02.09.2013 Views

view - Department of Reproduction, Obstetrics and Herd Health

view - Department of Reproduction, Obstetrics and Herd Health

view - Department of Reproduction, Obstetrics and Herd Health

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

AUTOMATED AND STANDARDIZED<br />

ANALYSIS OF EQUINE SEMEN AND<br />

INFLUENCES OF CENTRIFUGATION<br />

ON EQUINE SEMEN PRESERVATION<br />

Maarten Hoogewijs<br />

Faculty <strong>of</strong> Veterinary Medicine<br />

<strong>Department</strong> <strong>of</strong> <strong>Reproduction</strong>, <strong>Obstetrics</strong> <strong>and</strong> <strong>Herd</strong> <strong>Health</strong><br />

Salisburylaan 133 – 9820 Merelbeke – Belgium


I am among those who think that science has great beauty.<br />

A scientist in his laboratory is not only a technician:<br />

he is also a child placed before natural phenomena<br />

which impress him like a fairy tale.<br />

Marie Curie<br />

Printed by: Ryhove Plot-it<br />

Foto kaft: Johan Jacobs - Droomwereld


AUTOMATED AND STANDARDIZED ANALYSIS OF EQUINE<br />

SEMEN AND INFLUENCES OF CENTRIFUGATION ON EQUINE<br />

SEMEN PRESERVATION<br />

Thesis submitted in fulfillment <strong>of</strong> the requirements for the degree <strong>of</strong> Doctor in Veterinary Sciences<br />

(PhD), Faculty <strong>of</strong> Veterinary Medicine, Ghent University, 2010<br />

Maarten Hoogewijs<br />

Faculty <strong>of</strong> Veterinary Medicine<br />

<strong>Department</strong> <strong>of</strong> <strong>Reproduction</strong>, <strong>Obstetrics</strong> <strong>and</strong> herd <strong>Health</strong><br />

Salisburylaan 133 – 9820 Merelbeke – Belgium<br />

Promoters:<br />

Pr<strong>of</strong>. Dr. Aart de Kruif<br />

Pr<strong>of</strong>. Dr. Ann Van Soom<br />

Pr<strong>of</strong>. Dr. Sarne De Vliegher


LIST OF ABBREVIATIONS<br />

TABLE OF CONTENTS<br />

PREFACE 1<br />

CHAPTER 1 GENERAL INTRODUCTION 3<br />

1.1 Semen analysis 5<br />

1.2 Collection <strong>and</strong> processing <strong>of</strong> equine semen 27<br />

1.3 Shortcomings in current practice 49<br />

CHAPTER 2 SCIENTIFIC AIMS 71<br />

CHAPTER 3 ANALYSIS OF EQUINE SEMEN – IS AUTOMATION (THE) KEY TO STANDARDIZATION? 75<br />

3.1 Influence <strong>of</strong> technical settings on CASA motility parameters <strong>of</strong> frozen-thawed stallion<br />

semen 77<br />

3.2 Counting chamber influences the CASA motility outcomes <strong>of</strong> equine semen analysis 85<br />

3.3 Validation <strong>and</strong> usefulness <strong>of</strong> the SQA-Ve (1.00.43) for equine semen analysis 109<br />

3.4 Need for further improvement <strong>of</strong> SQA-Ve (1.00.61) for a univocal analysis <strong>of</strong> the<br />

quality <strong>of</strong> frozen-thawed equine semen 123<br />

CHAPTER 4 DIFFERENT CENTRIFUGATION TECHNIQUES – TO WHAT EXTENT DO THEY AFFECT QUALITY AND<br />

PRESERVATION OF EQUINE SEMEN 135<br />

4.1 Influence <strong>of</strong> different centrifugation protocols on equine semen preservation 137<br />

4.2 Sperm selection using single layer centrifugation prior to cryopreservation can<br />

increase post-thaw sperm quality in stallions 157<br />

CHAPTER 5 GENERAL DISCUSSION 177<br />

SUMMARY 201<br />

SAMENVATTING 205<br />

DANKWOORD 211<br />

CURRICULUM VITAE 215<br />

BIBLIOGRAPHY 219<br />

ADDENDUM I FUNDAMENTAL ASPECTS OF CRYOPRESERVATION 225<br />

ADDENDUM II DETAILED LOADING TECHNIQUE OF THE DIFFERENT TYPES OF COUNTING CHAMBERS USED TO ANALYZE<br />

EQUINE SEMEN SAMPLES WITH CASA 231<br />

i


A Area<br />

AI Artificial Insemination<br />

ALH Amplitude <strong>of</strong> the Lateral Head displacement<br />

AO Acridine Orange<br />

AR Acrosome Reacted<br />

ASMA Automated Sperm Morphology Assessment<br />

AV Artificial Vagina<br />

BCF Beat Cross Frequency<br />

CASA Computer Assisted Sperm Analysis<br />

CC Coefficient <strong>of</strong> Correlation<br />

CG Cover Glass<br />

ConA Concovalin A<br />

CONC Concentration<br />

CP Centrifugation Protocol<br />

CPA Cryoprotective Agent<br />

CSU Colorado State University<br />

CTC Chlortetracycline<br />

CV Coefficient <strong>of</strong> Variation<br />

D Depth<br />

DGC Density Gradient Centrifugation<br />

DMF Dimethylformamide<br />

DMSO Dimethyl Sulfoxide<br />

FACS Fluorescence Activated Cell Sorter<br />

FITC Fluorescein Isothiocyanate conjugated<br />

HGLL Hank’s salt solution supplemented with Hepes, glucose <strong>and</strong> lactose<br />

HOST Hypo Osmotic Swelling Test<br />

LF Leucosorb® Filtration<br />

LIN Linearity<br />

LIST OF ABBREVIATIONS<br />

iii


LIST OF ABBREVIATIONS<br />

LM Light Microscopy<br />

MF Methylformamide<br />

MORF Percentage spermatozoa with normal Morphology<br />

NPPC Native Phosphocaseinate<br />

PAP Papanicolaou<br />

PBS Phosphate Buffered Saline<br />

PI Propidium Iodide<br />

PM Progressive Motility<br />

PMS Progressive Motile Spermatozoa<br />

PNA Arachis hypogea (Peanut) agglutinin<br />

PSA Pisum sativum agglutinin<br />

PVP Polyvinyl Pyrrolidone<br />

Rapid Percentage Rapid Spermatozoa<br />

SCD Sperm Chromatin Dispersion<br />

SCSA Sperm Chromatin Structure Assay<br />

SD St<strong>and</strong>ard Deviation<br />

SLC Single Layer Centrifugation<br />

SQA Sperm Quality Analyzer<br />

SS Segre Silberberg<br />

STR Straightness<br />

TM Total Motility<br />

TUNEL Terminal deoxynucleotidyl transferases dUTP end labeling<br />

V Volume<br />

VAP Average Pathway Velocity<br />

VCL Curved Line Velocity<br />

VEL Velocity<br />

VSL Straight Line Velocity<br />

WBFSH World Breeding Federation for Sport Horses<br />

WHO World <strong>Health</strong> Organization<br />

iv


PREFACE<br />

The first recorded case <strong>of</strong> artificial insemination (AI) in horses goes back to the Arabs in 1322,<br />

when a chief decided to steal semen from a rival’s stallion to use for one <strong>of</strong> his own mares (Bowen,<br />

1969). Still, it wasn’t until 1677 that spermatozoa were actually visualized by van Leeuwenhoek <strong>and</strong><br />

Ham using one <strong>of</strong> van Leeuwenhoek’s first microscopes. These so called “animalcules” were<br />

described as living creatures with a tail <strong>and</strong> have been studied ever since. In 1781, Spallanzani<br />

described the influence <strong>of</strong> temperature on the motility <strong>of</strong> these animalcules. He found that cooling in<br />

ice reduced their motility, <strong>and</strong> after subsequent warming the animalcules became motile again<br />

(Gonzalès, 2006).<br />

Between the first reported AI from the Arabs <strong>and</strong> the research during the late 19 th century by<br />

Sir Walter Heape, equine AI languished in silence. Early research in reproductive work was done by<br />

Heape, a student from the University <strong>of</strong> Cambridge <strong>and</strong> a pioneer in embryo transfer in the rabbit<br />

(Heape, 1890). He also collected semen from a stallion followed by successful inseminations in mares<br />

(Heape, 1898). Continuing research in horse reproduction <strong>and</strong> in utero development was performed<br />

by Sir John Hammond, who carried out reciprocal inseminations <strong>of</strong> Shire mares with Shetl<strong>and</strong> stallion<br />

semen <strong>and</strong> vice versa to examine the maternal effect on growth <strong>and</strong> conformation (Walton <strong>and</strong><br />

Hammond, 1938). Unfortunately, most <strong>of</strong> the early work which was done by the Russians <strong>and</strong> the<br />

Chinese between 1930 <strong>and</strong> 1960 remained unpublished, hidden by the Iron Curtain <strong>and</strong> language<br />

barriers (Allen, 2005). In the late 1960s, equine AI revived with the work <strong>of</strong> B.W. Pickett <strong>and</strong> his large<br />

group <strong>of</strong> co-workers who worked on the collection, dilution, cooling, freezing, <strong>and</strong> insemination <strong>of</strong><br />

stallion semen. Much <strong>of</strong> this work is summarized by Squires et al. (1999).<br />

The acceptance <strong>of</strong> AI by the majority <strong>of</strong> horse breed registries <strong>and</strong> the possibility to transport<br />

cooled <strong>and</strong> frozen semen, have changed the entire horse industry <strong>and</strong> equine reproduction in<br />

particular. This widespread use <strong>of</strong> “processed” semen does not only increase the breeder’s<br />

possibilities but also surfaces challenges for the researchers <strong>and</strong> veterinarians harvesting <strong>and</strong><br />

preparing these AI doses. First <strong>of</strong> all, there is the never ending quest to increase the pregnancy rates<br />

(requiring improved processed semen), <strong>and</strong> secondly, following human <strong>and</strong>rology, st<strong>and</strong>ards need to<br />

be formulated when examining that semen, so the quality can be assessed worldwide using the same<br />

criteria.<br />

1


PREFACE<br />

Allen W.R., 2005: The development <strong>and</strong> application <strong>of</strong> modern reproductive technologies to horse<br />

breeding. <strong>Reproduction</strong> in Domestic Animals, 40:310-329.<br />

Bowen J.M., 1969: Artificial insemination in the horse. Equine Veterinary Journal, 1:98-110.<br />

Gonzalès J., 2006: Histoire du spermatozoïde et mobilité des idées. Gynécologie Obstétrique &<br />

Fertilité, 34:819-826.<br />

Heape W. 1890. Preliminary note on the transplantation <strong>and</strong> growth <strong>of</strong> mammalian ova witin a<br />

uterine foster-mother. Proceedings <strong>of</strong> the Royal Society <strong>of</strong> London series B 48:457-458.<br />

Heape W. 1898. On the artificial insemination <strong>of</strong> mares. Veterinarian 71:202-212.<br />

Squires E.L., Pickett B.W., Graham J.K., V<strong>and</strong>erwall D.K., McCue P.M., Bruemmer J.E. 1999. Cooled<br />

<strong>and</strong> frozen stallion semen. Animal <strong>Reproduction</strong> <strong>and</strong> Biotechnology Laboratory Bulletin N°9 –<br />

Colorado State University, Fort Collins.<br />

Walton A., Hammond J. 1938. The maternal effects on growth <strong>and</strong> conformation in Shire horse-<br />

Shetl<strong>and</strong> pony crosses. Proceedings <strong>of</strong> the Royal Society <strong>of</strong> London series B 125:311-335.<br />

2


GENERAL INTRODUCTION<br />

CHAPTER 1<br />

3


Semen analysis<br />

1.1<br />

5


1.1.1. Introduction<br />

CHAPTER 1.1<br />

The widespread increased use <strong>of</strong> artificial insemination (AI) in domestic animal reproduction<br />

implies a growing awareness concerning the male’s fertilizing potential. Indeed, the fertility <strong>of</strong> one<br />

individual male can have an enormous impact on the pregnancy outcome <strong>of</strong> hundreds <strong>of</strong> females. As<br />

such, the economic importance <strong>of</strong> male fertility in breeding animals has increased proportionally.<br />

Focusing on livestock, the financial interests are equally important for business both for<br />

owners <strong>of</strong> male <strong>and</strong> female breeding animals. For the male side, more insemination doses represent<br />

a higher income for the breeder or AI company, but the downside can be that lowering the dose<br />

might result in a decreased conception rate (Chenoweth et al., 2010). This will affect the production<br />

results <strong>and</strong> might lead to law suits against the AI companies that are involved. International<br />

guidelines on the minimal quality requirements for an AI dose would protect the owners <strong>of</strong> the<br />

female animals but could also provide insurance for the male counterpart. However, before those<br />

uniform international guidelines for different animal species can be established, a consensus is<br />

required on techniques <strong>and</strong> settings used for semen analysis. After all, methodology <strong>of</strong> analysis has a<br />

major influence on the outcome parameters.<br />

In many aspects the equine breeding industry is comparable with the production animal<br />

breeding industry, although there are some striking differences. In the latter, the importance <strong>of</strong> a<br />

given positive trait (e.g. faster growing rate, higher milk production) might be less attractive for<br />

selection when associated with markedly decreased fertility. This is in sharp contrast with equine<br />

breeding, where selection is most <strong>of</strong>ten based on breed characteristics such as phenotype or sports<br />

performance. Consequently, a possible reduced fertility outcome becomes only important in the long<br />

run. Additionally, a superior performing stallion with decreased fertility might even be more<br />

attractive to breeders <strong>of</strong> sport horses, as breeding with this stallion will not only lead to <strong>of</strong>fspring<br />

with a high performance expectation, but due to its subfertility it will also result in a low number <strong>of</strong><br />

foals. The game <strong>of</strong> supply <strong>and</strong> dem<strong>and</strong> will thus increase the value <strong>of</strong> the <strong>of</strong>fspring even more.<br />

Due to great dem<strong>and</strong>s <strong>of</strong> AI doses from famous, popular stallions, normal fertile stallions<br />

might seem subfertile. At a given time a (too) popular stallion might breed more mares than there is<br />

semen available, which will very <strong>of</strong>ten result in more AI doses containing lower numbers <strong>of</strong> sperm.<br />

Eventually, this might lead to a decreased conception rate <strong>and</strong> increased costs for the mare owners.<br />

Therefore, regardless <strong>of</strong> the intrinsic fertility <strong>of</strong> a stallion, minimum requirements for an AI dose<br />

concerning number <strong>and</strong> quality <strong>of</strong> the sperm might provide an assurance for the breeders.<br />

7


CHAPTER 1.1<br />

8<br />

In the next paragraphs, the state-<strong>of</strong>-the-art concerning the analysis <strong>of</strong> (equine) semen is<br />

re<strong>view</strong>ed. Where possible, the comparison is made with the guidelines according to the World <strong>Health</strong><br />

Organization (WHO). The WHO laboratory manual for the examination <strong>of</strong> human sperm <strong>and</strong> sperm-<br />

cervical mucus interaction was published for the first time in 1980. This guideline was developed in<br />

response to a growing need for the st<strong>and</strong>ardization <strong>of</strong> procedures for the examination <strong>of</strong> human<br />

semen. The manual has ever since provided global st<strong>and</strong>ards for human semen analysis <strong>and</strong> has been<br />

updated on numerous occasions based on new underst<strong>and</strong>ings <strong>and</strong> developments. In 2010 the fifth<br />

edition was published.<br />

1.1.2 Gross evaluation <strong>of</strong> equine semen quality<br />

Following ejaculation the gel is separated from the remainder <strong>of</strong> the semen in the laboratory<br />

if no inline filter was applied during collection. The color <strong>and</strong> consistency <strong>of</strong> the semen are recorded.<br />

Normal semen should be white, grayish-white to slightly cream coloured <strong>and</strong> this provides a rough<br />

estimate <strong>of</strong> sperm concentration. Usually, larger volumes are more watery instead <strong>of</strong> a creamy<br />

consistency <strong>and</strong> this will be reflected in low sperm concentrations. A deviant color <strong>of</strong> the ejaculate<br />

may indicate the presence <strong>of</strong> admixtures, such as blood, urine or purulent material (Estrada <strong>and</strong><br />

Samper, 2007; Binsko et al., 2011). The conventional semen analysis consists <strong>of</strong> the evaluation <strong>of</strong><br />

semen volume, spermatozoal concentration, morphology <strong>and</strong> motility. Additional evaluations using<br />

more recent techniques might improve the predictive value <strong>of</strong> the examination (Varner, 2008).<br />

1.1.3. Volume<br />

The volume <strong>of</strong> an ejaculate is most <strong>of</strong>ten determined by pouring the semen from the<br />

collection bottle into a tilted, pre-warmed graduated cylinder (Jasko 1992; Picket, 1993; Squires et al.,<br />

1999). This is in sharp contrast with human <strong>and</strong>rology, where it is advised to weigh the empty <strong>and</strong><br />

filled container in order to calculate the volume based on the density <strong>of</strong> semen (WHO, 2010). For<br />

human samples, it is not recommended to aspirate or to decant the sample into a graduated cylinder.<br />

Anyhow, by decanting a part <strong>of</strong> the sample will get lost <strong>and</strong> sample losses have been reported to vary<br />

between 0.3 <strong>and</strong> 0.9 mL (Brazil et al., 2004; Iwamoto et al., 2006; Cooper et al., 2007). Obviously,<br />

these losses weigh heavily when h<strong>and</strong>ling small volume samples in human <strong>and</strong>rology with a total<br />

volume <strong>of</strong> about 4.0 mL, when compared to equine ejaculates in which a 10 times larger volume is<br />

most <strong>of</strong>ten present (Picket, 1993; Squires et al., 1999). In species with lower volume ejaculates (bulls,<br />

rams,…) losses due to decanting will be more important.


1.1.4. Concentration<br />

CHAPTER 1.1<br />

According to the WHO manual (WHO, 2010), determination <strong>of</strong> the concentration <strong>of</strong> a human<br />

semen sample is preferably done using a 100 µm deep haemocytometer. The improved Neubauer<br />

haemocytometer is most commonly used. These evaluations are rather time consuming <strong>and</strong> as such,<br />

not easily applicable in production settings <strong>of</strong> animal AI companies where numerous ejaculates are<br />

processed. Hence, automated devices are commonly used in animal <strong>and</strong>rology, which is in contrast<br />

with practices in human <strong>and</strong>rology laboratories.<br />

Photometers<br />

Photometers (Fig. 1a) are probably the most frequently used devices for estimating<br />

concentration. Determination <strong>of</strong> concentration is based on the absorbance <strong>of</strong> a part <strong>of</strong> a light beam<br />

by the particles (spermatozoa) in a suspension. The alteration in light transmitted through a sample<br />

corresponds to the concentration <strong>of</strong> particles (Squires et al., 1999). As such, these instruments allow<br />

rapid measurements <strong>of</strong> concentration with a good accuracy as long as the concentration is within<br />

range (>100 <strong>and</strong>


CHAPTER 1.1<br />

a.<br />

10<br />

b.<br />

Fig. 1. (a) photometer used to assess sperm concentration quickly <strong>of</strong> a raw equine semen sample by<br />

means <strong>of</strong> density measurement (picture provided by IMV), (b) NucleoCounter SP100 to<br />

analyse sperm concentration <strong>of</strong> any kind <strong>of</strong> sample, based on fluorescent microscopy using<br />

propidium iodide imbedded in the analysis cassette (picture provided by Chemometec).<br />

Computer Assisted Sperm Analysis<br />

A number <strong>of</strong> scientific studies have been performed using computer assisted sperm analysis<br />

(CASA) systems to determine sperm concentration. One <strong>of</strong> the major concerns is the use <strong>of</strong> the<br />

shallow disposable counting chambers, which typically consist <strong>of</strong> capillary-loaded slides <strong>of</strong><br />

approximately 20 µm depth (Douglas-Hamilton et al., 2005a). This chamber depth needs to be<br />

limited in order to obtain a clear, sharp image necessary for sperm recognition. Sperm cells are<br />

counted per unit area in this monolayer, <strong>and</strong> concentration can be calculated (Douglas-Hamilton et<br />

al., 2005a). However, the distribution <strong>of</strong> particles is not uniform throughout the chamber due to the<br />

dynamics occurring when filling such a shallow chamber. This phenomenon is known as the Segre-<br />

Silberberg (SS) phenomenon <strong>and</strong> has been described extensively (Douglas-Hamilton et al., 2005b). A<br />

mathematical model has been determined which can be used to correct for the underestimation <strong>of</strong><br />

the concentration (Douglas-Hamilton et al., 2005a), based on the viscosity <strong>of</strong> the sample <strong>and</strong> the<br />

coherent filling time <strong>of</strong> the chamber. Although this correction is possible, it was shown that the use<br />

<strong>of</strong> 20 µm deep capillary-loaded slides for the determination <strong>of</strong> sperm concentration is not compatible<br />

with the requirement for high-st<strong>and</strong>ard quality assurance in the <strong>and</strong>rology laboratory (Björndahl <strong>and</strong><br />

Barratt, 2005). Hansen et al. (2006) found varying repeatability for CASA systems, depending on<br />

manufacturer, <strong>and</strong> a large difference between the evaluated systems.


Fluorescent Activated Cell Sorter<br />

CHAPTER 1.1<br />

A fluorescent activated cell sorter (FACS) has been evaluated to determine the concentration<br />

<strong>of</strong> boar semen. The FACS showed a very good correlation <strong>and</strong> the highest repeatability (Hansen et al.,<br />

2006). This is not surprising since this flow cytometric technique uses an internal st<strong>and</strong>ard <strong>of</strong><br />

fluorescent beads with every analysis.<br />

Haemocytometer<br />

Since the accurate <strong>and</strong> precise devices (NucleoCounter SP-100 <strong>and</strong> FACS) are all rather<br />

expensive, it is not useful to propose them as the “gold st<strong>and</strong>ard”. Therefore, the haemocytometer is<br />

most likely the best alternative as st<strong>and</strong>ard for concentration determination, in concordance with<br />

human <strong>and</strong>rology. The counting chamber type is known to have a major influence on the outcome <strong>of</strong><br />

sperm concentration. In shallow chambers, loaded with capillarity, the SS effect has an influence on<br />

concentration (Douglas-Hamilton et al., 2005a, 2005b). In the Makler chamber (Fig. 2a), a reusable<br />

chamber with a 10 µm depth, the cover glass is placed upon the loaded area, the time interval<br />

between loading <strong>and</strong> applying the cover glass is a major factor influencing the obtained<br />

concentration (Matson et al., 1999). The Makler chamber has been documented as having a low<br />

precision (Christensen et al., 2005), <strong>and</strong> the time interval before applying the cover slide might<br />

attribute to this imprecision (Makler, 2000). Different haemocytometers result in different outcomes,<br />

especially when chambers with different depths are used. Therefore, it might be advisable to<br />

recommend the use <strong>of</strong> a st<strong>and</strong>ard counting chamber. In accordance with the WHO, the improved<br />

Neubauer haemocytometer (Fig. 2b) could be the chamber <strong>of</strong> preference. This chamber was also<br />

described for use in horses (V<strong>and</strong>erwall, 2008). Alternatively, a Bürker haemocytometer can be used<br />

as well (Kuisma et al., 2006). Before filling a haemocytometer, correct placement <strong>of</strong> the cover slip can<br />

be verified by looking for the presence <strong>of</strong> iridescence (multiple Newton’s rings) between the two<br />

glass surfaces (WHO, 2010). Following a 1:100 dilution (V<strong>and</strong>erwall, 2008) <strong>of</strong> the semen with a<br />

fixative to immobilize the spermatozoa, the well mixed sample is loaded into the chamber. The filled<br />

chamber should be allowed to rest horizontally (>4 min) at room temperature in a humified chamber<br />

to prevent evaporation. The immobilized cells will sediment onto the grid <strong>and</strong> this will facilitate<br />

counting. When assessing concentration using a haemocytometer, it is advised to fill <strong>and</strong> count<br />

duplicate chambers to reduce the variation (Freund <strong>and</strong> Carol, 1964). For assessing concentration<br />

using a haemocytometer the use <strong>of</strong> cover slips with a thickness <strong>of</strong> 400 µm is advised (WHO, 2010).<br />

11


CHAPTER 1.1<br />

Fig. 2. Different counting chambers for assessing sperm concentration: (a) 10 µm deep Makler<br />

chamber, <strong>and</strong> (b) 100 µm deep improved Neubauer haemocytometer with a 400 µm thick<br />

cover slide.<br />

1.1.5. Motility<br />

12<br />

Subjective motility analysis<br />

b.<br />

Spermatozoal motility can either be estimated subjectively or assessed objectively with<br />

automated devices. Subjective motility analysis is known to be inaccurate <strong>and</strong> imprecise (Davis <strong>and</strong><br />

Katz, 1993), with the greatest variation caused by differences between examiners (Katila, 2001). In<br />

order to obtain an estimate as accurate as possible, environmental conditions should be<br />

st<strong>and</strong>ardized <strong>and</strong> optimized for semen (Katila, 2001), which means that all materials that can have<br />

contact with the semen should be stored in an incubator at 37°C <strong>and</strong> the stage <strong>of</strong> the light<br />

microscope should also be warmed to this temperature. The sample should be properly extended to<br />

a range <strong>of</strong> 25 to 50 × 10 6 sperm/mL using an extender that does not alter the motility, since it is<br />

known that there is a strong relationship between sperm concentration <strong>and</strong> subjective appraisal <strong>of</strong><br />

motility (Van Duijn <strong>and</strong> Hendriske, 1968). Another critical factor in motility analysis is the depth <strong>of</strong><br />

the sample. A depth <strong>of</strong> more than 20 µm causes a less clear <strong>view</strong>, since sperm will move in <strong>and</strong> out<br />

the microscopic plane <strong>of</strong> <strong>view</strong>. Shallow depths <strong>of</strong> 10 µm allow for a good visualization, however,<br />

motility may be altered because the sperm head is restricted in its free rotation (Jasko, 1992). The<br />

semen sample should be prepared in order to obtain a monolayer, so sperm cells can be properly<br />

identified <strong>and</strong> motility pattern is not altered due to spherical limitations. Extra attention is required<br />

when not using fixed depth chambers. In the fifth edition <strong>of</strong> the WHO laboratory manual (WHO,<br />

2010), a special section is dedicated to the depth <strong>of</strong> wet preparations. Briefly, the depth <strong>of</strong> a


CHAPTER 1.1<br />

preparation (D, µm) is obtained by dividing the volume <strong>of</strong> the sample (V, µL = mm³) by the area over<br />

which it is spread (A, mm²). Consequently, when using a 18 mm × 18 mm or 22 mm × 22 mm<br />

coverslip, a 6.5 µl or 10 µl sample should be used, respectively. In veterinary <strong>and</strong>rology the<br />

importance <strong>of</strong> sample depth for motility analysis is clearly not well known. Very <strong>of</strong>ten the for motility<br />

analysis prepared slides have very limited sample depths <strong>of</strong> 8.7 µm (Akcay et al., 2006).<br />

Objective motility analysis: Sperm Mobility Assay<br />

Inaccuracies <strong>and</strong> subjectivity in motility analyses can be avoided using automated techniques.<br />

Multiple techniques are available to analyze <strong>and</strong> record sperm motility in an objective way. One <strong>of</strong><br />

the less familiar techniques is the sperm mobility assay. This technique was first described by McLean<br />

<strong>and</strong> Froman (1996), who found that spermatozoa from subfertile roosters were characterized by<br />

decreased sperm motility when sperm suspensions were overlaid upon 6% (w/v) Accudenz®. The<br />

motile sperm enters the Accudenz® solution by their own power, as such increasing the optical<br />

density <strong>of</strong> the solution which can be measured with a photometer (Froman, 2007). Absorbance is<br />

measured after a 5 min incubation interval (at 41°C for fowl sperm), <strong>and</strong> higher absorbance is<br />

associated with higher motility <strong>and</strong> higher fertility (Froman <strong>and</strong> McLean, 1996). Although the test<br />

was validated as a sperm motility assay (Froman <strong>and</strong> McLean, 1996), a key distinction was made: the<br />

assay estimates the mobility (= gross movement) <strong>of</strong> a sperm population, rather than sperm motility (=<br />

individual movement) per se (Froman, 2007). This way <strong>of</strong> analysis has been well documented for fowl<br />

sperm, <strong>and</strong> was more recently validated for stallion <strong>and</strong> boar sperm (Vizcarra <strong>and</strong> Ford, 2006).<br />

Objective motility analysis: Sperm Quality Analyzer<br />

Another alternative for automated motility analysis is the sperm quality analyzer (SQA),<br />

which analyzes total <strong>and</strong> progressive motility <strong>and</strong> sperm motility <strong>of</strong> a sperm sample, loaded in a<br />

special designed capillary, by passing a light beam through the sample. The motile sperm cells create<br />

disturbances in the light beam, which are converted into electrical signals by a motility detector <strong>and</strong><br />

translated into a numerical output. The latest version has a separate channel for simultaneously<br />

analyzing the concentration, based on light absorbance. A similar device was already described in<br />

1981 (Bartoov et al., 1981), <strong>and</strong> ever since, this device has been updated, adapted <strong>and</strong> studied. The<br />

first reports using the SQA concerned the analysis <strong>of</strong> human semen (Bartoov et al., 1991; Makler et<br />

al., 1999; Martinez et al., 2000). Later on, the human devices have also been tested for different<br />

animal species [dogs (Iguer-Ouada <strong>and</strong> Verstegen, 2001; Rijsselaere et al., 2002), turkeys (Neuman et<br />

13


CHAPTER 1.1<br />

al., 2002), boars (Maes et al., 2003; Vyt et al., 2004) rams (Fukui et al., 2004), bulls (H<strong>of</strong>lack et al.,<br />

2005), <strong>and</strong> mice (Tayama et al., 2006)]. The newest version <strong>of</strong> the SQA (version V) was initially<br />

developed for human samples as well <strong>and</strong> later on adapted for different animal species, namely bulls,<br />

boars, stallions <strong>and</strong> turkeys. Specific devices for rams <strong>and</strong> roosters are in development. The SQA is<br />

ready to use after delivery <strong>and</strong> does not require (or allow) user specific settings, as such reducing a<br />

large potential source <strong>of</strong> bias (H<strong>of</strong>lack et al., 2005).<br />

14<br />

Objective motility analysis: Computer Assisted Sperm Analysis<br />

The best known way to objectively analyze sperm motility is analysis by means <strong>of</strong> a CASA<br />

system. The first CASA system was introduced over 30 years ago, <strong>and</strong> has been used ever since in<br />

human <strong>and</strong> veterinary <strong>and</strong>rology laboratories. By equipping a microscope with a camera, the sperm<br />

cells are visualized <strong>and</strong> the actual sperm tracks can be analyzed after sperm cell recognition. The<br />

latter can be achieved either based on the number <strong>of</strong> pixels <strong>and</strong> intensity or, in newer versions, by<br />

means <strong>of</strong> fluorescent dyes. This technique facilitates sperm recognition <strong>and</strong> allows CASA analysis <strong>of</strong><br />

(post thaw) samples containing egg yolk particles (Tardif et al., 1998) or debris for example after<br />

obtaining epididymal sperm in cats (Filliers, personal communication). The major advantages <strong>of</strong> CASA<br />

systems are, amongst others, the good repeatability <strong>and</strong> the absence <strong>of</strong> subjectivity. Nevertheless,<br />

st<strong>and</strong>ards for analysis need to be established first, since different technical settings <strong>and</strong> sample<br />

preparations have been shown to influence the outcome <strong>of</strong> CASA analysis (Table 1). The impact <strong>of</strong><br />

different technical settings (frame rate <strong>and</strong> number <strong>of</strong> frames analyzed) <strong>and</strong> procedures<br />

(temperature, concentration, diluents <strong>and</strong> chamber) have been studied for different species (Contri<br />

et al., 2010; Lenz et al., 2011; Rijsselaere et al., 2003). Also, the motility settings may have an<br />

influence on the CASA outcome as well. Based on low <strong>and</strong> medium average pathway velocity (VAP)<br />

cut-<strong>of</strong>f values <strong>and</strong> on straightness (STR), spermatozoa are graded. In literature, a plethora <strong>of</strong> settings<br />

is used (Table 2). Not only is there a lack <strong>of</strong> agreement in the cut-<strong>of</strong>f values used by different<br />

research groups, also the description <strong>of</strong> these values is not uniform for CASA systems from different<br />

companies.<br />

A comparable lack <strong>of</strong> st<strong>and</strong>ardization can be found in the chambers used to analyze the<br />

motility <strong>of</strong> a semen sample. Although the effect <strong>of</strong> the counting chamber was already described in<br />

2001 (Iguer-ouada <strong>and</strong> Verstegen, 2001), different br<strong>and</strong>s <strong>and</strong> types <strong>of</strong> chambers are used. The most<br />

frequently used chambers are a 20 µm deep Leja chamber (Waite et al., 2008; Ortega-Ferrusola et al.,<br />

2009; Len et al., 2010), a 20 µm deep Cell-Vu (Almeida <strong>and</strong> Ball, 2005; Glazar et al., 2009; Spirizzi et<br />

al., 2010) <strong>and</strong> the 10 µm deep reusable Makler chamber (Kavak et al., 2003; Johannisson et al., 2009).


