br />

recommend that the chemical heat<strong>in</strong>g pads be replaced<br />

about every 30 m<strong>in</strong>utes.<br />

Limitations<br />

In order to limit the amount <strong>of</strong> meperid<strong>in</strong>e necessary<br />

to <strong>in</strong>hibit shiver<strong>in</strong>g, we had to try to expose the subjects<br />

to the same relative cold stress depend<strong>in</strong>g on their<br />

physical constitution, <strong>and</strong>, therefore, based on experiences<br />

from prior pilot studies, immersion times differ<br />

between the subjects. However, s<strong>in</strong>ce each subject<br />

served as his or her own control <strong>and</strong> immersion times<br />

were exactly the same for each subject for all the warm<strong>in</strong>g<br />

modalities, this should not have any impact on our<br />

data.<br />

CONCLUSIONS<br />

In nonshiver<strong>in</strong>g hypothermic subjects, all warm<strong>in</strong>g<br />

modalities significantly reduced the time to revers<strong>in</strong>g<br />

<strong>of</strong> core cool<strong>in</strong>g. Greater sources <strong>of</strong> external heat,<br />

such as chemical heat<strong>in</strong>g pads or hot-water bags, were<br />

effective <strong>in</strong> attenuat<strong>in</strong>g the amount <strong>of</strong> core temperature<br />

afterdrop, whereas susta<strong>in</strong>ed sources <strong>of</strong> external<br />

heat, such as hot-water bags or the charcoal heater,


378 PREHOSPITAL EMERGENCY CARE JULY/SEPTEMBER 2009 VOLUME 13 / NUMBER 3<br />

effectively established steady, efficient core rewarm<strong>in</strong>g.<br />

Depend<strong>in</strong>g on scenario <strong>and</strong> available resources,<br />

these promis<strong>in</strong>g results support the recommendation<br />

to use charcoal heaters, hot-water bags, or chemical<br />

heat<strong>in</strong>g pads as effective means for treat<strong>in</strong>g cold patients<br />

<strong>in</strong> the field or dur<strong>in</strong>g transport to def<strong>in</strong>itive care.<br />

References<br />

1. Mills WJ. Field care <strong>of</strong> the hypothermic patient. Int J Sports Med.<br />

1992;13:199–202.<br />

2. Giesbrecht GG. Cold stress, near drown<strong>in</strong>g <strong>and</strong> accidental <strong>hypothermia</strong>:<br />

a review. Aviat Space Environ Med. 2000;71:733–52.<br />

3. Giesbrecht GG. Emergency <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong>. Emerg<br />

Med. 2001;13:9–16.<br />

4. Durrer B, Brugger H, Syme D. The medical on site <strong>treatment</strong><br />

<strong>of</strong> <strong>hypothermia</strong>. In: Elsensohn F (ed). Consensus Guidel<strong>in</strong>es<br />

on Mounta<strong>in</strong> Emergency Medic<strong>in</strong>e <strong>and</strong> Risk Reduction, 1st ed.<br />

Italy: Casa Editrice Stefanoni ICAR MEDCOM, UIAA MED-<br />

COM, 2001, pp 71–5.<br />

5. Danzl DF. Accidental <strong>hypothermia</strong>. In: Auerbach PS (ed).<br />

Wilderness Medic<strong>in</strong>e, 4th ed. St. Louis, MO: Mosby, 2001, pp<br />

135–77.<br />

6. Hypothermia. Cold Injuries <strong>and</strong> Cold Water Near Drown<strong>in</strong>g.<br />

2nd revised ed. Stockholm, Sweden: National Board <strong>of</strong> Health<br />

<strong>and</strong> Welfare, 2002.<br />

7. State <strong>of</strong> Alaska Cold Injuries Guidel<strong>in</strong>es. Juneau, AK: Department<br />

<strong>of</strong> Health <strong>and</strong> Social Services, 2005. Available at: http://<br />

www.chems.alaskagov/EMS/documents/AKCold<strong>in</strong>j2005.pdf.<br />

Accessed May 12, 2009.<br />

8. Giesbrecht GG, Bristow GK, U<strong>in</strong> A, Ready AE, Jones RA. Effectiveness<br />

<strong>of</strong> three field <strong>treatment</strong>s for <strong>in</strong>duced mild (33.0 ◦ C) <strong>hypothermia</strong>.<br />

J Appl Physiol. 1987;63:2375–9.<br />

9. Giesbrecht GG, Sessler DI, Mekjavic IB, Schroeder M, Bristow<br />

GK. Treatment <strong>of</strong> mild immersion <strong>hypothermia</strong> by direct bodyto-body<br />

contact. J Appl Physiol. 1994;76:2373–9.<br />

10. Giesbrecht GG, Schroeder M, Bristow GK. Treatment <strong>of</strong> mild immersion<br />

<strong>hypothermia</strong> by forced-air warm<strong>in</strong>g. Aviat Space Environ<br />

Med. 1994;65:803–8.<br />

11. Harnett RM, O’Brien EM, Sias FR, Pruitt JR. Initial <strong>treatment</strong><br />

<strong>of</strong> pr<strong>of</strong>ound accidental <strong>hypothermia</strong>. Aviat Space Environ Med.<br />

1980;51:680–7.<br />

12. Collis ML, Ste<strong>in</strong>man AM, Chaney RD. Accidental <strong>hypothermia</strong>:<br />

an experimental study <strong>of</strong> practical rewarm<strong>in</strong>g methods. Aviat<br />

Space Environ Med. 1977;48:625–32.<br />

13. Sterba JA. Efficacy <strong>and</strong> safety <strong>of</strong> prehospital rewarm<strong>in</strong>g techniques<br />

to treat accidental <strong>hypothermia</strong>. Ann Emerg Med.<br />

1991;20:896–901.<br />

14. Giesbrecht GG, Goheen MS, Johnston CE, Kenny GP, Bristow<br />

GK, Hayward JS. Inhibition <strong>of</strong> shiver<strong>in</strong>g <strong>in</strong>creases core temperature<br />

afterdrop <strong>and</strong> attenuates rewarm<strong>in</strong>g <strong>in</strong> hypothermic humans.<br />

J Appl Physiol. 1997;83:1630–4.<br />

15. Goheen MS, Ducharme MB, Kenny GP, et al. Efficacy<br />

<strong>of</strong> forced-air <strong>and</strong> <strong>in</strong>halation rewarm<strong>in</strong>g us<strong>in</strong>g a human<br />

model for severe <strong>hypothermia</strong>. J Appl Physiol. 1997;83:1635–<br />

40.<br />

16. Hultzer M, Xu X, Marrao C, Bristow GK, Choch<strong>in</strong>ov A, Giesbrecht<br />

GG. Pre-hospital torso-warm<strong>in</strong>g modalities for severe <strong>hypothermia</strong>:<br />

a comparative study us<strong>in</strong>g a human model. Can J<br />

Emerg Med. 2005;7:378–86.<br />

17. Hamilton RS, Paton BC. The diagnosis <strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong><br />

by mounta<strong>in</strong> rescue teams: a survey. Wilderness Environ<br />

Med. 1996;7:28–37.<br />

18. Forgey WW (ed). Wilderness Medical Society Practice Guidel<strong>in</strong>es<br />

for Wilderness Emergency Care. Merillville, IN: ICS Books,<br />

Inc., 1995.<br />

19. Durn<strong>in</strong> JVGA, Womersley J. Body fat assessed from total density<br />

<strong>and</strong> its estimation from sk<strong>in</strong>fold thickness: measurements<br />

on 481 men <strong>and</strong> women aged from 16 to 72 years. Br J Nutr.<br />

1974;32(1):77–97.<br />

20. Dubois D, Dubois E. A formula to estimate the approximate<br />

surface area if height <strong>and</strong> weight are known. Arch Intern Med.<br />

1916;17:863–71.<br />

21. McArdle WD, Katch FI, Katch VL. Exercise Physiology, Energy,<br />

Nutrition, <strong>and</strong> Human Performance. Philadelphia, PA: Williams<br />

<strong>and</strong> Wilk<strong>in</strong>s, 1996.<br />

22. Cooper KE, Ferres HM, Kenyon JR, Wendt F. A comparison<br />

<strong>of</strong> oesophageal, rectal <strong>and</strong> para-aortic temperatures dur<strong>in</strong>g <strong>hypothermia</strong><br />

<strong>in</strong> man. Br J Surg. 1957;44:616–9.<br />

23. Hayward JS, Eckerson JD, Kemna D. Thermal <strong>and</strong> cardiovascular<br />

changes dur<strong>in</strong>g three methods <strong>of</strong> resuscitation from mild <strong>hypothermia</strong>.<br />

Resuscitation. 1984;11:21–33.<br />

24. Layton RP, M<strong>in</strong>ts WH Jr, Annis JF, Rack MJ, Webb P. Calorimetry<br />

with heat flux transducers: comparison with a suit calorimeter. J<br />

Appl Physiol. 1983;54:1361–7.<br />

25. Henriques FC, Moritz AR. Studies <strong>of</strong> thermal <strong>in</strong>jury: I. The conduction<br />

<strong>of</strong> heat to <strong>and</strong> through sk<strong>in</strong> <strong>and</strong> the temperatures atta<strong>in</strong>ed<br />

there<strong>in</strong>. A theoretical <strong>and</strong> an experimental <strong>in</strong>vestigation.<br />

Am J Pathol. 1947;23:531–5.<br />

26. Wang HE, Callaway CW, Peitzman AB, Tisherman SA. Admission<br />

<strong>hypothermia</strong> <strong>and</strong> outcome after major trauma. Crit Care<br />

Med. 2005;33:1296–301.<br />

27. Shafi S, Elliott AC, Gentilello L. Is <strong>hypothermia</strong> simply a marker<br />

<strong>of</strong> shock <strong>and</strong> <strong>in</strong>jury severity or an <strong>in</strong>dependent risk factor for<br />

mortality <strong>in</strong> trauma patients? Analysis <strong>of</strong> a large national trauma<br />

registry. J Trauma. 2005;59:1081–5.<br />

28. Gentilello LM, Jurkovich GJ, Stark MS, Hassantash SA, O’Keefe<br />

GE. Is <strong>hypothermia</strong> <strong>in</strong> the victim <strong>of</strong> major trauma protective or<br />

harmful? A r<strong>and</strong>omized, prospective study. Ann Surg. 1997;226:<br />

439-47; discussion 447–9.<br />

29. WattsDD,TraskA,SoekenK,PerdueP,DolsS,KaufmannC.<br />

Hypothermic coagulopathy <strong>in</strong> trauma: effect <strong>of</strong> vary<strong>in</strong>g levels<br />

<strong>of</strong> <strong>hypothermia</strong> on enzyme speed, platelet function, <strong>and</strong> fibr<strong>in</strong>olytic<br />

activity. J Trauma. 1998;44:846–854.<br />

30. Watts DD, Roche M, Tricarico R, et al. The utility <strong>of</strong> traditional<br />

prehospital <strong>in</strong>terventions <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g thermostasis. Prehosp<br />

Emerg Care. 1999;3:115–22.<br />

31. Tisherman SA. Hypothermia <strong>and</strong> <strong>in</strong>jury. Curr Op<strong>in</strong> Crit Care.<br />

2004;10:512–9.


Lundgren et al. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation <strong>and</strong> Emergency Medic<strong>in</strong>e 2011, 19:59<br />

http://www.sjtrem.com/content/19/1/59<br />

ORIGINAL RESEARCH Open Access<br />

The effect <strong>of</strong> active warm<strong>in</strong>g <strong>in</strong> prehospital<br />

trauma care dur<strong>in</strong>g road <strong>and</strong> air ambulance<br />

transportation - a cl<strong>in</strong>ical r<strong>and</strong>omized trial<br />

Peter Lundgren * , Otto Henriksson, Peter Naredi <strong>and</strong> Ulf Björnstig<br />

Abstract<br />

Background: Prevention <strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong> by active warm<strong>in</strong>g <strong>in</strong> prehospital trauma care is<br />

recommended but scientifical evidence <strong>of</strong> its effectiveness <strong>in</strong> a cl<strong>in</strong>ical sett<strong>in</strong>g is scarce. The objective <strong>of</strong> this study<br />

was to evaluate the effect <strong>of</strong> additional active warm<strong>in</strong>g dur<strong>in</strong>g road or air ambulance transportation <strong>of</strong> trauma<br />

patients.<br />

Methods: Patients were assigned to either passive warm<strong>in</strong>g with blankets or passive warm<strong>in</strong>g with blankets with<br />

the addition <strong>of</strong> an active warm<strong>in</strong>g <strong>in</strong>tervention us<strong>in</strong>g a large chemical heat pad applied to the upper torso. Ear<br />

canal temperature, subjective sensation <strong>of</strong> cold discomfort <strong>and</strong> vital signs were monitored.<br />

Results: Mean core temperatures <strong>in</strong>creased from 35.1°C (95% CI; 34.7-35.5°C) to 36.0°C (95% CI; 35.7-36.3°C) (p <<br />

0.05) <strong>in</strong> patients assigned to passive warm<strong>in</strong>g only (n = 22) <strong>and</strong> from 35.6°C (95% CI; 35.2-36.0°C) to 36.4°C (95% CI;<br />

36.1-36.7°C) (p < 0.05) <strong>in</strong> patients assigned to additional active warm<strong>in</strong>g (n = 26) with no significant differences<br />

between the groups. Cold discomfort decreased <strong>in</strong> 2/3 <strong>of</strong> patients assigned to passive warm<strong>in</strong>g only <strong>and</strong> <strong>in</strong> all<br />

patients assigned to additional active warm<strong>in</strong>g, the difference <strong>in</strong> cold discomfort change be<strong>in</strong>g statistically<br />

significant (p < 0.05). Patients assigned to additional active warm<strong>in</strong>g also presented a statistically significant<br />

decrease <strong>in</strong> heart rate <strong>and</strong> respiratory frequency (p < 0.05).<br />

Conclusions: In mildly hypothermic trauma patients, with preserved shiver<strong>in</strong>g capacity, adequate passive warm<strong>in</strong>g<br />

is an effective <strong>treatment</strong> to establish a slow rewarm<strong>in</strong>g rate <strong>and</strong> to reduce cold discomfort dur<strong>in</strong>g prehospital<br />

transportation. However, the addition <strong>of</strong> active warm<strong>in</strong>g us<strong>in</strong>g a chemical heat pad applied to the torso will<br />

significantly improve thermal comfort even further <strong>and</strong> might also reduce the cold <strong>in</strong>duced stress response.<br />

Trial Registration: Cl<strong>in</strong>icalTrials.gov: NCT01400152<br />

Keywords: <strong>hypothermia</strong>, body temperature regulation, thermal comfort, active warm<strong>in</strong>g, passive warm<strong>in</strong>g, prehospital<br />

trauma care, emergency medical services (EMS)<br />

Background<br />

In a cold, wet or w<strong>in</strong>dy environment, an <strong>in</strong>jured or ill person<br />

is <strong>of</strong>ten exposed to a considerable cold stress. Heat<br />

loss is <strong>of</strong>ten aggravated due to exhaustion, light, torn or<br />

wet cloth<strong>in</strong>g, major bleed<strong>in</strong>g, entrapment or the adm<strong>in</strong>istration<br />

<strong>of</strong> cold <strong>in</strong>travenous fluids or sedative drugs <strong>and</strong><br />

admission <strong>hypothermia</strong> is an <strong>in</strong>dependent risk factor associated<br />

with worse outcome <strong>and</strong> higher mortality <strong>in</strong> trauma<br />

patients [1-6]. The cold <strong>in</strong>duced stress response will also<br />

* Correspondence: peter.lundgren@surgery.umu.se<br />

Division <strong>of</strong> Surgery, Department <strong>of</strong> Surgery <strong>and</strong> Perioperative Sciences,<br />

<strong>Umeå</strong> University, Sweden<br />

render great thermal discomfort which might <strong>in</strong>crease the<br />

experience <strong>of</strong> pa<strong>in</strong> <strong>and</strong> anxiety, even <strong>in</strong> still normothermic<br />

patients [7]. Thus, <strong>in</strong> addition to immediate care for life<br />

threaten<strong>in</strong>g conditions, actions to reduce cold exposure<br />

<strong>and</strong> prevent further heat loss is an important <strong>and</strong> <strong>in</strong>tegrated<br />

part <strong>of</strong> prehospital primary care. Initial measures<br />

should be taken to get the patient <strong>in</strong>to shelter, remove wet<br />

cloth<strong>in</strong>g <strong>and</strong> <strong>in</strong>sulate the patient from ambient weather<br />

conditions <strong>and</strong> ground chill with<strong>in</strong> adequate w<strong>in</strong>d- <strong>and</strong><br />

waterpro<strong>of</strong> <strong>in</strong>sulation ensembles (passive warm<strong>in</strong>g). In<br />

addition, depend<strong>in</strong>g on the victim’s physiological status,<br />

body core temperature, available resources <strong>and</strong> expected<br />

© 2011 Lundgren et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms <strong>of</strong> the Creative<br />

Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, <strong>and</strong><br />

reproduction <strong>in</strong> any medium, provided the orig<strong>in</strong>al work is properly cited.


