Food fermentations by yeasts and filamentous fungi

Food fermentations by yeasts and filamentous fungi Food fermentations by yeasts and filamentous fungi

09.09.2013 Views

Food fermentations by yeasts and filamentous fungi Prof. Anna Maráz Department of Microbiology and Biotechnology Faculty of Food Science Corvinus University of Budapest ERASMUS IP Maribor 2011

<strong>Food</strong> <strong>fermentations</strong><br />

<strong>by</strong> <strong>yeasts</strong> <strong>and</strong><br />

<strong>filamentous</strong> <strong>fungi</strong><br />

Prof. Anna Maráz<br />

Department of Microbiology <strong>and</strong> Biotechnology<br />

Faculty of <strong>Food</strong> Science<br />

Corvinus University of Budapest<br />

ERASMUS IP Maribor 2011


Yeasts<br />

Position of <strong>yeasts</strong> <strong>and</strong> moulds (<strong>filamentous</strong><br />

micro<strong>fungi</strong>) in fungal taxonomy<br />

~ 800 species<br />

In food: ~ 50 species<br />

Fungi (Eumycota)<br />

Chytridiomycetes<br />

Zygomycetes<br />

Ascomycetes<br />

Basidiomycetes<br />

Deuteromycetes<br />

(Fungi imperfecti)<br />

Moulds<br />

~ 80.000 species<br />

In food: ~ 100 species


Main differences between <strong>yeasts</strong> <strong>and</strong> <strong>filamentous</strong> <strong>fungi</strong><br />

(moulds)<br />

Characteristics<br />

Vegetative cells<br />

Growth rate (generation time)<br />

Metabolism<br />

Lytic enzymes (hydrolases)<br />

Toxin production<br />

Yeasts<br />

Unicellular (budding <strong>and</strong><br />

pseudomycelia)<br />

1-2 hours<br />

Facultative<br />

aerobic/anaerobic<br />

Few<br />

No<br />

Moulds<br />

Mycelia<br />

6-48 hours<br />

Aerobic<br />

Many<br />

Yes<br />

Dimorfic <strong>fungi</strong>: ability for budding <strong>and</strong> pseudomycelia or true mycelia


Yeasts<br />

- Cell morphology: ellipsoidal, cylindrical,<br />

lemon-shaped, <strong>filamentous</strong> (with<br />

pseudohyphae or septate hyphae)<br />

- Metabolism: respiration <strong>and</strong> in some cases<br />

ethanolic fermentation<br />

Saccharomyces cerevisiae


Budding<br />

Budscars<br />

Saccharomyces cerevisae


Fission <strong>yeasts</strong><br />

e.g. Schizosaccharomyces pombe


Pseudomycelium formation<br />

e.g. C<strong>and</strong>ida albicans


Glycolysis<br />

Piruvatdecarboxylase<br />

Alcoholdehydrogenase<br />

Glucose 2 pyruvate 2 acetaldehide 2 etanol<br />

C 6H 12O 6<br />

Ethanolic fermentation<br />

CH 3-CO-COOH<br />

CH 3-CHO<br />

2 CO 2<br />

2 NADH 2 2 NAD<br />

C 6 H 12 O 6 = 2C 2 H 5 OH + 2CO 2<br />

180 g glucose 92 g ethanol + 88 g (44,8 normal liter) CO 2<br />

CH 3-CH 2-OH


End products of alcoholic fermentation<br />

<strong>and</strong> pathways connected to it


Formation of higher alcohols<br />

during the synthesis of amino acids


Tradition of food <strong>fermentations</strong><br />

• Ancient tribes: milk clotting, spontaneous fermentation of<br />

beverages<br />

• Sumerians B.C. 3800: beer from cereals<br />

• Ancient Egypt: beer from cereals, dough for leavening bread<br />

• Greek <strong>and</strong> Roman civilizations: culture of<br />

wine, beer (Dionysos, Bacchus)<br />

• Middle ages: beer, wine, cheese<br />

production in monasteries


Recognition of microorganisms:<br />

- Louis Pasteur: diseases of wine <strong>and</strong> beer caused <strong>by</strong><br />