CHAPTER 1.1<br />

These chambers are frequently loaded with a different volume <strong>of</strong> sperm, sometimes only the depth<br />

<strong>of</strong> the chamber is mentioned without the br<strong>and</strong> name (Pagl et al., 2006; Aurich <strong>and</strong> Spergser, 2007),<br />

or only the volume used is mentioned (Quintero-Moreno et al., 2003; Price et al., 2008) <strong>and</strong><br />

occasionally nothing is mentioned at all (Love et al., 2004; Macia-Garcia et al., 2009; Ponthier et al.,<br />

2009). In three recent studies, the influence <strong>of</strong> different chambers on motility was evaluated. For bull<br />

semen, the Makler chamber resulted in higher total <strong>and</strong> progressive motility compared to 20 µm<br />

deep Leja chambers (Contri et al., 2010; Lenz et al., 2011) but results were not different compared to<br />

these obtained with the WHO prepared slide (Lenz et al., 2011). The effect <strong>of</strong> different counting<br />

chambers when analyzing equine semen needs to be analyzed.<br />

Table 1. Influence <strong>of</strong> technical settings <strong>and</strong> sperm preparation on outcome motility parameters generated with<br />

a CASA system (tested variables are listed between brackets).<br />

Setup Rijsselaere et al., 2003 Contri et al., 2010<br />

Species Dog Cattle<br />

Type <strong>of</strong> CASA Hamilton-Thorne<br />

CEROS 12.1<br />

Frame rate Influence<br />

(15-30-60Hz)<br />

Number <strong>of</strong> frames Limited influence<br />

(30-60)<br />

Concentration Influence<br />

(100 – 50 – 25 × 10 6 )<br />

Advised concentration: 50 × 10 6<br />

Diluent Influence<br />

(physiological saline – prostatic fluid –<br />

Hepes-TALP-medium –<br />

egg-yolk-Tris extender)<br />

1.1.6. Morphology<br />

Hamilton-Thorne<br />

IVOS 12.3<br />

Influence<br />

(30-60Hz)<br />

No influence<br />

(30-45)<br />

Influence<br />

(100 – 50 – 30 – 20 – 10 – 5 × 10 6 )<br />

Advised concentration: 20 × 10 6<br />

Influence<br />

(physiological saline – PBS –<br />

Bio-excell)<br />

In human <strong>and</strong>rology, three different stainings are recommended by the WHO (2010), namely<br />

the Papanicolaou (PAP), the Shorr <strong>and</strong> the Diff-Quick stain which can all be interpreted using<br />

brightfield optics. With these staining procedures, the sperm head is stained pale blue in the<br />

acrosome region <strong>and</strong> dark blue in the post-acrosomal region. The midpiece may show some red<br />

staining <strong>and</strong> the tail is stained blue or reddish. Excess residual cytoplasm is stained pink or red using<br />

the PAP stain or reddish-orange in case <strong>of</strong> the Shorr stain (Boersma et al., 2001; WHO, 2010). The use<br />

<strong>of</strong> rapid staining methods such as eosin-nigrosin staining, is not recommended by the WHO because<br />

15


Table 2. Type <strong>of</strong> counting chamber used <strong>and</strong> technical settings [average pathway velocity (VAP) <strong>and</strong> straightness (STR)] in combination with computer<br />

assisted sperm analysis in horses as reported in literature, blank fields indicate that the information was not available in the paper.<br />

STR<br />

(%)<br />

medium VAP<br />

cut-<strong>of</strong>f (µm/s)<br />

low VAP cut<strong>of</strong>f<br />

(µm/s)<br />

Frames<br />

acquired<br />

Frame<br />

rate (Hz)<br />

Counting<br />

Chamber<br />

Study<br />

Albrizio et al., 2010 Leja (20 µm) 60 45 20 50 75<br />

Aurich <strong>and</strong> Spergser, 2007 20 µm<br />

Ball <strong>and</strong> Vo, 2001<br />

Baumber et al., 2002<br />

Brinsko et al., 2000a<br />

Glazar et al., 2009 Cell-Vu (20 µm) 60 45 20 50 75<br />

Kavak et al., 2003 Makler (10 µm) 32 15 10 25<br />

Loomis <strong>and</strong> Graham, 2008<br />

60 40 20 50 75<br />

Macias Garcia et al., 2009 Leja (20 µm)<br />

10 15 45<br />

Melo et al., 2007 Makler (10 µm) 60 30 30 70 80<br />

Miro et al., 2005<br />

25 16<br />

Nascimento et al., 2008 Leja (20 µm) 80 30 20 70 60<br />

Ortega-Ferrusola et al., 2009 Leja (20 µm) 25<br />

10 15 45<br />

Pagl et al., 2006 20 µm<br />

Papa et al., 2008<br />

Squires et al., 2004 Cell-Vu (20 µm)<br />

20 20 25 80<br />

Taberner et al., 2010<br />

10 90 75<br />

Vidament et al., 2009<br />

60 30 20 40 80<br />

Waite et al., 2008 Leja (20 µm) 60 45 15 30 50<br />

Webb et al., 2009 Leja (20 µm) 60 30 20 50 75


CHAPTER 1.1<br />

it is not possible to observe the details necessary for the morphological classification when<br />

spermatozoa are not equally distributed using the smearing technique (WHO, 2010).<br />

The PAP stain is almost a synonym for sperm morphology assessment according to WHO<br />

st<strong>and</strong>ards. However, the major downside <strong>of</strong> this stain, is the time consuming procedure, which<br />

involves 20 processing steps using more than 12 different chemical solutions. Due to the long<br />

staining procedure, the PAP staining is not frequently used for morphological analysis <strong>of</strong> animal<br />

semen. However, a rapid PAP stain procedure has been developed which has been used in<br />

combination with automated sperm morphology assessment (ASMA) (Boersma et al., 2001).<br />

The importance <strong>of</strong> the staining procedure for morphology analysis is well known. Staining<br />

techniques affect the morphometric dimensions <strong>of</strong> the sperm head, most likely due to differences in<br />

osmolarity in fixatives <strong>and</strong> staining solution. Most <strong>of</strong> these substances are not iso-osmotic in relation<br />

to the sperm (Marree et al., 2010). For instance, after staining sperm with PAP, the heads were<br />

shrunk when compared to fresh sperm. A new developed stain, SpermBlue®, is iso-osmotic in<br />

relation to human semen (van der Horst <strong>and</strong> Maree, 2009) <strong>and</strong> has been demonstrated not to<br />

influence the morphometric dimensions <strong>of</strong> the human sperm head (Marree et al., 2010). Additionally,<br />

the entire fixation <strong>and</strong> staining process requires only 25 min.<br />

Animal semen samples are <strong>of</strong>ten analyzed as wet mounts without staining (Estrada <strong>and</strong><br />

Samper, 2007), after fixing in buffered formol saline or buffered glutaraldehyde solution (Brinsko et<br />

al., 2011). Depending on the laboratory, animal semen is stained with specific sperm stains [e.g.,<br />

Williams stain (Williams, 1950) <strong>and</strong> Casarett stain (Casarett, 1953)], general purpose stains (e.g.,<br />

Wright’s, Giemsa, Hematoxylin-Eosin) or background stains (e.g., eosin-nigrosin, India ink) (Barth <strong>and</strong><br />

Oko, 1998; Varner, 2008).<br />

Despite the already mentioned associated disadvantages, eosin-nigrosin is probably the most<br />

frequently used staining method for animal semen because <strong>of</strong> its simplicity. Besides, this staining<br />

method gives good results for routine morphology evaluations. The eosin component <strong>of</strong> the stain will<br />

penetrate the damaged sperm membrane, causing the cell to turn pink, while sperm with an intact<br />

sperm membrane will remain white against the dark background provided by the nigrosin (Barth <strong>and</strong><br />

Oko, 1989). Based on this principle, the eosin-nigrosin stain can also be used to assess the<br />

percentage <strong>of</strong> live, acrosome intact sperm, since stained sperm are considered to be dead or to have<br />

lost the acrosome (Brinsko et al., 2011). However, artefactual changes can occur simply from cold<br />

<strong>and</strong> osmotic shock which will lead to an increased percentage <strong>of</strong> stained sperm. Therefore, the<br />

17


CHAPTER 1.1<br />

staining procedures should be followed exactly, i.e. the semen, stain <strong>and</strong> slides should be warm (37°C)<br />

<strong>and</strong> the preparation should be thin allowing the smear to dry rapidly (Fig. 3). For preparing an eosin-<br />

nigrosin stain, the following procedure is recommended (Bart <strong>and</strong> Oko, 1989):<br />

18<br />

a. Place a drop <strong>of</strong> warm stain near the frosted end <strong>of</strong> a warm microscope slide.<br />

b. Place a drop <strong>of</strong> warm semen near the stain <strong>and</strong> mix the two on the slide (the ratio stain to<br />

semen depends on the concentration <strong>of</strong> the semen sample).<br />

c. To make a smear, a second slide held at a 30-40° angle, is pushed against the drop <strong>of</strong><br />

stained semen <strong>and</strong> pulled back slowly as shown in Fig. 3.<br />

d. Dry the smear quickly by blowing air across it.<br />

Fig. 3. Method for making a sperm smear using eosin-nigrosin stained sperm.<br />

Sperm morphology is classified in different categories based on the origin <strong>of</strong> the abnormality<br />

or based on the specific morphological defects. Based on origin, morphological defects are classified<br />

as primary, secondary or tertiary abnormalities. Primary defects, <strong>of</strong> testicular origin, originate during<br />

spermatogenesis. Secondary abnormalities are associated with the excurrent duct system<br />

(epididymal origin) while tertiary defects are considered artefactual defects caused during sperm<br />

collection <strong>and</strong> preparation. On the other h<strong>and</strong>, the classification by the specific morphological<br />

appearance might be preferable since it provides information about the actual defect instead <strong>of</strong> the<br />

presumptive origin. After all, a specific defect might have different causes. Therefore, sperm can be<br />

classified as either normal or with abnormalities i.e. in the head, neck <strong>and</strong> midpiece, or tail, <strong>and</strong><br />

sperm with excess residual cytoplasm. Within any category, subdivisions are made. In Fig. 4, an


CHAPTER 1.1<br />

over<strong>view</strong> <strong>of</strong> common abnormalities in equine spermatozoa morphology is given as <strong>view</strong>ed by<br />

differential-interference contrast microscopy <strong>of</strong> fixed <strong>and</strong> unstained wet-mount sperm.<br />

1.1.7. Optional procedures<br />

Although highly specialized, a spermatozoon can be considered as a relative simple structure.<br />

Due to the dramatic reduction in cellular organelles when compared to somatic cells, a<br />

spermatozoon is composed <strong>of</strong> only a head <strong>and</strong> a tail <strong>and</strong> can be subdivided into: (1) a nucleus, (2) an<br />

overlaying acrosome, (3) the fibrous <strong>and</strong> microtubular components <strong>of</strong> the flagellum, (4) a<br />

mitochondrial sheath, <strong>and</strong> (5) an enveloping plasma membrane (Varner, 2008). A large number <strong>of</strong><br />

tests is available to evaluate these different compartments.<br />

Membrane integrity<br />

The plasma membrane <strong>of</strong> a sperm cell is semi-permeable <strong>and</strong> surrounds the entire sperm cell<br />

<strong>and</strong> plays an important role in its function. The integrity <strong>of</strong> this membrane can be evaluated using<br />

different techniques. Most methods rely on the evaluation <strong>of</strong> the ability <strong>of</strong> the membrane to exclude<br />

extracellular membrane-impermeable dyes. For this purpose eosin as well as fluorescent dyes such<br />

as PI, bis-benzimide (Hoechst 33258), YO-PRO®-1, TOTO®-1 <strong>and</strong> ethidium homodimer-1 can be used<br />

(Varner, 2008). Some <strong>of</strong> these membrane impermeable dyes can be combined with membrane<br />

permeable dyes to provide a more accurate reflection <strong>of</strong> the membrane integrity. For instance, PI is<br />

frequently combined with SYBR®-14, which results in three different staining patterns representing<br />

three classes <strong>of</strong> sperm, i.e. green cells (SYBR®-14 stained) have an intact membrane, red cells (PI<br />

stained) are membrane damaged <strong>and</strong> double stained cells are moribund cells (Fig. 5) (Garner <strong>and</strong><br />

Johnson, 1995).<br />

An alternative approach to evaluate the integrity <strong>and</strong> functionality <strong>of</strong> the sperm plasma<br />

membrane is analyzing the response <strong>of</strong> the sperm cells when placed in hypotonic medium. This hypo<br />

osmotic swelling test (HOST) was first reported by Drevius <strong>and</strong> Ericksson (1966) <strong>and</strong> has been used<br />

for both human <strong>and</strong> domestic animal semen (Jeyendran et al., 1984 ; Neild et al., 2000). Spermatozoa<br />

with a functional membrane in a hypo-osmotic environment respond with different kinds <strong>of</strong> swelling.<br />

A schematic over<strong>view</strong> <strong>of</strong> the different swelling patterns is shown in Fig. 6.<br />

19


CHAPTER 1.1<br />

Fig. 4. Drawing <strong>of</strong> equine spermatozoa as <strong>view</strong>ed by differential-interference contrast microscopy<br />

<strong>of</strong> fixed <strong>and</strong> unstained wet-mount sperm. (A) Spermatozoa with normal morphology in<br />

dorsolateral (A1, A2) <strong>and</strong> (A3) side <strong>view</strong>. Abaxial midpieces (A1) are considered<br />

morphologically normal in stallion spermatozoa. (B) Spermatozoa with different head<br />

abnormalities; (B1) macrocephaly, (B2) microcephaly, (B3) nuclear vacuoles, (B4) tapered<br />

20


CHAPTER 1.1<br />

head, (B5) pyriform head, (B6) constricted head, <strong>and</strong> (B7) degenerated head. (C) Acrosomal<br />

defects (knobbed head) in (C1, C2) dorsolateral <strong>and</strong> (C3) side <strong>view</strong>. (D) Residual cytoplasmatic<br />

droplets, located (D1) proximally or (D2, D3) distally. (E) Abnormal midpieces; (E1) segmental<br />

aplasia <strong>of</strong> the mitochondrial sheath, (E2) roughed midpiece from uneven distribution <strong>of</strong><br />

mitochondria, (E3) enlarged mitochondrial sheath, (E4, E5, E6) bent midpieces, <strong>and</strong> (E7)<br />

double midpiece/double head. (F) Bent tail or hairpin tail, (F1-F4) involving the midregion <strong>of</strong><br />

the principal piece, or (F5) with a singular bend or (F6) proximal bend involving the midpieceprincipal<br />

piece junction. (G) Coiled tail, with (G1) tail tightly encircling the head or (G2,G3) tail<br />

coil not encircling the head. (H) Fragmented sperm; (H1) detached or tailless heads, <strong>and</strong> (H2)<br />

fragmentation at the level <strong>of</strong> the annulus. Fragmentation can also occur at different sites (F4).<br />

(I) Premature germ cells with (I1) a single nucleus or (I2) multiple nuclei (from Varner, 2008 –<br />

Image provided by Dr. Varner <strong>and</strong> used with permission).<br />

Fig. 5. Fluorescent image <strong>of</strong> equine sperm cells stained with SYBR®-14/PI for analysis <strong>of</strong> the plasma<br />

membrane: green sperm cells (1) are membrane intact, red cells (2) have a damaged<br />

membrane <strong>and</strong> dual stained cells (3) are moribund.<br />

21


CHAPTER 1.1<br />

22<br />

Defoin et al. (2005) developed a variation to HOST where semen was mixed with solutions <strong>of</strong><br />

different osmolarity. The cellular response to these solutions was analyzed by adding PI to the<br />

samples <strong>and</strong> assessing the percentage <strong>of</strong> PI positive cells in the population. Since PI+ spermatozoa<br />

included the fluorescent probe, they can be considered membrane damaged.<br />

Fig. 6. Schematic representation <strong>of</strong> the morphological changes in spermatozoa subjected to<br />

hypoosmotic stress (a = no change, b-g = different types <strong>of</strong> tail changes, swelling is indicated<br />

by the grey area) (reproduced from Jeyendran et al., 1984).<br />

Capacitation <strong>and</strong> acrosome status<br />

Ejaculated sperm cells achieve the potential to fertilize once they are activated in the so<br />

called capacitation process. Capacitation involves delicate changes in the plasma membrane enabling<br />

sperm cells to bind to the zona pellucida. This binding initiates the acrosome reaction, which is an<br />

exocytotic event required for the penetration <strong>of</strong> the zona pellucida (Colenbr<strong>and</strong>er et al., 2003). This<br />

indicates the importance <strong>of</strong> the acrosome in the whole <strong>of</strong> fertilization.


CHAPTER 1.1<br />

The acrosome can be evaluated using different techniques including various staining<br />

techniques for light microscopic evaluation. For this purpose, Chicago sky blue <strong>and</strong> Giemsa staining<br />

(Kútvölgyi et al., 2006) <strong>and</strong> Coomassie blue (Brum et al., 2006) are described as specific stainings to<br />

assess the acrosome. However, most <strong>of</strong>ten fluorescent staining techniques are used to analyze the<br />

acrosomal status. The stained samples can be analyzed with fluorescent microscopy or with flow<br />

cytometry. The latter enables the objective analysis <strong>of</strong> a large number <strong>of</strong> sperm cells.<br />

Chlortetracycline (CTC), an antibiotic with fluorescent characteristics, binds to the surface <strong>of</strong><br />

sperm cells in a calcium dependent matter. Three different staining patterns can be distinguished,<br />

depending on the stage <strong>of</strong> sperm activation, i.e. non-capacitated, capacitated acrosome-intact <strong>and</strong><br />

capacitated acrosome-reacted sperm (Colenbr<strong>and</strong>er et al., 2003). Unfortunately, this CTC staining<br />

cannot be used in combination with flow cytometry <strong>and</strong> additionally, CTC detects changes in<br />

capacitation status more slowly when compared to the merocyanine 540/Yo-Pro®-1 staining. The<br />

latter is capable <strong>of</strong> detecting early capacitation changes in combination with vitality <strong>and</strong> allows for a<br />

flow cytometric approach (Rathi et al., 2001). Analysis <strong>of</strong> the proper acrosome status using<br />

fluorescent dyes is commonly done by means <strong>of</strong> different fluorescein isothiocyanate conjugated<br />

(FITC) lectins, such as concovalin A (FITC-ConA: Blanc et al., 1991), Pisum sativum agglutinin (FITC-PSA:<br />

Farlin et al., 1992) <strong>and</strong> Arachis hypogea agglutinin (FITC-PNA: Cheng et al., 1996). The binding <strong>of</strong> FITC-<br />

PSA to the acrosome has been confirmed by electron microscopy (Casey et al., 1993; Meyers et al.,<br />

1995). Using this technique, only two staining patterns are achieved, namely cells with an intact<br />

acrosome <strong>and</strong> cells missing the acrosome (Fig. 7) (Meyers et al., 1995), <strong>and</strong> additionally, PSA binds to<br />

the equine zona pellucida (Cheng et al., 1996) rendering this technique useless when assessing the<br />

acrosome during the sperm-oocyte interaction. On the other h<strong>and</strong>, the acrosome can be classified in<br />

4 groups when using FITC-PNA staining: 1) intact outer acrosomal membrane, 2) vesiculation <strong>and</strong><br />

breakdown <strong>of</strong> the acrosomal membrane, 3) residues <strong>of</strong> the outer acrosomal membrane <strong>and</strong> 4)<br />

complete loss <strong>of</strong> the outer acrosomal membrane. In contrast with PSA, PNA does not stain the<br />

equine zona pellucida (Cheng et al., 1996).<br />

23


CHAPTER 1.1<br />

Fig. 7. Equine spermatozoa labeled with the fluorescent staining FITC-PSA with (a) representing an<br />

intact acrosome (green fluorescence over the entire acrosomal region) <strong>and</strong> (b <strong>and</strong> c) reacted<br />

acrosomes ( b = no green fluorescence over the acrosomal region, c = thin b<strong>and</strong> <strong>of</strong> green<br />

fluorescence over the equatorial region <strong>of</strong> the sperm head) .<br />

24<br />

The capacitation <strong>and</strong> acrosome status analysis can be applied to predict the fertility in two<br />

possible ways. Firstly, by looking at the percentage <strong>of</strong> acrosome reacted <strong>and</strong> capacitated sperm in<br />

the sample, since acrosome reacted sperm can no longer fertilize an oocyte <strong>and</strong> capacitated sperm<br />

has a reduced longevity (Watson, 1995). Therefore, their numbers in a sperm sample should be low.<br />

Secondly, the ability <strong>of</strong> sperm to undergo capacitation <strong>and</strong> the acrosome reaction in vitro as a<br />

response to stimulation can be evaluated. Since the latter approach simulates essential functions <strong>of</strong><br />

sperm in order to achieve fertilization, this may be a more valuable approach. However, the<br />

induction <strong>of</strong> capacitation <strong>and</strong> acrosome reaction has been described using different techniques, such<br />

as using HCO3-/CO2-free Tyrodes medium with addition <strong>of</strong> Ca2+ ionophores (Rathi et al., 2001) or by<br />

procaine treatment (McPartlin et al., 2009), nevertheless, these methods lack a good reproducibility.<br />

DNA analysis<br />

The value <strong>of</strong> DNA analysis in predicting fertility is not uniformly accepted, particularly since<br />

contradictory results can be found in literature. However, DNA integrity <strong>of</strong> the sperm may be more<br />

important than previously thought <strong>and</strong> may be equally important as classical sperm parameters since<br />

“in contrast to the traditional measures <strong>of</strong> viability, morphology <strong>and</strong> motility that examine the carrier,<br />

DNA tests assess the content <strong>of</strong> the package” (Makhlouf <strong>and</strong> Niederberger, 2006). A wide range <strong>of</strong><br />

diagnostic tests is available for analyzing the sperm’s DNA, <strong>and</strong> these different tests measure<br />

different aspects <strong>of</strong> DNA damage. The DNA breaks can be analyzed either directly, or alternatively,<br />

the susceptibility <strong>of</strong> the DNA to denaturation can be analyzed.


CHAPTER 1.1<br />

The sperm chromatin structure assay (SCSA) is perhaps the most frequently used test to<br />

analyze the DNA content <strong>of</strong> sperm. This assay measures the susceptibility <strong>of</strong> DNA to denaturation<br />

when exposed to a low pH. The SCSA test was introduced by Evenson in 1980 (Evenson et al., 1980)<br />

<strong>and</strong> can be used for analyzing a number <strong>of</strong> species, including horses (Evenson et al., 1995). The test is<br />

based on the metachromatic properties <strong>of</strong> acridine orange (AO), which is a fluorescent dye that shifts<br />

fluorescence from green to red when associated with double or single str<strong>and</strong>ed DNA, respectively<br />

(Evenson <strong>and</strong> Jost, 2000). Normally, AO does not penetrate well into the sperm chromatin, so<br />

nucleoproteins must be decondensated first using a low pH solution (Schlegel <strong>and</strong> Paduch, 2005).<br />

The chromatin susceptibility to denaturation, as measured with the SCSA, is correlated with the level<br />

<strong>of</strong> actual DNA str<strong>and</strong>s breaks (Evenson et al., 1995). These lesions may induce post-fertilization<br />

embryonic failure (Fatehi et al., 2006), which explains the clinical relevance since this represents a<br />

potential noncompensible defect (Varner, 2008). This means that for spermatozoa with<br />

noncompensible defects increasing the insemination dose will not improve pregnancy rate since the<br />

percentage <strong>of</strong> noncompensable defects will remain proportionally equal in the increased<br />

insemination dose.<br />

Besides the SCSA, the terminal deoxynucleotidyl transferases dUTP end labeling (TUNEL)<br />

assay is frequently used to assess the DNA integrity <strong>of</strong> sperm. This assay analyses DNA breaks directly<br />

<strong>and</strong> the original technique has been used in human <strong>and</strong> veterinary medicine to analyze sperm from<br />

different species (Waterhouse et al., 2006; Filliers et al., 2008; Purdy, 2008). However, recent work<br />

from the group <strong>of</strong> Dr. Aitken (Mitchell et al., 2011) proved that the original TUNEL assay is not<br />

suitable for analyzing DNA str<strong>and</strong> breaks in (human) spermatozoa. They found that the assay was<br />

insensitive <strong>and</strong> unresponsive to DNA fragmentation induced in spermatozoa when exposed to<br />

Fenton reagents (H2O2 <strong>and</strong> Fe 2+ ). Additionally, they demonstrated that it is important to assess the<br />

viability <strong>of</strong> sperm simultaneously when analyzing DNA breaks. Moreover, they proved that DNA<br />

fragmentation can appear as a cause as well as a consequence <strong>of</strong> cell death. Based on these findings,<br />

the protocol for TUNEL assay <strong>of</strong> sperm has been modified to the new sperm TUNEL assay which<br />

combines a vitality stain (LIVE/DEAD Fixable Dead Cell Stain (far red) from Molecular Probes) (Fig. 8)<br />

with a 45 min exposure to 2mM dithiothreitol, allowing for a correct assessment <strong>of</strong> DNA damage in<br />

live cells (Mitchell et al., 2011). So far, this adapted TUNEL protocol has not been used to analyze<br />

equine sperm. An additional advantage <strong>of</strong> this assay is the possibility to combine it with either a<br />

flowcytometer as well as with fluorescence microscopy.<br />

25


CHAPTER 1.1<br />

26<br />

Several other techniques can be used to analyze the DNA status <strong>of</strong> sperm. The sperm<br />

chromatin dispersion (SCD) assay <strong>and</strong> the Comet Assay (a single-cell electrophoresis) also evaluate<br />

the susceptibility <strong>of</strong> DNA to denaturation, while an in situ nick translation (NT) assay directly analyzes<br />

DNA str<strong>and</strong> breaks (Makhlouf <strong>and</strong> Niederberger, 2006; Varner, 2008).<br />

Fig. 8. Fluorescence microscopy images <strong>of</strong> the modified TUNEL staining in combination with the far<br />

red viability stain [from left to right; LIVE/DEAD stain alone showing a non-viable, red stained<br />

cell, TUNEL stain alone from the same TUNEL positive (green) cell, LIVE/DEAD <strong>and</strong> TUNEL<br />

stains combined <strong>and</strong> the corresponding phase contrast image (scale bar = 5 µm)] (Mitchell et<br />

al., 2011) (Image used with the permission <strong>of</strong> Dr. Aitken <strong>and</strong> Wiley Press)<br />

Mitochondrial sheath<br />

The mitochondrial sheath can be analyzed using mitochondria selective fluorescent markers.<br />

Most common are Rhodamine 123, a variety <strong>of</strong> MitoTracker® probes <strong>and</strong> 5,5’,6,6’-tetrachloro-<br />

1,1’,3,3’-tetraethylbenzimidazolyl carbocyanine iodide (JC-1). Due to its photoinstability <strong>and</strong><br />

tendency to lose retention in the mitochondria following a loss <strong>of</strong> membrane potential, Rhodamine<br />

123 has largely been replaced by the other markers. Some <strong>of</strong> the MitoTracker® probes only fluoresce<br />

when oxidized, allowing for an easy assessment <strong>of</strong> the respiration rate <strong>of</strong> the mitochondria. Probably,<br />

JC-1 may be the best suited probe to evaluate the energy state <strong>of</strong> mitochondria since it produces a<br />

membrane potential-sensitive shift in emission pattern, resulting in a change <strong>of</strong> the color from green<br />

to red-orange as the membrane polarization increases (Baumber-Skaife, 2011; Garner <strong>and</strong> Thomas,<br />

1999; Varner, 2008).


Collection <strong>and</strong> processing <strong>of</strong> equine semen<br />

1.2<br />

27


1.2.1. Semen collection<br />

CHAPTER 1.2<br />

The first sperm collections <strong>of</strong> stallions were performed using an intravaginal sponge, which<br />

was placed inside the vagina <strong>of</strong> the mare prior to natural mating. The amount as well as the quality <strong>of</strong><br />

the thus obtained semen was poor. The admixture <strong>of</strong> vaginal secretions with the semen raised<br />

concerns about the possibility <strong>of</strong> spreading diseases <strong>and</strong> led to the development <strong>of</strong> different<br />

techniques. In 1934, Roemmele <strong>and</strong> Milovanov reported the use <strong>of</strong> a rubber condom inserted into<br />

the mare’s vagina for the collection <strong>of</strong> sperm (Love, 1992). This technique <strong>of</strong>ten led to a<br />

malpositioning <strong>of</strong> the rubber sperm collector resulting in the subsequent loss <strong>of</strong> the ejaculate. If the<br />

sperm collection was successful, the ejaculate was prone to contamination due to close contact with<br />

the penis. Consequently, artificial vaginas (AV) in different sizes <strong>and</strong> shapes were developed from<br />

which 4 types are now commonly used throughout the world.<br />

The first <strong>and</strong> probably best known model is the Colorado State University (CSU) AV (Fig. 9a),<br />

which is a large, robust <strong>and</strong> rather heavy model (up to 5 kg), measuring 59 cm in length with an<br />

internal diameter <strong>of</strong> 15 cm. It requires filling with 4.5 L <strong>of</strong> heated water <strong>of</strong> 60°C in order to obtain the<br />

desired internal pressure <strong>and</strong> temperature <strong>of</strong> 46°C to stimulate ejaculation in most stallions. The big<br />

advantages <strong>of</strong> this type are the good acceptance by most stallions <strong>and</strong> the good retention <strong>of</strong> heat<br />

because <strong>of</strong> the large volume <strong>of</strong> hot water (Allen, 2005). The major drawbacks are the heavy weight<br />

which makes it cumbersome to h<strong>and</strong>le, <strong>and</strong> the fact that the stallions ejaculate in the heated water<br />

portion <strong>of</strong> the AV. Following ejaculation, the semen must drain over the heated surface into the<br />

recipient during which heat shock may occur. After all, heat damage in spermatozoa can easily occur<br />

at temperatures above 43°C (Love, 1992).<br />

The Missouri AV (Fig. 9b) consists <strong>of</strong> two heavy-duty latex rubber liners sealed together <strong>and</strong><br />

supported by a leather casing to create support to the water filled liner which is as such responsible<br />

for the pressure. This light weight, easy-to-use model is well accepted by stallions <strong>and</strong> allows<br />

protrusion <strong>of</strong> the glans penis beyond the inner water jacket, hereby reducing the likelihood <strong>of</strong> heat<br />

damage <strong>of</strong> the sperm. However, this type <strong>of</strong> AV tends to lose heat rapidly (Allen, 2005; Love, 1992).<br />

The design <strong>of</strong> the Missouri model AV allows the placement <strong>of</strong> a towel between the water jacket <strong>and</strong><br />

the leather case at the proximal end <strong>of</strong> the AV. When this towel is saturated with hot water, it can be<br />

applied as a hot compress at the base <strong>of</strong> the penis to provide additional stimulation <strong>and</strong> base<br />

pressure for stallions that are reluctant to ejaculate. Care must be taken to avoid contamination <strong>of</strong><br />

the ejaculate with water dripping from the towel (Brinsko, 2011).<br />

29


CHAPTER 1.2<br />

30<br />

(a) Colorado State University AV (b) Missouri AV<br />

(c) Hannover AV (d) Krakow AV<br />

Fig. 9. Images <strong>of</strong> different models <strong>of</strong> artificial vaginas (AV) <strong>and</strong> schematic presentation <strong>of</strong> the relative<br />

position <strong>of</strong> the penis at the time <strong>of</strong> ejaculation; (a) Colorado State University AV, (b) Missouri<br />

AV, (c) Hannover AV <strong>and</strong> (d) Krakow AV (images <strong>of</strong> the CSU <strong>and</strong> Hannover AV provided by<br />

Minitüb, image <strong>of</strong> the Missouri AV provided by IMV).