Lundgren et al. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation <strong>and</strong> Emergency Medic<strong>in</strong>e 2011, 19:59<br />

http://www.sjtrem.com/content/19/1/59<br />

duration <strong>of</strong> evacuation, the application <strong>of</strong> external heat<br />

(active warm<strong>in</strong>g) is <strong>in</strong> most guidel<strong>in</strong>es recommended to be<br />

considered to aid <strong>in</strong> protection from further cool<strong>in</strong>g dur<strong>in</strong>g<br />

evacuation <strong>and</strong> transport to def<strong>in</strong>itive care [8-12].<br />

Several studies on mildly hypothermic (body core temperature,<br />

Tco = 32-35°C) shiver<strong>in</strong>g subjects have found<br />

that exogenous sk<strong>in</strong> heat<strong>in</strong>g attenuates shiver<strong>in</strong>g heat<br />

production by an amount equivalent to the heat donated<br />

[13-15]. Thus, <strong>in</strong> a mildly hypothermic shiver<strong>in</strong>g victim,<br />

external warm<strong>in</strong>g generally does not decrease afterdrop<br />

or <strong>in</strong>crease rewarm<strong>in</strong>g rate, however it might provide<br />

other advantages <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>creased comfort, decreased<br />

cardiac work <strong>and</strong> preserved substrate availability. When<br />

shiver<strong>in</strong>g is dim<strong>in</strong>ished or absent, as <strong>in</strong> moderate (Tco =<br />

28-32°C) to severe (T co < 28°C) <strong>hypothermia</strong> or otherwise<br />

impaired due to the overall medical condition <strong>of</strong> the<br />

patient (i.e. old age, alcohol or drug <strong>in</strong>gestion, head or<br />

sp<strong>in</strong>al <strong>in</strong>jury, severe trauma or depleted metabolic energy<br />

substrates) some form <strong>of</strong> exogenous external or <strong>in</strong>ternal<br />

heat is required, otherwise afterdrop will cont<strong>in</strong>ue <strong>and</strong><br />

little or no rewarm<strong>in</strong>g will occur [16,17].<br />

Accord<strong>in</strong>gly, effective prehospital field <strong>treatment</strong> <strong>of</strong><br />

patients exposed to cold stress is considered <strong>of</strong> utmost<br />

importance to improve the medical condition on admission<br />

to the emergency room <strong>and</strong> active warm<strong>in</strong>g already<br />

<strong>in</strong> the field is considered one important part <strong>of</strong> such<br />

<strong>treatment</strong>. S<strong>in</strong>ce the warm<strong>in</strong>g modalities need to be portable<br />

<strong>and</strong> easily h<strong>and</strong>led by Search <strong>and</strong> Rescue (SAR) or<br />

Emergency Medical Services (EMS) personnel there are<br />

limited <strong>treatment</strong> options <strong>in</strong> the field or dur<strong>in</strong>g transport<br />

to def<strong>in</strong>itive care. Chemical heat pads, hot water bottles,<br />

plumbed water filled blankets, charcoal fueled heat pacs,<br />

forced air warm<strong>in</strong>g <strong>and</strong> resistive heat<strong>in</strong>g devices are commonly<br />

used <strong>and</strong> advised [8-12], but the lack <strong>of</strong> studies <strong>in</strong><br />

field conditions is noticed [18] <strong>and</strong> to the authors’ knowledge,<br />

only two r<strong>and</strong>omized cl<strong>in</strong>ical trials have evaluated<br />

the effectiveness <strong>of</strong> such modalities <strong>in</strong> the field [19,20].<br />

We therefore decided to evaluate the effect <strong>of</strong> an active<br />

warm<strong>in</strong>g <strong>in</strong>tervention on cold stressed trauma patients<br />

us<strong>in</strong>g chemical heat pads, previously evaluated <strong>in</strong> a laboratory<br />

study [17], as one possible field applicable warm<strong>in</strong>g<br />

device dur<strong>in</strong>g road or air ambulance transportation <strong>of</strong><br />

trauma patients. Primary outcome measures were body<br />

core temperature, cold discomfort <strong>and</strong> vital signs.<br />

Methods<br />

Design <strong>and</strong> sett<strong>in</strong>gs<br />

The study was designed as a r<strong>and</strong>omized, cl<strong>in</strong>ical trial <strong>of</strong><br />

prehospital active warm<strong>in</strong>g <strong>in</strong>tervention for trauma<br />

patients, where enrolled patients were assigned to either<br />

passive warm<strong>in</strong>g with blankets (rout<strong>in</strong>e care) or passive<br />

warm<strong>in</strong>g with blankets with the addition <strong>of</strong> an active<br />

warm<strong>in</strong>g <strong>in</strong>tervention us<strong>in</strong>g a large chemical heat pad<br />

applied to the upper torso. Ethical approval was obta<strong>in</strong>ed<br />

Page 2 <strong>of</strong> 7<br />

from the Regional Ethical Review Board at <strong>Umeå</strong> University.<br />

The study was conducted from December 2007 until<br />

May 2010. Fourteen road ambulance units <strong>and</strong> one helicopter<br />

unit, serv<strong>in</strong>g a primarily suburban area <strong>in</strong> the<br />

northern parts <strong>of</strong> Sweden with about 125 000 <strong>in</strong>habitants,<br />

were selected for the study. After given both written <strong>and</strong><br />

verbal <strong>in</strong>structions, the participat<strong>in</strong>g EMS personnel carried<br />

out the study as a part <strong>of</strong> their normal duty, without<br />

<strong>in</strong>terference by the <strong>in</strong>vestigators.<br />

Population<br />

Subjects were sequential trauma patients, age ≥ 18 years,<br />

who had susta<strong>in</strong>ed an <strong>in</strong>jury outdoors <strong>and</strong> were transported<br />

by one <strong>of</strong> the participat<strong>in</strong>g EMS units. Patients<br />

were excluded if <strong>in</strong>itial level <strong>of</strong> consciousness was affected,<br />

(Glasgow Coma Scale < 15), or if duration <strong>of</strong> transportation<br />

was expected to be shorter than 10 m<strong>in</strong>utes. As the<br />

aim <strong>of</strong> the study was to <strong>in</strong>vestigate the effect <strong>of</strong> active<br />

warm<strong>in</strong>g <strong>in</strong>tervention <strong>in</strong> cold stressed patients, those<br />

patients who had already received active warm<strong>in</strong>g or had<br />

been taken <strong>in</strong>doors for more than 10 m<strong>in</strong>utes before EMS<br />

unit arrival or had an <strong>in</strong>itial cold discomfort rat<strong>in</strong>g ≤ 2<br />

were also excluded.<br />

Protocol<br />

At the scene <strong>of</strong> <strong>in</strong>jury event, all patients <strong>in</strong>itially received<br />

rout<strong>in</strong>e trauma care, <strong>in</strong>clud<strong>in</strong>g passive warm<strong>in</strong>g with<br />

blankets. After load<strong>in</strong>g <strong>in</strong>to the ambulance or helicopter,<br />

<strong>in</strong>formed consent to be part <strong>of</strong> the study was obta<strong>in</strong>ed.<br />

Enrolled patients then were selected for either passive<br />

warm<strong>in</strong>g or passive warm<strong>in</strong>g with the addition <strong>of</strong> active<br />

warm<strong>in</strong>g by open<strong>in</strong>g <strong>of</strong> sequentially numbered <strong>and</strong> sealed<br />

envelopes conta<strong>in</strong><strong>in</strong>g r<strong>and</strong>omized study protocols. A<br />

tympanic sensor was placed <strong>in</strong> the patient’s ear canal <strong>and</strong><br />

the outer ear sealed with a s<strong>of</strong>t <strong>in</strong>sulation cover. After<br />

5 m<strong>in</strong>utes an <strong>in</strong>itial record<strong>in</strong>g <strong>of</strong> ear canal temperature,<br />

cold discomfort, heart rate, blood pressure <strong>and</strong> respiratory<br />

rate, was obta<strong>in</strong>ed before active warm<strong>in</strong>g was begun<br />

if assigned. Apart from air temperature set to 25°C <strong>in</strong> the<br />

transportation unit, no other regulations were appo<strong>in</strong>ted.<br />

The number <strong>of</strong> blankets applied <strong>and</strong> specific care, such<br />

as immobilization or <strong>in</strong>travenous fluids <strong>and</strong> medications<br />

were provided accord<strong>in</strong>g to st<strong>and</strong>ard trauma protocols.<br />

Repeated record<strong>in</strong>gs <strong>of</strong> ear canal temperature, cold discomfort<br />

<strong>and</strong> vital signs were obta<strong>in</strong>ed every 30 m<strong>in</strong>utes<br />

<strong>and</strong> upon arrival to the receiv<strong>in</strong>g hospital or health care<br />

center.<br />

Passive warm<strong>in</strong>g<br />

The participat<strong>in</strong>g ambulance units all had polyester blankets<br />

(200 × 135 × 0.4 cm, 1.200 g, 2.4 clo), woollen blankets<br />

(190 × 135 × 0.5 cm, 1.900 g, 2.7 clo) <strong>and</strong> one rescue<br />

blanket (nylon outer with synthetic fill<strong>in</strong>g <strong>and</strong> cotton<br />

<strong>in</strong>ner, 275 × 125 × 0.7 cm, 2.300 g, 3.6 clo) as part <strong>of</strong>


Lundgren et al. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation <strong>and</strong> Emergency Medic<strong>in</strong>e 2011, 19:59<br />

http://www.sjtrem.com/content/19/1/59<br />

their st<strong>and</strong>ard equipment. The type <strong>and</strong> number <strong>of</strong> blankets<br />

applied <strong>in</strong> each case were selected accord<strong>in</strong>g to the<br />

EMS crew judgement without any regulations by the<br />

<strong>in</strong>vestigators. For comparative reasons the polyester blanket<br />

was accounted for as 1.0 blanket whereas the woollen<br />

blanket was accounted for as 1.1 blankets <strong>and</strong> the rescue<br />

blanket was accounted for as 1.5 blankets depend<strong>in</strong>g on<br />

their thermal <strong>in</strong>sulation value (clo) determ<strong>in</strong>ed accord<strong>in</strong>g<br />

to European St<strong>and</strong>ard for assess<strong>in</strong>g requirements <strong>of</strong><br />

sleep<strong>in</strong>g bags [21].<br />

Active warm<strong>in</strong>g <strong>in</strong>tervention<br />

A chemical heat pad (Dorcas AB, Skattkärr, Sweden), was<br />

selected as the active warm<strong>in</strong>g device. In a previous<br />

laboratory study this chemical heat pad, applied both to<br />

the anterior <strong>and</strong> posterior upper torso, was appreciated for<br />

its effectiveness <strong>in</strong> transferr<strong>in</strong>g heat to a cold person [17].<br />

To simplify for the EMS crew, <strong>in</strong> this study the chemical<br />

heat pad on the posterior upper torso was left out. After<br />

activation, the heat pad (42 × 25 × 2 cm), reach<strong>in</strong>g about<br />

50°C with<strong>in</strong> 2 m<strong>in</strong>utes, was applied across the anterior<br />

upper torso, leav<strong>in</strong>g only one layer <strong>of</strong> th<strong>in</strong> cloth<strong>in</strong>g<br />

between the heat pad <strong>and</strong> the sk<strong>in</strong>. If the cloth<strong>in</strong>g had to<br />

be removed to ga<strong>in</strong> necessary access to the patient, the<br />

heat pad was placed <strong>in</strong> an ord<strong>in</strong>ary pillow-case to prevent<br />

burns to the sk<strong>in</strong>. Follow<strong>in</strong>g the <strong>in</strong>itial chemical reaction,<br />

the surface temperature <strong>of</strong> the heat pad gradually decl<strong>in</strong>es<br />

[17]. To ma<strong>in</strong>ta<strong>in</strong> effective heat transfer dur<strong>in</strong>g longer<br />

transportations, the heat pad was thus replaced every 30<br />

m<strong>in</strong>utes.<br />

Monitor<strong>in</strong>g<br />

A closed ear canal temperature sensor (Smiths Medical,<br />

Ltd., UK) was selected to monitor core temperature<br />

changes (± 0.2°C) dur<strong>in</strong>g transportation. Ear canal temperature<br />

has been shown to correlate well with oesophageal<br />

temperature [22,23]. If properly sealed from the<br />

ambient air, closed ear canal temperature is also reliable <strong>in</strong><br />

subzero <strong>and</strong> w<strong>in</strong>d conditions [22] <strong>and</strong> thus considered the<br />

most accurate non <strong>in</strong>vasive method <strong>of</strong> measur<strong>in</strong>g body<br />

core temperature <strong>in</strong> the field [10-12]. After visual <strong>in</strong>spection<br />

<strong>of</strong> the outer ear to rule out any <strong>in</strong>juries, the sensor<br />

was gently placed <strong>in</strong> the middle <strong>of</strong> the ear canal. In addition<br />

to the outer s<strong>of</strong>t cell foam cyl<strong>in</strong>der that conforms to<br />

the ear canal <strong>and</strong> seals out ambient air, a s<strong>of</strong>t <strong>in</strong>sulation<br />

cover was placed on the outer ear <strong>and</strong> secured with Velcro<br />

around the head. The ear canal sensor was then connected<br />

to a temperature monitor (Novamed, Inc., USA) <strong>and</strong> left<br />

<strong>in</strong> place dur<strong>in</strong>g the whole transportation.<br />

Cold discomfort was monitored us<strong>in</strong>g a numerical rat<strong>in</strong>g<br />

scale [24], whereby the subjects estimated their sensation<br />

<strong>of</strong> cold to the whole body, not specific body<br />

parts, provid<strong>in</strong>g values from 0 to 10, where 0 <strong>in</strong>dicated<br />

Page 3 <strong>of</strong> 7<br />

no sensation <strong>of</strong> cold <strong>and</strong> 10 <strong>in</strong>dicated unbearable sensation<br />

<strong>of</strong> cold.<br />

Vital signs were monitored us<strong>in</strong>g rout<strong>in</strong>e equipment <strong>and</strong><br />

data collection sheets were filled out dur<strong>in</strong>g transportation<br />

by the EMS personnel. In addition to ear canal temperature,<br />

vital signs, cold discomfort <strong>and</strong> overall satisfaction <strong>of</strong><br />

care, the follow<strong>in</strong>g <strong>in</strong>formation was recorded: time from<br />