microbes<br />

- Christian Hansen: use of pure cultures of yeast for beer<br />

fermentation<br />

19. century: development of biochemistry:<br />

- Fermentation in cell free extracts<br />

- Recognition of enzymes <strong>and</strong> intermediers of fermentation<br />

- The glycolytic sequence: Embden-Meyerhof pathway


20th century:<br />

• Exploitation of microorganisms in the fermentation <strong>and</strong><br />

processing of foods:<br />

- Bread, alcoholic beverages, dairy products<br />

- Meat products, vegetables<br />

• Development of starter cultures<br />

• Industrial <strong>fermentations</strong><br />

- Natural antimicrobial substances<br />

- Pharmaceuticals, fine chemicals, enzymes<br />

21st century:<br />

• Modern biotechnology<br />

• Molecular biology <strong>and</strong> genetic engineering


Role of microorganisms in the production of<br />

alcoholic beverages (examples)<br />

________________________________________________________<br />

Yeasts<br />

Sacch. cerevisiae fermentation of wine, ale-beer<br />

Sacch. pastorianus fermentation of lager beer<br />

Hanseniaspora / Kloeckera spontaneous fermentation of wine<br />

Schizosacch. pombe fermentation of rum<br />

Moulds<br />

Aspergillus oryzae koji preparation of sake<br />

Bacteria<br />

Oenococcus oenos malo-lactic fermentation of wine<br />

Enterobacteria fermentation of lambic beer<br />

Acetic acid bacteria flavour development in rum<br />

Zymomonas mobilis fermentation of pulque<br />

________________________________________________________


Raw ingradients<br />

Pre-treatment<br />

Boiling<br />

Fermentation<br />

Yeast recycling<br />

Destillation<br />

Maturation<br />

Final alcohol content<br />

(%, v/v)<br />

Major alcoholic beverages – summary of production<br />

Yes<br />

No<br />

Yes: weeks<br />

3-6<br />

Beer<br />

Barley, adjuncts<br />

(rice, wheat,<br />

maize, etc.)<br />

Malting, meshing<br />

Yes (hops)<br />

S. cerevisae<br />

S. pastorianus<br />

No<br />

S. cerevisae<br />

No<br />

Yes<br />

Yes: years<br />

40-45<br />

Whyisky<br />

Barley (Malt<br />

whisky<br />

Barley, wheat<br />

(Grain whisky)<br />

Malting, meshing<br />

Crushing,<br />

macerati<br />

on<br />

No<br />

S. cerevisae<br />

S. bayanus<br />

No<br />

No<br />

Yes: months,<br />

years<br />

8-14<br />

Wine<br />

Grapes<br />

Spirits, liqueurs<br />

Barley, maize,<br />

molasses,<br />

grapes, whey,<br />

etc.<br />

Variable,<br />

dependent on<br />

substrate<br />

No<br />

S. cerevisae<br />

K. marxianus<br />

(whey)<br />

No<br />

Yes<br />

Varies<br />

35-45<br />

Graeme, 1998


BREWING


History of brewing in pictures<br />

Brewery in the XVIth century Fermentation in open container<br />

Modern brewery Fermentation in tanks


The brewing process<br />

Malting- Barley soaked for 5-7 days to germinate <strong>and</strong><br />

activate amylases; then dried, crushed<br />

Mashing - Malt mixed with water, adjuncts added, heated to hydrolyse<br />

starch, then at 74 o C enzymes inactivated, the wort settled, filtered<br />

Wort boiling- Hops extract solubilized, microbes inactivated<br />

Fermentation - Brewer’s yeast added, 5-15 o C for 1-2 weeks<br />

Aging - Young (‘green’) beer stored, lagered at 0 o C for weeks to<br />

months; yeast settled<br />

Finishing - Filtering, carbonation, sterilization, packaging


Process steps Main biochemical conversions<br />

_____________________________________________________________________________________<br />

Barley grains<br />

Water → ↓<br />

Malting ----- Development of enzymes (amylase, protease)<br />

↓<br />

Kilning ----- Stop respiration in germinating barley<br />

↓<br />