CHAPTER 1.2<br />

The Nishikawa model AV <strong>and</strong> the Hannover Model AV (Fig. 9c) consist <strong>of</strong> an aluminum or<br />

plastic outer casing, respectively, with a large proximal diameter <strong>and</strong> a small distal luminal diameter,<br />

preventing the penetration <strong>of</strong> the glans penis beyond the heated portion. Although these types are<br />

accepted well by most stallions, they are liable to cause heat damage to the spermatozoa.<br />

The Krakow model (or adapted Cambridge model) (Fig. 9d) is a short version <strong>of</strong> the CSU AV<br />

which allows the penis to thrust right through the length <strong>of</strong> the AV. The Krakow model is <strong>of</strong>ten used<br />

as an open ended AV to allow the stallion to ejaculate into mid-air, which makes it possible to collect<br />

individual pulses <strong>of</strong> semen <strong>and</strong> as such, allows for collection <strong>of</strong> the sperm rich fraction without the<br />

excessive seminal plasma or gel fraction. Since contact with the glans penis is avoided, a clean<br />

collection is performed using this AV (Allen, 2005).<br />

Different modifications <strong>of</strong> the described AVs are being used worldwide combining the best<br />

features <strong>of</strong> different models <strong>and</strong> avoiding the disadvantages associated with each specific type <strong>of</strong> AV.<br />

Immediately before semen collection, the AV is prepared by filling the water jacket with hot<br />

water providing an internal temperature <strong>of</strong> 44-48°C. Using an AV temperature above body<br />

temperature seems to stimulate the penis <strong>and</strong> facilitates ejaculation. Some stallions require even<br />

higher AV temperature (up to 55°C) for semen collection. In those cases, contact <strong>of</strong> the sperm during<br />

collection with the warm water jacket must be avoided (Brinsko et al., 2011). The inner surface <strong>of</strong> the<br />

AV is usually lubricated with a nonspermicidal lubricant. According to some authors, the use <strong>of</strong><br />

petroleum-based lubricants should be avoided due to sperm toxicity (Love, 1992) while others favor<br />

vaseline to water soluble lubricant for its osmotic inactivity (Devireddy et al., 2002). The collection<br />

receptacle should be warmed <strong>and</strong> kept at body temperature to prevent cold shock during <strong>and</strong><br />

immediately after collection. Usually, an isolating bag which also protects the sperm from light is<br />

used. An inline filter can be fitted between the collection bottle <strong>and</strong> the AV to minimize trapping <strong>of</strong><br />

sperm in the gel fraction due to close contact after collection. This technique is superior to filtering<br />

the whole ejaculate after collection or to aspirating the gel with a syringe. Nylon micromesh filters<br />

are described to be superior to polyester matt filters because they are nonabsorptive, hence fewer<br />

sperm cells are trapped. Following collection, the filter containing the gel should be removed<br />

instantly to avoid leaking <strong>of</strong> gel into the gel-free sperm fraction.<br />

Most <strong>of</strong>ten, sperm collection is performed on a dummy mare (phantom) or mount mare.<br />

Alternatively, stallions can be trained for a ground collection, for example stallions which are unable<br />

to mount or to maintain the mounting position. These ground collections can be accomplished by<br />

using an AV or a plastic bag attached to the penis. In the latter case, ejaculation can be elicited either<br />

by placement <strong>of</strong> warm (45-50°C) towel compress on the glans <strong>and</strong> base <strong>of</strong> the penis (Love, 1992) or<br />

31


CHAPTER 1.2<br />

can be induced pharmacologically with a combination <strong>of</strong> imipramine <strong>and</strong> xylazine hydrochloride<br />

(McDonnell, 2001), or with xylazine hydrochloride alone, preferably following sexual prestimulation<br />

(McDonnel <strong>and</strong> Love, 1991).<br />

32<br />

In conclusion the final goal for semen collection is to obtain a complete ejaculate with a<br />

single mount <strong>and</strong> minimal sexual stimulation <strong>of</strong> the stallion before collection <strong>of</strong> semen, hereby<br />

optimizing the potential to obtain an ejaculate with relatively low volume <strong>and</strong> high sperm<br />

concentration (Loomis, 2006).<br />

1.2.2. Preparation <strong>of</strong> cooled semen<br />

As soon as an ejaculate is collected, the semen should be transported to the laboratory<br />

taking care <strong>of</strong> minimizing physical trauma, exposure to light, cold shock or excessive heat. In the lab,<br />

the raw, undiluted semen should be processed in an incubator using only materials preheated to<br />

body temperature (37-38°C). If no inline filter was used during the collection, the semen should be<br />

filtered immediately through a non-toxic, sterile filter to remove debris <strong>and</strong> gel admixtures. The gel<br />

fraction can also be careful aspirated with a syringe. These two methods are associated with a higher<br />

sperm loss in comparison to the use <strong>of</strong> inline nylon micromesh filters. Subsequently, volume,<br />

concentration, color <strong>and</strong> possible admixtures should be registered. Independent <strong>of</strong> the following<br />

procedures, the semen should be mixed with an appropriate preheated extender as soon as possible<br />

following collection to maximize sperm longevity. At this point, a dilution ratio <strong>of</strong> 1:1 to 1:2 is<br />

appropriate. Stallions with semen that is extremely sensitive to cold shock might benefit from adding<br />

the same volume <strong>of</strong> preheated extender as the expected volume <strong>of</strong> semen to the collection bottle<br />

prior to collection (Pickett, 1993; Squires et al., 1999; Brinsko et al., 2011).<br />

Influence <strong>of</strong> sperm collection<br />

Excessive sexual stimulation prior to ejaculation must be avoided due to two reasons. Firstly,<br />

the increased volume <strong>of</strong> the ejaculate following excessive stimulation is associated with a reduced<br />

sperm concentration, meaning that the total sperm output is not affected. Secondly, large volumes<br />

<strong>of</strong> seminal plasma have a negative effect on semen quality after 24h <strong>of</strong> cooled storage (Sieme et al.,<br />

2002). Moreover, multiple mounts in the same AV without changing the liner or the collection vessel,<br />

will increase the contaminants <strong>and</strong> the amount <strong>of</strong> presperm fraction in the collected semen. So if


CHAPTER 1.2<br />

multiple mounts are required for ejaculation, the collection receptacle should be emptied or<br />

preferably be replaced together with the inner liner (Loomis, 2006).<br />

Sperm concentration <strong>and</strong> seminal plasma during storage<br />

In general, it is accepted that equine semen needs to be diluted at least 3:1 in order to dilute<br />

the seminal plasma to levels ≤ 25% (Varner et al., 1988). Additionally, for optimal preservation, it is<br />

advised to dilute the semen to a concentration <strong>of</strong> 25 to 50 × 10 6 /mL (Varner et al., 1987; Jasko et al.,<br />

1991, 1992). If the initial sperm concentration is too low to use an appropriate dilution <strong>and</strong> maintain<br />

an acceptable concentration at the same time, centrifugation is advised. St<strong>and</strong>ard centrifugation<br />

protocols for equine semen consist <strong>of</strong> 400× to 600× g-force for 10 to 15 minutes (Loomis, 2006;<br />

Aurich, 2008), <strong>and</strong> rely on a 75% sperm recovery after aspirating the supernatant <strong>and</strong> resuspending<br />

the sperm pellet. Prior to centrifugation, semen should be extended at least to a 1:1 ratio. Seminal<br />

plasma acts like a double edge sword on fertility: it is detrimental for stallion spermatozoa during<br />

storage, but at the other h<strong>and</strong> it shortens the duration <strong>of</strong> the postbreeding induced endometritis<br />

caused by the inflammatory response triggered by the spermatozoa (Troedsson et al., 2000, 2005).<br />

With most extenders, it is advisable to retain 5 to 20% seminal plasma following centrifugation (Jasko<br />

et al., 1991). However, DNA integrity was maintained best in complete absence <strong>of</strong> seminal plasma,<br />

whereas DNA damage increased as seminal plasma levels increased (Love et al., 2005a).<br />

The effect <strong>of</strong> removal <strong>of</strong> seminal plasma in stallions whose sperm responds poorly to cooling<br />

(to which we will further refer as “poor cooling” stallions) remains a topic <strong>of</strong> discussion. Brinsko et al.<br />

(2000a) found that partial removal <strong>of</strong> seminal plasma after centrifugation had a positive effect on<br />

spermatozoal motility following 48 <strong>of</strong> cooled storage. A more recent study, using more stallions,<br />

demonstrated no effect <strong>of</strong> seminal plasma removal <strong>of</strong> “poor cooling” stallions on motility after<br />

cooled storage. Only the percentage <strong>of</strong> membrane intact spermatozoa was higher for the samples<br />

devoid <strong>of</strong> seminal plasma (Barrier-Battut et al., 2010).<br />

Centrifugation <strong>of</strong> sperm<br />

Normally, a 75% sperm recovery rate, obtained after conventional centrifugation (400× to<br />

600× g for 10 to 15 min) is reported (Loomis, 2006; Aurich, 2008). Contradicting results however are<br />

also present in literature, with recovery rates exceeding 98% using the same centrifugation protocol<br />

(Weiss et al., 2004). Losses <strong>of</strong> about 25% are agreed on, but can be further reduced by increasing<br />

33


CHAPTER 1.2<br />

centrifugation time <strong>and</strong> force. However, this usually results in decreased sperm quality (Loomis,<br />

2006). In 1984, Cochran et al. described a technique where a dense solution was layered below the<br />

extended semen at the bottom <strong>of</strong> a centrifugation tube. This dense solution could serve as a cushion<br />

for the spermatozoa during centrifugation (Cochran et al., 1984). Initially, a glucose-EDTA cushion<br />

was used <strong>and</strong> later replaced by an egg yolk containing extender cushion supplemented with 4%<br />

glycerol (Amann <strong>and</strong> Pickett, 1987). All these initial reports, except Volkman <strong>and</strong> van Zyl (1987),<br />

showed a beneficial effect on sperm motility following centrifugation. Subsequently, a 60% iodixanol<br />

solution was placed beneath extended semen followed by centrifugation for 25 min at 1000 × g. This<br />

cushion prevented sperm from compacting at the bottom <strong>of</strong> the tube despite the high g-force used<br />

<strong>and</strong> resulted in 30% more normal living sperm (Revell et al., 1997). More recently, high sperm yields<br />

following high speed centrifugation without impairing sperm quality were reported using 3.5mL or<br />

5mL <strong>of</strong> cushion fluid in a 50 mL centrifugation tube (Ecot et al., 2005; Knop et al., 2005). A variation<br />

to these techniques has been described in which a small volume (30 µL) <strong>of</strong> cushion solution is placed<br />

at the bottom <strong>of</strong> a special designed nipple centrifugation tube, followed by centrifugation at 400 × g<br />

for 20 min. This technique has slightly lower sperm yields <strong>and</strong> slightly improved in vitro quality<br />

characteristics, <strong>and</strong> has the additional advantage that it does not require aspiration <strong>of</strong> the cushion<br />

following centrifugation (Waite et al., 2008).<br />

34<br />

Alternatives to centrifugation<br />

As alternative for centrifugation to increase the sperm concentration <strong>and</strong> reduce the amount<br />

<strong>of</strong> seminal plasma, fractionated semen collection can be used. Using a Krakow AV or a modified open<br />

ended Missouri AV, it is possible to collect only the sperm rich fraction <strong>of</strong> the ejaculate. An<br />

automated phantom (Equidame®) can also be used. This device provides semen samples with a lower<br />

bacteriological colony count, <strong>and</strong> with a similar motility compared to semen collected using a<br />

Missouri AV (Lindeberg et al., 1999). However, it is important to realize that fractionated collection<br />

using the Equidame® does not correspond completely with the fractionated collection described<br />

above. Separation using the Equidame® is not in concordance with the jets ejaculated by the stallion,<br />

but is performed based on adjusted volume separation in the semen collection cups. Once a cup is<br />

filled with the preset volume, a following cup is filled (Lindeberg et al., 1999). Sperm originating from<br />

sperm rich fractions had higher motility at 12h <strong>and</strong> 24h post collection than sperm from total<br />

ejaculates (Varner et al., 1987). However, seminal plasma from sperm rich fractions was found to be<br />

more deleterious on sperm motility compared to seminal plasma from sperm poor fractions (Akcay<br />

et al., 2006). Indicating that centrifugation might still be advisable, especially for prolonged storage.


CHAPTER 1.2<br />

Recently, a new technique for concentrating equine semen was described. Based on a filter<br />

with a hydrophylic synthetic membrane that does not allow sperm passage. Following filtration, up<br />

to 95% <strong>of</strong> sperm cells could be recovered without affecting sperm motility <strong>and</strong> viability (Alvarenga et<br />

al., 2010).<br />

Selection <strong>of</strong> spermatozoa<br />

Different techniques are available for separation <strong>and</strong> selection <strong>of</strong> spermatozoa. Separation is<br />

the most straightforward procedure, in which the only objective is to separate the spermatozoa from<br />

the seminal plasma. This is done by centrifugation <strong>and</strong> can be achieved as described above (Henkel<br />

<strong>and</strong> Schill, 2003). In contrast, selection aims at simultaneously separating the spermatozoa from the<br />

seminal plasma <strong>and</strong> selecting a sperm subpopulation based on sperm quality characteristics.<br />

Migration, filtration <strong>and</strong> colloid centrifugation are three techniques available for sperm selection<br />

(Morrell <strong>and</strong> Rodriguez-Martinez, 2009).<br />

→ Migration<br />

Sperm selection by migration relies on the ability <strong>of</strong> motile spermatozoa to move from one<br />

suspension into a medium <strong>of</strong> a different composition. The original sperm population (diluted semen<br />

or a washed sperm pellet) can be either underneath, on top <strong>of</strong> or beside the migration medium.<br />

During an incubation stage the spermatozoa migrate actively into the selection medium (Morrell <strong>and</strong><br />

Rodriguez-Martinez, 2009) indicating this technique selects spermatozoa based on motility rather<br />

than on morphology, chromatin integrity, viability <strong>and</strong> acrosome integrity (Somfai et al., 2002). The<br />

major disadvantage <strong>of</strong> migration is the low recovery rate, rendering it impractical for clinical use for<br />

preparing AI doses (Morrell <strong>and</strong> Rodriguez-Martinez, 2009).<br />

→ Filtration<br />

Filtration is achieved by the interaction <strong>of</strong> spermatozoa with the different filter substances.<br />

Non-viable spermatozoa adhere more to the filter substrate compared to motile spermatozoa, as<br />

such increasing the quality <strong>of</strong> the sample following filtration (Bussallou et al., 2008). Filtration allows<br />

for processing <strong>of</strong> relative large volumes, but leukocytes <strong>and</strong> debris also pass by the filtration process.<br />

Additionally, the sperm remains suspended in the same volume containing the seminal plasma, as<br />

such requiring an additional centrifugation step (Henkel <strong>and</strong> Schill, 2003), or possibly a filtration to<br />

increase the concentration (Alvarenga et al., 2010).<br />

35


CHAPTER 1.2<br />

36<br />

→ Colloid centrifugation<br />

Centrifugation <strong>of</strong> semen through (one or more) layers <strong>of</strong> colloid can be used to separate<br />

spermatozoa from seminal plasma <strong>and</strong> to select a subpopulation <strong>of</strong> spermatozoa with good motility,<br />

viability <strong>and</strong> chromatin integrity (Pert<strong>of</strong>t, 2000). The cells move to the point in the gradient which<br />

matches their density, i.e. the isopycnic point, during centrifugation (Fig. 10) (Pretlow <strong>and</strong> Pretlow,<br />

1989), rather than actively swimming through the colloid (Mortimer, 2000). After colloid<br />

centrifugation, the sperm pellet is resuspended in fresh extender (washing medium) <strong>and</strong> washed by<br />

centrifugation. Percoll® was the first colloid used for the selection <strong>of</strong> spermatozoa. In 1996, Percoll®<br />

was restricted for non-clinical use only, due to possible toxicity <strong>of</strong> the product (Avery <strong>and</strong> Greve,<br />

1995; Mortimer, 2000). Different colloids have been developed, <strong>and</strong> this has also resulted in species<br />

specific products. Until recently, the major disadvantage <strong>of</strong> colloid centrifugation was the limitation<br />

in volume that could be processed per centrifugation tube, <strong>and</strong> the time consuming practice <strong>of</strong><br />

carefully preparing the different layers <strong>of</strong> the Density Gradient Centrifugation (DGC) (Morrell <strong>and</strong><br />

Rodriguez-Martinez, 2009).<br />

Fig. 10. Schematic presentation <strong>of</strong> spermatozoa following colloid centrifugation with location <strong>of</strong> the<br />

spermatozoa according to their differences in isopycnic point based on their morphology.<br />

Single Layer Centrifugation (SLC) was described as an alternative to DGC for processing<br />

animal semen, resulting in comparable sperm yield <strong>and</strong> similar sperm quality characteristics (Morrell<br />

et al., 2008; Thys et al., 2009). Additionally, SLC can be used to process larger volumes <strong>of</strong> extended<br />

semen (Morrell et al., 2009) per centrifugation tube, allowing for the processing <strong>of</strong> entire stallion<br />

ejaculates.


Semen extenders<br />

CHAPTER 1.2<br />

Many extenders for equine semen have been developed <strong>and</strong> most <strong>of</strong> them include egg yolk,<br />

milk, milk by-products or chemicals to regulate osmolarity <strong>and</strong> pH (Pickett <strong>and</strong> Amann, 1987). The<br />

most popular extenders worldwide are similar in composition to the original recipe published by<br />

Kenney et al. in 1975. These extenders are inexpensive, easy to prepare <strong>and</strong> can be stored in frozen<br />

form (Aurich, 2008). In the early days <strong>of</strong> modern AI, milk was used as a semen extender after heating<br />

it. Heating raw milk was necessary to inactivate lactenin, so that sperm could survive in it for a<br />

prolonged time (Thacker <strong>and</strong> Almquist 1951, 1953; Flipse et al., 1954). Ever since, people have been<br />

refining the diluters <strong>and</strong> developing media to diminish detrimental components (Aurich, 2008).<br />

Battelier et al. (1997) investigated the ability <strong>of</strong> different purified milk fractions to preserve equine<br />

sperm <strong>and</strong> found very differing protection levels, varying from harmful to sperm to supporting a<br />

better survival when compared to commercial heated milk. Native phosphocaseinate (NPPC) <strong>and</strong> β-<br />

lactoglobulin were both protective for sperm storage, without synergetic effect between them, NPPC<br />

afforded higher protection to spermatozoa. When NPPC was added to Hank’s salts solution<br />

supplemented with Hepes, glucose <strong>and</strong> lactose (HGLL), it was equally capable <strong>of</strong> maintaining<br />

spermatozoal motility compared to INRA82, a classical skimmed milk diluter which was commonly<br />

used in Europe (the composition <strong>of</strong> INRA82 is presented in table 3c). However, higher fertility results<br />

were obtained using this NPPC-HGLL extender in comparison to INRA82, (Batellier et al., 1997). The<br />

discovery <strong>of</strong> this protective effect <strong>of</strong> NPPC, which is a direct effect since there is no evidence <strong>of</strong> its<br />

binding to sperm membranes (Battelier et al., 2000), led to the development <strong>of</strong> INRA96, a chemically<br />

defined diluter containing Hank’s salts, Hepes, glucose, lactose <strong>and</strong> NPPC. Another chemically<br />

defined extender, EquiPro, contains a combination <strong>of</strong> defined caseinates <strong>and</strong> whey proteins. When<br />

compared to a classical skim milk-glucose extender (Kenney extender), EquiPro was capable <strong>of</strong><br />

preserving the in vitro assessed quality <strong>of</strong> equine semen in a comparable (24h) or even better (≥48h)<br />

way than the skim milk extender (Pagl et al., 2006). Finally, a defined extender containing soybean<br />

lecithin has been developed in order to prevent possible disease transmission by animal proteins<br />

(AndroMed ® , Minitüb) <strong>and</strong> can also be used for cooled storage <strong>of</strong> equine semen (Aurich, 2005; Aurich<br />

et al., 2007).<br />

Cooling <strong>of</strong> equine semen<br />

Generally, it is believed that equine semen is best preserved when chilled at 4 -5 °C (Varner<br />

et al., 1988; Aurich, 2008) in absence <strong>of</strong> air (Douglas-Hamilton et al., 1984), <strong>and</strong> in combination with<br />

a slow cooling rate (Province et al., 1985; Varner et al., 1988). Storage at ambient temperature is only<br />

advised if insemination can occur within 12h following collection (Varner et al., 1988). Diluted semen<br />

37


CHAPTER 1.2<br />

<strong>of</strong> a stallion stored for 24h at either 5°C or 20°C gave an identical pregnancy outcome, however, all<br />

motility parameters tested decreased significantly more when stored at 20°C in comparison with<br />

storage at 5°C (Varner et al., 1989). Storage using a synthetic extender like HGLL-BSA, is preferably<br />

done at 15°C under aerobic conditions (Magistrini et al., 1992), which was confirmed by Battelier et<br />

al. (1997) for HGLL-NPPC. Semen preserved in HGLL-NPPC at 15°C under aerobic conditions showed a<br />

markedly better motility compared to storage at 4°C under anaerobic conditions. In a more recent<br />

study (Chanavat et al., 2005), semen storage at 15°C in INRA96 resulted in lower in vitro quality,<br />

whereas fertility in vivo was the same as compared to storage at 4°C. When using EquiPro as defined<br />

extender, no difference was present for semen stored under aerobic or anaerobic conditions, nor at<br />

15°C nor at 5°C. The latter temperature, however, resulted in a better motility for samples stored up<br />

to 3 or 4 days when no antibiotics were added to the extender (Price et al., 2008).<br />

38<br />

The storage <strong>of</strong> equine semen at 15°C in INRA96 under aerobic atmosphere did not only result<br />

in an excellent motility in vitro, it also yielded good in vivo fertility results, even after long term<br />

storage (72h) at this temperature. In fact, it was better when compared to storage at 4°C in INRA82<br />

(Battelier et al., 1998).<br />

1.2.3. Transport <strong>of</strong> semen<br />

As described above, the ideal temperature for preserving equine semen might differ<br />

depending on the type <strong>of</strong> extender used. Semen is generally best preserved at 4-5°C in anaerobic<br />

conditions using any extender, mainly skimmed milk extenders, except when using INRA96, storage<br />

at 15°C in aerobic conditions is preferable. A wide variety <strong>of</strong> passive cooling devices, for cooling <strong>and</strong><br />

storage to 4-5°C, is available. These devices have variable cooling rates since the cooling process<br />

slows down as the internal temperature is reduced (Brinsko et al., 2000b). The Equitainer I <strong>and</strong> II<br />

are the best known passive cooling devices for gradual slow cooling <strong>and</strong> transport <strong>of</strong> equine semen.<br />

A first version <strong>of</strong> the Equitainer, made by Douglas-Hamilton et al. (1984), was highly successful in<br />

obtaining a slow cooling curve leading to a plateau at a constant temperature <strong>of</strong> 5°C. Furthermore,<br />

the Equitainer is extremely durable <strong>and</strong> designed for reuse. However, the initial cost <strong>of</strong> the shipping<br />

container <strong>and</strong> the inevitable charges for return shipping, are the major disadvantages <strong>of</strong> this device.<br />

Other systems, which are disposable <strong>and</strong> cheaper, are available as well (Fig. 11). All <strong>of</strong> these systems<br />

fail under extreme temperatures in keeping the samples at 4-5°C, however, most <strong>of</strong> them provide an<br />

adequate protection when the container is kept at 22°C. A higher ambient temperature might<br />

influence the core temperature <strong>of</strong> the sample, nevertheless, in vitro semen characteristics are not<br />

affected in most systems. Lower temperatures might be more cumbersome, especially if they are


CHAPTER 1.2<br />

extreme or last for a long time. So far, the Equitainer remains the most suited cooler available<br />

(Katila et al., 1997; Malmgren, 1998; Brinsko et al., 2000b).<br />

Fig. 11. Passive cooling <strong>and</strong> transport containers for equine semen; (A) the Equitainer I which is<br />

able to cool <strong>and</strong> maintain semen up to 70h <strong>and</strong> provides protection against x-rays <strong>and</strong> (B) a<br />

disposable neopor semen shipper from Minitüb.<br />

The use <strong>of</strong> INRA96 at 15°C to enhance fertility (in “poor cooling” stallions) poses problems<br />

due to the lack <strong>of</strong> appropriate passive cooling devices which can cool to 15°C <strong>and</strong> maintain this<br />

temperature for a longer time (Batellier et al., 2001). However, in Europe, companies are specialized<br />

in transporting equine semen by car. It should be possible to equip these cars with portable semen<br />

storage units which are frequently used for storage <strong>and</strong> transport <strong>of</strong> porcine semen. These devices<br />

can be preset to the desired temperature <strong>and</strong> run on the car’s battery. Alternatively, the Max Semen<br />

Express (Agr<strong>of</strong>arma, Brazil) could perhaps be used as a passive cooling device since that box was<br />

reported to maintain temperature around 16°C (Melo et al., 2006). The use <strong>of</strong> one frozen ice brick<br />

<strong>and</strong> one ice brick at room temperature in an Equitainer has also been proposed to maintain semen<br />

at 15°C (Clulow et al., 2008).<br />

39


CHAPTER 1.2<br />

1.2.4. Cryopreservation <strong>of</strong> equine semen<br />

40<br />

History <strong>of</strong> semen cryopreservation<br />

The early history <strong>of</strong> cryopreservation goes back to 1789, when Spallanzani reported the<br />

fertilization <strong>of</strong> frog eggs with frozen thawed frog spermatozoa (Squires et al., 1999). Still, it was not<br />

until 1949, with the accidental discovery <strong>of</strong> the cryoprotective properties <strong>of</strong> glycerol, that the era <strong>of</strong><br />

cryopreservation <strong>of</strong> gametes took a start (Polge et al., 1949; Amann <strong>and</strong> Picket, 1987). Soon, the first<br />

results on cryopreservation <strong>of</strong> equine spermatozoa were obtained. In one <strong>of</strong> the earliest papers, it<br />

was demonstrated that 25% <strong>of</strong> equine spermatozoa survived a process <strong>of</strong> freezing to -79°C <strong>and</strong><br />

thawing, after initially removing the seminal plasma <strong>and</strong> resuspending the sperm pellet in a buffer<br />

containing glucose <strong>and</strong> glycerol (Smith <strong>and</strong> Polge, 1950). The first report <strong>of</strong> the birth <strong>of</strong> a foal<br />

conceived with frozen thawed equine sperm followed in 1957 (Barker <strong>and</strong> G<strong>and</strong>ier, 1957). Ever since,<br />

a lot <strong>of</strong> research on this topic was performed, especially since frozen semen was accepted as a<br />

method to produce registered foals by the American Quarter Horse <strong>and</strong> American Paint Horse<br />

Association (Loomis, 2001).<br />

Equine semen can be frozen using different protocols, which are all using the same principle:<br />

following collection, the semen is diluted in an appropriate extender <strong>and</strong> centrifuged in order to<br />

concentrate the sperm <strong>and</strong> remove most <strong>of</strong> the seminal plasma <strong>and</strong> initial extender, subsequently<br />

the sperm pellet is resuspended in an extender containing a cryoprotectant after which the semen is<br />

gradually cooled <strong>and</strong> then frozen using liquid nitrogen (Palmer, 1984; Loomis et al., 1983).<br />

Fundamental aspects <strong>of</strong> cryopreservation<br />

A detailed description on the changes that occur during cooling <strong>and</strong> freezing does not lie<br />

within the scope <strong>of</strong> this paper. However, in the addendum an over<strong>view</strong> <strong>of</strong> these changes is presented.<br />

Packaging <strong>of</strong> semen for cryopreservation<br />

Historically, a wide variety <strong>of</strong> packaging systems for freezing semen have been used. Initially,<br />

semen was frozen in pellets (Merkt et al., 1975), by placing the semen in cylindrical notches in blocks<br />

<strong>of</strong> dry ice. Following freezing, the sperm pellets were stored in tubes in liquid nitrogen. The lack <strong>of</strong><br />

proper identification <strong>and</strong> the potential risk for contamination were two major problems associated<br />

with pellet frozen sperm (Pickett et al., 1978). These problems were avoided when semen was frozen


CHAPTER 1.2<br />

in flattened aluminum packs, which were frozen either above the surface <strong>of</strong> liquid nitrogen (Tischner,<br />

1979) or in copper containers that were immersed in liquid nitrogen (Love et al., 1989). These large<br />

volume flat packs (20-25 mL <strong>and</strong> 10-12 mL) were replaced by large volume straws (4 – 5 mL) (Martin<br />

et al., 1979; Love et al., 1989; Samper <strong>and</strong> Morris, 1998), which could be used as single insemination<br />

dose straws. The straw volume further decreased to 1.0 mL (Cochran et al., 1983) <strong>and</strong> 0.5 mL (Loomis<br />

et al, 1983). Using these smaller straws, the temperature was more uniform for the whole sample<br />

during the freezing process <strong>and</strong> cooling was achieved more rapidly (Loomis et al., 1983). Following<br />

successes in human medicine when freezing semen in cryotube vials, 0.5 mL straws were compared<br />

to cryotubes (3.6 mL <strong>of</strong> extended semen) for freezing equine semen. However, using these cryotubes,<br />

post-thaw motility was significantly reduced (Kozink et al., 2006). On the other h<strong>and</strong>, a big<br />

disadvantage associated with French 0.5 mL straws, is the necessity to use multiple straws for one AI<br />

dose. To reduce the risk <strong>of</strong> making errors when h<strong>and</strong>ling frozen 0.5 mL straws, Love et al. (2005b)<br />

investigated the impact <strong>of</strong> freezing multiple straws in one globlet, in order to reduce post freeze<br />

h<strong>and</strong>ling <strong>of</strong> straws. However, post-thaw semen quality was hampered <strong>and</strong> the semen quality for<br />

individual straws varied depending on their localization in the globlet during freezing. The use <strong>of</strong><br />

smaller 0.25 mL straws (frequently used for freezing bull sperm) for freezing stallion sperm does not<br />

appear to influence post thaw-sperm quality, when compared to 0.5 mL straws (Nascimento et al.,<br />

2008).<br />

Sperm concentration<br />

Generally, the semen is centrifuged after the first dilution in order to have sufficient sperm<br />

numbers per straw. The second dilution is determining for the final sperm concentration at which<br />

straws will be filled <strong>and</strong> frozen. It has been reported that this sperm concentration during freezing<br />

has an influence on sperm quality <strong>of</strong> post-thaw samples. As such, sperm concentrations exceeding<br />

400 × 10 6 /mL could negatively influence post-thaw motility (Heitl<strong>and</strong> et al., 1996). However, these<br />

results were not confirmed by Leipold et al. (1998), who found no decreased post-thaw motility<br />

when semen was frozen at 1600 × 10 6 /mL compared to 400 × 10 6 /mL. The major difference in their<br />

experimental setup was the glycerol concentration. In the latter study, adjustment <strong>of</strong> the final<br />

glycerol concentrations to 4% was done for both groups. On the other h<strong>and</strong>, the semen was<br />

progressively further diluted in the first study, resulting in lower glycerol concentrations for high<br />

concentrated samples, <strong>and</strong> vice versa. Clulow et al. (2007) observed a reduced post-thaw motility for<br />

semen diluted to 20 × 10 6 /mL compared to 200 × 10 6 /mL. In this study the confounding factor was<br />

that semen at 20 × 10 6 /mL was frozen in 0.25 mL straws while semen at 200 × 10 6 /mL was frozen in<br />

41


CHAPTER 1.2<br />

0.5 mL straws, <strong>and</strong> glycerol concentration was not corrected for the different concentrations. Later<br />

on, Clulow et al. (2008) froze equine semen at 40 × 10 6 /mL <strong>and</strong> 400 × 10 6 /mL, <strong>and</strong> adjusted this time<br />

the glycerol levels for each group to 4%. Immediately following thawing, the low concentration<br />

yielded a superior motility, however, after incubation for 3h, motility was clearly higher for the<br />

higher concentration. Semen frozen in BotuCrio® showed better motility characteristics for semen<br />

frozen at 100 × 10 6 /mL, <strong>and</strong> 200 × 10 6 /mL was better than 400 × 10 6 /mL (Nascimento et al., 2008).<br />