<strong>in</strong>jury to EMS unit arrival, on-scene duration, transportation<br />

time, outdoor temperature, w<strong>in</strong>d speed, ambulance<br />

unit <strong>in</strong>door temperature, patient characteristics, cloth<strong>in</strong>g<br />

characteristics, the type <strong>and</strong> number <strong>of</strong> blankets applied,<br />

immobilization <strong>and</strong> the adm<strong>in</strong>istration <strong>of</strong> warm <strong>in</strong>travenous<br />

fluids <strong>and</strong> medications.<br />

Data analysis<br />

Accord<strong>in</strong>g to pre-study power calculations, with an estimated<br />

difference <strong>in</strong> core temperature <strong>of</strong> ≥ 0.5°C or cold<br />

discomfort rat<strong>in</strong>g <strong>of</strong> ≥ 2, an alpha <strong>of</strong> 0.05 <strong>and</strong> a power <strong>of</strong><br />

0.90, the m<strong>in</strong>imum number <strong>of</strong> patients required to<br />

achieve statistical significance was 21 <strong>in</strong> each group <strong>and</strong><br />

the study was ended after, with some marg<strong>in</strong>, a sufficient<br />

number <strong>of</strong> patients had successfully been enrolled.<br />

Groups were compared us<strong>in</strong>g Mann-Whitney U-test for<br />

<strong>in</strong>terval <strong>and</strong> ord<strong>in</strong>al data <strong>and</strong> Chi-2 or Fisher’s exact test<br />

for nom<strong>in</strong>al data, whereas pair wise related variable comparisons<br />

was made us<strong>in</strong>g the Wilcoxon Signed-Rank test.<br />

In addition, change <strong>in</strong> cold discomfort rat<strong>in</strong>g was characterized<br />

as <strong>in</strong>creased, unchanged or decreased <strong>and</strong> the difference<br />

between groups was analyzed us<strong>in</strong>g Fisher’s exact<br />

test. Statistical significance was def<strong>in</strong>ed as p < 0.05.<br />

Results<br />

Patient characteristics<br />

Fifty-one trauma patients were enrolled <strong>in</strong> the study. Of<br />

these, one patient wished to end the study prior to arrival<br />

to the receiv<strong>in</strong>g hospital <strong>and</strong> two were excluded because<br />

<strong>of</strong> breach <strong>of</strong> protocol (assigned <strong>in</strong>tervention was not<br />

given). Thus, a total <strong>of</strong> 48 patients, all subjected to blunt<br />

trauma, with a mean coded Revised Trauma Score (RTS)<br />

[25] <strong>of</strong> 7.83 (range 7.55 - 7.84), successfully completed the<br />

study, be<strong>in</strong>g r<strong>and</strong>omized to either passive warm<strong>in</strong>g with<br />

blankets (n = 22) or passive warm<strong>in</strong>g with blankets with<br />

the addition <strong>of</strong> active warm<strong>in</strong>g (n = 26). The <strong>in</strong>cluded<br />

patients were 19 male <strong>and</strong> 29 female <strong>and</strong> there were no<br />

significant differences between the two groups on morphometric<br />

or demographic characteristics (table 1).<br />

Environment<br />

The average ambient air temperature at the scene <strong>of</strong> accident<br />

was -4 ± 7°C (mean ± SD) <strong>and</strong> the average time<br />

from the <strong>in</strong>jury until the patient was loaded <strong>in</strong>to the EMS<br />

unit (cold exposure) was 73 ± 53 m<strong>in</strong>utes with no significant<br />

differences between the two groups. The mean


Lundgren et al. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation <strong>and</strong> Emergency Medic<strong>in</strong>e 2011, 19:59<br />

http://www.sjtrem.com/content/19/1/59<br />

Table 1 Patient characteristics <strong>and</strong> confound<strong>in</strong>g factors<br />

<strong>in</strong>terior unit temperature dur<strong>in</strong>g transport was 20 ± 3°C<br />

<strong>and</strong> the mean number <strong>of</strong> blankets applied was 2.5 ± 1.1<br />

with no significant differences between the two groups.<br />

There were also no significant differences between the<br />

two groups <strong>in</strong> distribution <strong>of</strong> cloth<strong>in</strong>g thickness or wetness,<br />

the extent <strong>of</strong> undress<strong>in</strong>g, the <strong>in</strong>cidence <strong>of</strong> whole<br />

body fixation, the amount <strong>of</strong> <strong>in</strong>travenous fluids transfused<br />

or the <strong>in</strong>cidence <strong>of</strong> <strong>in</strong>travenous opioids or sedatives<br />

adm<strong>in</strong>istered dur<strong>in</strong>g transport (table 1).<br />

Primary outcome<br />

The average transportation time to the receiv<strong>in</strong>g hospital<br />

or health care centre was 35 ± 26 m<strong>in</strong>utes (mean ± SD)<br />

with no significant differences between the two groups.<br />

Thus, at the second measurement, performed at an average<br />

<strong>of</strong> 26 ± 7 m<strong>in</strong>utes all 48 subjects were <strong>in</strong>cluded,<br />

whereas at the third measurement, performed at an average<strong>of</strong>58±5m<strong>in</strong>utesonly12subjectsrema<strong>in</strong>ed.The<br />

analysis <strong>of</strong> primary outcome variables was therefore term<strong>in</strong>ated<br />

after the second measurement.<br />

Mean <strong>in</strong>itial ear canal temperature was 35.1°C (95% CI;<br />

34.7 - 35.5°C) <strong>in</strong> patients assigned to passive warm<strong>in</strong>g<br />

only <strong>and</strong> 35.6°C (95% CI; 35.2 - 36.0°C) <strong>in</strong> those assigned<br />

to additional active warm<strong>in</strong>g with no significant differences<br />

between the two groups. At the second measurement,<br />

mean ear canal temperatures <strong>in</strong> both groups were<br />

significantly <strong>in</strong>creased to 36.0°C (95% CI; 35.7 - 36.3°C)<br />

Passive warm<strong>in</strong>g<br />

(n = 22)<br />

Active warm<strong>in</strong>g<br />

(n = 26)<br />

Page 4 <strong>of</strong> 7<br />

Patient characteristics<br />

Gender (male/female) 9/13 10/16<br />

Age (years) 45 (34 - 55) 43 (36 - 50)<br />

Body Mass Index<br />

Environment<br />

25.0 (22.8 - 27.3) 25.4 (23.6 - 27.3)<br />

Outdoor temperature (°C) -6 (-9 - -2) -3 (-6 - -1)<br />

Outdoor w<strong>in</strong>d speed (m/s) 2 (1 - 3) 2 (1 - 4)<br />

Interior unit temperature (°C) 20 (19 - 21) 20 (19 - 21)<br />

Cold exposure (m<strong>in</strong>) 64 (41 - 88) 81 (61 - 101)<br />

Time to 2 nd measurement (m<strong>in</strong>) 24 (21 - 28) 27 (24 - 29)<br />

Total transportation (m<strong>in</strong>) 33 (25 - 41) 37 (25 - 49)<br />

Cloth<strong>in</strong>g (light/medium/heavy) 5/6/9 4/9/13<br />

Cloth<strong>in</strong>g (dry/moist/wet)<br />

Treatment dur<strong>in</strong>g transport<br />

13/2/4 21/3/1<br />

No. <strong>of</strong> blankets 2.7 (2.2 - 3.2) 2.3 (1.9 - 2.7)<br />

Undress (none/partial/total) 12/8/2 14/10/1<br />

Whole body fixation (yes/no) 8/13 8/17<br />

Intravenous fluids (ml) 91 (31 - 151) 50 (0 - 107)<br />

Intravenous opioids (yes/no) 10/12 14/12<br />

Intravenous sedatives (yes/no) 2/20 5/21<br />

Values are mean (95% confidence <strong>in</strong>terval) or number <strong>of</strong> patients. The <strong>in</strong>ternal drop-out <strong>of</strong> any variable was ≤ 3 patients <strong>and</strong> there are no significant differences<br />

between groups (p < 0.05).<br />

<strong>and</strong> 36.4°C (95% CI; 36.1 - 36.7°C) respectively with no<br />

significant differences between the two groups (table 2).<br />

The <strong>in</strong>itial median cold discomfort rat<strong>in</strong>g <strong>in</strong> patients<br />

assigned to passive warm<strong>in</strong>g only was 5 (IQR; 4 - 7) <strong>and</strong><br />

the <strong>in</strong>itial median cold discomfort rat<strong>in</strong>g <strong>in</strong> patients<br />

assigned to passive warm<strong>in</strong>g with the addition <strong>of</strong> active<br />

warm<strong>in</strong>g was 7 (IQR; 5-8) with no significant differences<br />

between the two groups. At the second measurement,<br />

cold discomfort was significantly reduced <strong>in</strong> both groups.<br />

However, <strong>in</strong> the group assigned to passive warm<strong>in</strong>g only,<br />

15 out <strong>of</strong> 22 patients presented a decrease <strong>in</strong> cold discomfort,<br />

whereas <strong>in</strong> the group assigned to additional<br />

active warm<strong>in</strong>g all 26 patients presented a decrease <strong>in</strong><br />

cold discomfort rat<strong>in</strong>gs, the difference <strong>in</strong> cold discomfort<br />

change be<strong>in</strong>g statistically significant (table 2).<br />

There were no statistically significant differences <strong>in</strong><br />

<strong>in</strong>itial vital signs between the two groups. At the second<br />

measurement, the vital signs were statistically unchanged<br />

for the patients assigned to passive warm<strong>in</strong>g only, whereas<br />

patients assigned additional active warm<strong>in</strong>g presented a<br />

small but statistically significant reduction <strong>in</strong> mean heart<br />

rate <strong>and</strong> respiratory frequency (table 2).<br />

Discussion<br />

Overview<br />

This study evaluates the effectiveness <strong>of</strong> active warm<strong>in</strong>g<br />

<strong>in</strong> prehospital trauma care us<strong>in</strong>g a large chemical heat


Lundgren et al. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation <strong>and</strong> Emergency Medic<strong>in</strong>e 2011, 19:59<br />

http://www.sjtrem.com/content/19/1/59<br />

Table 2 Primary outcome<br />

Passive warm<strong>in</strong>g<br />

(n = 22)<br />

Active warm<strong>in</strong>g<br />

(n = 26)<br />

Body core temperature (°C) *<br />

1 st measurement 35.1 (34.7 - 35.5) 35.6 (35.2 - 36.0)<br />

2 nd measurement<br />

Cold discomfort **<br />

36.0 (35.7 - 36.3) † 36.4 (36.1 - 36.7) †<br />

1 st measurement 5 (4 - 7) 7 (5 - 8)<br />

2 nd measurement 3 (0 - 5) † 2(1-3)†<br />

↳ <strong>in</strong>creased 1 0<br />

↳ unchanged 5 0<br />

↳ decreased<br />

Vital signs *<br />

Heart rate<br />

15 26 ‡<br />

1 st measurement 83 (77 - 90) 84 (78 - 90)<br />

2 nd measurement<br />

Systolic blood pressure<br />

82 (76 - 87) 80 (75 - 86) †<br />

1 st measurement 138 (129 - 147) 136 (127 - 145)<br />

2 nd measurement<br />

Respiratory rate<br />

134 (124 - 143) 131 (124 - 139)<br />

1 st measurement 17 (16 - 19) 18 (16 - 20)<br />

2 nd measurement 17 (15 - 18) 16 (14 - 18) †<br />

Revised Trauma Score 7.84 (7.84 - 7.84) 7.83 (7.80 - 7.84)<br />

Values are * mean (95% confidence <strong>in</strong>terval) or ** median (<strong>in</strong>terquartile range)<br />

<strong>and</strong> number <strong>of</strong> patients. The <strong>in</strong>ternal drop-out <strong>of</strong> any variable was ≤ 2 patients.<br />

† Significant difference with<strong>in</strong> the same group (Mann-Whitney U-test, p < 0.05)<br />

‡ Significant difference between groups (Fisher’s exact test, p < 0.05)<br />

pad applied to the upper torso <strong>in</strong> addition to passive<br />

warm<strong>in</strong>g with blankets dur<strong>in</strong>g transportation to def<strong>in</strong>itive<br />

care. Over the first 30 m<strong>in</strong>utes <strong>of</strong> prehospital transportation,<br />

both patients receiv<strong>in</strong>g passive warm<strong>in</strong>g only<br />

<strong>and</strong> patients receiv<strong>in</strong>g passive warm<strong>in</strong>g with the addition<br />

<strong>of</strong> active warm<strong>in</strong>g presented a statistically significant<br />

<strong>in</strong>crease <strong>in</strong> body core temperature as well as improved<br />

cold discomfort. However, <strong>in</strong> the group assigned to passive<br />

warm<strong>in</strong>g only, 2/3 <strong>of</strong> the patients presented a<br />

decrease <strong>in</strong> cold discomfort, whereas all patients <strong>in</strong> the<br />

group assigned to additional active warm<strong>in</strong>g presented a<br />

decrease <strong>in</strong> cold discomfort rat<strong>in</strong>gs, the difference <strong>in</strong><br />

cold discomfort change be<strong>in</strong>g statistically significant.<br />

Possible mechanism for f<strong>in</strong>d<strong>in</strong>gs<br />

In previous laboratory studies on mildly hypothermic shiver<strong>in</strong>g<br />

subjects, exogenous sk<strong>in</strong> heat<strong>in</strong>g has been shown<br />

to attenuate shiver<strong>in</strong>g heat production by an amount<br />

equivalent to the heat donated [13-15]. Accord<strong>in</strong>gly, <strong>in</strong><br />

this study, enroll<strong>in</strong>g trauma patients with an <strong>in</strong>itial body<br />

core temperature <strong>of</strong> about 35°C <strong>and</strong> preserved shiver<strong>in</strong>g<br />

capacity, active warm<strong>in</strong>g had no additional effect on body<br />

core temperature compared to passive warm<strong>in</strong>g only. In<br />

contrast, two previous r<strong>and</strong>omized cl<strong>in</strong>ical trials found a<br />

decrease <strong>in</strong> body core temperature with passive warm<strong>in</strong>g<br />

only, whereas with additional active warm<strong>in</strong>g us<strong>in</strong>g either<br />

Page 5 <strong>of</strong> 7<br />

electrically heated blankets [19] or multiple chemical<br />

heat pads [20], body core temperature was <strong>in</strong>creased dur<strong>in</strong>g<br />

transportation. S<strong>in</strong>ce passive warm<strong>in</strong>g only as an adequate<br />

<strong>treatment</strong> alternative presupposes <strong>in</strong>tact shiver<strong>in</strong>g<br />

capacity <strong>and</strong> enough <strong>in</strong>sulation <strong>in</strong> relation to cold stress<br />

<strong>and</strong> ambient environmental conditions, differences<br />

regard<strong>in</strong>g these factors might expla<strong>in</strong> differences between<br />

studies.<br />

Although body core temperature was <strong>in</strong>creased, only 2/3<br />

<strong>of</strong> the patients assigned to passive warm<strong>in</strong>g only presented<br />

a decrease <strong>in</strong> cold discomfort whereas all patients assigned<br />

to additional active warm<strong>in</strong>g presented a decrease <strong>in</strong> cold<br />

discomfort dur<strong>in</strong>g transportation. This beneficial effect on<br />

thermal comfort by application <strong>of</strong> a chemical heat pad to<br />

the upper torso is probably expla<strong>in</strong>ed by a comb<strong>in</strong>ation <strong>of</strong><br />

reduction <strong>in</strong> shiver<strong>in</strong>g thermogenesis <strong>and</strong> <strong>in</strong>creased sk<strong>in</strong><br />

temperature. Although shiver<strong>in</strong>g was not monitored per<br />

se <strong>in</strong> this study, a reduction <strong>of</strong> the cold <strong>in</strong>duced stress<br />

response was <strong>in</strong>dicated by a small but statistically significant<br />

decrease <strong>in</strong> respiratory frequency <strong>and</strong> heart rate <strong>in</strong><br />

patients assigned to active warm<strong>in</strong>g, whereas patients<br />

assigned to passive warm<strong>in</strong>g presented no significant<br />

change <strong>in</strong> these parameters dur<strong>in</strong>g transportation.<br />