Milling<br />

Water, adjuncts → ↓<br />

Mashing ----- Enzymatic hydrolysis of barley<br />

↓<br />

Spent grains ← Wort separation<br />

Hops → ↓<br />

Wort boiling<br />

↓<br />

Spent hops ← Wort separation, cooling<br />

Yeast → ↓<br />

Fermentation ----- Production of ethanol, CO 2 , other metabolites<br />

(eg. diacetyl)<br />

↓<br />

Yeast ← Beer clarification<br />

↓<br />

Maturation, lagering ----- Final flavor development<br />

↓<br />

Filtration<br />

↓<br />

Packaging<br />

↓<br />

Pasteurization<br />

Flow chart of brewing


Typical changes in beer fermentation


Traditional use in brewing<br />

Pitching yeast: Saccharomyces cerevisiae – lager beer<br />

Sacharomyces pastorianus – ale beer<br />

Advantages: converting carbohydrates to ethanol, wort to<br />

beer, producing flavors, reducing contamination<br />

Novel use before steeping:<br />

Control of mycotoxin producing fusaria <strong>by</strong><br />

Debaryomyces hansenii<br />

Lambic beer (gueuze) spontaneous, natural fermentation<br />

Brettanomyces, C<strong>and</strong>ida, etc, lactics, enterobacters<br />

Weiβbier: top fermenting <strong>yeasts</strong>


Wine fermentation


Traditional use in wine making<br />

Wine <strong>yeasts</strong>: Saccharomyces cerevisiae<br />

Saccharomyces bayanus – low temperature<br />

Saccharomyces uvarum – Botryotized grape<br />

Advantages: rapid fermentation, ethanol tolerance,<br />

absence of off-flavours<br />

‘Wild’ <strong>yeasts</strong> are always present:<br />

Hanseniaspora / Kloeckera start fermentation<br />

C<strong>and</strong>ida, Pichia, Metschnikowia contribute to some degree<br />

in developing the ‘bouque’<br />

Novel trends: use of mixed starters


Outline of wine fermentation<br />

White wines Red wines<br />

___________________________________________________<br />

Grapes Grapes<br />

Stemming, crushing Stemming, crushing<br />

Settling, pressing Maceration with skin<br />

Yeast fermentation Yeast fermentation<br />

Clarification<br />

Maturation, fining<br />

Filtration<br />

Bottling<br />

Malo-lactic fermentation


Growth of yeast species during the<br />

fermentation of wine<br />

o S. cerevisiae • Hanseniaspora / Kloeckera ■ C<strong>and</strong>ida spp


Other alcoholic beverages<br />

Special types of wine<br />

- Champagne <strong>and</strong> sparkling wines<br />

- Sherry<br />

- Sake<br />

- Cider<br />

Spirits (distilled alcoholic beverages)<br />

- Whisky, rum, vodka, gin, tequila, etc


Indigenous fermented foods<br />

Regions Products<br />

Orient Soy<br />

Indian Vegetables<br />

African Mixed<br />

American Fish<br />

The indigenous fermented foods constitute a group of foods that are<br />

produced in homes, villages, <strong>and</strong> small cottage industries<br />

Some indigenous food <strong>fermentations</strong> such as soy sauce (shoyu), Japanese<br />

miso, Indonesian tempe, Indonesian tape ke ten, Japanese sake, Indian<br />

idli <strong>and</strong> dosai, <strong>and</strong> fish <strong>and</strong> shrimp sauces <strong>and</strong> pastes are<br />

commercialized at large scale


Types of indigenous foods<br />

1. Basic type of <strong>fermentations</strong> made <strong>by</strong> koji, in which<br />

microorganisms are grown on a cereal-grain or legume<br />

substrate to produce a crude enzyme concentrate, koji, that<br />

can be used to hydrolyse components in particular<br />

fermentation (e.g. soy sauce, miso, tempe, oncom, tape,<br />

<strong>and</strong> rice wines such as sake);<br />

2. Fermentations involving proteolysis of vegetable proteins <strong>by</strong><br />

microbial enzymes in the presence of salt <strong>and</strong>/or acid with<br />