In this study, no correction for cryoprotectant concentration was made. In conclusion, the influence<br />

<strong>of</strong> concentration on post-thaw semen quality is not uniformly elucidated, however, high<br />

concentrations might negatively influence the outcome <strong>of</strong> cryopreservation. Interactions between<br />

the spermatozoa <strong>and</strong> the different components <strong>of</strong> the diluter cannot be excluded <strong>and</strong> as such might<br />

be determinant for the optimal sperm concentration for cryopreservation.<br />

42<br />

Glycerol as cryoprotectant<br />

The first developed freezing media were rich in egg yolk or milk <strong>and</strong> contained glycerol as<br />

cryoprotective agent (CPA). After some experimental modifications, following media were developed<br />

<strong>and</strong> frequently used: (a) modified lactose EDTA (Martin et al., 1979), (b) lactose EDTA egg yolk<br />

(Tischner, 1979), <strong>and</strong> (c) INRA82 with egg yolk <strong>and</strong> glycerol (Palmer, 1984); the exact composition <strong>of</strong><br />

these extenders is presented in table 3. Although glycerol is still the most frequently used<br />

cryoprotectant, little uniformity exists concerning the glycerol concentration which is used. The<br />

optimal glycerol concentration differs depending on the extender composition <strong>and</strong> might be<br />

influenced by the egg yolk concentration (Ecot et al., 2000). Nevertheless, glycerol has a clear<br />

negative effect on fertility, since not only post-thaw sperm motility is affected (Burns <strong>and</strong> Reasner,<br />

1995) but it will also influence female fertility. This effect is well known in hens, although the<br />

contraceptive effect has also been documented in equine species (Bedforf et al., 1995; Vidament,<br />

2005), <strong>and</strong> is most pronounced in asine species (Vidament, 2005). In literature, a wide variety in<br />

glycerol concentration is found in equine freezing extenders, i.e., 2.5% (Palmer, 1984; Vidament et al.,<br />

2000, 2001), 3% (Wilhelm et al., 1996a), 3.5% (Tischner, 1979), 4% (Leipold et al.,1998, Wilhelm et al.,<br />

1996b), 5% (Martin et al., 1979) <strong>and</strong> 7% (Pace <strong>and</strong> Sullivan, 1975). It is advised that glycerol<br />

concentration in frozen stallion semen should not exceed 3.5% in order to avoid negative influences<br />

on fertility (Vidament et al., 2005). However, the final glycerol concentration is <strong>of</strong>ten not available<br />

since the glycerol concentration is indicated on the freezing extender but not for the processed<br />

semen, where it is variable depending on the dilution ratio used to resuspend the sperm pellet<br />

following centrifugation (Vidament, 2005). The final glycerol concentration can accurately be


Table 3. Composition <strong>of</strong> different media for centrifugation, preservation <strong>and</strong> freezing <strong>of</strong> equine semen.<br />

a) modified lactose EDTA b) lactose EDTA egg yolk<br />

c) INRA82 for freezing<br />

d) Modified INRA82<br />

(Martin et al., 1979)<br />

(Tischner, 1979)<br />

(Palmer, 1984)<br />

(Magistrini et al., 1992)<br />

Glucose 6.0 g Lactose 11 g<br />

Glucose 2.5 g Glucose 2.5 g<br />

100<br />

150<br />

Na2-EDTA 370 mg EDTA<br />

Lactose<br />

Lactose 150 mg<br />

mg<br />

mg<br />

150<br />

Na-citrate 375 mg Na-citrate 89 mg<br />

Raffinose<br />

Raffinose 150 mg<br />

mg<br />

Na-bicarbonate 120 mg Na-bicarbonate 8 mg Na-citrate 30 mg Na-citrate (5.5 H2O) 30 mg<br />

Streptomycin 50 mg Streptomycin 50 mg K-citrate 41 mg K-citrate (H2O) 41 mg<br />

INRA82<br />

Penicillin 50 IU Penicillin 50 IU Gentamycin 5 mg Hepes 476 mg<br />

Centrifugation medium<br />

Distilled water 100 mL Egg yolk 1.6 g Penicilin 500 IU Gentamycin 50 IU/mL<br />

Lactose (11%, w/v) 50 mL Glycerol 3.5 mL Distilled water 50 mL Penicillin 50 IU/mL<br />

Distilled water 50 mL<br />

50 mL<br />

UHT sterilized<br />

skimmed milk<br />

100<br />

mL<br />

Distilled water<br />

25 mL<br />

Centrifugation<br />

medium<br />

UHT skimmed milk 50 mL<br />

INRA82 + 2% egg yolk<br />

Centrifugation<br />

medium<br />

Freezing<br />

medium<br />

Egg yolk 20 mL<br />

pH 7.1<br />

INRA82 + 2% egg yolk +<br />

2.5% glycerol<br />

OrvusEs paste 0.8 mL<br />

Freezing medium<br />

Glycerol 5 mL


CHAPTER 1.2<br />

determined if the final dilution is done in freezing extender without glycerol, followed by adding<br />

glycerol until the desired concentration (Knop et al., 2005).<br />

44<br />

Alternative cryoprotective agents<br />

It is known that glycerol is an important, though frequently discussed compound <strong>of</strong> freezing<br />

extenders. Hence, a lot <strong>of</strong> efforts have been made to find alternative CPA’s. When the cryoprotective<br />

properties <strong>of</strong> glycerol, ethylene glycol, dimethyl sulfoxide (DMSO) <strong>and</strong> propylene glycol were<br />

compared, it was found that DMSO improved the post-thaw semen characteristics for a subgroup <strong>of</strong><br />

stallions who consistently failed to achieve ≥ 30% post-thaw motility with glycerol. Semen frozen in<br />

ethylene glycol <strong>and</strong> propylene had lower post-thaw characteristics in comparison to DMSO <strong>and</strong><br />

glycerol (Chenier et al., 1998). Reports <strong>of</strong> Alvarenga et al. (2000), Graham (2000) <strong>and</strong> Squires et al.<br />

(2004) revealed the cryoprotective capacities <strong>of</strong> ethylene glycol, methylformamide (MF) <strong>and</strong><br />

dimethylformamide (DMF) for freezing equine semen. A French study did not observe any additional<br />

value <strong>of</strong> either DMF alone or in combination with different concentrations <strong>of</strong> glycerol in comparison<br />

to glycerol alone (Vidament et al., 2002). These results are in sharp contrast with a Brazilian report<br />

describing the superiority <strong>of</strong> DMF alone or in combination with glycerol when compared to glycerol<br />

alone (Medeiros et al., 2002). The observed differences could be explained by differences in semen<br />

freezability from these stallions when using glycerol. It has been observed that DMF was superior for<br />

stallions from whom the semen displayed a poor freezability when using glycerol (Alvarenga et al.,<br />

2003). Furthermore, differences between breeds were noticed, i.e. post-thaw quality was better<br />

using DMF for Warmblood, Quarter Horse, <strong>and</strong> especially Mangalarga Marchador Breed stallions.<br />

Fertility trials using semen frozen with DMF showed equal (Vidament et al., 2002) or higher fertility<br />

(Alvarenga et al., 2005) when compared to glycerol. These finding from the Brazilian researchers led<br />

to the development <strong>of</strong> BotuCrio®, a skimmed milk-egg yolk based extender containing 1% glycerol<br />

<strong>and</strong> 4% methylformamide as CPAs (Alvarenga, personal communication; Melo et al., 2007; Terraciano<br />

et al., 2008)<br />

Egg yolk in freezing extenders<br />

The egg yolk traditionally used in semen extenders is derived from chicken eggs. Alternative<br />

egg yolk sources have been tested for their protective properties. As such, it has been demonstrated<br />

that duck egg yolk protected the in vitro characteristics <strong>of</strong> equine semen during cryopreservation<br />

more when compared to chicken egg yolk. However, in vivo fertility trials need to confirm this


CHAPTER 1.2<br />

superiority (Clulow et al., 2007). On the other h<strong>and</strong>, quail egg yolk resulted in a higher post-thaw<br />

motility compared to chicken egg yolk for cryopreserving Poitou jackass semen, which can probably<br />

be explained by the different fatty acid composition. The optimal concentration <strong>of</strong> quail egg yolk was<br />

found to be 10% (Trimeche et al., 1997).<br />

Commonly, the chicken egg yolk in extenders is used as whole egg yolk. The clarification <strong>of</strong><br />

egg yolk by ultracentrifugation is already known for a long time (Pace <strong>and</strong> Graham, 1974), but an<br />

early study on the use <strong>of</strong> clarified egg yolk in freezing extenders preferred the use <strong>of</strong> whole egg yolk<br />

instead <strong>of</strong> using clarified egg yolk (Cristanelli et al., 1985). In this report, following ultracentrifugation,<br />

the bottom sediment was discarded as well as the top lipid layer, while in more recent reports only<br />

the bottom sediment was discarded (Pillet et al., 2010). In 1992, a modified Kenney’s extender for<br />

the cryopreservation <strong>of</strong> stallion sperm was presented which contained clarified egg yolk solution<br />

prepared by ultracentrifugation (10000 × g for 15 min) <strong>of</strong> a volume <strong>of</strong> egg yolk mixed with an equal<br />

volume <strong>of</strong> centrifugation extender (3 g glucose, 5 g sucrose, 1.5 g BSA, 100000 IU penicillin, distilled<br />

water q.s. 100 mL) (Burns, 1992). Only a few other reports describe the use <strong>of</strong> extenders containing<br />

clarified egg yolk (Torres-Boggino et al., 1995) despite their advantage <strong>of</strong> the clear aspect when<br />

evaluating the semen microscopically. For many years, a ready to use skimmed milk extender<br />

containing clarified egg yolk has been commercially available, both for fresh <strong>and</strong> cooled use as well as<br />

for cryopreservation (5% glycerol), namely the Ghent extender.<br />

Egg yolk has been replaced by soybean lecithin for cryopreservation <strong>of</strong> bull semen (Aires et<br />

al., 2003). Incorporated in an extender for equine semen (AndroMed ® ), soybean lecithin was also<br />

used with good results for cooled storage <strong>of</strong> equine semen (Aurich, 2005; Aurich et al., 2007).<br />

However, soybean lecithin can also replace egg yolk in BotuCrio® for the cryopreservation <strong>of</strong> equine<br />

semen. Papa et al. (2010) found no difference in post-thaw motility <strong>and</strong> viability between the egg<br />

yolk <strong>and</strong> soybean lecithin treatment. However, fertility was reduced for semen frozen in the soybean<br />

lecithin extender. This could have been caused by irreversible binding <strong>of</strong> the lecithin lipids to the<br />

sperm membrane, which might interact with the capacitation process (Papa et al., 2010). Soy<br />

phosphatidylcholine has been used as well <strong>and</strong> is equally capable as egg yolk for protection <strong>of</strong><br />

spermatozoa during cryopreservation (Ricker et al., 2006).<br />

45


CHAPTER 1.2<br />

46<br />

Chemically defined extenders in cryopreservation<br />

Two recent studies were performed to evaluate the use <strong>of</strong> INRA96 as base for freezing<br />

equine semen. As such, the addition <strong>of</strong> Cryoguard® (Minitube, Verona, Wi, USA) to INRA 96 resulted<br />

in a higher post-thaw semen quality compared to a skimmed milk glucose extender containing<br />

Cryoguard® (Scherzer et al., 2009). On the other h<strong>and</strong>, lower motility parameters for semen frozen in<br />

INRA96 based freezing extender were found when compared to INRA82 based extender although<br />

membrane integrity was better for semen frozen in INRA96. Fertility trials showed much higher<br />

pregnancy rates for INRA96 frozen semen, clearly demonstrating the value <strong>of</strong> the INRA 96 diluter for<br />

cryopreservation as well (Pillet et al., 2008a). In an additional study, comparable conflicting in vitro<br />

quality results were found, such as a lower lipid peroxidation but a higher percentage <strong>of</strong> acrosome<br />

damaged sperm for semen frozen in INRA96 (Pillet et al., 2008b). These studies led to the<br />

development <strong>of</strong> a ready to use freezing extender for equine semen, INRA-Freeze which is a INRA96<br />

based extender with 2.5% glycerol <strong>and</strong> 2% sterilized egg yolk plasma added. The egg yolk plasma is<br />

prepared by ultracentrifugation <strong>and</strong> resulted in comparable in vitro characteristics <strong>and</strong> in vivo fertility<br />

when compared to whole egg yolk (Pillet et al., 2010).<br />

Cooling <strong>and</strong> freezing rate<br />

Over the years, a huge variety <strong>of</strong> cooling <strong>and</strong> freezing curves has been described. A long term<br />

follow-up study using the same freezing method <strong>and</strong> the same extenders has been performed.<br />

Initially, semen was processed <strong>and</strong> frozen as described by Palmer (1984). Briefly, the initial protocol<br />

was as follows. In a first step semen was diluted in INRA82 + 2% egg yolk at 32°C, followed by cooling<br />

<strong>and</strong> subsequently centrifuging the semen at 4°C. After resuspension <strong>of</strong> the sperm pellet in INRA82 +<br />

2% egg yolk + 2.5% glycerol at 4°C <strong>and</strong> semen was left to equilibrate for 1h at 4°C, next straws were<br />

filled <strong>and</strong> frozen 4 cm above liquid nitrogen (Palmer, 1984). This protocol was refined by changing<br />

every step one by one in order to obtain the best freezing procedure using these diluters (Vidament<br />

et al., 2000, 2001). As such, it was demonstrated that centrifugation is better performed at 22°C<br />

instead <strong>of</strong> at 4°C <strong>and</strong> that a moderate cooling rate is preferred to a slow cooling rate. Additionally,<br />

the first cooling from 37°C to 22°C can be done rapidly au bain-marie by plunging the tubes<br />

containing the semen in a 22°C water bath. These results confirm previous reports by Kayser et al.<br />

(1992). The resuspension <strong>of</strong> the sperm pellet is preferably done at 22°C after which the semen is<br />

allowed to cool <strong>and</strong> equilibrate for 80 min at 4°C. After filling, the 0.5 mL straws are subsequently<br />

frozen by placing them 4 cm above liquid nitrogen or in a programmable freezer at -60°C/min until<br />

-140°C, there after the straws are plunged <strong>and</strong> stored in liquid nitrogen.


CHAPTER 1.2<br />

The actual freezing technique i.e. above liquid nitrogen or in a programmable freezer should<br />

not only be decided on from a mere economical point <strong>of</strong> <strong>view</strong>. The cooling curve <strong>of</strong> straws placed at<br />

a fixed distance above liquid nitrogen, has been recorded in order to measure the exact temperature<br />

changes during cryopreservation. The resulting curve has been entered into a programmable freezer<br />

<strong>and</strong> ejaculates were frozen using a split design. The semen frozen using the programmable freezer<br />

resulted in better post-thaw in vitro semen characteristics, which is likely due to the more uniform<br />

freezing rate (Clulow et al., 2008). However, these findings are in contrast with a previous report<br />

where no differences were noticed between semen frozen above liquid nitrogen <strong>and</strong> semen frozen in<br />

a programmable freezer (Cristanelli et al., 1985).<br />

The use <strong>of</strong> alternative CPAs instead <strong>of</strong> glycerol might influence the optimal cooling <strong>and</strong><br />

freezing curve. As such, sperm that was cooled to 5°C for 1h or without cooling, followed by slow<br />

(-20°C/min) or fast (-70°C/min) freezing rates using MF or DMF as CPA, has been compared. Post-<br />

thaw sperm motility was not affected by the freezing rate, however, cooling prior to freezing resulted<br />

in better post-thaw sperm characteristics (Alvarenga et al., 2005). According to the manufacturer, in<br />

order to obtain an optimal freezing process when using BotuCrio®, it is advised to cool the semen to<br />

5°C in 20 min after resuspending the sperm pellet, after which the straws are frozen 6 cm above<br />

liquid nitrogen or at -30°/min in a programmable freezer. The equilibration time using BotuCrio® is<br />

clearly much shorter compared to other extenders. Increasing this equilibration to 60-80 min using<br />

BotuCrio® has a clear negative impact on post-thaw semen quality (Hoogewijs, unpublished data). A<br />

faster freezing rate <strong>of</strong> -70°C/min, i.e. 4cm above liquid nitrogen, results in lower post-thaw motility<br />

compared to a moderate freezing rate (Terraciano et al., 2008)<br />

Thawing <strong>of</strong> frozen semen<br />

Semen can be thawed using quite some different protocols (Vidament et al., 2001). In the<br />

protocol which is commonly used, sperm is thawed during 30s in a 37°C water bath. Thawing <strong>of</strong><br />

semen in a 75°C water bath for 10s resulted in a slightly higher motility, however, timing is critical<br />

since 15s at 75°C resulted in a zero motility. In Brazilian studies, semen frozen in BotuCrio® is<br />

consistently thawed at 46°C for 20s (Melo et al., 2008; Pinheiro et al., 2008; Pucci et al., 2008; Papa<br />

et al., 2010).<br />

47


CHAPTER 1.2<br />

48<br />

Cryopreservation – trial <strong>and</strong> error<br />

It is clear that cryopreserving equine semen is far more complex than most owners imagine.<br />

An optimal freezing protocol varies between laboratories <strong>and</strong> is determined by practical implications,<br />

limited by the infrastructure. But above all, the intrinsic quality <strong>and</strong> characteristics <strong>of</strong> an ejaculate is<br />

by far the most determining factor that will decide on the outcome after thawing. So after all, the<br />

stallion determines the cryopreservation protocol, <strong>and</strong> test freezing ejaculates using different<br />

extenders <strong>and</strong> cooling/freezing rates is <strong>of</strong>ten rewarding.


Shortcomings in current practice<br />

1.3<br />

49


1.3.1. St<strong>and</strong>ards for equine AI doses<br />

CHAPTER 1.3<br />

In literature, actual guidelines concerning the minimal requirements for an AI dose <strong>of</strong> equine<br />

semen are missing. The semen used for AI can be divided, based on preparation, into fresh/diluted<br />

semen, cooled (transported) semen <strong>and</strong> frozen-thawed semen. The World Breeding Federation for<br />

Sport Horses (WBFSH) has clear minimal requirements for each type <strong>of</strong> semen used for AI, based on a<br />

minimal percentage <strong>of</strong> progressive motility (PM) combined with a minimal dose <strong>of</strong> progressive motile<br />

spermatozoa (PMS) (Table 4).<br />

Table 4. Minimal requirements for a dose <strong>of</strong> equine semen following the WBFSH guidelines (source:<br />

http://www.wbfsh.com/files/Semen%20st<strong>and</strong>ards.pdf, website last visited November 23 rd 2010).<br />

Semen type<br />

Fresh semen ≥ 300<br />

Progressive Motile<br />

Spermatozoa (× 10 6 )<br />

Time between<br />

collection <strong>and</strong> AI<br />

Cooled semen ≥ 300 at portioning < 12h 35<br />

Cooled transported<br />

semen<br />

≥ 600 at portioning < 36 h 35<br />

Frozen semen ≥ 250 35<br />

Progressive Motility (%)<br />

In former days, 500 × 10 6 PMS was commonly recommended as st<strong>and</strong>ard AI dose for fresh<br />

semen (Picket et al., 1975), whereas more recent studies advise on a st<strong>and</strong>ard AI dose using fresh<br />

semen <strong>of</strong> 300 × 10 6 PMS (Vidament et al., 1997; Gahne et al., 1998). Nevertheless, a large variety <strong>of</strong><br />

studies present good fertility results with lower doses. Doses <strong>of</strong> 100 (Rigby et al., 1999), 50 (Sieme et<br />

al., 2004), <strong>and</strong> 25 × 10 6 total spermatozoa (Woods et al., 2000), respectively, can give good fertility<br />

results. Based on these data some authors suggest to reevaluate the sperm dose recommendations<br />

(Sieme et al., 2004). The findings <strong>of</strong> Rigby et al. (1999) imply that fertility status <strong>of</strong> the stallion might<br />

be more important than merely the numbers <strong>of</strong> sperm or PMS inseminated. However, the only<br />

possibility to report on a stallion’s fertility status to date is based on findings from in vivo fertility<br />

observations. In order to bypass this problem the semen can be evaluated after collection <strong>and</strong><br />

following an in vitro storage, a predictive value can be obtained.<br />

51


CHAPTER 1.3<br />

1.3.2. Dose <strong>and</strong> dose makes two<br />

52<br />

Without a uniform method to analyze an equine semen sample, it will remain very difficult to<br />

determine the optimal sperm dose to maximize the chance to obtain pregnancy. An insemination<br />

dose is in most cases expressed as being equivalent to a particular number <strong>of</strong> motile spermatozoa. As<br />

such , an inseminate presumed to contain 300 million PMS as assessed with subjective motility<br />

analysis is very likely to actually contain fewer progressive motile cells when the analysis would be<br />

performed using a CASA system implemented with very strict motility criteria. As such the motility <strong>of</strong><br />

the spermatozoa in the same inseminate might be different depending on the type <strong>of</strong> analysis used.<br />

Animal <strong>and</strong>rology uses the same techniques available as human <strong>and</strong>rology. However,<br />

veterinary <strong>and</strong>rology analyses are done in a stochastic, almost r<strong>and</strong>omized way when comparing<br />

different laboratories. This hampers or even renders comparison <strong>of</strong> results between laboratories<br />

impossible. This lack <strong>of</strong> analysis st<strong>and</strong>ards does not only slow down the scientific progress as far as<br />

research is concerned; it also interferes with business, as the reliable trading <strong>of</strong> frozen AI doses in<br />

particular is impeded.<br />

The main problems that occur when performing light microscopic evaluations are subjectivity<br />

<strong>and</strong> variability (Davis <strong>and</strong> Katz, 1993). Variations <strong>of</strong> 30 to 60% in sperm motility are reported for<br />

subjective motility analysis <strong>of</strong> the same ejaculate by different observers (Verstegen et al., 2002).<br />

Objective methods are available, but this objective analysis is not all st<strong>and</strong>ardized. Different settings<br />

can be found in literature (Table 2), however, with the current knowledge it is unclear to what extent<br />

these different motility setting affect the analysis outcome. Additionally, a large variety in different<br />

counting chambers is available to use in combination with CASA systems. Different chambers clearly<br />

influence motility parameters <strong>of</strong> dog <strong>and</strong> bull spermatozoa (Iguer-ouada <strong>and</strong> Verstegen, 2001; Contri<br />

et al., 2010; Lenz et al., 2011). To which extent the motility <strong>of</strong> stallion semen is affected by these<br />

apparent unimportant utensils remains unclear. This is in clear contrast with human <strong>and</strong>rology where<br />

the preparation <strong>of</strong> a motility slide should be done following strict criteria (WHO, 2010).<br />

On the other h<strong>and</strong>, the wide variety <strong>of</strong> procedures that exist to prepare AI doses provides the<br />

liberty <strong>of</strong> choosing <strong>and</strong> adapting protocols to the specified needs <strong>of</strong> any given stallion. The<br />

abundance in processing procedures requires a uniform way to objectively determine the best<br />

suitable protocol for “problem stallions” <strong>and</strong> to chase <strong>of</strong>f the ghost stories once <strong>and</strong> for all. One <strong>of</strong><br />

these techniques, frequently used when processing equine semen is centrifugation. Although<br />

frequently used, the influence on equine semen requires further elucidation since there is quite<br />

some misunderst<strong>and</strong>ing <strong>and</strong> different opinions concerning the sperm losses accompanying aspiration<br />

<strong>of</strong> supernatant (Weiss et al., 2004; Ecot et al., 2005; Knop et al., 2005).


CHAPTER 1.3<br />

The use <strong>of</strong> density gradient centrifugation to select a superior sperm population was first<br />

described in the early 1980’s. This technique gained interest due to the increased use <strong>of</strong> many <strong>of</strong> the<br />

specialized reproductive techniques. The (clinical) use in domestic animal reproduction remained<br />

minimal because <strong>of</strong> the inability to process large volumes <strong>of</strong> semen. More recently, this technique<br />

has been modified to a single layer centrifugation so larger volumes <strong>of</strong> semen could be selected,<br />

enabling the processing <strong>of</strong> entire stallions’ ejaculates in a limited number <strong>of</strong> tubes (Morrell et al.,<br />

2009). This selection technique might prove valuable when processing a suboptimal semen sample.<br />

53


CHAPTER 1<br />

References<br />

Aires V.A., Hinsch K.D., Mueller-Schloesser F., Bogner K., Mueller-Schloesser S., Hinsch E. 2003. In<br />

vitro <strong>and</strong> in vivo comparison <strong>of</strong> egg-yolk-based <strong>and</strong> soybean lecithin-based extenders for<br />

cryopreservation <strong>of</strong> bovine semen. Theriogenology 60:269-279.<br />

Akcay E., Reilas T., Andersson M., Katila T. 2006. Effect <strong>of</strong> seminal plasma fractions on stallion sperm<br />

survival after cooled storage. Journal <strong>of</strong> Veterinary Medicine 53:481-485.<br />

Albrizio M., Lacal<strong>and</strong>ra G.M., Micera E., Guaricci A.C., Nicassio M., Zarrilli A. 2010. Delta opioid<br />

receptror on equine sperm cells: subcellular localization <strong>and</strong> involvement in sperm motility<br />

analyzed by computer assisted sperm analyzer (CASA). Reproductive Bioology <strong>and</strong><br />

Endocrinology 8:78.<br />

Allen W.R. 2005. The development <strong>and</strong> application <strong>of</strong> the modern reproductive technologies to horse<br />

Breeding. <strong>Reproduction</strong> in domestic Animals 40:310-329.<br />

Almeida J.A., Ball B.A. 2005. Effect <strong>of</strong> α-tocopherol <strong>and</strong> tocopherol succinate on lipid peroxidation in<br />

equine spermatozoa. Animal <strong>Reproduction</strong> Science 87:321-337.<br />

Alvarenga M.A., Graham J.K., Keith S.L., L<strong>and</strong>im-Alvarenga F.C., Squires E.L. 2000. Alternative<br />

cryoprotectors for freezing stallion spermatozoa. Proceedings <strong>of</strong> the 14 th International<br />

Congress on Animal <strong>Reproduction</strong> – Stockholm Abstracts Vol2:157.<br />

Alvarenga M.A., Leão K.M., Papa F.O. L<strong>and</strong>im-Alvarenga F.C., Medeiros A.S.L., Gomes G.M. 2003. The<br />

use <strong>of</strong> alternative cryoprotectors for freezing stallion semen. Proceedings <strong>of</strong> the Workshop<br />

on Transporting Gametes <strong>and</strong> Embryos – Havemeyer Foundation Monograph series 12:74-76.<br />

Alvarenga M.A., Papa F.O., L<strong>and</strong>im-Alvarenga F.C., Medeiros A.S.L. 2005. Amides as cryoprotectants<br />

for freezing stallion semen: a re<strong>view</strong>. Animal <strong>Reproduction</strong> Science 89:105-113.<br />

Alvarenga M.A., Melo C.M., Magalhães L.C.O., Papa F.O. 2010. A new method to concentrate equine<br />

sperm. Animal <strong>Reproduction</strong> Science 121:186-187.<br />

Amann R.P., Pickett B.W. 1987. Principles <strong>of</strong> cryopreservation <strong>and</strong> a re<strong>view</strong> <strong>of</strong> cryopreservation <strong>of</strong><br />

stallion spermatozoa. Journal <strong>of</strong> Equine Veterinary Science 7:145-173.<br />

Aurich C. 2005. Factors affecting the plasma membrane function <strong>of</strong> cooled-stored stallion<br />

spermatozoa. Animal <strong>Reproduction</strong> Science 89:65-75.<br />

Aurich C. 2008. Recent advances in cooled-semen technology. Animal <strong>Reproduction</strong> Science 107:268-<br />

75.<br />

Aurich C., Spergser J. 2007. Influence <strong>of</strong> bacteria <strong>and</strong> gentamycin on cooled-stored stallion<br />

spermatozoa. Theriogenology 67:912-918.<br />

Aurich C., Seeber P., Müller-Schlösser F. 2007. Comparison <strong>of</strong> different extenders with defined<br />

protein composition for storage <strong>of</strong> stallion spermatozoa at 5°C. <strong>Reproduction</strong> in Domestic<br />

Animals 42:445-448.<br />

54


CHAPTER 1<br />

Avery B., Greve T. 1995. Impact <strong>of</strong> Percoll on bovine spermatozoa used for in vitro insemination.<br />

Theriogenology 44:871-878.<br />

Ball B.A., Vo A. 2001. Osmotic tolerance <strong>of</strong> equine spermatozoa <strong>and</strong> the effects <strong>of</strong> soluble<br />

cryoprotectants on equine sperm motility, viability, <strong>and</strong> mitochondrial membrane potential.<br />

Journal <strong>of</strong> Andrology 22:1061-1069.<br />

Barker C.A.V., G<strong>and</strong>ier J.C.C. 1957. Pregnancy in a mare resulting from frozen epididymal<br />

spermatozoa. Canadian Journal <strong>of</strong> Comparative Medicine <strong>and</strong> Veterinary Science 21:47-51.<br />

Barrier-Battut I., Bonnet C., Giraudo A., Dubois C., Caillaud M., Vidament M. 2010. Removal <strong>of</strong><br />

seminal plasma by centrifugation, before cooled storage, enhances membrane stability <strong>of</strong><br />

stallion spermatozoa. Animal <strong>Reproduction</strong> Science 121:188-190.<br />

Barth A.D., Oko R.J. 1989. Abnormal morphology <strong>of</strong> bovine spermatozoa. Ames, Iowa: Iowa State<br />

University Press.<br />

Bartoov B., Kalay D., Mayevsky A. 1981. Sperm motility analyzer (SMA), a practical tool <strong>of</strong> motility<br />

<strong>and</strong> cell concentration determinations in artificial insemination centers. Theriogenology<br />

15:173-182.<br />

Bartoov B., Sneider M., Ben-Barak J., Yogev L., Mayevsky A., Lightman A. 1991. Sperm motility index:<br />

a new parameter for human sperm evaluation. Fertility <strong>and</strong> Sterility 56:108-112.<br />

Batellier F., Magistrini M., Fauquant J., Palmer E. 1997. Effect <strong>of</strong> milk fractions on survival <strong>of</strong> equine<br />

spermatozoa. Theriogenology 48:391-410.<br />

Batellier F., Duchamps G., Vidament M., Arnaud G., Palmer E., Magistrini M. 1998. Delayed<br />

insemination is successful with a new extender for storing fresh equine semen at 15°C under<br />

aerobic conditions. Theriogenology 50:229-236.<br />

Batellier F., Gérard N., Courtens J.L., Palmer E., Magistrini M. 2000. Preservation <strong>of</strong> stallion sperm<br />

quality by native phosphocaseinate: a direct or indirect effect? Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong><br />

Fertility Supplement 56:69-77.<br />

Batellier F., Vidament M., Fauquant J., Duchamp G., Arnaud G., Yvon J.M., Magistrini M. 2001.<br />

Advances in cooled semen technology. Animal <strong>Reproduction</strong> Science 68:181-190.<br />

Baumber J., Ball B.A., Linfor J.J., Meyers S.A. 2002. Reactive oxygen species <strong>and</strong> cryopreservation<br />

promote deoxyribonucleic acid (DNA) damage in equine sperm. Theriogenology 58:301-302.<br />

Baumber-Skaife J. 2011 Evaluation <strong>of</strong> semen. In: Equine <strong>Reproduction</strong>, McKinnon, A.O., Squires E.L.,<br />

Vaala W.E., Varner DD. (Ed.), Wiley-Blackwell, pp 1278-1291.<br />

Bedford S.J., Jasko D.J., Graham J.K., Amann R.P., Squires E.L., Picket B.W. 1995. Effect <strong>of</strong> seminal<br />

extenders containing egg yolk <strong>and</strong> glycerol on motion characteristics <strong>and</strong> fertility <strong>of</strong> stallion<br />

spermatozoa. Theriogenology 43:955-967.<br />

Björndahl L., Barratt C.L.R. 2005. Semen analysis: settings st<strong>and</strong>ards for the measurement <strong>of</strong> sperm<br />

numbers. Journal <strong>of</strong> Andrology 26:11.<br />

55


CHAPTER 1<br />

Blanc G., Magistrini M., Palmer E. 1991. Use <strong>of</strong> concanavalin A for coating the membranes <strong>of</strong> stallion<br />

spermatozoa. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility Supplement 44:191-198.<br />