Practical implications<br />

Admission <strong>hypothermia</strong> is an <strong>in</strong>dependent risk factor associated<br />

with worse outcome <strong>in</strong> trauma patients <strong>and</strong> previous<br />

retrospective analysis <strong>of</strong> trauma registries as well as<br />

prospective cl<strong>in</strong>ical studies have reported significant<br />

changes <strong>in</strong> physiologic variables, such as <strong>in</strong>creased oxygen<br />

consumption, depletion <strong>of</strong> energy stores, disruption <strong>of</strong><br />

blood clott<strong>in</strong>g mechanisms, <strong>in</strong>creased fluid resuscitation<br />

requirements, immune suppression <strong>and</strong> development <strong>of</strong><br />

organ failure already at mild hypothermic states compared<br />

to normothermic trauma patients [1-6].<br />

Ow<strong>in</strong>g to peripheral vasoconstriction, the temperature<br />

<strong>in</strong> the periphery <strong>of</strong> the body starts to decl<strong>in</strong>e long before<br />

body core temperature is affected. After removal from the<br />

cold environment there is a temperature equalisation<br />

between the warm body core <strong>and</strong> the cold peripheral parts<br />

contribut<strong>in</strong>g to a cont<strong>in</strong>uous fall <strong>in</strong> body core temperature,<br />

designated the afterdrop phenomenon. The magnitude <strong>of</strong><br />

the afterdrop, which can be considerable <strong>and</strong> amount to<br />

several degrees, is dependent on temperature gradients <strong>in</strong><br />

the tissues, peripheral circulation <strong>and</strong> endogenous heat<br />

production. Thus, <strong>in</strong>itial measures <strong>in</strong> prehospital care <strong>of</strong><br />

cold stressed patients are aim<strong>in</strong>g at avoid<strong>in</strong>g further heat<br />

loss to the environment <strong>and</strong> reduc<strong>in</strong>g the amount <strong>and</strong><br />

duration <strong>of</strong> the afterdrop [8-12].<br />

Accord<strong>in</strong>g to this study on cold stressed trauma<br />

patients with an <strong>in</strong>itial body core temperature <strong>of</strong> about<br />

35°C <strong>and</strong> preserved shiver<strong>in</strong>g capacity, passive warm<strong>in</strong>g,<br />

if adequate, is an effective <strong>treatment</strong> to prevent afterdrop,<br />

establish a steady rewarm<strong>in</strong>g rate <strong>and</strong> reduce cold


Lundgren et al. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation <strong>and</strong> Emergency Medic<strong>in</strong>e 2011, 19:59<br />

http://www.sjtrem.com/content/19/1/59<br />

discomfort dur<strong>in</strong>g transportation to def<strong>in</strong>itive care. However,<br />

additional active warm<strong>in</strong>g had a beneficial effect <strong>in</strong><br />

improv<strong>in</strong>g thermal comfort <strong>and</strong> <strong>in</strong>dicated a small reduction<br />

<strong>of</strong> the cold <strong>in</strong>duced stress response. Even <strong>in</strong> these<br />

mild hypothermic states, active warm<strong>in</strong>g might be <strong>of</strong><br />

considerable cl<strong>in</strong>ical importance, especially <strong>in</strong> scenarios<br />

with dim<strong>in</strong>ished to absent shiver<strong>in</strong>g or <strong>in</strong>adequate passive<br />

warm<strong>in</strong>g. In a susta<strong>in</strong>ed cold outdoor environment, such<br />

as <strong>in</strong> prolonged extrications or <strong>in</strong> multiple casualty situations<br />

where available <strong>in</strong>sulation <strong>of</strong>ten is <strong>in</strong>adequate, shiver<strong>in</strong>g<br />

will then be ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> order to prevent<br />

afterdrop, thereby <strong>in</strong>creas<strong>in</strong>g respiratory <strong>and</strong> circulatory<br />

dem<strong>and</strong>s which might be detrimental for an already compromised<br />

patient. The application <strong>of</strong> external heat would<br />

therefore be even more important to reduce shiver<strong>in</strong>g<br />

stra<strong>in</strong>. Also, if shiver<strong>in</strong>g is dim<strong>in</strong>ished or absent due to<br />

moderate or severe <strong>hypothermia</strong> or due to the patient’s<br />

overall medical condition some form <strong>of</strong> exogenous heat<br />

is most likely required, otherwise afterdrop will cont<strong>in</strong>ue<br />

<strong>and</strong> little or no rewarm<strong>in</strong>g will occur [16,17]. Improved<br />

thermal comfort might also relieve the experience <strong>of</strong> pa<strong>in</strong><br />

<strong>and</strong> anxiety <strong>and</strong> contribute to the physiological wellbe<strong>in</strong>g<br />

<strong>of</strong> the patient dur<strong>in</strong>g prehospital care.<br />

Limitations<br />

In addition to body core temperature, subjective sensation<br />

<strong>of</strong> cold discomfort <strong>and</strong> vital signs, other parameters<br />

such as oxygen consumption (as a measure <strong>of</strong> shiver<strong>in</strong>g)<br />

<strong>and</strong> sk<strong>in</strong> temperature would have been important <strong>and</strong><br />

useful supplements as <strong>in</strong>dicators <strong>of</strong> cold stress.<br />

Further research<br />

The thermal effectiveness <strong>of</strong> active warm<strong>in</strong>g <strong>in</strong> prehospital<br />

trauma care has only been evaluated <strong>in</strong> a few previous<br />

cl<strong>in</strong>ical trials [19,20] <strong>and</strong> the results are diverg<strong>in</strong>g. Various<br />

degrees <strong>of</strong> <strong>in</strong>juries as well as different warm<strong>in</strong>g modalities<br />

<strong>and</strong> different amounts <strong>of</strong> passive warm<strong>in</strong>g might expla<strong>in</strong><br />

differences between the studies. All studies are also relatively<br />

small <strong>and</strong> <strong>in</strong>cluded patients suffer<strong>in</strong>g from not more<br />

than mild <strong>hypothermia</strong>. Thus, thermal effectiveness <strong>of</strong><br />

active warm<strong>in</strong>g <strong>in</strong> prehospital trauma care deserves further<br />

research, especially <strong>in</strong>clud<strong>in</strong>g more severely <strong>in</strong>jured<br />

patients suffer<strong>in</strong>g from moderate or severe <strong>hypothermia</strong>.<br />

Conclusion<br />

In mildly hypothermic trauma patients, with preserved<br />

shiver<strong>in</strong>g capacity, adequate passive warm<strong>in</strong>g is an effective<br />

<strong>treatment</strong> to establish a slow rewarm<strong>in</strong>g rate <strong>and</strong> to<br />

reduce cold discomfort dur<strong>in</strong>g prehospital transportation.<br />

However, the addition <strong>of</strong> active warm<strong>in</strong>g us<strong>in</strong>g a<br />

chemical heat pad applied to the torso will significantly<br />

improve thermal comfort even further <strong>and</strong> might also<br />

reduce the cold <strong>in</strong>duced stress response.<br />

Acknowledgements <strong>and</strong> Fund<strong>in</strong>g<br />

The study was supported by the National Board <strong>of</strong> Health <strong>and</strong> Welfare,<br />

Sweden.<br />

Authors’ contributions<br />

The authors contibuted <strong>in</strong> the follow<strong>in</strong>g way to the paper:<br />

PL: Design <strong>of</strong> the study, aquisition <strong>of</strong> data, analysis <strong>and</strong> <strong>in</strong>terpretation <strong>of</strong><br />

data <strong>and</strong> writ<strong>in</strong>g <strong>of</strong> the manuscript.<br />

OH: Design <strong>of</strong> the study, aquisition <strong>of</strong> data, analysis <strong>and</strong> <strong>in</strong>terpretation <strong>of</strong><br />

data <strong>and</strong> writ<strong>in</strong>g <strong>of</strong> the manuscript.<br />

PN: Interpretation <strong>of</strong> data <strong>and</strong> critically revis<strong>in</strong>g the manuscript.<br />

UB: Design <strong>of</strong> the study, <strong>in</strong>terpretation <strong>of</strong> data <strong>and</strong> critically revis<strong>in</strong>g the<br />

manuscript.<br />

All authors read <strong>and</strong> approved the f<strong>in</strong>al manuscript.<br />

Compet<strong>in</strong>g <strong>in</strong>terests<br />

The authors declare that they have no compet<strong>in</strong>g <strong>in</strong>terests.<br />

Received: 21 July 2011 Accepted: 21 October 2011<br />

Published: 21 October 2011<br />

Page 6 <strong>of</strong> 7<br />

References<br />

1. Irel<strong>and</strong> S, Endacott R, Cameron P, Fitzgerald M, Paul E: The <strong>in</strong>cidence <strong>and</strong><br />

significance <strong>of</strong> accidental <strong>hypothermia</strong> <strong>in</strong> major trauma - A prospective<br />

observational study. Resuscitation 2011, 82(3):300-306.<br />

2. Beilman GJ, Blondet JJ, Nelson TR, Nathens AB, Moore FA, Rhee P,<br />

Puyana JC, Moore EE, Cohn SM: Early <strong>hypothermia</strong> <strong>in</strong> severly <strong>in</strong>jured<br />

trauma patients is a significant risk factor for multiple organ dysfunction<br />

syndrome but not mortality. Ann Surg 2009, 249(5):845-50.<br />

3. Mart<strong>in</strong> RS, Kilgo PD, Miller PR, Hoth JJ, Meredith JW, Chang MC: Injury<br />

associated <strong>hypothermia</strong>: an analysis <strong>of</strong> the 2004 National Trauma Data<br />

Bank. Shock 2005, 24(2):114-8.<br />

4. Wang HE, Callaway CW, Peitzman AB, Tisherman SA: Admission<br />

<strong>hypothermia</strong> <strong>and</strong> outcome after major trauma. Critical Care Medic<strong>in</strong>e<br />

2005, 33(6):1296-301.<br />

5. Shafi S, Elliott AC, Gentilello L: Is <strong>hypothermia</strong> simply a marker <strong>of</strong> shock<br />

<strong>and</strong> <strong>in</strong>jury severity or an <strong>in</strong>dependent risk factor for mortality <strong>in</strong> trauma<br />

patients? Analysis <strong>of</strong> a large national trauma registry. Journal <strong>of</strong> Trauma-<br />

Injury Infection & Critical Care 2005, 59(5):1081-5.<br />

6. Gentilello LM, Jurkovich GJ, Stark MS, Hassantash SA, O’Keefe GE: Is<br />

<strong>hypothermia</strong> <strong>in</strong> the victim <strong>of</strong> major trauma protective or harmful? A<br />

r<strong>and</strong>omized, prospective study. Annals <strong>of</strong> Surgery 1997, 226(4):439-47,<br />

discussion 447-9.<br />

7. Rob<strong>in</strong>son S, Benton G: Warmed blankets: an <strong>in</strong>tervention to promote<br />

comfort to elderly hospitalized patients. Geriatric nurs<strong>in</strong>g 2002,<br />

23:320-323.<br />

8. Danzl DF: Accidental Hypothermia. In Wilderness medic<strong>in</strong>e.. 5 edition.<br />

Edited by: Auerbach P. Philadelphia. PA: Mosby Elsevier; 2007:125-159.<br />

9. Giesbrecht GG, editor: Hypothermia frostbite <strong>and</strong> other cold <strong>in</strong>juries<br />

prevention, survival, rescue <strong>and</strong> <strong>treatment</strong>. Seattle, WA: Mounta<strong>in</strong>eers<br />

Books;, 2 2006.<br />

10. Socialstyrelsen: Hypothermia: cold <strong>in</strong>juries <strong>and</strong> cold water near drown<strong>in</strong>g.<br />

Stockholm, Sverige: The National Board <strong>of</strong> Health <strong>and</strong> Welfare<br />

(Socialstyrelsen);, 2 2002.<br />

11. Durrer B, Brugger H, Syme D: The medical on site <strong>treatment</strong> <strong>of</strong><br />

<strong>hypothermia</strong>. In Consensus Guidel<strong>in</strong>es on Mounta<strong>in</strong> Emergency Medic<strong>in</strong>e <strong>and</strong><br />

Risk Reduction.. 1 edition. Edited by: Elsensohn F. Italy: Casa editrice<br />

stefanoni - lecco; 2001:71-75.<br />

12. State <strong>of</strong> Alaska cold <strong>in</strong>juries guidel<strong>in</strong>es: Alaska Emergency Medical<br />

Services Program, Department <strong>of</strong> Health <strong>and</strong> Social Services, Juneau.<br />

[http://www.chems.alaska.gov/EMS/documents/AKColdInj2005.pdf],<br />

Accessed 19 April 2011.<br />

13. Giesbrecht GG, Bristow GK, U<strong>in</strong> A, Ready AE, Jones RA: Effectiveness <strong>of</strong><br />

three field <strong>treatment</strong>s for <strong>in</strong>duced mild (33.0°c) <strong>hypothermia</strong>. J Appl<br />

Physiol 1987, 63:2375-79.<br />

14. Sterba JA: Efficacy <strong>and</strong> safety <strong>of</strong> prehospital rewarm<strong>in</strong>g techniques to<br />

treat accidental <strong>hypothermia</strong>. Ann Emerg Med 1991, 20:896-901.<br />

15. Giesbrecht GG, Sessler DI, Mekjavic IB, Schroeder M, Bristow GK: Treatment<br />

<strong>of</strong> mild immersion <strong>hypothermia</strong> by direct body-to-body contact. J Appl<br />

Physiol 1994, 76:2373-9.