production of amino acid <strong>and</strong> peptide mixtures with a meatlike<br />

flavour (e.g. soy sauce, Indonesian miso)<br />

3. Fermentations involving enzymic hydrolysis of fish <strong>and</strong><br />

shrimp or other marine animals in the presence of relatively<br />

high salt concentrations to produce meatflavoured sauces<br />

<strong>and</strong> pastes


Types of indigenous foods (cont.)<br />

4. Fermentations producing a meat-like texture in a cerealgrain-legume<br />

substrate <strong>by</strong> means of fungal mycelium<br />

that knits the particles together (e.g. Indonesian <strong>and</strong><br />

Malaysian tempe, Indonesian oncom)<br />

5. Fermentation in which organic acids are major products<br />

(this category includes Korean kimchi, African ogi, idli,<br />

dosai, tape, <strong>and</strong> also tempe, in which acidification<br />

occurs during the initial soaking of soybeans)<br />

6. Fermentations in which ethanol is a major product (e.g.<br />

rice wines, palm toddies, sugar cane wines, agave<br />

pulque, pito beer, <strong>and</strong> tape ketan)


Examples of indigenous fermented beverages


Genetic improvement of yeast starters<br />

– brewing <strong>yeasts</strong><br />

- Introduction of glucoamylase activity to<br />

produce low alcoholic beer<br />

- Elimination of phenolic off-flavor<br />

- Reduction of vicinal diketone formation<br />

- Introduction of killer activity / killer<br />

resistance (also in wine yeast)


Examples of genetically modified brewer’s<br />

<strong>yeasts</strong><br />

Transformed gene(s) Effect References<br />

STA2 S.cer.var. diastaticus Meaden et al.1985<br />

Glucoamylase - A.awamori dextrin fermenting, Cole et al.1988<br />

α-amylase & glucoamylase higher ethanol yield Dohmen et al.1990<br />

- Schwan. occidentalis Lancashire et al.1989<br />

FLO1 S.cerevisiae better flocculation Watari et al.1991<br />

Acetolactate decarboxylase reduced production Fuji et al.1990<br />

diacetyl Shimizu et al.1989<br />

MET25 sulfuhydrase reduced H 2 S Omura et al.1995<br />

production


Genetic improvement of yeast starters –<br />

wine <strong>yeasts</strong><br />

- Reduction of fusel alcohol production<br />

- Reduction of H 2S production<br />

- Introducing flocculation <strong>and</strong> reducing of<br />

foaming<br />

- Increasing yield of glycerol


Examples of genetically modofied wine<br />

<strong>yeasts</strong><br />

Transformed gene(s) Effects References<br />

Pectate lyase filtering,clarification Gonzales-C<strong>and</strong>elas<br />

et al. 1995<br />

malolactic genes (Lb.lactis) ML fermentation Volschenk et al.1997<br />

GDP1 S. cerevisiae sensory quality Michnick et al.1997<br />

K1 killer toxin S. cer. competitive advantage Boone et al. 1990<br />

Resveratrol synthase (poplar) resveratrol Becker et al. 2003<br />

& coenzyme-A ligase (grape) production


Approval of GM food <strong>yeasts</strong><br />

Baker’s yeast, maltose derepressed 1989<br />

Brewer’s yeast, expressing STA gene 1993<br />

Sake yeast, flavour enhanced 2002<br />

Wine yeast, malolactic fermentation 2003


1,8<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

Effects of wine consumption<br />

on the death risk from different deseases<br />

Relative risk of death<br />

halálozási kockázat, bázis =1<br />

Risk of death Halálozási depending kockázat a on borfogyasztás wine consumption függvényében<br />

(12 years, éves vizsgálat, 34000 34000 persons, főre, males 40-60 éves between francia 40-60, férfiak, Nancy<br />