Boersma A., Raβh<strong>of</strong>er A., Stolla R. 2001. Influence <strong>of</strong> sample preparation, staining procedure <strong>and</strong><br />

analysis conditions on bull sperm head morphometry using the morphologic analyser<br />

integrated visiual optical system. <strong>Reproduction</strong> in Domestic Animals 36:222-229.<br />

Brazil C., Swan S.H., Drobnis E.Z., Liu F., Wang C., Redmon J.B., Overstreet J.W., The study for future<br />

families research group. 2004. St<strong>and</strong>ardized methods for semen evaluation in a multicenter<br />

research study. Journal <strong>of</strong> Andrology 25:635-644.<br />

Brinsko S.P. 2011. Semen collection techniques <strong>and</strong> insemination procedures. In: Equine<br />

<strong>Reproduction</strong>, McKinnon, A.O., Squires E.L., Vaala W.E., Varner DD. (Ed.), Wiley-Blackwell, pp<br />

1268-1277.<br />

Brinsko S.P., Crockett E.C., Squires E.L. 2000a. Effect <strong>of</strong> centrifugation <strong>and</strong> partial removal <strong>of</strong> seminal<br />

plasma on equine spermatozoa motility after cooling <strong>and</strong> storage. Theriogenology 54:129-<br />

136.<br />

Brinsko S.P., Rowan K.R., Varner D.D., Blancard T.L. 2000b. Effects <strong>of</strong> transport container <strong>and</strong><br />

ambient storage temperature on motion characteristics <strong>of</strong> equine semen. Theriogenology<br />

53:1641-1655.<br />

Brinsko S.P., Blanchard T.L., Varner D.D., Schumacher J., Love C.C., Hinrichs K., Hartman D. 2011.<br />

Manual <strong>of</strong> equine reproduction. Third Edition. Mosby Elsevier.<br />

Brum A.M., Thomas A.D., Sabeur K., Ball B.A. 2006. Evaluation <strong>of</strong> Coomassie blue staining <strong>of</strong> the<br />

acrosome <strong>of</strong> equine <strong>and</strong> canine spermatozoa. American Journal <strong>of</strong> Veterinary Research<br />

67:358-362.<br />

Burns P.J. 1992. Modification <strong>of</strong> Kenney’s extender for cryopreservation <strong>of</strong> equine spermatozoa.<br />

Proceedings <strong>of</strong> the 12 th International Congress on Animal <strong>Reproduction</strong> – The Hague<br />

Vol4:1849-1851.<br />

Burns P.J., Reasner D.S. 1995. Computerized analysis <strong>of</strong> sperm motion: effect <strong>of</strong> glycerol<br />

concentration on the cryopreservation <strong>of</strong> equine spermatozoa. Journal <strong>of</strong> Equine Veterinary<br />

Science 15:377-380.<br />

Casarett G.W. 1953. A one solution stain for spermatozoa. Stain Technology 28:125-127.<br />

Casey P.J., Hillman R.B., Robertson K.R., Yudin A.I., Liu I.K.M., Drobnis E.Z. 1993. Validation <strong>of</strong> an<br />

acrosomal stain for equine sperm that differentiates between living <strong>and</strong> dead sperm. Journal<br />

<strong>of</strong> Andrology 14:289-297.<br />

Chanavat E., Vidament M., Defoin L., Duchamp G., Levillain N., Yvon J.M., Le Vern Y., Kerkboeuf D.,<br />

Magistrini M. 2005. Effect <strong>of</strong> storage <strong>and</strong> temperature on in vitro stallion sperm parameters<br />

<strong>and</strong> fertility rate. Animal <strong>Reproduction</strong> Science 89:318-319.<br />

56


CHAPTER 1<br />

Cheng F.-P., Fazeli A., Voorhout W.F., Marks A., Bevers M.M., Colenbr<strong>and</strong>er B. 1996. Use <strong>of</strong> peanut<br />

agglutinin to assess the acrosomal status <strong>and</strong> the zona pellucid-induced acrosome reaction in<br />

stallion spermatozoa. Journal <strong>of</strong> Andrology 17:674-682.<br />

Chenier T., Merkies K., Leibo S., Plante C., Johnson W. 1998. Evaluation <strong>of</strong> cryoprotective agents for<br />

use in the cryopreservation <strong>of</strong> equine spermatozoa. Proceedings <strong>of</strong> the 44 th annual convetion<br />

<strong>of</strong> the American Association <strong>of</strong> Equine Practitioners – Baltimore 44:5-6.<br />

Chenoweth P., Zeron Y., Shalit U., Rabinovitch L., Deutsch M. 2010. Pregnancy rates in dairy cattle<br />

inseminated with different numbers <strong>of</strong> progressively motile sperm. Proceedings <strong>of</strong> the annual<br />

conference <strong>of</strong> the American College <strong>of</strong> Theriogenologists – Seatle 389.<br />

Christensen P., Stryhn H., Hansen C. 2005. Discrepancies in the determination <strong>of</strong> sperm<br />

concentration using Bürker-Türk, Thoma <strong>and</strong> Makler counting chamber. Theriogenology<br />

63:992-1003.<br />

Clulow J.R., Maxwell W.M.C., Evans G., Morris L.H.A. 2007. A comparison <strong>of</strong> duck <strong>and</strong> chicken egg<br />

yolk for cryopreservation <strong>of</strong> stallion sperm. Australian Veterinary Journal 85:232-235.<br />

Clulow J.R., Mansfield L.J., Morris L.H.A., Evans G., Maxwell W.M.C. 2008. A comparison between<br />

freezing methods for the cryopreservation <strong>of</strong> stallion spermatozoa. Animal <strong>Reproduction</strong><br />

Science 108:298-308.<br />

Cochran J.D., Amann R.P., Squires E.D., Pickett B.W. 1983. Fertility <strong>of</strong> frozen-thawed stallion semen<br />

extended in lactose-EDTA-egg yolk extender <strong>and</strong> packaged in 1.0 mL straws. Theriogenology<br />

20:735-741.<br />

Cochran J.D., Amann R.P., Froman D.P., Pickett B.W. 1984. Effects <strong>of</strong> centrifugation, glycerol level,<br />

cooling to 5°C, freezing rate <strong>and</strong> thawing rate on the post-thaw motility <strong>of</strong> equine sperm.<br />

Theriogenology 22:25-38.<br />

Colenbr<strong>and</strong>er B., Gadella B.M., Stout T.A.E. 2003. The predictive value <strong>of</strong> semen analysis in the<br />

evaluation <strong>of</strong> stallion fertility. <strong>Reproduction</strong> in Domestic Animals 38:305-311.<br />

Contri A., Valorz C., Faustini M., Wegher L., Carluccio A. 2010. Effect <strong>of</strong> semen preparation on casa<br />

motility results in cryopreserved bull spermatozoa. Theriogenology 74:424-435.<br />

Cooper T.G., Brazil C., Swan S.H., Overstreet J.W. 2007. Ejaculate volume is seriously underestimated<br />

when semen is pipette or decanted into cylinders from the collection vessel. Journal <strong>of</strong><br />

Andrology 28:1-4.<br />

Cristanelli M.J., Amann R.P., Squires E.L., Pickett B.W. 1985. Effects <strong>of</strong> egg yolk <strong>and</strong> glycerol levels in<br />

lactose-EDTA-egg yolk extender <strong>and</strong> <strong>of</strong> freezing rate on the motility <strong>of</strong> frozen-thawed stallion<br />

spermatozoa. Theriogenology 24:681-686.<br />

Davis R., Katz D. 1993. Operational st<strong>and</strong>ards for CASA instruments. Journal <strong>of</strong> Andrology 14:385-394.<br />

Defoin L., David C., Le Vern Y., Kerkboeuf D., Magistrini M. 2005. Hypoosmotic swelling test : a new<br />

approach by multi-hypotonic steps. Animal <strong>Reproduction</strong> Science 89:219-223.<br />

57


CHAPTER 1<br />

Devireddy R.V., Swanlund D.J., Alghamdi A.S., Duoos L.A., Troedsson M.H.T., Bisch<strong>of</strong> J.C., Roberts K.P.<br />

2002. Measured effect <strong>of</strong> collection <strong>and</strong> cooling conditions on the motility <strong>and</strong> the water<br />

transport parameters at subzero temperatures <strong>of</strong> equine spermatozoa. <strong>Reproduction</strong><br />

124:643-648.<br />

Douglas-Hamilton D.H., Osol R., Osol G., Driscoll D., Noble H. 1984. A field study <strong>of</strong> the fertility <strong>of</strong><br />

transported equine semen. Theriogenology 22:291-304.<br />

Douglas-Hamilton D.H., Smith N.G., Kuster C.E., Vermeiden J.P.W., Althouse G.C. 2005a. Capillaryloaded<br />

particle fluid dynamics: effect on estimation <strong>of</strong> sperm concentration. Journal <strong>of</strong><br />

Andrology 26:115-122.<br />

Douglas-Hamilton D.H., Smith N.G., Kuster C.E., Vermeiden J.P.W., Althouse G.C. 2005b. Particle<br />

distribution in low-volume capillary-loaded chambers. Journal <strong>of</strong> Andrology 26:107-114.<br />

Drevius L.O., Eriksson H. 1966. Osmotic swelling <strong>of</strong> mammalian spermatozoa. Experimental Cell<br />

Research 42:136-156.<br />

Ecot P., Vidament M., de Mornac A., Perigault K., Clément F., Palmer E. 2000. Freezing <strong>of</strong> stallion<br />

semen : interactions among cooling treatments, semen extenders <strong>and</strong> stallions. Journal <strong>of</strong><br />

<strong>Reproduction</strong> <strong>and</strong> Fertility Supplement 56:141-150.<br />

Ecot P., Decuadro-Hansen G., Delhomme G., Vidament M. 2005. Evaluation <strong>of</strong> a cushioned<br />

centrifugation technique for processing equine semen for freezing. Animal <strong>Reproduction</strong><br />

Science 89:245-248.<br />

Estrada A.J., Samper J.C. 2007. Evaluation <strong>of</strong> raw semen. In: Samper J.C., Pycock J.F., McKinnon A.O.,<br />

Editors, Current Therapy in Equine <strong>Reproduction</strong>, Saunders Elsevier, pp 253-257.<br />

Evenson D.P., Darzynkiewics Z., Melamed M.R. 1980. Relation <strong>of</strong> mammalian sperm chromatin<br />

heterogeneity to fertility. Science 210:1131-1133.<br />

Evenson D.P., Sailer B.L., Jost L.K. 1995. Relationship between stallion sperm deoxyribonucleic acid<br />

(DNA) susceptibility to denaturation in situ <strong>and</strong> presence <strong>of</strong> DNA str<strong>and</strong> breaks: implications<br />

for fertility <strong>and</strong> embryo viability. Biology <strong>of</strong> <strong>Reproduction</strong> monograpgh series 1:655-659.<br />

Evenson D., Jost L. 2000. Sperm chromatin structure assay is useful for fertility assessment. Methods<br />

in Cell Science 22:169-189.<br />

Farlin M.E., JaskoD.J., Graham J.K., Squires E.L. 1992. Assessment <strong>of</strong> Pisum sativum agglutinin in<br />

identifying acrosomal damage in stallion spermatozoa. Molecular <strong>Reproduction</strong> <strong>and</strong><br />

Development 32:23-27.<br />

Fatehi A.N., Bevers M.M., Schroevers E., Roelen B.A.J., Colenbr<strong>and</strong>er B., Gadella B.M. 2006. DNA<br />

damage in bovine sperm does not Block fertilization <strong>and</strong> early embryonic development but<br />

induces apoptosis after the first cleavages. Journal <strong>of</strong> Andrology 27:176-188.<br />

Filliers M., Rijsselaere T., Bossaert P., De Causemaecker V., Dewulf J., Pope C.E., Van Soom A. 2008<br />

Computer-assisted sperm analysis <strong>of</strong> fresh epididymal cat spermatozoa <strong>and</strong> the impact <strong>of</strong><br />

cool storage (4 degrees C) on sperm quality. Theriogenology 70:1550-1559.<br />

58


CHAPTER 1<br />

Flipse R.J., Patton S., Almquist J.O. 1954. Diluters for bovine semen III effect <strong>of</strong> lactenin <strong>and</strong> <strong>of</strong><br />

lactoperoxidase upon spermatozoa livability. Journal <strong>of</strong> Dairy Science 37:1205-1211.<br />

Freund M., Carol B. 1964. Factors affecting haemocytomter counts <strong>of</strong> sperm concentration in human<br />

semen. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility 8:149-155.<br />

Froman D.P., McLean D.J. 1996. Objective measurement <strong>of</strong> sperm motility based upon sperm<br />

penetration <strong>of</strong> Accudenz®. Poultry Science 75:776-784.<br />

Froman D.P., Feltmann A.J., McLean D.J. 1997. Increased fecundity resulting from semen donor<br />

selection based upon in vitro sperm motility. Poultry Science 76:73-77.<br />

Froman D.P. 2007. Sperm motility in birds: insights from fowl sperm. Society for <strong>Reproduction</strong> <strong>and</strong><br />

Fertility 65:293-308.<br />

Fukui Y., Togawa M., Abe N., Takano Y., Asada M., Okada A.,Iida K., Ishikawa H., Ohsumi S. 2004.<br />

Validation <strong>of</strong> the sperm quality analyzer <strong>and</strong> the hypo-osmotic swelling test for frozenthawed<br />

ram <strong>and</strong> minke whale (Balaenoptera bonarensis) spermatozoa. Journal <strong>of</strong><br />

<strong>Reproduction</strong> <strong>and</strong> Development 50:147-154.<br />

Gahne S., Gånheim A., Malmgren L. 1998. Effect <strong>of</strong> insemination dose on pregnancy rate in mares.<br />

Theriogenology 49:1071-1074.<br />

Garner D.L., Johnson L.A. 1995. Viability assessment <strong>of</strong> mammalian sperm using SYBR-14 <strong>and</strong><br />

propidium iodide. Biology <strong>of</strong> <strong>Reproduction</strong> 53:276-284.<br />

Garner D.L., Thomas C.A. 1999. Organelle-specific probe JC-1 identifies membrane potential<br />

differences in the mitochondrial function <strong>of</strong> bovine sperm. Molecular <strong>Reproduction</strong> <strong>and</strong><br />

Development 53:222-229.<br />

Glazar A.I., Mullen S.F., Liu J., Benson J.D., Critser J.K., Squires E.L., Graham J.K. 2009. Osmotic<br />

tolerance limits <strong>and</strong> membrane permeability characteristics <strong>of</strong> stallion spermatozoa treated<br />

with cholesterol. Cryobiology 59:201-206.<br />

Graham J.K. 2000. Evaluation <strong>of</strong> alternative cryoprotectants for preserving stallion spermatozoa.<br />

Proceedings <strong>of</strong> the 14 th International Congress on Animal <strong>Reproduction</strong> – Stockholm Abstracts<br />

Vol2:307.<br />

Hansen C., Vermeiden T., Vermeiden J.P.W., Simmet C., Day B.C., Feitsma H. 2006. Comparison <strong>of</strong><br />

FACSCount AF system, improved Neubauer hemocytometer, Corning 254 photometer,<br />

SperVision, UlitMate <strong>and</strong> NuceoCounter SP-100 for determination <strong>of</strong> sperm concentration <strong>of</strong><br />

boar semen. Theriogenology 66:2188-2194.<br />

Heitl<strong>and</strong> A.V., Jasko D.J., Squires E.L., Graham J.K., Pickett B.W., Hamilton C. 1996. Factors affecting<br />

motion characteristics <strong>of</strong> frozen-thawed stallion spermatozoa. Equine Veterinary Journal<br />

28:47-53.<br />

Henkel R.R., Schill W.-B. 2003. Sperm preparation for ART. Reproductive Biology <strong>and</strong> Endocrinology<br />

1:108-130.<br />

59


CHAPTER 1<br />

H<strong>of</strong>lack G., Rijsselaere T., Maes D., Dewulf J., Opsomer G., de Kruif A., Van Soom A. 2005. Validation<br />

<strong>and</strong> usefulness <strong>of</strong> the Sperm Quality Analyzer (SQA II-C) for bull semen analysis. <strong>Reproduction</strong><br />

in Domestic Animals 40:237-244.<br />

Iguer-ouada M., Verstegen J.P. 2001. Evaluation <strong>of</strong> the “Hamilton Thorn computer-bases automated<br />

system” for dog semen analysis. Theriogenology 55:733-749.<br />

Iwamoto T., Nozawa S., Yoshiike M., Hoshino T., Baba K., Matsushita T., Tanaka S.N., Naka M.,<br />

Skakkebæk N.E., Jørgensen N. 2006. Semen quality <strong>of</strong> 324 fertile Japanese men. Human<br />

<strong>Reproduction</strong> 21:760-765.<br />

Jasko D.J., Moran D.M., Farlin M.E., Squires E.L. 1991. Effect <strong>of</strong> seminal plasma dilution or removal on<br />

spermatozoa motion characterics <strong>of</strong> cooled stallion semen. Theriogenology 35:1059-1067.<br />

Jasko D.J., Hathaway J.A., Schaltenbr<strong>and</strong> V.L., Simper W.D., Squires E.L. 1992. Effect <strong>of</strong> seminal<br />

plasma <strong>and</strong> egg yolk on motion characteristics <strong>of</strong> cooled stallion spermatozoa.<br />

Theriogenology 37:1241-1252.<br />

Jasko D.J. 1992. Evaluation <strong>of</strong> stallion semen. Veterinary Clinics <strong>of</strong> North America: Equine Practice<br />

8:129-148.<br />

Jeyendran R.S., Van der Ven H.H., Perez-Pelaez M., Crabo B.G., Zaneveld L.J.D. Development <strong>of</strong> an<br />

assay to assess the functional integrity <strong>of</strong> the human sperm membrane <strong>and</strong> its relationship to<br />

other semen characteristics. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility 70:219-228.<br />

Johannisson A., Morrell J.M., Thorén J., Jönsson M., Dalin A.M., Rodriguez-Martinez H. 2009. Colloidal<br />

centrifugation with Androcoll-E prolongs stallion sperm motility, viability <strong>and</strong> chromatin<br />

integrity. Animal <strong>Reproduction</strong> Science 116:119-128.<br />

Katila T., Combes G.B., Varner D.D., Blanchard T.L. 1997. Comparison <strong>of</strong> three containers used for the<br />

transport <strong>of</strong> cooled stallion semen. Theriogenology 48:1085-1092.<br />

Katila T. 2001. In vitro evaluation <strong>of</strong> frozen-thawed stallion semen: a re<strong>view</strong>. Acta Veterinaria<br />

Sc<strong>and</strong>inavica 42:199-217.<br />

Kavak A., Johannisson A., Lundeheim N., Rodriguez-Martinez H., Aidnik M., Einarsson S. 2003.<br />

Evaluation <strong>of</strong> cryopreserved stallion semen from Tori <strong>and</strong> Estonian breeds using CASA <strong>and</strong><br />

flow cytometry. Animal <strong>Reproduction</strong> Science 76:205-216.<br />

Kayser J.P., Amann R.P., Shideler R.K., Squires E.L., Jasko D.J., Pickett B.W. 1992. Effects <strong>of</strong> linear<br />

cooling rate on motion characteristics <strong>of</strong> stallion spermatozoa. Theriogenology 38:601-614.<br />

Knop K., H<strong>of</strong>fmann., Rath D., Sieme H. 2005. Effects <strong>of</strong> cushioned centrifugation technique on sperm<br />

recovery <strong>and</strong> sperm quality in stallions with good <strong>and</strong> poor semen freezability. Animal<br />

<strong>Reproduction</strong> Science 89:294-297.<br />

Kozink D.M., Rubio C., Pinto C.R. 2006. Cryopreservation <strong>of</strong> stallion spermatozoa in polypropylene<br />

cryotube vials. Animal <strong>Reproduction</strong> Science 94:96-98.<br />

60


CHAPTER 1<br />

Kuisma P., Andersson M., Koskinen E., Katila T. 2006. Fertility <strong>of</strong> frozen-thawed stallion semen cannot<br />

be predicted by the currently used laboratory methods. Acta Veterinaria Sc<strong>and</strong>inavica 48:14.<br />

Kútvölgyi G., Steffer J., Kovács A. 2006. Viability <strong>and</strong> acrosome staining <strong>of</strong> stallion spermatozoa by<br />

Chicago sky blue <strong>and</strong> Giemsa. Biotechnic <strong>and</strong> Biochemistry 81:109-117.<br />

Leipold S.D., Graham J.K., Squires E.L., McCue P.M., Brinsko S.P., V<strong>and</strong>erwall D.K. 1998. Effect <strong>of</strong><br />

spermatozoal concentration <strong>and</strong> number on fertility <strong>of</strong> frozen equine semen. Theriogenology<br />

49:1537-1543.<br />

Len J.A., Jenkins J.A., Eilts B.E., Paccamonti D.L., Lyle S.K., Hosgood G. 2010. Immediate <strong>and</strong> delayed<br />

(after cooling) effects <strong>of</strong> centrifugation on equine sperm. Theriogenology 73:225-231.<br />

Lenz R.W., Kjell<strong>and</strong> M.E., Vonderhaar K., Swannack T.M., Moreno J.F. 2011. A comparison <strong>of</strong> bovine<br />

seminal quality assessments using different <strong>view</strong>ing chambers with a computer-assisted<br />

semen analyzer. Journal Animal Science 89:383-388.<br />

Lindeberg H., Karjalainen H., Koskinen E., Katila T. 1999. Quality <strong>of</strong> stallion semen obtained by a new<br />

semen collection phantom (Equidame®) versus a Missouri® artificial vagina. Theriogenology<br />

51:1157-1173.<br />

Loomis P.R., Amann R.P., Squires E.L., Pickett B.W. 1983. Fertility <strong>of</strong> unfrozen <strong>and</strong> frozen stallion<br />

spermatozoa extended in EDTA-lactose-egg yolk <strong>and</strong> packaged in straws. Journal <strong>of</strong> Animal<br />

Science 56:687-693.<br />

Loomis P.R. 2001. The equine frozen semen industry. Animal <strong>Reproduction</strong> Science 68:191-200.<br />

Loomis P.R. 2006. Advanced methods for h<strong>and</strong>ling <strong>and</strong> preparation <strong>of</strong> stallion semen. Veterinary<br />

Clinics <strong>of</strong> North America: Equine Practice 22:663-676.<br />

Loomis P.R., Graham J.K. 2008. Commercial semen freezing: individual male variation in cryosurvival<br />

<strong>and</strong> the response <strong>of</strong> stallion sperm to customized freezing protocols. Animal <strong>Reproduction</strong><br />

Science 105:119-128.<br />

Love C.C., Loch W.L., Bristol F., Garcia M.C., Kenney R.M. 1989. Comparison <strong>of</strong> pregnancy rates<br />

achieved with frozen semen using two packaging systems. Theriogenology 31:613-622.<br />

Love C.C. 1992. Semen collection techniques. Veterinary Clinics <strong>of</strong> North America : Equine Practice<br />

8:111-128.<br />

Love C.C., Brinsko S.P., Rigby S.L., Thompson J.A., Blanchard T.L., Varner D.D. 2005a. Relationship <strong>of</strong><br />

seminal plasma level <strong>and</strong> extender type to sperm motility <strong>and</strong> DNA integrity. Theriogenology<br />

63:1584-1591.<br />

Love C.C., White R.D., Varner D.D. 2005b. Prepackaging <strong>of</strong> equine semen in globlets prior to<br />

cryopreservation. Animal <strong>Reproduction</strong> Science 89:248-250.<br />

61


CHAPTER 1<br />

Macías García B., González-Fernández L., Morrell J.M., Ortega-Ferrusola C., Tapia J.A., Rodriguez-<br />

Martinez H., Peña F.J. 2009. Single-layer centrifugation through colloid positively modifies<br />

the sperm subpopulation structure <strong>of</strong> frozen-thawed stallion spermatozoa. <strong>Reproduction</strong> in<br />

Domestic Animals 44:523-526.<br />

Maes D., Rijsselaere T., Vyt P., Sokolowska A., Deley W., Van Soom A. 2010. Comparison <strong>of</strong> five<br />

different methods to assess the concentration <strong>of</strong> boar semen. Vlaams Diergeneeskundig<br />

Tijdschrift 79:42-47.<br />

Magistrini M., Couty I., Palmer E. 1992. Interactions between sperm packaging, gas environment,<br />

temperature <strong>and</strong> diluent on fresh stallion sperm survival. Acta Vererinaria Sc<strong>and</strong>inavica<br />

Supplement 88:97-110.<br />

Makhlouf A.A., Niederberger C. 2006. DNA integrity tests in clinical practice: it is not a simple matter<br />

<strong>of</strong> black <strong>and</strong> white (or red <strong>and</strong> green). Journal <strong>of</strong> Andrology 27:316-323.<br />

Makler A., Shiran E., Geva H., Mashiah T. 1999. Evaluation <strong>of</strong> the SQA IIB: a new version <strong>of</strong> the sperm<br />

quality analyzer. Fertility <strong>and</strong> Sterility 71:761-764.<br />

Makler A. 2000. Potential sources <strong>of</strong> error with the Makler counting chamber. Fertility <strong>and</strong> Sterility<br />

73:1066.<br />

Malmgren L. 1998. Effectiveness <strong>of</strong> two systems for transporting equine semen. Theriogenology<br />

50:833-839.<br />

Maree L., du Plessis S.S., Menkveld R., van der Horst G. 2010. Morphometric dimensions <strong>of</strong> the<br />

human sperm head depend on the staining method used. Human <strong>Reproduction</strong> 25:1369-<br />

1382.<br />

Martin J.C., Klug E., Günzel A.-R. 1979. Centrifugation <strong>of</strong> stallion semen <strong>and</strong> its storage in large<br />

volume straws. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility Supplement 27:47-51.<br />

Martinez M.C., Mar C., Azcárate M., Pascual P., Aritzeta J.M., López-Urrutia A. 2000. Sperm motility<br />

index: a quick screening parameter from sperm quality analyser-IIB to rule out oligo- <strong>and</strong><br />

asthenozoospermia in male fertility study. Human <strong>Reproduction</strong> 15:1727-1733.<br />

Matson P., Irving J., Zuvela E., Hughes R. 1999. Delay in the application <strong>of</strong> the cover glass is a<br />

potential source <strong>of</strong> error with Makler counting chamber. Fertility <strong>and</strong> Sterility 72:559-561.<br />

McDonnel S.M., Love C.C. 1991. Xylazine-induced ex copula ejaculation in stallions. Theriogenology<br />

36:73-76.<br />

McDonnell S.M. 2001. Oral imipramine <strong>and</strong> intravenous xylazine for pharmacologically-induced ex<br />

copula ejaculation in stallions. Animal <strong>Reproduction</strong> Science 68:153-159.<br />

McPartlin L.A., Suarez S.S., Czaya C.A., Hinrichs K., Bedford-Guaus S.J. 2009. Hyperactivation <strong>of</strong><br />

stallion sperm is required for successful in vitro fertilization <strong>of</strong> equine oocytes. Biology <strong>of</strong><br />

<strong>Reproduction</strong> 81:199-206.<br />

62


CHAPTER 1<br />

Medeiros A.S.L., Gomes G.M., Carmo M.T., Papa F.O., Alvarenga M.A. 2002. Cryopreservation <strong>of</strong><br />

stallion sperm using different amides. Theriogenology 58:273-276.<br />

Melo C.M., Alvarenga M.A., Zahn F.S., Martin I., Orl<strong>and</strong>i C., Trinque C.L.A., Dell’Aqua Jr. J.A., Papa F.O.<br />

2006. Effect <strong>of</strong> transport container <strong>and</strong> cryoprotectant on freezability <strong>of</strong> equine semen<br />

previously cooled for 24h. Animal <strong>Reproduction</strong> Science 94:78-81.<br />

Melo C.M., Zahn F.S., Martin I., Orl<strong>and</strong>i C., Dell’Aqua Jr. J.A., Alvarenga M.A., Papa F.O. 2007.<br />

Influence <strong>of</strong> semen storage <strong>and</strong> cryoprotectant on post-thaw viability <strong>and</strong> fertility <strong>of</strong> stallion<br />

spermatozoa. Journal <strong>of</strong> Equine Veterinary Science 27:171-175.<br />

Melo C.M., Papa F.O., Fioratti E.G., Villaverde A.I.S.B., Avanzi B.R., Monteiro G., Dell’Aqua Jr. J.A.,<br />

Pasquini D.F., Alvarenga M.A. 2008. Comparison <strong>of</strong> three different extenders for freezing<br />

epididymal stallion sperm. Animal <strong>Reproduction</strong> Science 107:331.<br />

Merkt H., Klug E., Krause D., Bader H. 1975. Results <strong>of</strong> long-term storage <strong>of</strong> stallion semen frozen by<br />

the pellet method. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility Supplement 23:105-106.<br />

Meyers S.A., Overstreet J.W., Liu I.K.M., Drobnis E.Z. 1995. Capacitation in vitro <strong>of</strong> stallion<br />

spermatozoa: comparison <strong>of</strong> progesterone-induced acrosome reactions in fertile <strong>and</strong><br />

subfertile males. Journal <strong>of</strong> Andrology 16:47-54.<br />

Mitchell L.A., De Iuliis G.N., Aitken R.J. 2011. The TUNEL assay consistently underestimates DNA<br />

damage in human spermatozoa <strong>and</strong> is influenced by DNA compaction <strong>and</strong> cell viability:<br />

development <strong>of</strong> an improved methodology. International Journal <strong>of</strong> Andrology 33:1-12.<br />

Miró J., Lobo V., Quintero-Moreno A;, Medrano A., Peña A., Rigau T. 2005. Sperm motility patterns<br />

<strong>and</strong> metabolism in Catalonian donkey semen. Theriogenology 63:1706-1716.<br />

Morrell J.M., Dalin A.-M., Rodriguez-Martinez H. 2008. Prolongation <strong>of</strong> stallion sperm survival by<br />

centrifugation through coated silica colloids: a priliminary study. Animal <strong>Reproduction</strong> 5:121-<br />

126.<br />

Morrell J.M., Johannisson A., Dalin A.-M., Rodriguez-Martinez H. 2009. Single-layer centrifugation<br />

with Androcoll-E can be scaled up to allow large volumes <strong>of</strong> stallion ejaculate to be processed<br />

easily. Theriogenology 72:879-884.<br />

Morrell J.M., Rodriguez-Martinez H. 2009. Biomimetic techniques for improving sperm quality in<br />

animal breeding: a re<strong>view</strong>. The Open Andrology Journal 1:1-9.<br />

Mortimer D. 2000. Sperm preparation methods. Journal <strong>of</strong> Andrology 21:357-366.<br />

Nascimento J., Raphael C.F., Andrade A.F.C, Alonso M.A., Celenghini E.C.C., Arruda R.P. 2008. Effects<br />

<strong>of</strong> sperm concentration <strong>and</strong> straw volume on motion characteristics <strong>and</strong> plasma, acrosomal,<br />

<strong>and</strong> mitochondrial membranes <strong>of</strong> equine cryopreserved spermatozoa. Journal <strong>of</strong> Equine<br />

Veterinary Science 28:351-358.<br />

Neild D.M., Chaves M.G., Flores M., Miragaya M.H., Gonzalez E., Agüero. 2000. The HOS test <strong>and</strong> its<br />

relationship to fertility in the stallion. Andrologia 32:351-355.<br />

63


CHAPTER 1<br />

Neuman S.L., McDaniel C.D., Frank L., Radu J., Einstein M.E., Hester P.Y. 2002. Utilisation <strong>of</strong> a sperm<br />

quality analyser to evaluate sperm quantity <strong>and</strong> quality <strong>of</strong> turkey breeders. British Poultry<br />

Science 43:457-464.<br />

Ortega-Ferrusola C., Macías García B., Suárez Rama V., Gallardo-Bolaños J.M., González-Fernández L.,<br />

Tapia J.A., Rodriguez-Martinez H., Peña F.J. 2009. Identification <strong>of</strong> sperm subpopulations in<br />

stallion ejaculates: changes after cryopreservation <strong>and</strong> comparison with traditional statistics.<br />