Lundgren et al. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation <strong>and</strong> Emergency Medic<strong>in</strong>e 2011, 19:59<br />

http://www.sjtrem.com/content/19/1/59<br />

16. Giesbrecht GG, Goheen MS, Johnston CE, Kenny GP, Bristow GK,<br />

Hayward JS: Inhibition <strong>of</strong> shiver<strong>in</strong>g <strong>in</strong>creases core temperature afterdrop<br />

<strong>and</strong> attenuates rewarm<strong>in</strong>g <strong>in</strong> hypothermic humans. J Appl Physiol 1997,<br />

83:1630-4.<br />

17. Lundgren JP, Henriksson O, Pretorius T, Cahill F, Bristow G, Choch<strong>in</strong>ov A,<br />

Pretorius A, Bjornstig U, Giesbrecht GG: Field Torso Warm<strong>in</strong>g Modalities: A<br />

Comparative Study Us<strong>in</strong>g a Human Model. Prehosp Emerg Care 2009,<br />

3:371-378.<br />

18. Allen PB, Salyer SW, Dubick MA, Holcomb JB, Blackbourne LH: Prevent<strong>in</strong>g<br />

<strong>hypothermia</strong>: comparison <strong>of</strong> current devices used by the US Army <strong>in</strong> an<br />

<strong>in</strong> vitro warmed fluid model. J Trauma 2010, 69(Suppl 1):S154-61.<br />

19. Kober A: Effectiveness <strong>of</strong> resistive heat<strong>in</strong>g compared with passive<br />

warm<strong>in</strong>g <strong>in</strong> treat<strong>in</strong>g <strong>hypothermia</strong> associated with m<strong>in</strong>or trauma: a<br />

r<strong>and</strong>omized trial. Mayo Cl<strong>in</strong> Proc 2001, 76:369-375.<br />

20. Watts DD: The utility <strong>of</strong> traditional prehospital <strong>in</strong>terventions <strong>in</strong><br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g thermostasis. Prehosp Emerg Care 1999, 3:115-122.<br />

21. EN 13537: Requirements for sleep<strong>in</strong>g bags. Brussels: European Committee<br />

for St<strong>and</strong>ardization; 2002.<br />

22. Walpoth BH, Galdikas J, Leupi F, Muehlemann W, Schlaepfer P, Althaus U:<br />

Assesment <strong>of</strong> <strong>hypothermia</strong> with a new “tympanic” thermometer. J Cl<strong>in</strong><br />

Monit 1994, 10:91-96.<br />

23. Webb GE: Comparison <strong>of</strong> esophageal <strong>and</strong> tympanic temperature<br />

monitor<strong>in</strong>g dur<strong>in</strong>g cardiopulmonary bypass. Anesth Analg 1973,<br />

52(5):729-33.<br />

24. Parsons KC: Thermal comfort. In Human thermal environments: the effects <strong>of</strong><br />

hot, moderate, <strong>and</strong> cold environments on human health, comfort <strong>and</strong><br />

performance.. 2 edition. Edited by: Parsons KC. London, UK: Taylor<br />

2003:196-228.<br />

25. Champion HR, Sacco WJ, Copes WS, Gann DS, Gennarelli TA, Flanagan ME:<br />

A revision <strong>of</strong> the trauma score. J Trauma 1989, 29(5):623-9.<br />

doi:10.1186/1757-7241-19-59<br />

Cite this article as: Lundgren et al.: The effect <strong>of</strong> active warm<strong>in</strong>g <strong>in</strong><br />

prehospital trauma care dur<strong>in</strong>g road <strong>and</strong> air ambulance transportation -<br />

a cl<strong>in</strong>ical r<strong>and</strong>omized trial. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation<br />

<strong>and</strong> Emergency Medic<strong>in</strong>e 2011 19:59.<br />

Submit your next manuscript to BioMed Central<br />

<strong>and</strong> take full advantage <strong>of</strong>:<br />

• Convenient onl<strong>in</strong>e submission<br />

• Thorough peer review<br />

• No space constra<strong>in</strong>ts or color figure charges<br />

• Immediate publication on acceptance<br />

• Inclusion <strong>in</strong> PubMed, CAS, Scopus <strong>and</strong> Google Scholar<br />

• Research which is freely available for redistribution<br />

Submit your manuscript at<br />

www.biomedcentral.com/submit<br />

Page 7 <strong>of</strong> 7


III


The Effect <strong>of</strong> Active Warm<strong>in</strong>g on Cold Discomfort <strong>in</strong> Field Treatment <strong>of</strong><br />

Trauma Patients – a Cl<strong>in</strong>ical R<strong>and</strong>omized Trial<br />

Peter Lundgren MD; Otto Henriksson MD; Peter Naredi MD PhD; Ulf Björnstig MD PhD<br />

Division <strong>of</strong> Surgery, Department <strong>of</strong> Surgery <strong>and</strong> Perioperative Sciences,<br />

<strong>Umeå</strong> University, Sweden<br />

Runn<strong>in</strong>g head: Active External Warm<strong>in</strong>g <strong>in</strong> Field Trauma Care<br />

Correspond<strong>in</strong>g author: Dr. Peter Lundgren<br />

Division <strong>of</strong> Surgery,<br />

Department <strong>of</strong> Surgery <strong>and</strong> Perioperative Sciences<br />

SE-90185 <strong>Umeå</strong>, Sweden<br />

E-mail: peter.lundgren@surgery.umu.se<br />

Telephone: +46706678316<br />

Fax: +4690771755<br />

E-mail for all authors: peter.lundgren@surgery.umu.se<br />

Conflicts <strong>of</strong> Interest: None declared<br />

otto.henriksson@surgery.umu.se<br />

peter.naredi@surgery.umu.se<br />

ulf.bjornstig@surgery.umu.se<br />

Source <strong>of</strong> Fund<strong>in</strong>g: The National Board <strong>of</strong> Health <strong>and</strong> Welfare, Sweden<br />

Key words: <strong>hypothermia</strong>, prehospital trauma care, field <strong>treatment</strong>, emergency medical<br />

services (EMS), active warm<strong>in</strong>g, passive warm<strong>in</strong>g, thermal comfort<br />

<br />

<br />

1


Abstract<br />

Background: Adequate field <strong>treatment</strong> to reduce cold exposure is considered <strong>of</strong> vitally<br />

important to improve the medical condition <strong>of</strong> the trauma patientn upon admission to hospital,<br />

<strong>and</strong> the application <strong>of</strong> active warm<strong>in</strong>g <strong>in</strong> the field is considered an important part <strong>of</strong> such<br />

<strong>treatment</strong>.<br />

Objective: The objective <strong>of</strong> this study was to evaluate the effect <strong>of</strong> active warm<strong>in</strong>g<br />

<strong>in</strong>tervention on cold discomfort dur<strong>in</strong>g rescue <strong>and</strong> transport <strong>of</strong> patients with ski<strong>in</strong>g <strong>in</strong>juries <strong>in</strong><br />

a cold outdoor environment.<br />

Methods: Patients were assigned to either passive warm<strong>in</strong>g alone, or passive warm<strong>in</strong>g with<br />

the addition <strong>of</strong> active warm<strong>in</strong>g, us<strong>in</strong>g a large chemical heat pad applied to the anterior upper<br />

torso. Subjective sensation <strong>of</strong> cold discomfort was monitored at the scene <strong>of</strong> <strong>in</strong>jury event <strong>and</strong><br />

upon arrival to the reciev<strong>in</strong>g first aid center or EMS unit.<br />

Results: In patients assigned to passive warm<strong>in</strong>g alone (n = 9), <strong>in</strong>itial median cold<br />

discomfort, 5 (IQR; 2 – 5), rema<strong>in</strong>ed at the same level, 5 (IQR; 3 – 6), dur<strong>in</strong>g rescue <strong>and</strong><br />

transport, whereas <strong>in</strong> patients assigned to additional active warm<strong>in</strong>g (n = 11) <strong>in</strong>itial median<br />

cold discomfort, 4 (IQR; 3 – 7), decreased significantly, 1 (IQR; 0 – 3), (p < 0.05).<br />

Conclusions: Additional active warm<strong>in</strong>g us<strong>in</strong>g a chemical heat pad applied to the anterior<br />

upper torso significantly improved thermal comfort dur<strong>in</strong>g field <strong>treatment</strong> <strong>and</strong> transport <strong>of</strong><br />

cold stressed trauma patients <strong>in</strong> a cold outdoor environment.<br />

2


Introduction<br />

In a prehospital rescue scenario an <strong>in</strong>jured or ill person is <strong>of</strong>ten subject to a considerable cold<br />

stress, especially <strong>in</strong> remote areas, where the search for <strong>and</strong> where the evacuation <strong>of</strong> the victim<br />

might be prolonged <strong>and</strong> also where the first assessment <strong>and</strong> <strong>treatment</strong> take place outdoors.<br />

Harsh weather conditions, <strong>in</strong>sufficient or wet cloth<strong>in</strong>g, immobilization, contact with cold<br />

surfaces, significant blood loss, <strong>and</strong> the adm<strong>in</strong>istration <strong>of</strong> cold <strong>in</strong>travenous fluids or sedative<br />

drugs might all aggravate cold stress <strong>and</strong> contribute to a subsequent decrease <strong>in</strong> body core<br />

temperature (1). Admission <strong>hypothermia</strong>, def<strong>in</strong>ed as a body core temperature below 35°C, is<br />

an <strong>in</strong>dependent risk factor associated with worse outcome <strong>in</strong> trauma patients (2 - 4) The cold<br />

<strong>in</strong>duced stress response causes great thermal discomfort which might <strong>in</strong>crease pa<strong>in</strong> <strong>and</strong><br />

anxiety, even <strong>in</strong> normothermic patients (5).<br />

Actions to reduce cold exposure <strong>and</strong> prevent further heat loss are important <strong>and</strong> <strong>in</strong>tegrated<br />

parts <strong>of</strong> prehospital primary care. Shelter <strong>and</strong> adequate w<strong>in</strong>d- <strong>and</strong> waterpro<strong>of</strong> <strong>in</strong>sulation<br />

ensembles (passive warm<strong>in</strong>g) are imperative. In addition, the application <strong>of</strong> external heat<br />

(active warm<strong>in</strong>g) is recommended to protect from further cool<strong>in</strong>g, dur<strong>in</strong>g evacuation <strong>and</strong><br />

transport to def<strong>in</strong>itive care. Active warm<strong>in</strong>g has the benefit <strong>of</strong> attenuat<strong>in</strong>g cold <strong>in</strong>duced<br />

shiver<strong>in</strong>g <strong>and</strong> thereby decreases cardiac <strong>and</strong> respiratory dem<strong>and</strong>s <strong>and</strong> preserves substrate<br />

availability. When shiver<strong>in</strong>g is absent or dim<strong>in</strong>ished some form <strong>of</strong> external heat is required,<br />

otherwise cool<strong>in</strong>g will cont<strong>in</strong>ue <strong>and</strong> little <strong>and</strong> no core rewarm<strong>in</strong>g will occur. (1, 6 - 9)<br />

S<strong>in</strong>ce the warm<strong>in</strong>g modalities need to be portable <strong>and</strong> easily h<strong>and</strong>led, <strong>treatment</strong> options the<br />

field are limited. Chemical heat pads, hot water bottles, plumbed water filled blankets,<br />

charcoal fueled heat packs, electrical heat<strong>in</strong>g pads <strong>and</strong> blankets are commonly used or advised<br />

(1, 6, 7), but to the authors’ knowledge, only two previous r<strong>and</strong>omized cl<strong>in</strong>ical studies have<br />

evaluated the effectiveness <strong>of</strong> such modalities <strong>in</strong> the field (10, 11).<br />

In a recent study we evaluated the effect <strong>of</strong> prehospital active warm<strong>in</strong>g dur<strong>in</strong>g road or air<br />

ambulance transportation <strong>of</strong> cold stressed trauma patients with preserved shiver<strong>in</strong>g capacity<br />

(12). The addition <strong>of</strong> a large chemical heat pad applied to the upper torso significantly<br />

improved thermal comfort compared to passive warm<strong>in</strong>g alone, but had no additional effect<br />

on core warm<strong>in</strong>g. As this study was conducted dur<strong>in</strong>g transport <strong>in</strong> a heated environment we<br />

decided to address another part <strong>of</strong> the prehospital sett<strong>in</strong>g, evaluat<strong>in</strong>g the effect <strong>of</strong> the same<br />

active warm<strong>in</strong>g device regard<strong>in</strong>g sensation <strong>of</strong> cold discomfort, when applied at the scene <strong>of</strong><br />

accident <strong>and</strong> dur<strong>in</strong>g transport <strong>in</strong> a cold outdoor environment.<br />

<br />

<br />

3


Methods<br />

The study was designed as a r<strong>and</strong>omized cl<strong>in</strong>ical trial <strong>of</strong> prehospital active warm<strong>in</strong>g<br />

<strong>in</strong>tervention on trauma patients with ski<strong>in</strong>g <strong>in</strong>juries. Patients were assigned to either passive<br />

warm<strong>in</strong>g alone (rout<strong>in</strong>e care) or passive warm<strong>in</strong>g with the addition <strong>of</strong> active warm<strong>in</strong>g by a<br />

large chemical heat pad applied to the anterior upper torso. Ski patrol units at three m<strong>in</strong>or ski<br />

resorts <strong>in</strong> the northern parts <strong>of</strong> Sweden were selected for the study, which was conducted<br />

dur<strong>in</strong>g two consecutive w<strong>in</strong>ter seasons. After be<strong>in</strong>g given both written <strong>and</strong> verbal <strong>in</strong>structions,<br />

the participat<strong>in</strong>g ski patrol personnel carried out the study as a part <strong>of</strong> their normal duty,<br />

without <strong>in</strong>terference by the <strong>in</strong>vestigators. Ethical approval was obta<strong>in</strong>ed from the Regional<br />

Ethical Review Board <strong>in</strong> <strong>Umeå</strong>..<br />

Subjects were sequential patients, age 18 years, who had susta<strong>in</strong>ed an <strong>in</strong>jury on the ski<br />

slopes <strong>and</strong> were attended <strong>and</strong> transported by one <strong>of</strong> the participat<strong>in</strong>g ski patrols. Patients were<br />

excluded if <strong>in</strong>itial level <strong>of</strong> consciousness was affected (Glasgow Coma Scale


they are hard to separate <strong>in</strong> a practical situation. After unload<strong>in</strong>g the patient the ski patrol<br />

personnel filled out the data collection sheets. In addition to cold discomfort, the time <strong>of</strong><br />

<strong>in</strong>jury event, on-scene duration, transport time, outdoor temperature <strong>and</strong> w<strong>in</strong>d speed, patient<br />

characteristics, cloth<strong>in</strong>g characteristics, <strong>and</strong> number <strong>of</strong> blankets applied was recorded.<br />

Groups were compared us<strong>in</strong>g the Mann-Whitney U-test for nonparametric cont<strong>in</strong>uous data<br />

<strong>and</strong> Chi-square test for nom<strong>in</strong>al data, whereas pair-wise related variable comparisons was<br />

made us<strong>in</strong>g the Wilcoxon Signed Rank test. In addition, change <strong>in</strong> cold discomfort was<br />

characterized as <strong>in</strong>creased, unchanged or decreased <strong>and</strong> the difference between groups was<br />

analyzed us<strong>in</strong>g Fisher’s exact test. Statistical significance was def<strong>in</strong>ed as p < 0.05 (two-sided). <br />

Results<br />

A total <strong>of</strong> twenty patients were enrolled <strong>in</strong> the study, <strong>and</strong> they were r<strong>and</strong>omized to either<br />

passive warm<strong>in</strong>g (n = 9) or passive warm<strong>in</strong>g with the addition <strong>of</strong> active warm<strong>in</strong>g (n = 11).<br />

There were no significant differences between the two groups regard<strong>in</strong>g patient characteristics<br />

or environmental factors (table 1). The mean ambient air temperature at the scene <strong>of</strong> accident<br />

was -6 ± 4 °C (mean ± SD) <strong>and</strong> the mean w<strong>in</strong>d velocity was 4 ± 3 m/s. The average time from<br />

the <strong>in</strong>jury until ski patrol arrival <strong>and</strong> first cold discomfort rat<strong>in</strong>g was 13 ± 9 m<strong>in</strong>utes followed<br />

by an average <strong>treatment</strong> <strong>and</strong> transport time to the receiv<strong>in</strong>g first aid center or EMS unit <strong>of</strong> 23<br />

± 10 m<strong>in</strong>utes. There were also no differences <strong>in</strong> distribution <strong>of</strong> cloth<strong>in</strong>g thickness or moisture<br />

or the number <strong>of</strong> blankets applied between the two groups.(Table 1).<br />

At the scene <strong>of</strong> <strong>in</strong>jury, the <strong>in</strong>itial median cold discomfort was 5 (IQR; 2 – 5) <strong>in</strong> patients<br />

assigned to passive warm<strong>in</strong>g <strong>and</strong> 4 (IQR; 3 – 8) <strong>in</strong> patients assigned to additional active<br />

warm<strong>in</strong>g with no significant differences between the two groups. When patients were<br />

unloaded at the receiv<strong>in</strong>g first aid center or EMS unit, cold discomfort was significantly<br />

reduced to 1 (IQR; 0 – 3) <strong>in</strong> patients receiv<strong>in</strong>g additional active warm<strong>in</strong>g but rema<strong>in</strong>ed at 5<br />

(IQR; 3 – 6) <strong>in</strong> patients receiv<strong>in</strong>g passive warm<strong>in</strong>g alone (Fig 1). In addition when change <strong>in</strong><br />

cold discomfort was characterized as <strong>in</strong>creased, unchanged or decreased, 9 <strong>of</strong> 11 patients<br />

assigned to additional active warm<strong>in</strong>g presented a decrease <strong>in</strong> cold discomfort <strong>and</strong> two<br />

rema<strong>in</strong>ed at their <strong>in</strong>itial cold discomfort, whereas only 3 <strong>of</strong> 9 patients assigned to passive<br />

warm<strong>in</strong>g alone presented a decrease <strong>in</strong> cold discomfort, one rema<strong>in</strong>ed at <strong>in</strong>itial cold<br />

discomfort <strong>and</strong> 5 presented an <strong>in</strong>crease <strong>in</strong> cold discomfort. The difference between groups <strong>in</strong><br />

cold discomfort change was statistically significant.<br />

<br />

<br />

5


Discussion<br />

This study evaluated the effect on cold discomfort <strong>of</strong> active field warm<strong>in</strong>g <strong>of</strong> trauma patients<br />