Nancy)<br />

rákos Cancer betegség<br />

egyéb Other okú betegségek<br />

cardiovasculáris Cardio-vasculare desase betegségek<br />

0 1-2 pohár 2-3 pohár 3-5 pohár 5-7 pohár 7-12 pohár > 12<br />

Glass pohár of wine bor naponta / day<br />

a rákos betegségek emésztőszervi és fül-orr-<br />

gégészeti jellegűek


Negative effects of wine consumption<br />

• Ethanol<br />

– Toxic effects for central nervous system, liver, stomach<br />

etc.<br />

– Moderate consumption (linked to meal) is not harmful<br />

• Females: 1,5 – 2 dl wine /day<br />

• Males:2-3 dl wine /day<br />

– „French paradox”<br />

• Methanol<br />

– high toxicity: consumption of 8-10 g causes serious<br />

visual disturbances (lethal dose: 40-100 g)<br />

– methanol content of Hungarian wines: 0.02 - 0.3 g/l


Brakedown of methanol in human<br />

body<br />

CH 3 – OH<br />

CH 2 = O<br />

HCOOH<br />

Xantin-oxidáz-kataláz (XOK)<br />

B 12 vitamine<br />

Formic acid – high toxicity!


Negative effects of wine consumption (cont.)<br />

• sulphur dioxide<br />

– relatively low toxicity for humans (in solution)<br />

– allergic reaction in some consumers (particularly<br />

asthmatics): wheezing, flushing, tingling etc.<br />

– its role in headache is possible but not fully proven<br />

• biogenic amines (except serotonin)<br />

– headache (red-wine induced headache symptom)<br />

– allergic reactions<br />

– decomposition of amines in human body <strong>by</strong><br />

monoamine-oxidase enzyme is inhibited <strong>by</strong><br />

ethanol!


The main biogenic amines of wines


MYCOTOXINS<br />

?<br />

The only known toxin that my be present in wine is<br />

Ochratoxin-A (OTA)


OA ug/l<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

Kontroll Botrytis Penicillium Asp. ochraceus<br />

OTA concentrations<br />

measured in different wines<br />

OA ug/l<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

Aszú base<br />

(before<br />

fermentation)<br />

OTA production of some<br />

mould on sterile grape musts<br />

Aszú wine<br />

(after<br />

fermentation)<br />

(pH 3,2; 20 o C, 2 weeks)<br />

Irsai Olivér<br />

Sauvignon<br />

Chardonnay


Positive effects of wine<br />

consumption


Correlation between the yearly wine consumption <strong>and</strong><br />

the death rate (/1000 persons) of cardio-vasculare<br />

desases<br />

Death / 100 persons<br />

„French paradox”<br />

Wine consumption Log L/person/year


Positive effects of wine consumption<br />

(cont.)<br />

• Resveratrol<br />

– Chemical nature: stylbene (phenolic compound)<br />

– Origin: phytoalexyne, produced <strong>by</strong> the plant (grape) in<br />

stress situation, e.g. as a response to fungal infection<br />

– Effects: Increase of the plasma level of high-density<br />

lipoprotein (H.D.L.), maintenance of low level of “bad”<br />

cholesterol (low density lipoprotein: L.D.L) -<br />

prevention of arteriosclerosis <strong>and</strong> coronary heart<br />

disease.<br />

– Level in wines: 0 - 8 mg/l (red wines contain more<br />

than white wines)


Cisresveratrol<br />

R=sugar<br />

Isomers of resveratrol<br />

Transresveratrol<br />

3,4,5trihidroxisztilbén-3-ß-mono-Dglükozid


Procyanidines: condensed katechines <strong>and</strong> leucoanthocyanines<br />

Procianidindimer<br />

Maintenance of good-cholesterol level in blood<br />

Procianidintetramer


Positive effects of wine consumption (cont.)<br />

• Minerals, organic acids<br />

– positive nutritional effects<br />

• Serotonin (biogenic amine):<br />

– antidepressive effect<br />

• Wine is poor vitamin source!


Conclusion<br />

A glass of wine a day keeps the doctor away!


Thank you for your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!