<strong>Reproduction</strong> in Domestic Animals 44:419-423.<br />

Pace M.M., Graham E.F. 1974. Components in egg yolk which protect bovine spermatozoa during<br />

freezing. Journal <strong>of</strong> Animal Science 39:1144-1149.<br />

Pace M.M., Sullivan J.J. 1975. Effect <strong>of</strong> timing <strong>of</strong> insemination, numbers <strong>of</strong> spermatozoa <strong>and</strong> extender<br />

components on the pregnancy rate in mares inseminated with frozen stallion semen. Journal<br />

<strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility Supplement 23:115-121.<br />

Padilla A.W., Foote R.H. 1991. Extender <strong>and</strong> centrifugation effects on the motility patterns <strong>of</strong> slowcooled<br />

stallion spermatozoa. Journal <strong>of</strong> Animal Science 69:3308-3313.<br />

Pagl R., Aurich J., Müller-Schlösser F., Kank<strong>of</strong>er M., Aurich C. 2006. Comparison <strong>of</strong> an extender<br />

containing defined milk protein fractions with a skim milk-based extender for storage <strong>of</strong><br />

equine semen at 5°C. Theriogenology 66:1115-1122.<br />

Palmer E. 1984. Factors affecting stallion semen survival <strong>and</strong> fertility. Proceedings <strong>of</strong> the 10 th<br />

International Congress on Animal <strong>Reproduction</strong> <strong>and</strong> Artificial Insemination – Urbana,<br />

Champaign – USA p377.<br />

Papa F.O., Melo C.M., Fioratti E.G., Dell’Aque Jr. J.A., Zahn F.S., Alvarenga M.A. 2008. Freezing <strong>of</strong><br />

stallion epididymal sperm. Animal <strong>Reproduction</strong> Science 107:293-301.<br />

Papa F.O., Felício G.B., Melo C.M., Alvarenga M.A., De Vita B., Avanzi B.R., Dell’Aqua Jr. J.A. 2010.<br />

Effect <strong>of</strong> substituting soybean lecithin for egg yolk in an extender used for the<br />

cryopreservation <strong>of</strong> stallion semen. Animal <strong>Reproduction</strong> Science 121:171-172.<br />

Pert<strong>of</strong>t H. 2000. Fractionation <strong>of</strong> cells <strong>and</strong> subcellular particles with Percoll. Journal <strong>of</strong> Biochemical<br />

<strong>and</strong> Biophysical Methods 44:1-30.<br />

Pretlow T.G., Pretlow T.P. 1989. Cell separation by gradient centrifugation methods. Methods in<br />

Enzymology 171:462-483.<br />

Picket B.W., Burwash L.D., Voss J.L., Back D.G. 1975. Effect <strong>of</strong> seminal extenders on equine fertility.<br />

Journal <strong>of</strong> Animal Science 40:1136-1143.<br />

Pickett B.W., Berndtson W.E., Sullivan S.S. 1978. Influence <strong>of</strong> seminal additives <strong>and</strong> packaging<br />

systems on fertility <strong>of</strong> frozen bovine semen. Journal <strong>of</strong> Animal Science 47(Supplement II):12-<br />

47.<br />

Pickett B.W., Amann R.P. 1987. Extension <strong>and</strong> storage <strong>of</strong> stallion spermatozoa: a re<strong>view</strong>. Journal <strong>of</strong><br />

Equine Veterinary Sience 7:289-302.<br />

64


CHAPTER 1<br />

Pickett B.W. 1993. Collection <strong>and</strong> evaluation <strong>of</strong> stallion semen for artificial insemination. In: Equine<br />

<strong>Reproduction</strong>, McKinnon AO, Voss JL (Ed.), Williams & Wilkins, pp.705-14.<br />

Pillet E., Betellier F., Duchamps G., Furstoss V., Le Vern Y., Kerkboeuf D., Desherces S., Schmitt E.,<br />

Magistrini M. 2008a. High fertility rates with stallion sperm cryopreserved in INRA96® based<br />

extender are not predicted by in vitro parameters. Animal <strong>Reproduction</strong> Science 107:339-340.<br />

Pillet E., Batellier F., Duchamp G., Furstoss V., Le Vern Y, Kerboeuf D., Vidament M., Magistrini M.<br />

2008b. Freezing stallion in INRA96®-based extender improves fertility rates in comparison<br />

with INRA82. Dairy Science <strong>and</strong> Technology 88:257-265.<br />

Pillet E., Duchamps G., Batellier F., Beaumal V., Anton M., Desherces S., Schmitt E., Magistrini M.<br />

2010. Egg yolk plasma can replace egg yolk in stallion freezing extenders. Theriogenology in<br />

press.<br />

Pinheiro A.C.S., Pamplona J.F., Papa F.O., Alvarenga M.A. 2008. Comparison between three extenders<br />

for cooling <strong>of</strong> stallion semen before freezing. Animal <strong>Reproduction</strong> Science 107:340-341.<br />

Polge C., Smith A.U., Parkes A.S. 1949. Revival <strong>of</strong> spermatozoa after vitrification <strong>and</strong> dehydration at<br />

low temperatures. Nature 164:666.<br />

Ponthier J., Franck T., Detilleux J., Mottart E., Serteyn D., Deleuze S. 2010. Association between<br />

myeloperoxidase concentration in equine frozen semen <strong>and</strong> post-thawing parameters.<br />

<strong>Reproduction</strong> in Domestic Animals 45:811-816.<br />

Price S., Aurich J., Davies-Morel M., Aurich C. 2008. Effects <strong>of</strong> oxygen exposure <strong>and</strong> gentamycin on<br />

stallion semen stored at 5 <strong>and</strong> 15°C. <strong>Reproduction</strong> in domestic Animals 43:261-266.<br />

Province C.A., Squires E.L., Pickett B.W., Amann R.P. 1985. Cooling rates, storage temperatures <strong>and</strong><br />

fertility <strong>of</strong> extended equine spermatozoa. Theriogenology 23:925-934.<br />

Pucci B., Papa F.O., Sanches F.M., Nobrega J.N., Crespilho A.M., Pasquini D.F., Campos J.R., Melo C.M.,<br />

Dell’Aqua C.P.F., Alvarenga M.A., Dell’Aqua Jr. J.A. 2008. Effect <strong>of</strong> sperm <strong>and</strong> cryoprotectant<br />

concentration on equine semen freezability. Animal <strong>Reproduction</strong> Science 107:342-343.<br />

Purdy P.H. 2008. Ubiquitination <strong>and</strong> its influence in boar sperm physiology <strong>and</strong> cryopreservation.<br />

Theriogenology 70:818-826.<br />

Quintero-Moreno A., Miró J, Teresa Rigau A., Rodríguez-Gil J.E. 2003. Identification <strong>of</strong> sperm<br />

subpopulations with specific motility characteristics in stallion ejaculates. Theriogenology<br />

59:1973-1990.<br />

Rathi R., Colebr<strong>and</strong>er B., Bevers M.M., Gadella B.M. 2001. Evaluation <strong>of</strong> in vitro capacitation <strong>of</strong><br />

stallion spermatozoa. Biology <strong>of</strong> <strong>Reproduction</strong> 65:462-470.<br />

Revell S.G., Pettit M.T., Ford T.C. 1997. Use <strong>of</strong> centrifugation over iodixanol to reduce damage when<br />

processing stallion sperm for freezing. Proceedings <strong>of</strong> the joint meeting society for the study<br />

<strong>of</strong> fertility abstract series n°92 p38.<br />

65


CHAPTER 1<br />

Ricker J.V., Linfor J.J., Delfino W.J., Kysar P., Scholtz E.L., Tablin F., Crowe J.H., Ball B.A., Meyers S.A.<br />

2006. Equine sperm membrane phase behavior: the effects <strong>of</strong> lipid-based cryoprotectants.<br />

Biology <strong>of</strong> <strong>Reproduction</strong> 74:359-365.<br />

Rigby S., Hill J., Miller C., Thompson J., Varner D., Blanchard T. 1999. Administration <strong>of</strong> oxitocin<br />

immediately after insemination does not improve pregnancy rates in mares bred by fertile or<br />

subfertile stallions. Theriogenology 51:1143-1150.<br />

Rijsselaere T., Van Soom A., Maes D., de Kruif A. 2002. Use <strong>of</strong> the Sperm Quality Analyzer (SQA II-C)<br />

for the assessment <strong>of</strong> dog sperm quality. <strong>Reproduction</strong> in Domestic Animals 37:158-163.<br />

Rijsselaere T., Van Soom A., Maes D., de Kruif A. 2003. Effect <strong>of</strong> technical settings on canine semen<br />

motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 60:1553-<br />

1568.<br />

Samper J.C., Morris C.A. 1998. Current methods for stallion semen cryopreservation: a survey.<br />

Theriogenology 49:895-903.<br />

Scherzer J., Fayrer-Hosken R.A., Aceves M., Hurley D.J., Ray L.E., Jones L., Heusner G.L. 2009. Freezing<br />

equine semen: the effect <strong>of</strong> combinations <strong>of</strong> semen extenders <strong>and</strong> glycerol on post-thaw<br />

motility. Australian Veterinary Journal 87:275-279.<br />

Schlegel P.N., Paduch D.A. 2005. Yet another test <strong>of</strong> sperm chromatin structure. Fertility <strong>and</strong> Sterility<br />

84:854-859.<br />

Sieme H., Echte A., Klug E. 2002. Effect <strong>of</strong> frequency <strong>and</strong> interval <strong>of</strong> semen collection on seminal<br />

plasma parameters <strong>and</strong> fertility <strong>of</strong> stallions. Theriogenology 58:313-316.<br />

Sieme H., Bonk A., Hamann H., Klug E., Katila T. 2004. Effects <strong>of</strong> different artificial insemination<br />

techniques <strong>and</strong> sperm doses on fertility <strong>of</strong> normal mares <strong>and</strong> mares with abnormal<br />

reproductive history. Theriogenology 62:915-928.<br />

Smith A.U., Polge C. 1950. Survival <strong>of</strong> spermatozoa at low temperatures Nature 166:668-669.<br />

Somfai T., Bodó S., Nagy S., Papp A.B., Iváncsics J., Baranyai B., Gócza E., Kovács A. 2002. Effect <strong>of</strong><br />

swim up <strong>and</strong> Percoll treatment on viability <strong>and</strong> acrosome integrity <strong>of</strong> frozen-thawed bull<br />

spermatozoa. <strong>Reproduction</strong> in Domestic Animals 37:285-290.<br />

Spizziri B.E., Fox M.H., Bruemmer J.E., Squires E.L., Graham J.K. 2010. Cholesterol-loadedcyclodextrins<br />

<strong>and</strong> the fertility potential <strong>of</strong> stallions spermatozoa. Animal <strong>Reproduction</strong><br />

Science 118:255-264.<br />

Squires E.L., Crockett E.C., Graham J.K., Bruemmer J.E. 1999. Effect <strong>of</strong> centrifugation <strong>and</strong> cooling prior<br />

to freezing on post-thaw motility <strong>of</strong> equine spermatozoa. Proceedings <strong>of</strong> the 45 th annual<br />

convention <strong>of</strong> the American Association <strong>of</strong> Equine Practitioners – Albuquerque 45:219-220.<br />

Squires E.L., Keith S.L., Graham J.K. 2004. Evaluation <strong>of</strong> alternative cryoprotectants for preserving<br />

stallion spermatozoa. Theriogenology 62:1056-1065.<br />

66


CHAPTER 1<br />

Taberner E., Morató R., Mogas T., Miró J. 2010. Ability <strong>of</strong> Catalonian donkey sperm to penetrate zona<br />

pellucida-free bovine oocytes matured in vitro. Animal <strong>Reproduction</strong> Science 118:354-361.<br />

Tardif A.L., Farrell P.B., Trouern-Trend V., Simkin M.E., Foote R.H. 1998. Use <strong>of</strong> Hoechst 33342 stain<br />

to evaluate live fresh <strong>and</strong> frozen bull sperm by computer-assisted analysis. Journal <strong>of</strong><br />

<strong>and</strong>rology 19:201-206.<br />

Tayame K., Fujita H., Takahashi H., Nagasawa A., Yano N., Yuzawa K., Ogata A., 2006. Measuring<br />

mouse sperm parameters using a particle counter <strong>and</strong> sperm quality analyzer: a simple an<br />

inexpensive method. Reproductive Toxicology 22:92-101.<br />

Terraciano P.B., Bustamante-Folho I.C., do Vale Miquelito L., Arlas T.R., Castro F., Mattos R.C., Passos<br />

E.P., Oberst E.R., Lima E.O.C. 2008. Comparison <strong>of</strong> freezing rates in cryopreservation <strong>of</strong><br />

stallion semen in commercial extenders. Animal <strong>Reproduction</strong> Science 107:350-351.<br />

Thacker D.L., Almquist J.O. 1951. Milk <strong>and</strong> milk-products as diluters for bovine semen. Journal <strong>of</strong><br />

Animal Science 10:1082.<br />

Thacker D.L., Almquist J.O. 1953. Diluters for bovine semen. I. Fertility <strong>and</strong> motility <strong>of</strong> bovine<br />

spermatozoa in boiled milk. Journal <strong>of</strong> Dairy Science 36:173-180.<br />

Thys M., V<strong>and</strong>aele L., Morrell J.M., Mestach J., Van Soom A., Hoogewijs M., Rodriguez-Martinez H.<br />

2009. In vitro fertilizing capacity <strong>of</strong> frozen-thawed bull spermatozoa selected by single-layer<br />

(glycidoxypropyltrimethoxysilane) silane-coated silica colloidal centrifugation. <strong>Reproduction</strong><br />

in Domestic Animals 44:390-394.<br />

Tischner M. 1979. Evaluation <strong>of</strong> deep-frozen semen in stallions. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> fertility<br />

Supplement 27:53-59.<br />

Torres-Boggino F., Sato K., Oka A., Kanno Y., Hochi S., Oguri N., Braun J. 1995. Relationship among<br />

seminal characteristics, fertility <strong>and</strong> suitability for semen preservation in draft stallion.<br />

Journal <strong>of</strong> Veterinary Medical Science 57:225-229.<br />

Trimeche A., Anton M., Renard P., G<strong>and</strong>emer G., Tainturier D. 1997. Quail egg yolk : a novel<br />

cryoprotectant for the freeze preservation <strong>of</strong> Poitou jackass sperm. Cryobiology 34:385-393.<br />

Troedsson M.H., Lee C.S., Franklin R.D., Crabo B.G. 2000. The role <strong>of</strong> seminal plasma in post-breeding<br />

uterine inflammation. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility Supplement 56:341-349.<br />

Troedsson M.H., Desvousges A., Alghamdi A.S., Dahms B, Dow C.A., Hayna J., Valesco R., Collahan P.T.,<br />

Macpherson M.L., Pozor M., Buhi W.C. 2005. Components in seminal plasma regulating<br />

sperm transport <strong>and</strong> elimination. Animal <strong>Reproduction</strong> Science 89:171-186.<br />

Van der Horst G., Maree L. 2009.SpermBlue®: a new universal stain for human <strong>and</strong> animal sperm<br />

which is also amendable to automated sperm morphology analysis. Biotechnic <strong>and</strong><br />

Histochemistry 84:299-308.<br />

Van Duijn C., Hendriske J. 1968. Rational analysis <strong>of</strong> seminal characteristics <strong>of</strong> stallions in relation to<br />

fertility. Report n°B97. Research Institute for Animal Husb<strong>and</strong>ry, Zeist, The Netherl<strong>and</strong>s.<br />

67


CHAPTER 1<br />

Varner D.D., Blanchard T.L., Love C.L., Garcia M.C., Kenney R.M. 1987. Effects <strong>of</strong> semen fractionation<br />

<strong>and</strong> dilution ratio on equine spermatozoa motility parameters. Theriogenology 28:709-723.<br />

Varner D.D., Blanchard T.L., Love C.L., Garcia M.C., Kenney R.M. 1988. Effects <strong>of</strong> cooling rate <strong>and</strong><br />

storage temperature on equine spermatozoa motility parameters. Theriogenology 29:1043-<br />

1054.<br />

Varner D.D., Blanchard T.L., Meyers P.J., Meyers S.A. 1989. Fertilizing capacity <strong>of</strong> equine spermatozoa<br />

stored for 24 hours at 5°C or 20°C. Theriogenology 32:515-525.<br />

Varner D.D. 2008. Developments in stallion semen evaluation. Theriogenology 70:448-462.<br />

Verstegen J., Iguer-ouada M., Onclin K. 2002. Computer assisted semen analyzers in <strong>and</strong>rology<br />

research <strong>and</strong> veterinary practice. Theriogenology 57:149-179.<br />

Vidament M., Dupere A.M., Julienne P., Evain A., Noue P., Palmer E. 1997. Equine frozen semen:<br />

freezability <strong>and</strong> fertility field results. Theriogenology 48:907-917.<br />

Vidament M., Ecot P., Noue P., Bourgeois C., Magistrini M., Palmer E. 2000. Centrifugation <strong>and</strong><br />

addition <strong>of</strong> glycerol at 22°C instead <strong>of</strong> 4°C improve post-thaw motility <strong>and</strong> fertility <strong>of</strong> stallion<br />

spermatozoa. Theriogenology 54:907-919.<br />

Vidament M., Yvon J.M., Couty I., Arnaud G., Nguekam-Feugang J., Noue P., Cottron S., Le Tellier A.,<br />

Noel F., Palmer E., Magistrini M. 2001. Advances in cryopreservation <strong>of</strong> stallion semen in<br />

modified INRA82. Animal <strong>Reproduction</strong> Science 68:201-218.<br />

Vidament M., Daire C., Yvon J.M., Doligez P., Bruneau B., Magistrini M., Ecot P. 2002. Motility <strong>and</strong><br />

fertility <strong>of</strong> stallion semen frozen with glycerol <strong>and</strong>/or dimethyl formamide. Theriogenology<br />

58:249-251.<br />

Vidament M. 2005. French field results (1985-2005) on factors affecting fertility <strong>of</strong> frozen stallion<br />

semen. Animal <strong>Reproduction</strong> Science 89:115-136.<br />

Vidament M., Vincent P., Yvon J.M., Bruneau B., Martin F.X. 2005. Glycerol in semen extender is a<br />

limiting factor in fertility in asine <strong>and</strong> equine species. Animal <strong>Reproduction</strong> Science 89:302-<br />

305.<br />

Vidament M., Vincent P., Martin F.X., Magistrini M., Blesbois E. 2009. Differences in ability <strong>of</strong> jennies<br />

<strong>and</strong> mares to conceive with cooled <strong>and</strong> frozen semen containing glycerol or not. Animal<br />

<strong>Reproduction</strong> Science 112:22-35.<br />

Vizcarra J.A., Ford J.J. 2006. Validation <strong>of</strong> the sperm mobility assay in boars <strong>and</strong> stallions.<br />

Theriogenology 66:1091-1097.<br />

Volkmann D.H., van Zyl D. 1987. Fertility <strong>of</strong> stallion semen frozen in 0.5 mL straws. Journal <strong>of</strong><br />

<strong>Reproduction</strong> <strong>and</strong> Fertility Supplement 35:143-148.<br />

Vyt P., Maes D., Rijsselaere T., Dejonckheere E., Castryck F., Van Soom A. 2004. Motility assessment<br />

<strong>of</strong> porcine spermatozoa: a comparison <strong>of</strong> methods. <strong>Reproduction</strong> in Domestic Animals<br />

39:447-453.<br />

68


CHAPTER 1<br />

Waite J.A., Love C.C., Brinsko S.P., Teague S.R., Salazar Jr. J.L., Mancill S.S., Varner D.D. 2008. Factors<br />

impacting equine sperm recovery rate <strong>and</strong> quality following cushioned centrifugation.<br />

Theriogenology 70:704-714.<br />

Waterhouse K.E., Haugan T., Kommisrud E., Tverdal A., Flatberg G., Farstad W., Evenson D.P., De<br />

Angelis P.M. 2006. Sperm DNA damage is related to field fertility <strong>of</strong> semen from young<br />

Norwegian Red bulls. <strong>Reproduction</strong>, Fertility <strong>and</strong> Development 18:781-788.<br />

Watson P.F. 1995. Recent developments <strong>and</strong> concepts in the cryopreservation <strong>of</strong> spermatozoa <strong>and</strong><br />

the assessment <strong>of</strong> their post-thawing function. <strong>Reproduction</strong>, Fertility <strong>and</strong> Development<br />

40:164-176.<br />

Webb G.W., Dean M.M. 2009. Effect <strong>of</strong> centrifugation technique on post-storage characteristics <strong>of</strong><br />

stallion spermatozoa. Journal <strong>of</strong> Equine Veterinary Science 29:675-680.<br />

Weiss S., Janett F., Burger D., Hässig M., Thun R. 2004. The influence <strong>of</strong> centrifugation on quality <strong>and</strong><br />

freezability <strong>of</strong> stallion semen. Schweizer Archiv für Tierheilkunde 146:285-93.<br />

Wilhelm K.M., Graham J.K., Squires E.L. 1996a. Effects <strong>of</strong> phosphatidylserine <strong>and</strong> cholesterol<br />

liposomes on the viability, motility, <strong>and</strong> acrosomal integrity <strong>of</strong> stallion spermatozoa prior to<br />

<strong>and</strong> after cryopreservation. Cryobiology 33-320-329.<br />

Wilhelm K.M., Graham J.K., Squires E.L. 1996b. Comparison <strong>of</strong> the fertility <strong>of</strong> cryopreserved stallion<br />

spermatozoa with sperm motion analyses, flow cytometric evaluation, <strong>and</strong> zona-free<br />

hamster oocyte penetration. Theriogenology 46:559-578.<br />

Williams W.W. 1950. Cytology <strong>of</strong> the human spermatozoon. Fertility <strong>and</strong> Sterility 1:199-215.<br />

Woods J., Rigby S., Brinsko S., Stephens R., Varner D., Blanchard T. 2000. Effect <strong>of</strong> intrauterine<br />

treatment with prostagl<strong>and</strong>ine E2 prior to insemination <strong>of</strong> mares in the uterine horn or body.<br />

Theriogenology 53:1827-1836.<br />

World <strong>Health</strong> Organization (WHO). 2010. laboratory manual for the examination <strong>and</strong> preparation <strong>of</strong><br />

human semen. 5th ed. Geneva, Switzerl<strong>and</strong>, WHO Press.<br />

69


Scientific Aims<br />

CHAPTER 2<br />

71


CHAPTER 2<br />

As evidenced in the general introduction, little or no st<strong>and</strong>ardization is present in equine<br />

(animal) <strong>and</strong>rology, which is in sharp contrast with human <strong>and</strong>rology. Even the use <strong>of</strong> computer<br />

assisted sperm analysis (CASA), an excellent tool for objectively reporting on semen motility, can so<br />

far not achieve uniformity in equine semen analysis.<br />

Therefore, the general aim <strong>of</strong> the present thesis was to evaluate to which extent motility is<br />

influenced during analysis with an objective analysis system like CASA or to find an alternative<br />

objective analytical method that is not influenced by the operator. Additionally, the muddled<br />

perspective on sperm losses following centrifugation was analyzed combined with the impact <strong>of</strong><br />

different centrifugation protocols on sperm quality. A recently developed technique to select large<br />

volumes <strong>of</strong> semen (Single layer Centrifugation using Androcoll-E) was evaluated for its possibilities to<br />

improve the post-thawed sperm quality.<br />

Consequently, the specific aims <strong>of</strong> this thesis were:<br />

• To determine the effect <strong>of</strong> technical settings <strong>and</strong> utensils on the reported motility<br />

parameters when using CASA systems for equine semen analysis (CHAPTER 3.1 – 3.2).<br />

• To validate the “Sperm Quality Analyzer – V equine” for analyzing equine semen<br />

(CHAPTER 3.3 – 3.4).<br />

• To evaluate the effect <strong>of</strong> centrifugation procedures (classical centrifugation <strong>and</strong><br />

single layer centrifugation) on the quality <strong>of</strong> processed equine semen (CHAPTER 4.1 –<br />

4.2).<br />

73


CHAPTER 3<br />

Analysis <strong>of</strong> Equine Semen – Is automation (the) key to<br />

st<strong>and</strong>ardization?<br />

75


3.1<br />

Influence <strong>of</strong> technical settings on CASA motility<br />

parameters <strong>of</strong> frozen-thawed stallion semen<br />

Adapted from: Hoogewijs M., Govaere J., Rijsselaere T., De Schauwer C.,<br />

Vanhaesebrouck E., de Kruif A., De Vliegher S. 2009 Proceedings <strong>of</strong><br />

the 55 th annual convention <strong>of</strong> the American Association <strong>of</strong> Equine<br />

Practitioners – Las Vegas - USA 55:336-337.<br />

77


3.1.1. Abstract<br />

CHAPTER 3.1<br />

The repeatability <strong>of</strong> the analysis <strong>of</strong> frozen-thawed equine semen using a CASA system is high.<br />

However, the settings used to analyze the semen samples influence the results to a large extent.<br />

Total <strong>and</strong> progressive motility differed on average 7% between two different settings, although<br />

results were highly correlated. We concluded that settings used in different scientific studies <strong>and</strong> for<br />

semen reports should be described clearly, facilitating comparison <strong>of</strong> results.<br />

3.1.2. Introduction<br />

The widespread use <strong>of</strong> frozen-thawed semen in the equine breeding industry creates<br />

opportunities for breeders as well as stallion owners. Semen can be shipped all over the world so<br />

that any given stallion may become available for any given mare. Inseminations with frozen-thawed<br />

semen, however, are less successful compared to inseminations with cooled <strong>and</strong> especially fresh<br />

semen. In order to optimize pregnancy outcome, frozen-thawed semen should fulfill a few criteria<br />

such as a minimal total number <strong>of</strong> spermatozoa per dose <strong>and</strong> minimal progressive motility. E.g., the<br />

insemination dose for conventional artificial insemination (AI) using frozen-thawed semen should at<br />

least contain 240 × 10 6 progressively motile spermatozoa (PMS) (Loomis, 2001). The PM should at<br />

least be 30% (Loomis, 2001) whereas the World Breeding Federation for Sport Horses advocates a<br />

PM <strong>of</strong> even 35% (WBFSH, 2010).<br />

Computer assisted sperm analysis (CASA) is accepted as an accurate tool for motility analysis.<br />

A number <strong>of</strong> motility settings for CASA have been described. In this paper we investigated the<br />

repeatability <strong>of</strong> CASA. Furthermore the influence <strong>of</strong> two different CASA motility settings on an<br />

number <strong>of</strong> sperm parameters when analyzing frozen-thawed semen was investigated.<br />

3.1.3. Materials <strong>and</strong> Methods<br />

The semen used in this experiment was frozen in 0.5 mL straws at two European approved AI<br />

centers in Belgium. Individual straws <strong>of</strong> different Warmblood <strong>and</strong> Arabian stallions (n=63) were<br />

thawed in a water bath <strong>of</strong> 37 - 38°C for 30s, dried <strong>and</strong> emptied in a small cup. An aliquot <strong>of</strong> 200 µL<br />

was diluted with INRA96 ® (IMV-technologies, L’Aigle, France), a good quality semen extender free <strong>of</strong><br />

debris when visualized microscopically to a final concentration <strong>of</strong> 35 - 40× 10 6 /mL. The diluted<br />

samples were incubated at 37-38°C for 10 minutes prior to analysis. Each sample was analyzed with<br />

79


CHAPTER 3.1<br />

a CEROS (Hamilton-Thorne Inc., Beverly, USA) CASA system using two different settings (CASA1 <strong>and</strong><br />

CASA2, respectively; see further). Settings for CASA analysis were obtained from established semen<br />

processing laboratories as routinely applied to fresh, cooled <strong>and</strong> frozen-thawed semen samples.<br />

80<br />

The major settings used for CASA1 were straightness (STR) threshold for progressive motility:<br />

75%; average path velocity (VAP) threshold for progressive motility 50 µm/s; VAP threshold for static<br />

cells: 20 µm/s (Loomis <strong>and</strong> Graham, 2008). These settings were first obtained after a personal<br />

communication (Loomis P., personal communication) <strong>and</strong> settings for cell detection were adapted<br />

for optimal sperm recognition. The major settings used for CASA2 were STR threshold for<br />

progressive motility: 50%; VAP threshold for progressive motility 30 µm/s; VAP threshold for static<br />

cells: 15 µm/s, settings for cell detection are listed as well (Waite et al., 2008).<br />

Six µL <strong>of</strong> diluted semen was loaded into a 20 µm Leja counting chamber (Leja, Nieuw-Vennep,<br />

The Netherl<strong>and</strong>s), placed on a minitherm stage warmer (Hamilton-Thorne Inc., Beverly, USA) during<br />

the analysis, to maintain the sample at 37.5°C. Five different fields were analyzed 4 times to obtain a<br />

total <strong>of</strong> 20 fields in order to obtain a minimum <strong>of</strong> 1500 cells analyzed. For both CASA settings this<br />

was done twice per sample (T1 <strong>and</strong> T2).<br />

distributed).<br />

The parameters analyzed were percentage total motility (TM), PM <strong>and</strong> PMS (normally<br />

To assess repeatability each sample was analyzed twice within one minute. First, it was<br />

tested whether the parameters changed over time (T1 vs. T2), using a paired-samples t-test. Second,<br />

scatter plots were produced, where the value obtained at T1 was plotted against the value obtained<br />

at T2. The line <strong>of</strong> perfect agreement (hatched line at 45° <strong>and</strong> intercept zero) was integrated in each<br />

plot as comparison to the regression line to fit the data (Arunvipas et al., 2003). Third, Bl<strong>and</strong> <strong>and</strong><br />

Altman plots were produced. This method plots the difference <strong>of</strong> the paired measurements (y-axis)<br />

against their mean (x-axis) (Bl<strong>and</strong> <strong>and</strong> Altman, 1986). Finally, for each parameter, the coefficient <strong>of</strong><br />

variation (CV) was calculated per sample <strong>and</strong> reported as mean CV over all samples.<br />

To assess agreement, the values obtained at T1 were used for comparison, <strong>and</strong> observations<br />

obtained with CASA1 were compared with these obtained with CASA2. Statistical analysis was done<br />

as described for repeatability using a paired samples t-test, scatter plots <strong>and</strong> Bl<strong>and</strong> <strong>and</strong> Altman plots.<br />

Statistical analysis was done using SPSS (version 17.0, SPSS Inc., Chicago, Illinois, USA).