<strong>in</strong>jured on the ski slopes, where patients were assigned to either passive warm<strong>in</strong>g alone<br />

(rout<strong>in</strong>e care) or passive warm<strong>in</strong>g with the addition <strong>of</strong> active warm<strong>in</strong>g by a large chemical<br />

heat pad applied to the anterior upper torso. Dur<strong>in</strong>g rescue <strong>and</strong> transport, patients receiv<strong>in</strong>g<br />

additional active warm<strong>in</strong>g experienced statistically significantly improved thermal comfort,<br />

whereas patients receiv<strong>in</strong>g passive warm<strong>in</strong>g alone experienced susta<strong>in</strong>ed cold discomfort.<br />

Reduc<strong>in</strong>g cold exposure is considered <strong>of</strong> utmost importance to prevent further cool<strong>in</strong>g dur<strong>in</strong>g<br />

rescue <strong>and</strong> transport to def<strong>in</strong>itive care, <strong>and</strong> the application <strong>of</strong> external heat <strong>in</strong> the field is<br />

considered an important part <strong>of</strong> prehospital <strong>treatment</strong> (1, 6-9). This study demonstrated that<br />

additional active field warm<strong>in</strong>g rendered statistically significantly improved thermal comfort<br />

compared to passive warm<strong>in</strong>g alone dur<strong>in</strong>g <strong>treatment</strong> <strong>and</strong> transport <strong>in</strong> a cold environment.<br />

Improved thermal comfort might have the potential <strong>of</strong> reliev<strong>in</strong>g psychological stress such as<br />

the experience <strong>of</strong> pa<strong>in</strong> <strong>and</strong> anxiety (5), which is an important but easily forgotten part <strong>of</strong><br />

medical care. Such psycological stress might also comprise a considerable physiological<br />

stress to the patient by <strong>in</strong>creas<strong>in</strong>g respiratory <strong>and</strong> cardiac work. The comb<strong>in</strong>ed physiological<br />

<strong>and</strong> psychological benefits <strong>of</strong> active field warm<strong>in</strong>g might therefore be <strong>of</strong> great importance.<br />

In order not to <strong>in</strong>tervene with the work <strong>of</strong> the ski patrol units, we did not measure body core<br />

temperature, sk<strong>in</strong> temperature, vital signs or oxygen consumption, which together with a<br />

small study population are obvious limitations <strong>of</strong> this study.<br />

The thermal effectiveness <strong>of</strong> active external warm<strong>in</strong>g <strong>in</strong> prehospital trauma care has only been<br />

evaluated <strong>in</strong> a few previous cl<strong>in</strong>ical trials (10 - 12) <strong>and</strong> the results are diverg<strong>in</strong>g. Various<br />

degrees <strong>of</strong> <strong>in</strong>juries, as well as different warm<strong>in</strong>g modalities <strong>and</strong> different amounts <strong>of</strong> passive<br />

warm<strong>in</strong>g, might expla<strong>in</strong> differences between the studies. All studies are also relatively small<br />

<strong>and</strong> <strong>in</strong>cluded patients suffer<strong>in</strong>g from not more than mild <strong>hypothermia</strong>. Thus, thermal<br />

effectiveness <strong>of</strong> active warm<strong>in</strong>g <strong>in</strong> prehospital trauma care deserves further research,<br />

especially <strong>in</strong>clud<strong>in</strong>g more severely <strong>in</strong>jured patients suffer<strong>in</strong>g from moderate or severe<br />

<strong>hypothermia</strong>.<br />

Conclusion<br />

Additional active external warm<strong>in</strong>g us<strong>in</strong>g a chemical heat pad applied to the anterior upper<br />

torso significantly improved thermal comfort dur<strong>in</strong>g field <strong>treatment</strong> <strong>and</strong> transport <strong>of</strong> cold<br />

stressed trauma patients <strong>in</strong> a cold outdoor environment.<br />

6


Acknowledgements<br />

The study was supported by the National Board <strong>of</strong> Health <strong>and</strong> Welfare, Sweden.<br />

<br />

<br />

7


References<br />

1. Danzl DF. Accidental Hypothermia. In: Auerbach P, editor. Wilderness medic<strong>in</strong>e. 5 th ed.<br />

Philadelphia. PA: Mosby Elsevier; 2007, pp 125-159.<br />

2. Irel<strong>and</strong> S, Endacott R, Cameron P, Fitzgerald M, Paul E. The <strong>in</strong>cidence <strong>and</strong> significance<br />

<strong>of</strong> accidental <strong>hypothermia</strong> <strong>in</strong> major trauma – A prospective observational study.<br />

Resuscitation 2010 Nov.<br />

3. Mart<strong>in</strong> RS, Kilgo PD, Miller PR, Hoth JJ, Meredith JW, Chang MC. Injury associated<br />

<strong>hypothermia</strong>: an analysis <strong>of</strong> the 2004 National Trauma Data Bank. Shock. 2005 Aug;<br />

24(2):114-8.<br />

4. Tisherman SA. Hypothermia <strong>and</strong> <strong>in</strong>jury. Curr Op<strong>in</strong> Crit Care 2004; 10: 512–519.<br />

5. Rob<strong>in</strong>son S, Benton, G. Warmed blankets: an <strong>in</strong>tervention to promote comfort to elderly<br />

hospitalized patients. Geriatric nurs<strong>in</strong>g 2002; 23:320-323.<br />

6. Durrer B, Brugger H, Syme D. The medical on site <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong>. In:<br />

Elsensohn F (editor), Consensus Guidel<strong>in</strong>es on Mounta<strong>in</strong> Emergency Medic<strong>in</strong>e <strong>and</strong> Risk<br />

Reduction. 1. ed. Italy: Casa editrice stefanoni – lecco, 2001, pp 71-75.<br />

7. State <strong>of</strong> Alaska cold <strong>in</strong>juries guidel<strong>in</strong>es. In: Alaska Emergency Medical Services<br />

Program, Department <strong>of</strong> Health <strong>and</strong> Social Services, Juneau. Available at<br />

http://www.chems.alaska.gov/EMS/documents/AKColdInj2005.pdf. Accessed 23 January<br />

2012.<br />

8. Giesbrecht GG, Bristow GK, U<strong>in</strong> A, Ready AE, Jones RA.Effectiveness <strong>of</strong> three field<br />

<strong>treatment</strong>s for <strong>in</strong>duced mild (33.0°c) <strong>hypothermia</strong>. J Appl Physiol 1987; 63: 2375-79.<br />

9. Hultzer M, Xu X, Marrao C, Bristow GK, Choch<strong>in</strong>ov A, Giesbrecht GG. Pre-hospital<br />

torso-warm<strong>in</strong>gmodalities for severe <strong>hypothermia</strong>: a comparative study us<strong>in</strong>g a human<br />

model. Can J Emerg Med. 2005;7:378–386.<br />

10. Kober A. Effectiveness <strong>of</strong> resistive heat<strong>in</strong>g compared with passive warm<strong>in</strong>g <strong>in</strong> treat<strong>in</strong>g<br />

<strong>hypothermia</strong> associated with m<strong>in</strong>or trauma: a r<strong>and</strong>omized trial. Mayo Cl<strong>in</strong> Proc. 2001. 76:<br />

369-375.<br />

11. Watts DD. The utility <strong>of</strong> traditional prehospital <strong>in</strong>terventions <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g thermostasis.<br />

Prehosp Emerg Care. 1999. 3:115-122.<br />

12. Lundgren JP, Henriksson O, Naredi P, Bjornstig U. The Effect <strong>of</strong> Active Warm<strong>in</strong>g <strong>in</strong><br />

Prehospital Trauma Care dur<strong>in</strong>g Road <strong>and</strong> Air Ambulance Transportation – a Cl<strong>in</strong>ical<br />

R<strong>and</strong>omized Trial. Sc<strong>and</strong> J Trauma Resusc Emerg Med. 2011 Oct 21;19:59<br />

8


13. Lundgren JP, Henriksson O, Pretorius T, Cahill F, Bristow G, Choch<strong>in</strong>ov A, Pretorius A,<br />

Bjornstig U, Giesbrecht GG. Field Torso Warm<strong>in</strong>g Modalities: A Comparative Study<br />

Us<strong>in</strong>g a Human Model. Prehosp Emerg Care 2009; 3: 371-378.<br />

14. Parsons KC. Thermal comfort.. In: Parsons KC. Human thermal environments: the effects<br />

<strong>of</strong> hot, moderate, <strong>and</strong> cold environments on human health, comfort <strong>and</strong> performance. 2.<br />

ed. London, UK: Taylor & Francis; 2003, pp 91-130.<br />

15. BS EN ISO 10551, 2001. Ergonomics <strong>of</strong> the thermal environment - Assessment <strong>of</strong> the<br />

<strong>in</strong>fluence <strong>of</strong> the thermal environment us<strong>in</strong>g subjective judgement scales, Geneva:<br />

International St<strong>and</strong>ards Organization.<br />

<br />

<br />

9


10


Cold Discomfort<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Active<br />

<br />

<br />

<br />

<br />

<br />

<br />

Passive<br />

<br />

<br />

<br />

11


Validity <strong>and</strong> Reliability <strong>of</strong> the Cold Discomfort Scale - a Subjective<br />

Judgement Scale for Assesssment <strong>of</strong> the Thermal State <strong>of</strong> Patients <strong>in</strong> a Cold<br />

Environmemt<br />

Peter Lundgren MD¹; Otto Henriksson MD¹; Kalev Kuklane PhD²; Ingvar Holmér PhD²;<br />

Peter Naredi MD PhD¹; Ulf Björnstig MD PhD¹<br />

1. Division <strong>of</strong> Surgery, Department <strong>of</strong> Surgery <strong>and</strong> Perioperative Sciences,<br />

<strong>Umeå</strong> University, Sweden<br />

2. The Thermal Environment Laboratory, Division <strong>of</strong> Ergonomics <strong>and</strong> Aerosol Technology,<br />

Department <strong>of</strong> Design Sciences, Faculty <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Lund University, Sweden<br />

Runn<strong>in</strong>g head: Validity <strong>and</strong> Reliability <strong>of</strong> the Cold Discomfort Scale<br />

Correspond<strong>in</strong>g author: Dr. Peter Lundgren<br />

Division <strong>of</strong> Surgery,<br />

Department <strong>of</strong> Surgery <strong>and</strong> Perioperative Sciences<br />

SE-90185 <strong>Umeå</strong>, Sweden<br />

E-mail: peter.lundgren@surgery.umu.se<br />

Telephone: +46706678316<br />

Fax: +4690771755<br />

E-mail for all authors: peter.lundgren@surgery.umu.se<br />

otto.henriksson@surgery.umu.se<br />

kalev.kuklane@design.lth.se<br />

<strong>in</strong>gvar.holmer@design.lth.se<br />

Conflicts <strong>of</strong> Interest: None declared<br />

peter.naredi@surgery.umu.se<br />

ulf.bjornstig@surgery.umu.se<br />

Supported by: The National Board <strong>of</strong> Health <strong>and</strong> Welfare, Sweden<br />

Key words: <strong>hypothermia</strong>, prehospital trauma care, emergency medical services, reliability,<br />

validity, subjective judgement scale, thermal comfort<br />

1


Abstract<br />

Introduction: Alternative measures for assessment<strong>of</strong> the thermoregulatory state <strong>of</strong> the<br />

patient, such as subjective judgement scales for assessment <strong>of</strong> personal thermal state, might<br />

be <strong>of</strong> considerable importance <strong>in</strong> field rescue scenarios, where objective measures such as<br />

body core temperature <strong>and</strong> sk<strong>in</strong> temprature, as well as oxygen consumption are hard to obta<strong>in</strong>.<br />

Objective: To evaluate the Cold Dicomfort Scale (CDS), a subjective judgement scale for<br />

assessment <strong>of</strong> the thermal states <strong>of</strong> patients <strong>in</strong> a cold environment, regard<strong>in</strong>g reliability,<br />

def<strong>in</strong>ed as as test-retest stability <strong>and</strong> criterion validity, def<strong>in</strong>ed as the ability to detect changes<br />

<strong>in</strong> cumulative cold stress.<br />

Methods: Twentytwo healty subjects performed two consecutive trials (test-retest).They<br />

dressed <strong>in</strong> light cloth<strong>in</strong>g <strong>and</strong> stayed <strong>in</strong> a climatic chamber set to - 20º C for 60 m<strong>in</strong>utes. CDS<br />

rat<strong>in</strong>gs were obta<strong>in</strong>ed every five m<strong>in</strong>utes.<br />

Results: Reliability was analyzed by test-retest stability, us<strong>in</strong>g weighted kappa coefficient,<br />

<strong>and</strong> was 0.84, <strong>in</strong>clud<strong>in</strong>g all the measurements made every five m<strong>in</strong>utes <strong>and</strong> was 0.48 to 0.86<br />

separated for every s<strong>in</strong>gle measurement. Criterion validity, def<strong>in</strong>ed as sensitivity to detect a<br />

difference <strong>in</strong> cumulative cold stress over a 30 m<strong>in</strong>utes <strong>in</strong>terval, was analyzed by compar<strong>in</strong>g<br />

median CDS rat<strong>in</strong>gs for a mov<strong>in</strong>g 30 m<strong>in</strong>utes <strong>in</strong>terval, which revealed that CDS rat<strong>in</strong>gs were<br />

significantly <strong>in</strong>creased dur<strong>in</strong>g each 30 m<strong>in</strong>utes <strong>in</strong>terval (p < 0.001).<br />

Conclusion: In a prehospital scenario subjective judgement scales might be a valuable<br />

measure for assessment <strong>of</strong> the thermal state <strong>of</strong> concious patients. The results <strong>of</strong> this study<br />

<strong>in</strong>dicated that the CDS is both reliable <strong>and</strong> valid for such purpose.<br />

2


Introduction<br />

Admission <strong>hypothermia</strong> is an <strong>in</strong>dependent risk factor associated with worse outcome <strong>and</strong><br />

higher mortality <strong>in</strong> trauma patients (1 – 6) <strong>and</strong> <strong>in</strong>itial actions to reduce cold exposure <strong>and</strong><br />

prevent further heat loss is an important <strong>and</strong> <strong>in</strong>tegrated part <strong>of</strong> prehospital primary care (7 –<br />

11). The cold <strong>in</strong>duced stress response will also render great thermal discomfort, which might<br />

<strong>in</strong>crease the experience <strong>of</strong> pa<strong>in</strong> <strong>and</strong> anxiety even <strong>in</strong> still normothermic patients (12 - 16).<br />

Conseqeuently, as part <strong>of</strong> primary medical care, it is important to have accurate measures to<br />

evaluate the thermoregulatory state <strong>of</strong> the patient, both upon arrival <strong>of</strong> the rescue team <strong>and</strong><br />

dur<strong>in</strong>g <strong>treatment</strong> <strong>and</strong> evacuation. In the field, especially <strong>in</strong> harsh ambient conditions this is<br />

<strong>of</strong>ten hard to achieve. Measur<strong>in</strong>g body core temperature as well as sk<strong>in</strong> temperature might be<br />

difficult (9) <strong>and</strong> measur<strong>in</strong>g oxygen consumption for assessment <strong>of</strong> shiver<strong>in</strong>g is, <strong>in</strong> most<br />

cl<strong>in</strong>ical scenarios, not possible.<br />

Thus, alternative measures such as subjective judgement scales for assessment <strong>of</strong> the thermal<br />

state <strong>of</strong> the patient might be <strong>of</strong> considerable importance <strong>in</strong> such scenarios both for an <strong>in</strong>itial<br />

assessment <strong>and</strong> for evaluation <strong>of</strong> the <strong>treatment</strong> provided. It is <strong>of</strong> utmost importanance that<br />

those subjective judgement scales are reliable <strong>and</strong> valid.<br />

Reliabilility refers to a measure´s lack <strong>of</strong> errors <strong>of</strong> measurement. (17) Validity can be divided<br />

<strong>in</strong>to content, construct <strong>and</strong> criterion validity, where criterion validity refers to a measure´s<br />

association with one or more outcome criteria.<br />

The most common s<strong>in</strong>gle item judgement scales are Visual Analouge Scales (VAS),<br />

Numerical Rat<strong>in</strong>g Scales (NRS) <strong>and</strong> Verbal Rat<strong>in</strong>g Scales (VRS). A VAS consists <strong>of</strong> a visual<br />

l<strong>in</strong>e, usually 100 mm long, where the ends <strong>of</strong> that l<strong>in</strong>e are labeled with descriptions for the<br />

extremes <strong>of</strong> the studied modality. The respondent places a mark on the l<strong>in</strong>e represent<strong>in</strong>g his or<br />

her level <strong>of</strong> experienced <strong>in</strong>tensity <strong>in</strong> relation to the described extremes. Instead <strong>of</strong> a visual<br />

l<strong>in</strong>e, a NRS consists <strong>of</strong> a range <strong>of</strong> numbers, usually 0 – 10, <strong>and</strong> a VRS consists <strong>of</strong> a list <strong>of</strong><br />

words or phrases, describ<strong>in</strong>g various degrees <strong>of</strong> the studied modality (17). In cl<strong>in</strong>ical practice<br />

such scales are commonly used for the assessment <strong>of</strong> pa<strong>in</strong>, where they have been shown to be<br />

both valid <strong>and</strong> reliable (17, 18). However, they are also used for the assessment <strong>of</strong> other<br />

modalities such as thermal sensation <strong>and</strong> (dis)comfort (12 - 16).<br />

The <strong>in</strong>ternational st<strong>and</strong>ard BS EN ISO 10551:2001 outlays general pr<strong>in</strong>ciples for construction<br />

<strong>of</strong> subjective judgement scales for assessment <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> the thermal environment<br />

(19). There are however, to the authors’ knowledge, no previous studies on reliability <strong>and</strong><br />

3


validity <strong>of</strong> psychometric methods for assessment <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> the thermal environment<br />

<strong>in</strong> more extreme ambient conditions.<br />

In accordance with the basic pr<strong>in</strong>ciples stated <strong>in</strong> the <strong>in</strong>ternational st<strong>and</strong>ard (19) <strong>and</strong> with some<br />

modifications to <strong>in</strong>crease usefulness <strong>in</strong> a prehospital rescue scenario we have designed a NRS,<br />

the Cold Discomfort Scale (CDS), for assessment <strong>of</strong> the thermal state <strong>of</strong> patients <strong>in</strong> a cold<br />

environment (20, 21). The objective <strong>of</strong> this study was to evaluate this NRS regard<strong>in</strong>g<br />

reliability, def<strong>in</strong>ed as test-retest stability <strong>and</strong> criterion validity def<strong>in</strong>ed as the ability to detect<br />

changes <strong>in</strong> cold discomfort due to cumulative cold stress.<br />

Methods<br />

Design, sett<strong>in</strong>gs <strong>and</strong> subjects<br />

The study was conducted <strong>in</strong> October <strong>and</strong> November 2011 at the Thermal Environment<br />

Laboratory, Lund University, Sweden. Thirteen male <strong>and</strong> n<strong>in</strong>e female volunteered for<br />

participation (Table 1). They were cardiopulmonary healthy <strong>and</strong> had no regular medication or<br />

history <strong>of</strong> local cold <strong>in</strong>juries. None <strong>of</strong> them were habitual smoker or abused narcotics. Written<br />

<strong>in</strong>formed consent was obta<strong>in</strong>ed from all subjects. Ethical approval was obta<strong>in</strong>ed from the<br />

Regional Ethical Review Board <strong>in</strong> Umea.<br />

The study protocol was designed as a test-retest where subjects were exposed <strong>in</strong> -20 °C for 60<br />

m<strong>in</strong>utes to evaluate reliability <strong>and</strong> validity <strong>of</strong> the Cold Discomfort Scale. All subjects thus<br />

conducted two identical trials on two separate occasions, at about the same time <strong>of</strong> day,<br />

approximately one week apart. Dur<strong>in</strong>g the twenty-four hour period prior to the trials subjects<br />

avoided smok<strong>in</strong>g or dr<strong>in</strong>k<strong>in</strong>g alcohol, had a m<strong>in</strong>imum <strong>of</strong> six hours <strong>of</strong> rest dur<strong>in</strong>g the night <strong>and</strong><br />

were also <strong>in</strong>structed to avoid physical exertions. The diet was not modified but they all had<br />

regular meals.<br />

Monitor<strong>in</strong>g<br />

Cold discomfort was monitored us<strong>in</strong>g the Cold Discomfort Scale (CDS), a numerical rat<strong>in</strong>g<br />

scale, where the subjects assess the thermal state <strong>of</strong> their whole body, not specific body parts,<br />

provid<strong>in</strong>g <strong>in</strong>teger values from 0 to 10, where 0 <strong>in</strong>dicates not be<strong>in</strong>g cold at all <strong>and</strong> 10 <strong>in</strong>dicates<br />

unbearable cold. Subjects were asked the follow<strong>in</strong>g qestion:<br />

On a scale from 0 to 10, where 0 means not be<strong>in</strong>g cold at all <strong>and</strong> 10 means unbearably cold:<br />

How cold do you feel right now?<br />

4


To assure that there was no risk <strong>of</strong> local cold <strong>in</strong>juries, f<strong>in</strong>ger <strong>and</strong> toe temperature was<br />

cont<strong>in</strong>uously monitored us<strong>in</strong>g thermistors (Rhopo<strong>in</strong>t Components Ltd, UK, accuracy ±0.2 °C,<br />

time constant 10 s) taped to the left r<strong>in</strong>g f<strong>in</strong>ger <strong>and</strong> the left <strong>in</strong>dex toe.<br />

Ambient air temperature was cont<strong>in</strong>uously monitored us<strong>in</strong>g three sensors (PT 100, Pico<br />

Technology Ltd, UK, accuracy ± 0.03 °C) positioned <strong>in</strong> level with the sup<strong>in</strong>e subject, adjacent<br />

to the ankles, the mid trunk <strong>and</strong> the head.<br />

Protocol<br />

Subjects dressed <strong>in</strong> light, two-piece thermal underwear, a fleece cap, two pair <strong>of</strong> gloves <strong>and</strong><br />

two pair <strong>of</strong> woollen socks <strong>and</strong> an outer foot cover. Insulation <strong>of</strong> h<strong>and</strong>s <strong>and</strong> feet were<br />

re<strong>in</strong>forced to avoid the risk <strong>of</strong> local cold <strong>in</strong>juries. At first, subjects sat quitely at an ambient<br />

temperature <strong>of</strong> about 21 °C for fifteen m<strong>in</strong>utes <strong>of</strong> basel<strong>in</strong>e data collection. They then entered<br />

the climatic chamber (2.4 x 2.4 x 2.4 m), set to -20°C, <strong>and</strong> lay down <strong>in</strong> a sup<strong>in</strong>e position on a<br />

foam mattress. One <strong>of</strong> the medical doctors responsible for the study (P.L or O.H)<br />

accompanied the subject <strong>in</strong> the cold chamber dur<strong>in</strong>g the whole trial, <strong>and</strong> every five m<strong>in</strong>utes<br />

subjects were asked to express their thermal state accord<strong>in</strong>g to the CDS. After 60 m<strong>in</strong>utes <strong>of</strong><br />

cold exposure the trial was completed <strong>and</strong> subjects exited the cold chamber. Cloth<strong>in</strong>g <strong>and</strong><br />

monitor<strong>in</strong>g equipment were removed <strong>and</strong> the subjects then had a warm shower until<br />

restoration <strong>of</strong> thermal comfort.<br />

Data analysis<br />

As the Cold Discomfort Scale comprises ord<strong>in</strong>al data non parametric statistics were used.<br />

Reliability <strong>of</strong> the Cold Discomfort Scale was analyzed for test-retest stability, us<strong>in</strong>g weighted<br />

(quadratic difference) kappa coefficient (22), compar<strong>in</strong>g median CDS rat<strong>in</strong>gs between the two<br />

trials, <strong>in</strong>clud<strong>in</strong>g all the measurements made every five m<strong>in</strong>utes <strong>and</strong> also, separately for every<br />

s<strong>in</strong>gle measurement. StatXact 9 s<strong>of</strong>tware (Cytel <strong>in</strong>c., Cambridge, MA, USA) was used for the<br />

analysis.<br />

Pre-study calculations <strong>in</strong>dicated a m<strong>in</strong>imal sample size <strong>of</strong> 18 to detect a difference <strong>in</strong> CDS<br />

rat<strong>in</strong>gs <strong>of</strong> 2 or more (IQR; 2) presupposed 80% statistical power at an -level <strong>of</strong> 0.05.<br />

Criterion validity was analyzed by compar<strong>in</strong>g median CDS rat<strong>in</strong>gs over a mov<strong>in</strong>g 30 m<strong>in</strong>utes<br />

<strong>in</strong>terval (5-35 m<strong>in</strong>utes; 10-40 m<strong>in</strong>utes; 15-45 m<strong>in</strong>utes.etc) us<strong>in</strong>g Wilcoxon Signed Ranks test.<br />

Statistical significance was def<strong>in</strong>ed as p < 0.05 <strong>and</strong>, <strong>in</strong> analysis <strong>of</strong> criterion validity, after<br />

correction for multiple comparisons accord<strong>in</strong>g to Bonferroni as p < 0.008. SPSS 18.0<br />

s<strong>of</strong>tware (SPSS <strong>in</strong>c., Chicago, IL, USA) was used for the analysis.<br />

5


Results<br />

Totally, 44 trials were conducted, each <strong>of</strong> the 22 subjects conduct<strong>in</strong>g two trials each. The<br />

average ambient air temperature for all trials was ± °C (mean ± SD) <strong>and</strong> the average w<strong>in</strong>d<br />

speed was 0.2 ± 0.0 m/s (mean ± SD). Sk<strong>in</strong> temperature <strong>of</strong> the left <strong>in</strong>dex f<strong>in</strong>ger <strong>and</strong> left<br />

second toe never went below + 8 °C for any <strong>of</strong> the subjects.<br />

Median CDS rat<strong>in</strong>gs <strong>in</strong>creased from 0 (<strong>in</strong>terquartile range, IQR; 0 - 0) dur<strong>in</strong>g basel<strong>in</strong>e to 7<br />

(IQR; 5 - 7) at the end <strong>of</strong> the first trial (test) <strong>and</strong> from 0 (IQR; 0 – 0) to 6 (IQR; 5 - 7) dur<strong>in</strong>g<br />

the second trial (retest) (Figure 1).<br />

Reliability analyzed for test-retest stability, us<strong>in</strong>g weighted kappa coefficient, were 0.84,<br />

<strong>in</strong>clud<strong>in</strong>g all the measurements made every five m<strong>in</strong>utes <strong>and</strong> were from 0.48 to 0.86 separated<br />

for every s<strong>in</strong>gle measurement (Table 2).<br />

Criterion validity analyzed by compar<strong>in</strong>g median CDS rat<strong>in</strong>gs (n = 22) over a mov<strong>in</strong>g 30<br />

m<strong>in</strong>utes <strong>in</strong>terval revealed that CDS rat<strong>in</strong>gs were significantly <strong>in</strong>creased dur<strong>in</strong>g each 30<br />

m<strong>in</strong>utes <strong>in</strong>terval (5-35 m<strong>in</strong>utes; 10-40 m<strong>in</strong>utes;15-45 m<strong>in</strong>utes etc) (Table 3).<br />

Discussion<br />

Overview<br />

In a laboratory sett<strong>in</strong>g the test-retest stability <strong>of</strong> median CDS rat<strong>in</strong>gs over the 60 m<strong>in</strong>utes <strong>of</strong><br />

cold exposure was 0.84 (very good agreement) when all the measurements made every five<br />

m<strong>in</strong>utes were <strong>in</strong>cluded <strong>and</strong> 0.48 – 0.86 (moderate to very good agreement) when separated for<br />

every s<strong>in</strong>gle measurement (22). The Cold Discomfort Scale was significantly sensitive to<br />

detect a difference <strong>in</strong> cumulative cold stress over a mov<strong>in</strong>g 30 m<strong>in</strong>utes <strong>in</strong>terval throughout the<br />

whole 60 m<strong>in</strong>utes <strong>of</strong> cold exposure.<br />

Reliability<br />

It is always difficult to achieve identical conditions <strong>in</strong> a test-retest design when measur<strong>in</strong>g<br />

subjective parameters. Even if all arrangements are made the same, the subject might react<br />

differently to the same cold exposure at two different occasions. There might also be a<br />

habituation which can either <strong>in</strong>crease or decrease the sensitivity to the exposure. CDS rat<strong>in</strong>gs<br />

were generally somewhat higher <strong>in</strong> the first trial compared to the second trial, <strong>and</strong> this<br />

difference might be a result <strong>of</strong> a decreased sensitivity to the cold exposure from bee<strong>in</strong>g more<br />

6


experienced <strong>and</strong> therefore less anxious about be<strong>in</strong>g exposed to the cold the second time<br />

compared to the first time. However, test-retest stability was still very good when all the<br />

measurements every five m<strong>in</strong>utes were <strong>in</strong>cluded <strong>and</strong> moderate to very good when separated<br />

for every s<strong>in</strong>gle measurement.<br />

Validity<br />

Criterion validity was def<strong>in</strong>ed as the m<strong>in</strong>imum time for which a cl<strong>in</strong>ically significant<br />

cumulative cold stress <strong>in</strong> - 20°C w<strong>in</strong>d still conditions would be desirable to detect. The results<br />

revealed that CDS rat<strong>in</strong>gs were statistically significantly <strong>in</strong>creased for each 30 m<strong>in</strong>utes<br />

<strong>in</strong>terval (5-35 m<strong>in</strong>utes; 10-50 m<strong>in</strong>utes; 15-45 m<strong>in</strong>utes etc) <strong>and</strong> thus the cold discomfort scale<br />

was valid for detect<strong>in</strong>g a change based on the def<strong>in</strong>ed cumulative cold stress. However,<br />

dur<strong>in</strong>g the last 20 m<strong>in</strong>utes it seems like CDS rat<strong>in</strong>gs are not <strong>in</strong>creas<strong>in</strong>g as much as dur<strong>in</strong>g the<br />

first 40 m<strong>in</strong>utes. This might be an <strong>in</strong>dication <strong>of</strong> a limitation to detect differences <strong>in</strong> cumulative<br />

cold stress when cold exposure is protracted due to habituation to ambient conditions.<br />

Practical implications<br />

As part <strong>of</strong> primary medical care it is important to have accurate measures to evaluate the<br />

thermoregulatory state <strong>of</strong> the patient, both upon arrival <strong>of</strong> the rescue team <strong>and</strong> dur<strong>in</strong>g<br />

<strong>treatment</strong> <strong>and</strong> evacuation. In the field however, especially <strong>in</strong> harsh ambient conditions,<br />

reliable measures <strong>of</strong> body core temperature, sk<strong>in</strong> temperature or shiver<strong>in</strong>g thermogenesis is<br />