3.1.4. Results<br />

CHAPTER 3.1<br />

Analyzing the semen samples using CASA1 <strong>and</strong> CASA2 was highly repeatable as the averages<br />

at T1 were not significantly different from T2 (Table 1). The scatter plots <strong>and</strong> Bl<strong>and</strong>-Altman plots<br />

show a very good repeatability (Fig. 1), <strong>and</strong> the mean CVs were


CHAPTER 3.1<br />

Progressive Motility CASA1 T2 (%)<br />

Fig. 1. Scatter plots <strong>and</strong> corresponding Bl<strong>and</strong>-Altman plots for analysis <strong>of</strong> repeatability <strong>of</strong><br />

progressive motility obtained with CASA using settings 1 (CASA1, see text details) <strong>and</strong><br />

settings 2 (CASA2, see text for details), respectively at time 1 (T1) vs. time 2 (T2) for frozenthawed<br />

equine semen ( line <strong>of</strong> perfect agreement, regression line fit the actual<br />

data).<br />

82<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60<br />

Progressive Motility CASA1 T1 (%)<br />

Progressive Motility CASA2 T2 (%)<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60<br />

Progressive Motility CASA2 T1 (%)


Totoal Motility CASA2 (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

CHAPTER 3.1<br />

Fig. 2. Scatter plots <strong>and</strong> corresponding Bl<strong>and</strong>-Altman plots for agreement <strong>of</strong> total <strong>and</strong> progressive<br />

motility obtained with CASA using settings 1 (CASA1, see text for details) vs. settings 2<br />

(CASA2, see text for details) for frozen-thawed equine semen ( line <strong>of</strong> perfect<br />

agreement, regression line fit the actual data).<br />

3.1.5. Discussion<br />

0 20 40 60 80 100<br />

Total Motility CASA1 (%)<br />

The importance <strong>of</strong> indicating which CASA settings are used when assessing the quality <strong>of</strong><br />

frozen-thawed semen is clearly demonstrated. The settings used here resulted in differences with a<br />

potential important clinical <strong>and</strong> financial impact. Still, even more extreme settings have been<br />

reported in literature (Ortega-Ferrusola et al., 2009; Vidament et al., 2009). However, results<br />

obtained with both settings showed a very good agreement. This might enable laboratories to relate<br />

their own findings with other reports. Depending on the settings used, an ejaculate might be<br />

discarded or accepted for use in an AI program. So if the same st<strong>and</strong>ards are not uniformly applied,<br />

Progressive Motility CASA2 (%)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80<br />

Progressive Motility CASA1 (%)<br />

83


CHAPTER 3.1<br />

than at least they should be shared. After all, measuring by two st<strong>and</strong>ards might result in conflicting<br />

situations.<br />

84<br />

In conclusion, different technical settings results in different CASA motility outcomes,<br />

although results correlate well.<br />

References<br />

Arunvipas P., VanLeeuwen J.A., Dohoo I.R., Keefe G.P. 2003.Evaluation <strong>of</strong> the reliability <strong>and</strong><br />

repeatability <strong>of</strong> automated milk urea nitrogen testing. Canadian Journal <strong>of</strong> Veterinary<br />

Research 67:60-63.<br />

Bl<strong>and</strong> J.M., Altman D.G. 1986. Statistical methods for assessing agreement between two methods <strong>of</strong><br />

clinical measurement. Lancet 1:307-310.<br />

Loomis P.R. 2001. The equine frozen semen industry. Animal <strong>Reproduction</strong> Science 68:191-200.<br />

Loomis P.R., Graham J.K. 2008. Commercial semen freezing: individual male variation in cryosurvival<br />

<strong>and</strong> the response <strong>of</strong> stallion sperm to customized freezing protocols. Animal <strong>Reproduction</strong><br />

Science 105:119-128.<br />

Ortega-Ferrusola C., Macías García B., Suárez Rama V., Gallardo-Bolaños J.M., González-Fernández L.,<br />

Tapia J.A., Rodriguez-Martinez H., Peña F.J. 2009. Identification <strong>of</strong> sperm subpopulations in<br />

stallion ejaculates: changes after cryopreservation <strong>and</strong> comparison with traditional statistics.<br />

<strong>Reproduction</strong> in Domestic Animals 44:419-423.<br />

Vidament M., Vincent P., Martin F.X., Magistrini M., Blesbois E. 2009. Differences in ability <strong>of</strong> jennies<br />

<strong>and</strong> mares to conceive with cooled <strong>and</strong> frozen semen containing glycerol or not. Animal<br />

<strong>Reproduction</strong> Science 112:22-35.<br />

Waite J.A., Love C.C., Brinsko S.P., Teague S.R., Salazar J.L. Jr., Mancil S.S., Varner D.D. 2008. Factors<br />

impacting equine sperm recovery rate <strong>and</strong> quality following cushioned centrifugation.<br />

Theriogenology 70:704-714.<br />

WBFSH. 2010 http://www.wbfsh.com/files/Semen%20st<strong>and</strong>ards.pdf.


3.2<br />

Counting chamber type influences equine semen CASA<br />

motility outcomes<br />

Hoogewijs M., De Vliegher S., Govaere J., De Schauwer C., de Kruif A.,<br />

Van Soom A. submitted<br />

85


3.2.1. Abstract<br />

CHAPTER 3.2<br />

Sperm motility is one <strong>of</strong> the key features <strong>of</strong> semen analysis. Nowadays, motility analysis is<br />

frequently performed using computer assisted sperm analysis (CASA). We hypothesized that type <strong>of</strong><br />

counting chamber used may influence the outcomes. Therefore, the effect <strong>of</strong> chamber type on<br />

concentration <strong>and</strong> motility <strong>of</strong> equine semen assessed with CASA was studied. Frequently used<br />

disposable Leja chambers <strong>of</strong> different depths were compared with disposable <strong>and</strong> reusable ISAS<br />

chambers, a Makler chamber, <strong>and</strong> a motility slide prepared according to the guidelines <strong>of</strong> the World<br />

<strong>Health</strong> Organization (WHO). Both concentration as well as motility parameters were significantly<br />

influenced by the chamber type used. The correlation coefficients for concentration between the<br />

different evaluated chambers <strong>and</strong> the NucleoCounter as gold st<strong>and</strong>ard were low for all chambers,<br />

except for the 12 µm deep Leja chamber. Filling a chamber using capillary forces resulted in a lower<br />

observed concentration <strong>and</strong> in reduced motility parameters. All evaluated chambers had significant<br />

lower progressive motility when compared to the WHO prepared slide, except the Makler chamber<br />

which resulted in a slightly higher but statistically significant progressive motility. In conclusion,<br />

CASA provides only a rough estimate <strong>of</strong> the sperm concentration <strong>and</strong> is prone to overestimation<br />

when drop-filled slides using a coverslip are used. Motility outcomes determined by CASA are highly<br />

depending on the counting chamber type used, so complete descriptions <strong>of</strong> the utensils need to be<br />

mentioned in a semen report <strong>and</strong> in materials <strong>and</strong> methods sections <strong>of</strong> scientific papers.<br />

3.2.2. Introduction<br />

Sperm motility is still considered as one <strong>of</strong> the most important sperm features when<br />

analyzing a semen sample. Subjective microscopic measurement <strong>of</strong> motility is known to be<br />

inaccurate, imprecise <strong>and</strong> susceptible for subjectivity. An objective evaluation <strong>of</strong> motility can be<br />

performed using computer assisted sperm analyzers (CASA) since these systems provide precise <strong>and</strong><br />

accurate information on different sperm motion characteristics (Holt & Palomo, 1996). However, the<br />

use <strong>of</strong> a CASA system to report on motility does not necessarily allow for comparison <strong>of</strong> the obtained<br />

results since several factors influence the outcome <strong>of</strong> CASA analysis <strong>and</strong> aggravate the complex<br />

comparison between studies. As such, the influence <strong>of</strong> technical settings, frame rate <strong>and</strong> number <strong>of</strong><br />

analyzed frames has been previously evaluated (Contri et al., 2010; Rijsselaere et al., 2003) as well as<br />

the influence <strong>of</strong> motility settings (Hoogewijs et al., 2009). The sperm concentration <strong>and</strong> the used<br />

semen diluents can affect sperm motility outcomes as well (Contri et al., 2010; Rijsselaere et al.,<br />

2003).<br />

87


CHAPTER 3.2<br />

88<br />

In addition, it has been demonstrated that chamber depth influences human sperm motility<br />

parameters (Le Lannou et al., 1992). Also in veterinary medicine, the effect <strong>of</strong> the chamber type has<br />

been analyzed for a few chambers (Contri et al., 2010; Iguer-ouada <strong>and</strong> Verstegen, 2001; Lenz et al.,<br />

2011). The Makler chamber was associated with higher motility outcomes compared to the Leja <strong>and</strong><br />

Cell-vu chambers (Contri et al., 2010; Iguer-ouada <strong>and</strong> Verstegen, 2001; Lenz et al., 2011), but was<br />

comparable to the WHO slide (Lenz et al., 2011). In literature, the depth <strong>of</strong> the sperm suspension for<br />

motility analysis is variable <strong>and</strong> not seldom left unmentioned which is in sharp contrast to human<br />

<strong>and</strong>rology where the WHO laboratory manual for the examination <strong>and</strong> processing <strong>of</strong> human semen<br />

(WHO, 2010) clearly defines how a slide for sperm motility analysis should be prepared. This is<br />

particularly important since it is known that a chamber depth <strong>of</strong> less than 20 µm constrains the<br />

rotational movement <strong>of</strong> human spermatozoa (Kraemer et al., 1998; Le Lannou et al., 1992). Ishijima<br />

<strong>and</strong> co-workers (1986) showed that the flagellar beating <strong>of</strong> a spermatozoa was three dimensional<br />

rather than planar <strong>and</strong> results in a sperm rotation on a helical trajectory. As such, a shallow chamber<br />

<strong>of</strong> 10 µm depth prevents the development <strong>of</strong> highly curved flagellar beats; as such the trajectory<br />

remains straight <strong>and</strong> the rate <strong>of</strong> progressive hyperactivated motions increases (Le Lannou et al.,<br />

1992). The differences in width <strong>of</strong> sperm heads between human <strong>and</strong> animal species (Table 1) might<br />

affect motion characteristics to a different extent.<br />

Table 1. Dimensions <strong>of</strong> the sperm head <strong>of</strong> different mammalian species.<br />

Human 1<br />

Equine 2<br />

Bovine 3<br />

Canine 4<br />

Porcine 5<br />

Length (µm) 4.1 5.49 8.67 6.65 8.12<br />

Width (µm) 2.8 2.65 4.55 3.88 4.07<br />

1 WHO laboratory manual for the examination <strong>and</strong> processing <strong>of</strong> human semen, 2010<br />

2 Gravance et al., 1996<br />

3 Gravance et al., 2009<br />

4 Rijsselaere et al., 2004<br />

5 García-Herreros et al., 2007<br />

Literature on equine semen reports a wide variety both in CASA motility settings (Loomis<br />

<strong>and</strong> Graham, 2008; Ortega-Ferrusola et al., 2009; Vidament et al., 2009; Waite et al.,2008) as well as<br />

in the use <strong>of</strong> different chambers in combination with CASA systems. The chambers most frequently<br />

used are a 20 µm deep Leja chamber (Hoogewijs et al., 2010; Len et al., 2010; Ortega-Ferrusola et al.,<br />

2009; Waite et al., 2008), the 20 µm deep Cell-vu chamber (Almeida <strong>and</strong> Ball, 2005; Glazar et al.,<br />

2009; Spizziri et al., 2010) <strong>and</strong> the 10 µm deep Makler chamber (Johannisson et al., 2009; Kavak et<br />

al., 2003). These chambers are frequently loaded with a different volume, <strong>and</strong> sometimes only the


CHAPTER 3.2<br />

depth but not the chamber br<strong>and</strong> is mentioned (Aurich <strong>and</strong> Spergser, 2007; Pagl et al., 2006), or only<br />

the volume used (Price et al., 2008; Quintero-Moreno et al., 2003), <strong>and</strong> sometimes, nothing at all is<br />

mentioned (Love et al., 2005; Macís-García et al., 2009; Ponthier et al., 2009).One might conclude<br />

that objective semen analysis with CASA systems is not at all st<strong>and</strong>ardized in horses.<br />

Also the determination <strong>of</strong> concentration by means <strong>of</strong> CASA is not indisputable. Especially the<br />

use <strong>of</strong> capillary filled 20 µm disposable chambers has been subject <strong>of</strong> debate after discrepancies<br />

with haemocytometer counts have been described (Kuster, 2005). The variation between these two<br />

techniques has been attributed to the Segre-Silberberg (SS) effect, which describes flow dynamics in<br />

capillary filled chambers resulting in a concentration differential for particles in laminar flow. Based<br />

on a mathematical model, corrections can be made (Douglas-Hamilton et al., 2005a).<br />

In the veterinary clinic <strong>of</strong> the <strong>Department</strong> <strong>of</strong> <strong>Reproduction</strong>, <strong>Obstetrics</strong> <strong>and</strong> <strong>Herd</strong> <strong>Health</strong> <strong>of</strong><br />

Ghent University, we noticed a huge discrepancy when analyzing an equine semen sample from the<br />

same aliquot with both a Makler chamber <strong>and</strong> a 20 µm Leja chamber. The obtained concentrations<br />

<strong>and</strong> motility parameters differed so extremely, that it became clinically relevant. For instance, an<br />

analysis using the Leja chamber could lead to rejection <strong>of</strong> a sample, ejaculate or stallion, whereas<br />

using the Makler chamber would have resulted in a more favourable outcome.<br />

The major aim <strong>of</strong> this study was to evaluate the difference between a number <strong>of</strong> counting<br />

chamber types on equine semen motility parameters. Additionally, the differences in concentration<br />

depending on the chamber type used were scrutinized.<br />

3.2.3. Materials <strong>and</strong> Methods<br />

3.2.3.1. Semen <strong>and</strong> preparation for analysis<br />

Fifty straws <strong>of</strong> frozen semen from 50 different stallions, frozen in two European recognized<br />

artificial insemination centres were used in this experiment. Straws were thawed in a 37°C water<br />

bath for 30 sec <strong>and</strong> subsequently dried <strong>and</strong> emptied in a 1.5 mL vial (eppendorf). Concentration was<br />

determined using the NucleoCounter SP-100 (ChemoMetec, A/S, Allerød, Denmark) as described<br />

earlier (Hansen et al., 2006; Morrell et al., 2010). Thawed semen was diluted using INRA96 (IMV,<br />

L’Ailgle cedex, France) at 37°C to obtain a final concentration <strong>of</strong> 25 – 35 × 10 6 sperm /mL based on<br />

the findings <strong>of</strong> the NucleoCounter, after which the samples were incubated at 37°C for 5 min prior to<br />

analysis. The dilution ratios varied between 1:7 to 1:14.<br />

89


CHAPTER 3.2<br />

90<br />

3.2.3.2. Quality analysis<br />

Objective motility assessment was performed using CASA (Hoogewijs et al., 2010). Briefly, a<br />

Ceros 12.3 CASA system (Hamilton Thorne Inc. Beverly, MA, USA) was used. The chambers were<br />

loaded with semen <strong>and</strong> maintained at 37 °C using a Tokai Hit thermoplate (Tokai Hit CO., Ltd,<br />

Shizoka-ken, Japan). Five r<strong>and</strong>omly selected microscopic fields, evenly distributed over the slide,<br />

were scanned 5 times each, obtaining 25 scans <strong>of</strong> every semen sample. The mean <strong>of</strong> the 25 scans for<br />

each microscopic slide was used for the statistical analysis. The s<strong>of</strong>tware settings <strong>of</strong> the HTR 12.3,<br />

based on Loomis <strong>and</strong> Graham (2008), are summarized in Table 2. Following parameters recorded by<br />

CASA were used for statistical analysis: concentration (CONC), percentage progressive motility (PM),<br />

percentage rapid sperm cells (Rapid), average pathway velocity (VAP, µm/s), straight line velocity<br />

(VSL, µm/s), curved linear velocity (VCL, µm/s), amplitude <strong>of</strong> the lateral head displacement (ALH,<br />

µm), beat cross frequency (BCF, Hz), straightness (STR, %), <strong>and</strong> linearity (LIN, %). Every sample was<br />

analyzed using ten different chambers. To avoid a possible influence from an increased incubation<br />

time, the first chamber used for analysis changed in alternating way for the different samples, so<br />

every chamber was equally used as a first <strong>and</strong> as a consecutive chamber. After each analysis in any<br />

type <strong>of</strong> chamber, concentration was recorded <strong>and</strong> an additional dilution was performed if this<br />

concentration obtained with CASA was higher than 35 × 10 6 sperm /mL, in order to obtain a<br />

concentration within the 25 – 35 × 10 6 sperm /mL range for all motility analyses.<br />

Table 2. S<strong>of</strong>tware settings <strong>of</strong> the Hamilton Thorne Ceros 12.3 used in this study.<br />

Parameter Value<br />

Frames acquired 30<br />

Frame rate (Hz) 60<br />

Minimum contrast 60<br />

Minimum cell size (pixels) 6<br />

Minimum static contrast 25<br />

Straightness cut-<strong>of</strong>f (%, STR) 75<br />

Average-path velocity cut-<strong>of</strong>f PM (µm/s,VAP) 50<br />

VAP cut-<strong>of</strong>f static cells (µm/s) 20<br />

Cell intensity 100<br />

Static head size 0.55 – 2.04<br />

Static head intensity 0.45 – 1.70<br />

Static elongation 11 - 99


3.2.3.3. The different chambers <strong>and</strong> loading technique<br />

CHAPTER 3.2<br />

The different types <strong>of</strong> counting chambers with their specific characteristics used in this study<br />

are presented in Table 3. Disposable chambers are marked with a “d” following the depth in µm<br />

while reusable chambers are marked with an “r”. The ISAS20r chamber was filled both with<br />

capillarity (C) as well as using the drop filled cover slide technique (M). A detailed description <strong>of</strong> the<br />

loading technique per chamber is presented in addendum II. Briefly, chambers filled with capillarity<br />

(Leja10d, Leja12d, Leja20d, ISAS12d, ISAS16d, ISAS20d <strong>and</strong> ISAS20rC) were loaded by placing an<br />

abundance <strong>of</strong> semen in the loading area. When the semen reached the opposite air valve, the excess<br />

<strong>of</strong> semen was carefully removed by means <strong>of</strong> a Kimtech Science ® tissue (Kimberly-Clark, Surrey, UK).<br />

Drop filled chambers (ISAS20rM, Makler10r <strong>and</strong> WHO) were filled by placing the exact volume on<br />

the designated place, followed by immediate application <strong>of</strong> the coverslide. All chambers were left to<br />

rest (at 37°C) prior to analysis until drifting <strong>of</strong> the cells ceased (approximately 30s).<br />

Table 3. Characteristics <strong>of</strong> the different counting chambers used to analyze equine semen with<br />

CASA.<br />

Name<br />

Chambers/<br />

slide<br />

Depth<br />

(µm)<br />

Volume/<br />

chamber (µL)<br />

Way <strong>of</strong><br />

filling<br />

Volume<br />

loaded (µL)<br />

Reusable -<br />

Disposable<br />

Leja10d 4 10 1 capillarity 2.5 disposable<br />

Leja12d 2 12 3 capillarity 5 disposable<br />

Leja20d 4 20 2 capillarity 5 disposable<br />

ISAS12d 4 12 - capillarity 5 disposable<br />

ISAS16d 4 16 - capillarity 5 disposable<br />

ISAS20d 4 20 - capillarity 5 disposable<br />

ISAS20rM 2 20 - drop filled 5 reusable<br />

ISAS20rC 2 20 - capillarity 5 reusable<br />

Makler10r 1 10 - drop filled 5 reusable<br />

WHO 1 20.6 - drop filled 10 reusable<br />

3.2.3.4. Experimental design<br />

The fifty straws were thawed individually, concentration was determined using the<br />

NucleoCounter <strong>and</strong> the semen was diluted within the above mentioned range <strong>and</strong> loaded in a<br />

chamber. A r<strong>and</strong>om rotation with the 10 <strong>view</strong>ing chambers was done to avoid time effects. After<br />

every scan with the CASA system, the playback function was used to ensure the correct reading <strong>of</strong><br />

the sample. If a given sample loaded in a certain chamber yielded a concentration out <strong>of</strong> range for<br />

that chamber, an additional dilution was prepared based on the later results to ensure a motility<br />

analysis within the designed concentration range.<br />

91


CHAPTER 3.2<br />

92<br />

Preliminary findings indicated that loading a chamber with capillary force might have an<br />

influence on CONC. Therefore, it was decided not to use a classical haemocytometer as gold<br />

st<strong>and</strong>ard for CONC. The NucleoCounter has been shown to be highly repeatable <strong>and</strong> to have very<br />

good correlation with sperm concentration (Hansen et al., 2006). As such, the concentration as<br />

determined with the NucleoCounter was used as gold st<strong>and</strong>ard. Motility outcomes obtained with<br />

the WHO prepared slide were used as gold st<strong>and</strong>ard for motility.<br />

3.2.3.5. Statistical Analysis<br />

The data obtained for CONC showed a left skewed distribution. A normal distribution was<br />

achieved using the natural log transformation (lnCONC). Progressive motility (PM) <strong>and</strong> percentage<br />

rapid sperm (Rapid) were transformed by dividing them by 100 followed by an arcsine <strong>of</strong> the square<br />

root <strong>of</strong> that value, in order to obtain a normal distribution. The other motility parameters, VAP, VSL,<br />

VCL, ALH, BCF, STR, <strong>and</strong> LIN were normally distributed.<br />

First, it was analyzed whether the averages obtained with the different chambers were<br />

different. Mixed models (including stallion as a r<strong>and</strong>om effect) were fit with chamber <strong>and</strong> capillarity<br />

(1 or 0) as fixed effects, respectively, to analyze chamber effect <strong>and</strong> effect <strong>of</strong> loading [filled with<br />

capillarity (=1) vs. drop filled with cover slide (=0)]. LSD was used as post hoc tests to compare the<br />

different chambers with the gold st<strong>and</strong>ard.<br />

Secondly, scatter plots were produced for CONC <strong>and</strong> PM, where the value obtained with the<br />

gold st<strong>and</strong>ard was plotted against the corresponding value obtained with the different chambers<br />

(Micros<strong>of</strong>t Office Excel 2007). Ideally, this should result in the line <strong>of</strong> perfect agreement, which is the<br />

hatched line at 45° <strong>and</strong> intercept zero. In each plot, this line <strong>of</strong> perfect agreement was drawn in<br />

comparison to the regression line fit to the data (Arunvipas et al., 2003).<br />

Third, to assess agreement between the values for CONC <strong>and</strong> PM obtained using the gold<br />

st<strong>and</strong>ard with the values obtained using different chambers, Bl<strong>and</strong>-Altman plots were generated.<br />

This method plots the difference <strong>of</strong> the paired measurements (y-axis) against their mean (x-axis)<br />

(Bl<strong>and</strong> <strong>and</strong> Altman, 1986). The 95% limits <strong>of</strong> agreement were computed as the mean difference plus<br />

or minus 1.96 times the st<strong>and</strong>ard deviation (SD) <strong>of</strong> the difference.


CHAPTER 3.2<br />

Finally, Pearson coefficients <strong>of</strong> correlation (CC) were calculated between the different<br />

chambers <strong>and</strong> the gold st<strong>and</strong>ard.<br />

3.2.4. Results<br />

Statistical analyses were done using SPSS (Version 17.0, SPSS Inc, Chicago, Illinois, USA).<br />

3.2.4.1. Concentration<br />

The counting chamber used had a significant effect (p


CHAPTER 3.2<br />

Fig. 1. Average concentration (± st<strong>and</strong>ard error <strong>of</strong> the mean) <strong>of</strong> 50 frozen-thawed equine semen<br />

samples from different stallions (n=50) assessed with computer assisted sperm analysis using<br />

different chambers in comparison to concentration assessed with the NucleoCounter (NC) as<br />

gold st<strong>and</strong>ard [bars with an asterisks are statistically different from the gold st<strong>and</strong>ard (black<br />

bar), *p


90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

drop filled with coverslip filled with capillarity<br />

Conc PM Rapid<br />

CHAPTER 3.2<br />

Fig. 2. Influence <strong>of</strong> loading the chamber with frozen-thawed equine semen on concentration (CONC,<br />

×10 6 /mL), progressive motility (PM, %) <strong>and</strong> percentage rapid spermatozoa (Rapid, %)<br />

determined with computer assisted sperm analysis, presented as averages ± st<strong>and</strong>ard error<br />

<strong>of</strong> the mean (all differences were significant, p


Leja20d Leja20dSS ISAS20d<br />

60<br />

60<br />

50<br />

50<br />

60<br />

50<br />

40<br />

40<br />

40<br />

30<br />

30<br />

30<br />

20<br />

Conc ISAS20d (x10 6 /m)<br />

20<br />

20<br />

10<br />

Conc Leja20dSS (x10 6 /m)<br />

10<br />

Conc Leja20d (x10 6 /m)<br />

10<br />

0<br />

0<br />

0<br />

0 10 20 30 40 50 60<br />

Conc NucleoCounter (x106 /m)<br />

0 10 20 30 40 50 60<br />

Conc NucleoCounter (x106 /m)<br />

0 10 20 30 40 50 60<br />

Conc NucleoCounter (x106 /m)<br />

Fig. 3. Scatter <strong>and</strong> corresponding Bl<strong>and</strong>-Altman plots for agreement between the NucleoCounter, as gold st<strong>and</strong>ard, <strong>and</strong> different chambers [Leja20d (20µm<br />

depth, disposable), Leja20dSS (the same Leja20 chamber, corrected for Segre Silberberg effect) <strong>and</strong> ISAS20d (20 µm depth, disposable)] to analyze<br />

the concentration (×10 6 /mL) <strong>of</strong> frozen-thawed equine semen samples. ( line <strong>of</strong> perfect agreement, regression line fit the actual data)


ISAS20rM Makler10r WHO<br />

120<br />

120<br />

120<br />

100<br />

100<br />

100<br />

80<br />

80<br />

80<br />

60<br />

60<br />

60<br />

40<br />

Conc WHO (x10 6 /m)<br />

40<br />

40<br />

20<br />

20<br />

Conc Makler10r (x10 6 /m)<br />

20<br />

Conc ISAS20rM (x10 6 /m)<br />

0<br />

0<br />

0<br />

0 10 20 30 40 50 60<br />

Conc NucleoCounter (x106 /m)<br />

0 10 20 30 40 50 60<br />

Conc NucleoCounter (x106 /m)<br />

0 10 20 30 40 50 60<br />

Conc NucleoCounter (x10 6 /m)<br />

Fig. 4. Scatter <strong>and</strong> corresponding Bl<strong>and</strong>-Altman plots for agreement between the NucleoCounter, as gold st<strong>and</strong>ard, <strong>and</strong> different chambers [ISAS (20µm<br />

depth, reusable, drop filled with coverslide), Makler10r (10µm depth, reusable) <strong>and</strong> WHO prepared slide] to analyze the concentration (×10 6 /mL) <strong>of</strong><br />

frozen-thawed equine semen samples. ( line <strong>of</strong> perfect agreement, regression line fit the actual data)


CHAPTER 3.2<br />

Table 4. Pearson correlation coefficient (CC) between the gold st<strong>and</strong>ard [NucleoCounter (NC)] <strong>and</strong><br />

the different chambers for assessment <strong>of</strong> concentration (CONC) <strong>and</strong> progressive motility<br />

(PM) (after transformation to obtain normal distribution, for details see text) using<br />

computer assisted sperm analysis.<br />

98<br />

NC<br />

WHO<br />

Leja10<br />

Leja12<br />

Leja20<br />

Leja20SS<br />

CONC<br />

CC 1 0.31 0.34 0.74 0.42 0.44 0.33 0.38 0.38 0.17 0.21 0.42<br />

pvalue<br />

PM<br />


60 PM Rapid<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

CHAPTER 3.2<br />

Fig. 5. Average percentage <strong>of</strong> progressive motility (PM – dark grey) <strong>and</strong> percentage <strong>of</strong> rapid sperm<br />

(Rapid – light grey) (± st<strong>and</strong>ard error <strong>of</strong> the mean), respectively, <strong>of</strong> 50 frozen-thawed equine<br />

semen samples from different stallions (n=50), assessed with computer assisted sperm<br />

analysis using different chambers in comparison to the WHO prepared slide as gold st<strong>and</strong>ard<br />

(bars with one or more symbols are statistically different from the gold st<strong>and</strong>ard (darker<br />

bars), *, ♦ p


Leja20d ISAS20d Makler10r<br />

100<br />

100<br />

100<br />

80<br />

80<br />

80<br />

60<br />

PM Makler10r (%)<br />

60<br />

PM ISAS20d (%)<br />

60<br />

40<br />

40<br />

40<br />

20<br />

20<br />

20<br />

PM Leja20d (%)<br />

0<br />

0<br />

0<br />

0 20 40 60 80 100<br />

0 20 40 60 80 100<br />

0 20 40 60 80 100<br />

PM WHO (%) PM WHO (%) PM WHO (%)<br />

Fig. 6. Scatter <strong>and</strong> corresponding Bl<strong>and</strong>-Altman plots for agreement between the WHO prepared slide, as gold st<strong>and</strong>ard, <strong>and</strong> different chambers [Leja<br />

(20µm depth, disposable), ISAS (20 µm depth, disposable), Makler (10µm depth, reusable)] to analyze the progressive motility (PM) (%) <strong>of</strong> frozen-<br />

thawed equine semen samples. ( line <strong>of</strong> perfect agreement, regression line fit the actual data)


Table 5. Averages (± st<strong>and</strong>ard error <strong>of</strong> the mean) <strong>of</strong> different motility parameters from frozen-thawed equine semen obtained with computer assisted<br />

sperm analysis using different chambers, compared with the WHO slide, which was used as the gold st<strong>and</strong>ard, analysis done using mixed models<br />

with LSD post hoc tests. Values within a column with asterisks are significantly different from the gold st<strong>and</strong>ard (* p≤0.05, ** p


CHAPTER 3.2<br />

102<br />

In veterinary medicine, a number <strong>of</strong> studies have focussed on counting chambers in<br />

combination with CASA devices. Discrepancies between CASA estimates <strong>and</strong> the Bürker<br />

haemocytometer have been described for different species (Rijsselaere et al., 2003; Vyt et al., 2004).<br />

To obtain a sharp image <strong>of</strong> the sperm cells when performing the motility analysis, CASA devices are<br />

primarily used in combination with shallow chambers to keep the moving sperm within focus plane<br />

<strong>of</strong> the microscope. Therefore CASA systems are frequently used in combination with 20 µm deep<br />

disposable counting chambers. These chambers are most <strong>of</strong>ten loaded by capillary force, <strong>and</strong> such a<br />

capillary flow in a 20 µm chamber follows the laminar Poiseuille flow (Douglas-Hamilton et al.,<br />

2005a). This leads to a transverse lifting force on suspended particles <strong>and</strong> results in an unevenly<br />

concentration throughout the sample as described by Segre <strong>and</strong> Silberberg <strong>and</strong> is, as such, known as<br />

the SS effect (Douglas-Hamilton et al., 2005b). The influence <strong>of</strong> this SS effect on the distribution<br />

throughout the slide depends on the viscosity <strong>of</strong> the sample. Correction factors are available <strong>and</strong> are<br />

based on the time it takes for a chamber to be filled, <strong>and</strong> as such determined by viscosity <strong>of</strong> the<br />

loaded sample (Douglas-Hamilton et al., 2005a). Although the SS effect is well documented in<br />

literature, interpretation <strong>of</strong> the results is not always performed correctly. For example, in a recent<br />

study (Maes et al., 2010), two types <strong>of</strong> 20 µm Leja slides were compared, where one <strong>of</strong> the slides<br />

was especially developed to be able to correct for the SS effect. Unfortunately, the results obtained<br />

with the two chambers were compared as such, without applying the correction factor. Therefore it<br />

was faulty concluded that the newly shaped counting chamber was not able to correct for the SS<br />

effect.<br />

CASA instruments were developed to provide a solution for problems linked with subjective<br />

motility analysis. Indeed, subjective assessment <strong>of</strong> motility is known to be inaccurate, imprecise <strong>and</strong><br />

subject to variability (Davis <strong>and</strong> Katz, 1993; Matson, 1995). However, in order for CASA systems to<br />

contribute to a st<strong>and</strong>ardized <strong>and</strong> objective analysis, uniformity in protocols <strong>and</strong> settings is required.<br />

In literature, a large variation in technical settings can be found as well as a lack in uniformity for<br />

preparing a sample for motility analysis. It has been demonstrated that the large variety in motility<br />

settings used influences motility outcomes significantly (Hoogewijs et al., 2009). The chambers used<br />

in combination with CASA are very diverse <strong>and</strong> quite <strong>of</strong>ten not clearly described. As such, it is nearly<br />

impossible to compare results between different studies.<br />

The big difference in loading technique <strong>and</strong> motility outcomes may be attributed by physical<br />

forces on the spermatozoa during loading as postulated by Lenz et al. (2011). When a semen sample<br />

is placed on the loading area <strong>of</strong> a capillarity filled chamber, the flow that occurs might damage the


CHAPTER 3.2<br />

sperm (tail) which could result in decreased motility, however, these hypotheses remain yet to be<br />

tested.<br />

The pressing question for st<strong>and</strong>ardization becomes more alive when one considers the<br />

approval <strong>and</strong> distribution <strong>of</strong> equine semen by the dose <strong>and</strong> not by the pregnancy. Indeed, the<br />

widespread use <strong>of</strong> frozen-thawed semen resulted in increased trading <strong>of</strong> semen. Mare owners buy<br />

semen without the assurance <strong>of</strong> obtaining a pregnancy, so they tend to make dem<strong>and</strong>s on semen<br />

quality. When using the following criteria as a minimum for post-thaw equine semen; a post-thaw<br />

PM ≥30% <strong>and</strong> a minimum dose <strong>of</strong> 240×10 6 progressive motile spermatozoa per insemination dose<br />

(Loomis, 2001), the insemination dose from the same ejaculate analyzed in this study can vary from<br />

2 straws (CASA analysis using a Makler chamber) to 10 straws (CASA analysis using Leja10).<br />