<strong>of</strong>ten hard to achieve (9). In a prehospital rescue scenario, subjective judgement scales might<br />

thus be an important alternative tool for assessment <strong>of</strong> the thermal state <strong>of</strong> patients <strong>in</strong> a cold<br />

environment.<br />

Assessment <strong>of</strong> the thermal state <strong>of</strong> the patient might be an early predictor <strong>of</strong> cold stress <strong>and</strong><br />

therefore may be used to evaluate the risk <strong>of</strong> develop<strong>in</strong>g <strong>hypothermia</strong>. It is also important not<br />

to underestimate evaluation <strong>of</strong> the patient’s subjective experience <strong>of</strong> medical care. Much<br />

resources <strong>and</strong> a lot <strong>of</strong> effort are <strong>in</strong>vested to optimize medical <strong>treatment</strong> <strong>in</strong>clud<strong>in</strong>g pa<strong>in</strong> relief<br />

but patients thermal comfort is easily forgotten. Therefore, reliable <strong>and</strong> valid subjective<br />

judgement scales for assessment <strong>of</strong> the thermal state <strong>of</strong> patients <strong>in</strong> a cold environment is<br />

important for improv<strong>in</strong>g prehospital medical care.<br />

The <strong>in</strong>ternational st<strong>and</strong>ard BS EN ISO 10551:2001 outlays general pr<strong>in</strong>ciples for construction<br />

<strong>of</strong> subjective judgement scales for assessment <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> the thermal environment<br />

(19). These general pr<strong>in</strong>ciples recommend symmetrical 7 to 9-degree rat<strong>in</strong>g scales compris<strong>in</strong>g<br />

a central <strong>in</strong>difference po<strong>in</strong>t <strong>and</strong> two times 3 or 4 degrees <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensity for both hot<br />

7


<strong>and</strong> cold. Because subjective judgement scales used <strong>in</strong> prehospital as well as hospital medical<br />

care most commonly ranges from 0 to 10, for example when assess<strong>in</strong>g pa<strong>in</strong> <strong>in</strong>tensity us<strong>in</strong>g the<br />

Visual Analouge Scale (VAS), we considered a similar range <strong>of</strong> the CDS would be more<br />

easily understood by patients <strong>and</strong> also very important, more familiar to the rescue personel. If<br />

judgement scales with different ranges are used, that could be confus<strong>in</strong>g. Furthermore, s<strong>in</strong>ce<br />

we are only <strong>in</strong>terested <strong>in</strong> cold exposure, we th<strong>in</strong>k it is better to simplify the scale to be<br />

assymetrical, describ<strong>in</strong>g only cold. In the litterature (19, 23) there is a dist<strong>in</strong>ction between<br />

perception/ thermal sensation <strong>and</strong> affective assessment/ (dis)comfort where the former<br />

describes perception <strong>of</strong> afferent perpiheral <strong>and</strong> central stimuli <strong>and</strong> the latter describes the state<br />

<strong>of</strong> m<strong>in</strong>d that expresses (dis)satisfaction with the surround<strong>in</strong>g environment. The CDS does not<br />

differentiate between perception <strong>and</strong> affective assessment <strong>of</strong> the thermal environment. This<br />

design enables rescue personel to give short, pithy <strong>in</strong>structions to patients when obta<strong>in</strong><strong>in</strong>g data<br />

<strong>in</strong>stead <strong>of</strong> expla<strong>in</strong><strong>in</strong>g the different def<strong>in</strong>itions <strong>of</strong> perception versus affective assessment.<br />

Mak<strong>in</strong>g these modifications to <strong>in</strong>ternational st<strong>and</strong>ard <strong>in</strong>structions we th<strong>in</strong>k that the CDS has<br />

advantages <strong>in</strong> practical use <strong>in</strong> a prehospital rescue scenario.<br />

Limitations <strong>and</strong> further research<br />

Subjective judgement scales as a tool for assessment <strong>of</strong> the thermal state <strong>of</strong> the patient is <strong>of</strong><br />

course limited to conscious patients, not suffer<strong>in</strong>g from any major distract<strong>in</strong>g <strong>in</strong>jury. To the<br />

authors’ knowledge this is the first study evaluat<strong>in</strong>g reliability <strong>and</strong> criterion validity <strong>of</strong> a<br />

subjective judgement scale for assessment <strong>of</strong> the thermal state <strong>of</strong> patients <strong>in</strong> an extreme cold<br />

environment. Consider<strong>in</strong>g the small study population, limited time period for cold exposure<br />

<strong>and</strong> limited ambient conditions further studies to confirm these results may be required.<br />

Conclusion<br />

In a prehospital rescue scenario subjective judgement scales might be a valuable measure for<br />

assessment <strong>of</strong> the thermal state <strong>of</strong> concious patients. The results <strong>of</strong> this study <strong>in</strong>dicated that<br />

the CDS is both reliable <strong>and</strong> valid for such purpose.<br />

8


Acknowledgements<br />

The study was supported by the National Board <strong>of</strong> Health <strong>and</strong> Welfare, Sweden.<br />

9


References<br />

1. Irel<strong>and</strong> S, Endacott R, Cameron P, Fitzgerald M, Paul E: The <strong>in</strong>cidence <strong>and</strong> significance<br />

<strong>of</strong> accidental <strong>hypothermia</strong> <strong>in</strong> major trauma - A prospective observational study.<br />

Resuscitation 2011, 82(3):300-306.<br />

2. Beilman GJ, Blondet JJ, Nelson TR, Nathens AB, Moore FA, Rhee P, Puyana JC, Moore<br />

EE, Cohn SM: Early <strong>hypothermia</strong> <strong>in</strong> severly <strong>in</strong>jured trauma patients is a significant risk<br />

factor for multiple organ dysfunction syndrome but not mortality. Ann Surg 2009,<br />

249(5):845-50.<br />

3. Mart<strong>in</strong> RS, Kilgo PD, Miller PR, Hoth JJ, Meredith JW, Chang MC: Injury associated<br />

<strong>hypothermia</strong>: an analysis <strong>of</strong> the 2004 National Trauma Data Bank. Shock 2005,<br />

24(2):114-8.<br />

4. Wang HE, Callaway CW, Peitzman AB, Tisherman SA: Admission <strong>hypothermia</strong> <strong>and</strong><br />

outcome after major trauma. Critical Care Medic<strong>in</strong>e 2005, 33(6):1296-301.<br />

5. Shafi S, Elliott AC, Gentilello L: Is <strong>hypothermia</strong> simply a marker <strong>of</strong> shock <strong>and</strong> <strong>in</strong>jury<br />

severity or an <strong>in</strong>dependent risk factor for mortality <strong>in</strong> trauma patients? Analysis <strong>of</strong> a large<br />

national trauma registry. Journal <strong>of</strong> Trauma Injury Infection & Critical Care 2005,<br />

59(5):1081-5.<br />

6. Gentilello LM, Jurkovich GJ, Stark MS, Hassantash SA, O’Keefe GE: Is <strong>hypothermia</strong> <strong>in</strong><br />

the victim <strong>of</strong> major trauma protective or harmful? A r<strong>and</strong>omized prospective study.<br />

Annals <strong>of</strong> Surgery 1997, 226(4):439-47.<br />

7. Danzl DF: Accidental Hypothermia. In: Wilderness medic<strong>in</strong>e. Edited by: Auerbach P.<br />

Philadelphia. PA: Mosby Elsevier; 5th edition 2007:125-159.<br />

8. Giesbrecht GG, Wilkerson JA: Hypothermia frostbite <strong>and</strong> other cold <strong>in</strong>juries prevention,<br />

survival, rescue <strong>and</strong> <strong>treatment</strong>. Seattle, WA: Mounta<strong>in</strong>eers Books; 2nd edition, 2006.<br />

9. Socialstyrelsen: Hypothermia: cold <strong>in</strong>juries <strong>and</strong> cold water near drown<strong>in</strong>g.<br />

Stockholm, Sverige: The National Board <strong>of</strong> Health <strong>and</strong> Welfare (Socialstyrelsen); 2nd<br />

edition 2002.<br />

10. Durrer B, Brugger H, Syme D: The medical on site <strong>treatment</strong> <strong>of</strong> <strong>hypothermia</strong>. In<br />

Consensus Guidel<strong>in</strong>es on Mounta<strong>in</strong> Emergency Medic<strong>in</strong>e <strong>and</strong> Risk Reduction. Edited by:<br />

Elsensohn F. Italy: Casa editrice stefanoni - lecco; 1st edition 2001:71-75.<br />

11. State <strong>of</strong> Alaska cold <strong>in</strong>juries guidel<strong>in</strong>es: Alaska Emergency Medical Services Program,<br />

Department <strong>of</strong> Health <strong>and</strong> Social Services, Juneau.<br />

10


[http://www.chems.alaska.gov/EMS/documents/AKColdInj2005.pdf], Accessed 10<br />

January 2012<br />

12. Rob<strong>in</strong>son S, Benton G: Warmed blankets: an <strong>in</strong>tervention to promote comfort to elderly<br />

hospitalized patients. Geriatric nurs<strong>in</strong>g 2002, 23:320-323.<br />

13. Grant SJ, Dowsett D, Hutchison C, Newell J, Connor T, Grant P, Watt M. A comparison<br />

<strong>of</strong> mounta<strong>in</strong> rescue casualty bags <strong>in</strong> a cold, w<strong>in</strong>dy environment. Wilderness Environ Med.<br />

2002 Spr<strong>in</strong>g;13(1):36-44.<br />

14. Kober A: Effectiveness <strong>of</strong> resistive heat<strong>in</strong>g compared with passive warm<strong>in</strong>g <strong>in</strong> treat<strong>in</strong>g<br />

<strong>hypothermia</strong> associated with m<strong>in</strong>or trauma: a r<strong>and</strong>omized trial. Mayo Cl<strong>in</strong> Proc 2001,<br />

76:369-375.<br />

15. Thomassen et al.: Comparison <strong>of</strong> three different prehospital wrapp<strong>in</strong>g methods for<br />

prevent<strong>in</strong>g <strong>hypothermia</strong> – a crossover study <strong>in</strong> humans. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma,<br />

Resuscitation <strong>and</strong> Emergency Medic<strong>in</strong>e 2011 19:41.<br />

16. Lundgren P, Henriksson O, Naredi P, Bjornstig U: The effect <strong>of</strong> active warm<strong>in</strong>g <strong>in</strong><br />

prehospital trauma care dur<strong>in</strong>g road <strong>and</strong> air ambulance transportation - a cl<strong>in</strong>ical<br />

r<strong>and</strong>omized trial. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation <strong>and</strong> Emergency<br />

Medic<strong>in</strong>e 2011 19:59.<br />

17. Jensen MP: The validity <strong>and</strong> reliability <strong>of</strong> pa<strong>in</strong> measures <strong>in</strong> adults with cancer. Pa<strong>in</strong>.<br />

2003;4(1):2-21. Review.<br />

18. Williamson A, Hoggart B: Pa<strong>in</strong>: A review <strong>of</strong> three commonly used pa<strong>in</strong> rat<strong>in</strong>g scales. J<br />

Cl<strong>in</strong> Nurs. 2005 Aug;14(7):798-804.<br />

19. BS EN ISO 10551, 2001. Ergonomics <strong>of</strong> the thermal environment - Assessment <strong>of</strong> the<br />

<strong>in</strong>fluence <strong>of</strong> the thermal environment us<strong>in</strong>g subjective judgement scales, Geneva:<br />

International St<strong>and</strong>ards Organization.<br />

20. Lundgren P, Henriksson O, Naredi P, Bjornstig U: The effect <strong>of</strong> active warm<strong>in</strong>g <strong>in</strong><br />

prehospital trauma care dur<strong>in</strong>g road <strong>and</strong> air ambulance transportation - a cl<strong>in</strong>ical<br />

r<strong>and</strong>omized trial. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Trauma, Resuscitation <strong>and</strong> Emergency<br />

Medic<strong>in</strong>e 2011 19:59.<br />

21, Lundgren P, Henriksson O, Naredi P, Bjornstig U. The Effect <strong>of</strong> Active External<br />

Warm<strong>in</strong>g on Cold Discomfort <strong>in</strong> Field Treatment <strong>of</strong> Trauma Patients – a Cl<strong>in</strong>ical<br />

R<strong>and</strong>omized Trial. Mnuscript.<br />

22. Altman DG. Practical statistics for medical research. London: Chapman <strong>and</strong> Hall; 1991.<br />

23. Flouris AD. Functional architecture <strong>of</strong> behavioural thermoregulation. Eur J Appl Physiol<br />

(2011) 111:1-8. Review.<br />

11


12<br />

Table 1. Subject characteristics.<br />

Gender<br />

(m/f)<br />

13/9<br />

Age (years) 23.3 (4.4)<br />

Weight (kg) 72.7 (15.3)<br />

Height (cm) 178.9 (9.6)<br />

BMI 22.5 (2.9)<br />

Values are mean (± SD) or number <strong>of</strong><br />

subjects.


Table 2. Test-retest stability CDS rat<strong>in</strong>gs at 5 m<strong>in</strong>ute <strong>in</strong>tervals.<br />

Time (m<strong>in</strong>)<br />

Test *<br />

(n=22)<br />

Re-test *<br />

(n=22)<br />

Weighted kappa coefficient **<br />

(n=22)<br />

5 2 (1.25 - 3) 1 (1 - 2) 0.56 (0.25 - 0.86)<br />

10 3 (2 - 3) 2 (1 - 2) 0.48 (0.20 - 0.77)<br />

15 3.50 (3 - 4) 2 (1.25 - 3.75) 0.56 (0.31 - 0.81)<br />

20 4 (3.25 - 4) 3 (2 - 4) 0.60 (0.38 - 0.83)<br />

25 5 (4 - 5) 3 (2.25 - 4.75) 0.53 (0.30 - 0.76)<br />

30 5 (4 - 6) 4 (3 - 5) 0.68 (0.48 - 0.87)<br />

35 6 (4 - 6) 4 (3 - 5) 0.64 (0.40 - 0.88)<br />

40 6 (4 - 6) 4.5 (6 - 4) 0.70 (0.49 - 0.90)<br />

45 6 (4.25 - 6) 4.5 (6 - 4) 0.72 (0.51 - 0.92)<br />

50 6 (5 - 7) 5.5 (5 - 7) 0.76 (0.57 - 0.96)<br />

55 6 (5.25 - 7) 6 (5 - 7) 0.86 (0.72 - 1.0)<br />

60 6.5 (5.25 - 7) 6 (5 - 7) 0.85 (0.81 - 0.99)<br />

Values are median (IQR)* <strong>and</strong> weighted kappa coefficient (95% CI)**.<br />

13


Table 3. CDS change over a 30 m<strong>in</strong>utes mov<strong>in</strong>g <strong>in</strong>terval.<br />

Time (m<strong>in</strong>) Test <strong>and</strong> retest (n=22)* Test <strong>and</strong> retest (n=22)**<br />

Wilcoxon signed<br />

rank test<br />

5 vs. 35 2 (1 - 2.25) 5 (3.75 - 6) p < 0.001<br />

10 vs. 40 2 (2 - 3) 5.5 (4 - 6) p < 0.001<br />

15 vs. 45 3 (2 - 4) 6 (4 - 7) p < 0.001<br />

20 vs. 50 4 (2 – 4) 6 (5 - 7) p < 0.001<br />

25 vs. 55 4 (3 - 5) 6 (5 - 7) p < 0.001<br />

30 vs. 60 5 (3 - 6) 6 (5 - 7) p < 0.001<br />

Values are median (IQR).<br />

* First time <strong>in</strong> <strong>in</strong>terval, ** second time <strong>in</strong> <strong>in</strong>terval.<br />

14


10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

<br />

0<br />

0 10 20 30 40 50 60<br />

<br />

Figure 1. Median CDS rat<strong>in</strong>gs <strong>of</strong> test (n = 22), retest (n = 22) <strong>and</strong> merged median CDS rat<strong>in</strong>gs<br />

<strong>of</strong> test-retest (n = 22).<br />

<br />

<br />

<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!