Comparable results can undoubtedly also be found for other species, where the economic<br />

consequences are even more important. This might encourage researchers to get together <strong>and</strong> start<br />

developing a comparable manuscript as the “WHO laboratory manual for the examination <strong>and</strong><br />

processing <strong>of</strong> human semen”, so that semen samples from the different domestic species can be<br />

analyzed using the st<strong>and</strong>ards for that given species.<br />

In conclusion, automated semen analysis using highly specialized CASA systems does not<br />

produce easily comparable motility outcomes. The influence <strong>of</strong> the chamber used for analysis on<br />

concentration <strong>and</strong> motility is not minor. As such a complete <strong>and</strong> accurate description <strong>of</strong> the<br />

“materials <strong>and</strong> methods” used is <strong>of</strong> utmost importance, <strong>and</strong> without it, the correctness <strong>of</strong> a semen<br />

report can at least be considered as questionable.<br />

103


CHAPTER 3.2<br />

References<br />

Almeida J., Ball B.A. 2005. Effect <strong>of</strong> alpha-toc<strong>of</strong>erol <strong>and</strong> tocopherol succinate on lipid peroxidation in<br />

equine spermatozoa. Animimal <strong>Reproduction</strong> Science 87:321-337.<br />

Arunvipas P., VanLeeuwen J.A., Dohoo I.R., Keefe G.P. 2003. Evaluation <strong>of</strong> the reliability <strong>and</strong><br />

repeatability <strong>of</strong> automated milk urea nitrogen testing. Canadian Journal <strong>of</strong> Veterinary<br />

Research 67:60-63.<br />

Aurich C., Spergser J. 2007 Influence <strong>of</strong> bacteria <strong>and</strong> gentamycin on cooled-stored stallion<br />

spermatozoa. Theriogenology 67:912-918.<br />

Bl<strong>and</strong> J.M., Altman D.G. 1986. Statistical methods for assessing agreement between two methods <strong>of</strong><br />

clinical measurement. Lancet 1:307-310.<br />

Contri A., Valorz C., Faustini M., Wegher L., Carluccio A. 2010. Effect <strong>of</strong> semen preparation on CASA<br />

motility results in cryopreserved bull spermatozoa. Theriogenology 74:424-435.<br />

Davis R.O., Katz D.F. 1993. Operational st<strong>and</strong>ards for CASA instruments. Journal <strong>of</strong> Andrology 14:385-<br />

394.<br />

Douglas-Hamilton D.H., Smith N.C., Kuster C.E., Vermeiden J.P.W., Althouse G.C. 2005a. Capillaryloaded<br />

particle fluid dynamics: effect on estimation <strong>of</strong> sperm concentration. Journal <strong>of</strong><br />

Andrology 26:115-122.<br />

Douglas-Hamilton D.H., Smith N.C., Kuster C.E., Vermeiden J.P.W., Althouse G.C. 2005b. Particle<br />

distribution in low-volume capillary-loaded chambers. Journal <strong>of</strong> Andrology 26:107-114.<br />

García-Herreros M., Barón F.J., Aparicio I.M., Santos A.J., García-Marín L.J., Gil M.C. 2008.<br />

Morphometric changes in boar spermatozoa induced by cryopreservation . International<br />

Journal <strong>of</strong> Andrology 31:490-498.<br />

Glazar A.I., Mullen S.F., Liu J., Benson J.D., Critser J.K., Squires E.L., Graham J.K. 2009. Osmotic<br />

tolerance limits <strong>and</strong> membrane permeability characteristics <strong>of</strong> stallion spermatozoa treated<br />

with cholesterol. Cryobiology 59:201-206.<br />

Gravance C.G., Liu I.K., Davis R.O., Hugher J.P., Casey P.J. 1996. Quantification <strong>of</strong> normal head<br />

morphometry <strong>of</strong> stallion spermatozoa. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility 108:41-46.<br />

Gravance C.G., Casey M.E., Casey P.J. 2009. Pre-freeze bull sperm morphometry releated to postthaw<br />

fertility. Animal <strong>Reproduction</strong> Science 114:81-88.<br />

Hansen C., Vermeiden T., Vermeiden J.P., Simmet C., Day B.C., Feitsma H. 2006. Comparison <strong>of</strong><br />

FACSCount AF system, improved Neubauer hemocytometer, Corning 254 photometer,<br />

Spermvision, Ultimate <strong>and</strong> NucleoCounter SP-100 for determination <strong>of</strong> sperm concentration<br />

<strong>of</strong> boar semen. Theriogenology 66:2188-2194.<br />

Holt W.V., Palomo M.J. 1996. Optimization <strong>of</strong> a continuous real-time computerized semen analysis<br />

system for ram sperm motility assessment, <strong>and</strong> evaluation <strong>of</strong> four methods <strong>of</strong> semen<br />

preparation. <strong>Reproduction</strong> Fertility <strong>and</strong> Development 8:219-230.<br />

104


CHAPTER 3.2<br />

Hoogewijs M.K., Govaere J.L., Rijsselaere T., De Schauwer C., Vanhaesebrouck E.M., de Kruif A., De<br />

Vliegher S. 2009. Influence <strong>of</strong> technical settings on CASA motility parameters <strong>of</strong> frozen<br />

thawed stallion semen. Proceedings <strong>of</strong> the . 55 th annual convention <strong>of</strong> the American<br />

Association <strong>of</strong> Equine Practitioners, Las Vegas, USA 55:336-337.<br />

Hoogewijs M., Rijsselaere T., De Vliegher S., Vanhaesebrouck E., De Schauwer C., Govaere J., Thys M.,<br />

H<strong>of</strong>lack G., Van Soom A., de Kruif A. 2010. Influence <strong>of</strong> different centrifugation protocols on<br />

equine semen preservation. Theriogenology 74:118-126.<br />

Iguer-ouada M., Verstegen J.P. 2001. Evaluation <strong>of</strong> the “Hamilton Thorn computer-based automated<br />

system” for dog semen analysis. Theriogenology 55:733-749.<br />

Ishijima S., Oshio S., Mohri H. 1986. Flagellar movement <strong>of</strong> human spermatozoa. Gamete Research<br />

13:185-197.<br />

Johannisson A., Morrell J.M., Thorén J., Jönsson M, Dalin A.M., Rodriguez-Martinez H. 2009. Colloidal<br />

centrifugation with Androcoll-E prolongs stallion sperm motility, viability <strong>and</strong> chromatin<br />

integrity. Animal <strong>Reproduction</strong> Science 116:119-128.<br />

Kavak A., Johannisson A., Lundeheim N., Rodriguez-Martinez H., Aidnik M., Einarsson S. 2003.<br />

Evaluation <strong>of</strong> cryopreserved stallion semen from Tori <strong>and</strong> Estonian breeds using CASA <strong>and</strong><br />

flow cytometry. Animal <strong>Reproduction</strong> Science 76:205-216.<br />

Kraemer M., Fillion C., Martin-Pont B., Auger J. 1998. Factors influencing human sperm kinematic<br />

measurements by the Celltrak computer-assisted sperm analysis system. Human<br />

<strong>Reproduction</strong> 13:611-619.<br />

Kuster C. 2005. Sperm concentration determination between hemacytometric <strong>and</strong> CASA systems:<br />

Why can they be different. Theriogenology 64:614-617.<br />

Le Lannou D., Griveau J.F., Le Pichon J.P., Quero J.C. 1992. Effects <strong>of</strong> chamber depth on the motion<br />

pattern <strong>of</strong> human spermatozoa in semen or in capacitating medium. Human <strong>Reproduction</strong><br />

7:1417-1421.<br />

Len J.A., Jenkins J.A., Eilts B.E., Pacamonti D.L., Lyle S.K., Hosgood G. 2010. Immediate <strong>and</strong> delayed<br />

(after cooling) effects <strong>of</strong> centrifugation on equine sperm. Theriogenology 73:225-231.<br />

Lenz R.W., Kjell<strong>and</strong> M.E., Vonderhaar K., Swannack T.M., Moreno J.F. 2011. A comparison <strong>of</strong> bovine<br />

seminal quality assessments using different <strong>view</strong>ing chambers with a computer-assisted<br />

semen analyzer. Journal <strong>of</strong> Animal Science 89:383-388.<br />

Loomis P.R., Graham J.K. 2008. Commercial semen freezing: individual male variation in cryosurvival<br />

<strong>and</strong> the response <strong>of</strong> stallion sperm to customized freezing protocols. Animal <strong>Reproduction</strong><br />

Science 105:119-128.<br />

Loomis P.R. 2001. The equine frozen semen industry. Animal <strong>Reproduction</strong> Science 68:191-200.<br />

105


CHAPTER 3.2<br />

Love C.C., Brinsko S.P., Rigby S.L., Thompson J.A., Blanchard T.L., Varner D.D. 2005. Relationship <strong>of</strong><br />

seminal plasma level <strong>and</strong> extender type to sperm motility <strong>and</strong> DNA integrity. Theriogenology<br />

63:1584-1591.<br />

Macía Garcia B., González Fernández L., Morrell J.M., Ortega Ferrusola C., Tapia, J.A., Rodriguez-<br />

Martinez H., Peña F.J. 2009. Single-layer centrifugation through colloid positively modifies<br />

the sperm subpopulation structure <strong>of</strong> frozen-thawed stallion spermatozoa. <strong>Reproduction</strong> in<br />

Domestic Animals 44:523-526.<br />

Maes D., Rijsselaere T., Vyt P., Sokolowska A., Deley W., Van Soom A. 2010. Comparison <strong>of</strong> five<br />

different methods to assess the concentration <strong>of</strong> boar semen. Vlaams Diergeneeskundig<br />

Tijdschrift 79:42-47.<br />

Matson P.L. 1995. External quality assessment for semen analysis <strong>and</strong> sperm antibody detection:<br />

results <strong>of</strong> a pilot scheme. Human <strong>Reproduction</strong> 10:289-291.<br />

Morrell J.M., Johannisson A., Juntilla L., Rytty K., Bäckgren L., Dalin A.M., Rodriguez-Martinez H. 2010<br />

Stallion sperm viability, as measured by the Nucleocounter SP-100, is affected by extender<br />

<strong>and</strong> enhanced by single layer centrifugation. Veterinary Medicine International<br />

doi:10.4061/2010/659862 Accessed Nov. 13, 2010.<br />

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860196/pdf/VMI2010-659862.pdf<br />

Ortega-Ferrusola C., Macías García B., Suárez Rama V., Gallardo-Bolaños J.M., González-Fernández L.,<br />

Tapia J.A., Rodriguez-Martinez H., Peña F.J. 2009. Identification <strong>of</strong> sperm subpopulations in<br />

stallion ejaculates: changes after cryopreservation <strong>and</strong> comparison with traditional statistics.<br />

<strong>Reproduction</strong> in Domestic Animals 44:419-423.<br />

Pagl R., Aurich J.E., Müller-Schlösser F., Kank<strong>of</strong>er M., Aurich C. 2006. Comparison <strong>of</strong> an extender<br />

containing defined milk protein fractions with a skim milk-based extender for storage <strong>of</strong><br />

equine semen at 5 degrees C. Theriogenology 66:1115-1122.<br />

Ponthier J., Franck T., Detilleux J., Mottart E., Serteyn D., Deleuze S. 2009. Association between<br />

myeloperoxidase concentration in equine frozen semen in post-thawing parameters.<br />

<strong>Reproduction</strong> in Domestic Animals 45:811-816.<br />

Price S., Aurich J., Davies-Morel M., Aurich C. 2008. Effects <strong>of</strong> oxygen exposure <strong>and</strong> gentamycin on<br />

stallion semen stored at 5 <strong>and</strong> 15 degrees C. <strong>Reproduction</strong> in Domestic Animals 43:261-266.<br />

Quintero-Moreno A., Miró J., Teresa Rigau A., Rodriguez-Gil J.E. 2003. Identification <strong>of</strong> sperm<br />

subpopulations with specific motility characteristics in stallion ejaculates. Theriogenology<br />

59:1973-1990.<br />

Rijsselaere T., Van Soom A., Maes D., de Kruif A. 2003. Effect <strong>of</strong> technical settings on canine semen<br />

motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 60:1553-<br />

1568.<br />

Rijsselaere T., Van Soom A., H<strong>of</strong>lack G., Maes D., de Kruif A. 2004. Automated sperm morphometry<br />

<strong>and</strong> morphology analysis <strong>of</strong> canine semen by the Hamilton-Thorne analyser. Theriogenology<br />

62:1292-1306.<br />

106


CHAPTER 3.2<br />

Spizziri B.E., Fox M.H., Bruemmer J.E., Squires E.L., Graham J.K. 2010. Cholesterol-loadedcyclodextrins<br />

<strong>and</strong> the fertility potential <strong>of</strong> stallions spermatozoa. Animal <strong>Reproduction</strong><br />

Science 118:255-264.<br />

Vidament M., Vincent P., Martin F.X., Magistrini M., Blesbois E. 2009. Differences in ability <strong>of</strong> jennies<br />

<strong>and</strong> mares to conceive with cooled <strong>and</strong> frozen semen containing glycerol or not. Animal<br />

<strong>Reproduction</strong> Science 112:22-35.<br />

Vyt P., Maes D., Rijsselaere T., Dejonckheere E., Castryck F., Van Soom A. 2004. Motility assessment<br />

<strong>of</strong> porcine spermatozoa: a comparison <strong>of</strong> methods. <strong>Reproduction</strong> in Domestic Animals<br />

39:447-453.<br />

Waite J.A., Love C.C., Brinsko S.P., Teague S.R., Salazar J.L. Jr., Mancil S.S., Varner D.D. 2008. Factors<br />

impacting equine sperm recovery rate <strong>and</strong> quality following cushioned centrifugation.<br />

Theriogenology 70:704-714.<br />

WHO. 2010. WHO laboratory manual for the examination <strong>and</strong> processing <strong>of</strong> human semen. 5 th<br />

Edition. WHO Press, Geneva, Switzerl<strong>and</strong>.<br />

107


3.3<br />

Validation <strong>and</strong> usefulness <strong>of</strong> the SQA-Ve (1.00.43) for<br />

equine semen analysis<br />

Hoogewijs M., De Vliegher S., De Schauwer C., Govaere J., Smits K.,<br />

H<strong>of</strong>lack G., de Kruif A., Van Soom A. 2010 Theriogenology, 75:189-<br />

194.<br />

109


3.3.1. Abstract<br />

CHAPTER 3.3<br />

Routine semen analysis includes evaluation <strong>of</strong> concentration combined with seminal volume,<br />

morphology <strong>and</strong> motility. Subjective analysis <strong>of</strong> these parameters is known to be inaccurate,<br />

imprecise <strong>and</strong> subject to variability. Automated semen analysis could lead to an increased<br />

st<strong>and</strong>ardization in <strong>and</strong> between laboratories but for that to happen automated devices need to be<br />

validated. A new device, the sperm quality analyzer V equine (SQA-Ve) version 1.00.43, was<br />

evaluated for its repeatability <strong>and</strong> agreement with light microscopy (LM), for raw <strong>and</strong> extended<br />

equine semen. Results were compared with computer assisted sperm analysis (CASA), which was<br />

also tested for its repeatability <strong>and</strong> agreement with LM. The SQA-Ve showed a good repeatability<br />

<strong>and</strong> fine agreement for assessing sperm concentration <strong>of</strong> raw semen based on scatter <strong>and</strong> Bl<strong>and</strong>-<br />

Altman plots. This was in contrast with the motility parameters, which had a low repeatability.<br />

Morphology assessment with SQA-Ve was poorly repeatable as well as in poor agreement with LM.<br />

For extended semen, the findings were comparable. The SQA-Ve did well for concentration, whereas<br />

for the motility parameters repeatability was only just acceptable, with however, no agreement with<br />

LM. This sharply contrasted the CASA findings that were highly repeatable <strong>and</strong> almost in perfect<br />

agreement with LM. Based on these findings, the tested version <strong>of</strong> the SQA-Ve is insufficiently<br />

accurate to be used for analyzing raw or extended equine semen.<br />

3.3.2. Introduction<br />

Although a plethora <strong>of</strong> specialized tests is available for analyzing semen samples (Varner,<br />

2008), a routine semen analysis includes the evaluation <strong>of</strong> concentration, seminal volume (Perreault,<br />

2009), morphology <strong>and</strong> motility (Varner, 2008). Microscopical measurements <strong>of</strong> sperm numbers,<br />

motility <strong>and</strong> morphology have been shown to be inaccurate <strong>and</strong> imprecise (Davis <strong>and</strong> Katz, 1993)<br />

<strong>and</strong> subject to high subjectivity (Matson, 1995). In order to overcome these inaccuracies, automated<br />

systems have been developed. In 1981, the Sperm Motility Analyzer was described by Bartoov et al.<br />

(1981) as a practical tool to evaluate overall sperm quality. This device, in later articles called the<br />

Sperm Quality Analyzer (SQA), registers fluctuations in optical density <strong>of</strong> light passing through a<br />

capillary which contains the semen sample. These fluctuations are registered by a photometric cell<br />

<strong>and</strong> converted to a numerical output. As such, the SQA does not recognize the actual sperm cells<br />

during the analysis.<br />

Computer-assisted semen analysis (CASA) was introduced both for humans <strong>and</strong> animal<br />

species about two decades ago (Verstegen et al., 2002). Using the combination <strong>of</strong> a microscope <strong>and</strong><br />

111


CHAPTER 3.3<br />

a camera, the sperm cells are visualized <strong>and</strong> the actual sperm tracks analyzed. The proper sperm cell<br />

recognition is determined by s<strong>of</strong>tware settings. These systems produce accurate <strong>and</strong> highly<br />

repeatable data <strong>of</strong> different semen-motility parameters in different species (Verstegen et al., 2002).<br />

However, h<strong>and</strong>ling procedures <strong>and</strong> parameter settings still differ between laboratories, making it<br />

difficult to compare results (Davis <strong>and</strong> Katz, 1993; Hoogewijs et al., 2009; Verstegen et al., 2002).<br />

112<br />

Unlike CASA systems, the SQA does not require parameter settings, hence reducing a large<br />

source <strong>of</strong> potential bias (H<strong>of</strong>lack et al., 2005), making this a ‘practical’ device which might be a<br />

bridge between subjective light microscopic assessments <strong>and</strong> highly specialized CASA interpretations.<br />

The aim <strong>of</strong> this study was to investigate the agreement <strong>and</strong> repeatability <strong>of</strong> two different<br />

automated semen analyzers, the SQA-Ve <strong>and</strong> CASA, to assess equine semen quality using<br />

conventional subjective light microscopy (LM) as the gold st<strong>and</strong>ard.<br />

3.3.3. Materials <strong>and</strong> methods<br />

3.3.3.1. Stallions <strong>and</strong> semen preparation<br />

For this study, a total <strong>of</strong> 60 ejaculates (six ejaculates per stallion, 5 Shetl<strong>and</strong> ponies <strong>and</strong> 5<br />

Warmblood stallions, respectively) was collected. After collection, semen was filtered through sterile<br />

gauze to remove the gel fraction <strong>and</strong> debris. For 30 ejaculates (3 per stallion), one part <strong>of</strong> the raw<br />

ejaculate, approximately 5 mL <strong>of</strong> fresh semen, was transferred into a sample container <strong>and</strong> placed in<br />

the preheated block heater. The rest <strong>of</strong> the semen was diluted 1:5 with INRA 96 <strong>and</strong> transferred in a<br />

sample container <strong>and</strong> placed in the heating block. The other 30 ejaculates were, after filtration,<br />

processed in the latter way, i.e. no analyses were performed on the undiluted semen.<br />

3.3.3.2. Analysis<br />

Light microscopy<br />

Subjective analysis <strong>of</strong> motility was performed as described by the World <strong>Health</strong> Organization<br />

(WHO, 2010), <strong>and</strong> considered to be the gold st<strong>and</strong>ard for this study. Briefly, a fixed volume <strong>of</strong> 10 µL<br />

<strong>of</strong> preheated (37°C) diluted semen was placed on a preheated clean glass slide <strong>and</strong> covered with a<br />

22 mm × 22 mm coverslip <strong>and</strong> transferred to the warmed (37°C) stage <strong>of</strong> the phase contrast<br />

microscope. At least five microscopic fields were assessed to classify 200 spermatozoa. Individual


CHAPTER 3.3<br />

morphological abnormalities were noted after eosin-nigrosin staining (Barth <strong>and</strong> Oko, 1989)<br />

according to their location (head, midpiece or tail). The concentration was determined by use <strong>of</strong> a<br />

Bürker hemocytometer after diluting the raw semen 1:10 with 1M HCl.<br />

SQA-Ve<br />

Prior to the first analysis on any given test day, the SQA-Ve (Medical Electronic Systems,<br />

Caesarea, Israel) (Fig. 1a) was turned on <strong>and</strong> the unit was allowed to complete the self-test. The<br />

incorporated s<strong>of</strong>tware version <strong>of</strong> the SQA-Ve at the time <strong>of</strong> the experiments was version 1.00.43.<br />

a.<br />

b.<br />

Fig. 1. (a) The latest model <strong>of</strong> the Sperm Quality Analyzer, the SQA-V equine, for the analysis <strong>of</strong><br />

equine semen, <strong>and</strong> (b) the CEROS computer assisted sperm analyzer from Hamilton Thorne.<br />

Raw semen<br />

Prior to any analysis the block heater was preheated for at least 15 min, set at 40°C,<br />

according to the operating instructions, to ensure a sample <strong>and</strong> capillary temperature <strong>of</strong> 37°C. The<br />

preheated block was loaded with clean, empty capillaries. The samples were incubated in the block<br />

heater for 5 minutes prior to testing. The SQA-Ve was prepared for analyzing raw samples following<br />

the onscreen instructions. A warm capillary was loaded according the description manual <strong>and</strong><br />

inserted into the SQA-Ve. The capillary was then pre-heated by the SQA-Ve, after which the analysis<br />

began automatically. After each first analysis (T1), the measurement was repeated on the same<br />

capillary (T2). Retesting was done without an additional pre-heating cycle. The parameters recorded<br />

by the SQA-Ve that were used for statistical analysis, were concentration (CONC) (×10 6 /mL),<br />

113


CHAPTER 3.3<br />

percentage total motility (TM), percentage progressive motility (PM), percentage morphological<br />

normal sperm cells (MORF), <strong>and</strong> velocity (VEL) (µm/s).<br />

Extended semen<br />

114<br />

Extended samples were not kept in cooling conditions. Analysis was done according to the<br />

onscreen instructions in a similar way as described for the raw semen to obtain a measurement at<br />

T1 <strong>and</strong> T2 using the same capillary. The parameters for statistical analysis <strong>of</strong> extended semen<br />

recorded by the SQA-Ve were CONC, TM, PM, <strong>and</strong> VEL. No information was obtained concerning the<br />

morphology since the s<strong>of</strong>tware algorithms only calculates morphology on raw semen samples.<br />

Computer assisted sperm analysis<br />

Analysis with CASA was performed as described by Hoogewijs et al. (2010) using the same<br />

settings. Briefly, a Ceros 12.3 CASA system (Hamilton Thorne Inc., Beverly, MA, USA) (Fig. 2b) was<br />

used. For each analysis, 5 µL <strong>of</strong> extended semen was mounted on a disposable 20 µm deep Leja<br />

counting chamber (Orange Medical, Brussels, Belgium) <strong>and</strong> maintained at 37 °C using a minitherm<br />

stage warmer. Five r<strong>and</strong>omly selected microscopic fields in the center <strong>of</strong> the slide were scanned 5<br />

times each, obtaining 25 scans <strong>of</strong> every semen sample. The mean <strong>of</strong> the 25 scans for each<br />

microscopic slide was used for the statistical analysis. Immediately after the first analysis (T1), the<br />

same counting chamber was reanalyzed in the same way (T2). The parameters recorded by CASA<br />

that were used for statistical analysis were CONC, TM, PM, <strong>and</strong> average pathway velocity (VAP). The<br />

velocity as recorded by the SQA-Ve is comparable with the average pathway velocity recorded by<br />

CASA, according to the manufacturer. As such VAP is also assigned as VEL. The s<strong>of</strong>tware version used<br />

on the CASA system cannot assess sperm morphology.<br />

3.3.3.3. Experimental design<br />

Due to the frequent collisions between the sperm cells <strong>and</strong> the difficulties to individually<br />

visualize the sperm cells, no subjective motility analysis could be performed in raw semen, therefore<br />

only CONC <strong>and</strong> MORF could be assessed. The sample from each ejaculate was analyzed twice using<br />

the SQA-Ve to analyze repeatability (using data at T1 <strong>and</strong> T2). Due to limitations <strong>of</strong> CASA systems,<br />

the raw samples could not be analyzed using CASA because CONC was too high.


CHAPTER 3.3<br />

The extended semen was analyzed with light microscopy for TM <strong>and</strong> PM, <strong>and</strong> with both SQA-<br />

Ve <strong>and</strong> CASA <strong>and</strong> output data were obtained for CONC, TM, PM <strong>and</strong> VEL. Each sample was analyzed<br />

twice to evaluate the repeatability.<br />

3.3.3.4. Statistical analyses<br />

For each type <strong>of</strong> semen (raw <strong>and</strong> extended), repeatability <strong>of</strong> methods (SQA-Ve <strong>and</strong> CASA)<br />

was assessed by comparing the observations at T1 with T2. Next, agreement was analyzed using the<br />

data obtained at T1 only, comparing SQA-Ve <strong>and</strong> CASA with the gold st<strong>and</strong>ard (LM), respectively.<br />

For CONC, the data obtained were transformed using a natural logarithm transformation to obtain a<br />

normal distribution (lnCONC).<br />

Repeatability<br />

First, it was tested whether the parameters changed over time. Therefore, mixed models<br />

were fitted in MlwiN 2.02 (Centre for Multilevel Modeling, Bristol, UK) for the different parameters<br />

(CONC, MORF, TM, PM, <strong>and</strong> VEL when available <strong>of</strong> raw <strong>and</strong> extended semen, respectively) with<br />

“Time” (T1 vs. T2) as fixed effect <strong>and</strong> “Ejaculate” <strong>and</strong> “Stallion” as r<strong>and</strong>om effects, the latter to<br />

adjust for clustering <strong>of</strong> repeated measurements within ejaculate <strong>and</strong> <strong>of</strong> ejaculates within stallion,<br />

respectively.<br />

Second, scatter plots were produced for each parameter, where the value at T1 was plotted<br />

against the value at T2 (Micros<strong>of</strong>t Office Excel 2007). Ideally, this would result in the line <strong>of</strong> perfect<br />

agreement, which is the hatched line at 45° <strong>and</strong> intercept zero. In each plot, this line <strong>of</strong> perfect<br />

agreement was drawn in comparison to the regression line fit to the data (Arunvipas et al., 2003).<br />

Third, to assess agreement between the values obtained at T1 with the values at T2, Bl<strong>and</strong><br />

<strong>and</strong> Altman plots were produced. This method plots the difference <strong>of</strong> the paired measurements (y-<br />

axis) against their mean (x-axis) (Bl<strong>and</strong> <strong>and</strong> Altman, 1986). The 95% limits <strong>of</strong> agreement were<br />

computed as the mean difference plus or minus 1.96 times the st<strong>and</strong>ard deviation (SD) <strong>of</strong> the<br />

difference. Analyses were done using SPSS s<strong>of</strong>tware package (version 15.0, SPSS Inc., Chicago, IL).<br />

Finally, for each parameter, the coefficient <strong>of</strong> variation (CV) per sample was calculated <strong>and</strong><br />

reported as mean CV over all samples (Arunvipas et al., 2003).<br />

115


CHAPTER 3.3<br />

116<br />

Agreement<br />

First, it was tested whether outcomes <strong>of</strong> results <strong>of</strong> parameters differed between methods <strong>of</strong><br />

analysis. Therefore, mixed models were fitted in MlwiN 2.02 for the outcome variables lnCONC <strong>and</strong><br />

MORF with “method <strong>of</strong> analysis” (SQA vs. LM) as fixed effect <strong>and</strong> “Stallion” as r<strong>and</strong>om effect, the<br />

latter to adjust for clustering <strong>of</strong> ejaculates within stallion. For extended semen, mixed models were<br />

fitted for the outcome variables TM <strong>and</strong> PM with “method <strong>of</strong> analysis” (CASA vs. LM <strong>and</strong> SQA vs. LM,<br />

respectively) as fixed effect <strong>and</strong> “Stallion” as r<strong>and</strong>om effect, the latter to adjust for clustering <strong>of</strong><br />

ejaculates within stallion.<br />

Second, scatter plots plotting the values <strong>of</strong> SQA-Ve <strong>and</strong> CASA against LM, respectively, were<br />

created, as well as the corresponding Bl<strong>and</strong>-Altman plots.<br />

3.3.4. Results<br />

3.3.4.1. Raw semen<br />

Repeatability <strong>of</strong> SQA-Ve<br />

None <strong>of</strong> the parameters changed significantly over time (Table 1). The repeatability <strong>of</strong><br />

lnCONC was excellent. The linear regression line fit to the data approached the line <strong>of</strong> perfect<br />

agreement <strong>and</strong> the corresponding Bl<strong>and</strong>-Altman plot had narrow 95% limits <strong>of</strong> agreement (Fig. 2).<br />

Repeatability for MORF <strong>and</strong> the three motility parameters on the other h<strong>and</strong> was rather poor as<br />

shown in Fig. 2 for MORF <strong>and</strong> PM. All CVs were acceptable (


CHAPTER 3.3<br />

Table 1: Average values <strong>of</strong> concentration (CONC), morphology (MORF), total (TM) <strong>and</strong> progressive<br />

motility (PM), <strong>and</strong> velocity (VEL) <strong>of</strong> equine semen at time 1 (T1) <strong>and</strong> time 2 (T2) obtained with light<br />

microscopy (LM), SQA-Ve, <strong>and</strong> CASA. Within devices (SQA-Ve <strong>and</strong> CASA only) values at T1 <strong>and</strong> T2<br />

were compared. Values with the same superscript ( a,b,c ) are significantly different. For agreement,<br />

values (at T1 only) between SQA-Ve <strong>and</strong> LM, <strong>and</strong> CASA <strong>and</strong> LM, respectively, were compared. Values<br />

with the same superscript ( ♠,♣,♥,♦ ) are significantly different.<br />

Raw semen Extended semen<br />

LM SQA-Ve LM SQA-Ve CASA<br />

T1 T1 T2 T1 T1 T2 T1 T2<br />

CONC (×10 6 /mL) 317 289.9 288.1 - 31.8 31 39.8 39.1<br />

lnCONC 5.66 5.55 5.55 - 3.33 3.29 3.60 a<br />

MORF (%) 67.8 ♠<br />

74.6 ♠<br />

TM (%) - 74.6 73.1 80.2 ♣,♥<br />

3.58 a<br />

73.7 - - - - -<br />

73.1 ♣<br />

72.8 75.8 b,♥<br />

PM (%) - 66.5 63.4 47.9 ♦ 48.7 47.4 39.8 ♦ 39.4<br />

VEL (µm/s) - 110.4 108.2 - 80.6 78.9 99.6 c<br />

c, ♠,♣,♥,♦ p


Repeatability Agreement<br />

lnCONC MORF (%) PM (%) lnCONC MORF (%)<br />

MORF SQA-Ve (%)<br />

lnCONC SQA-Ve<br />

T2<br />

T2<br />

T2<br />

T1 T1 T1 lnCONC LM MORF LM (%)<br />

Fig. 2. Scatter plots <strong>and</strong> corresponding Bl<strong>and</strong>-Altman difference plots for repeatability <strong>of</strong> (lnCONC), morphology (MORF) (%) <strong>and</strong> progressive motility (PM)<br />

(%) obtained with the SQA-Ve for raw equine semen <strong>and</strong> for agreement <strong>of</strong> lnCONC <strong>and</strong> MORF obtained with light microscopy (LM) <strong>and</strong> the SQA-Ve<br />

for raw equine semen. ( line <strong>of</strong> perfect agreement, regression line fit the actual data)


Repeatability Agreement<br />

SQA-Ve PM (%) CASA PM (%) SQA-Ve PM (%) CASA PM (%)<br />

PM CASA (%)<br />

PM SQA-Ve (%)<br />

T2<br />

T2<br />

T1 T1 PM LM (%) PM LM (%)<br />

Fig. 3: Scatter plots <strong>and</strong> corresponding Bl<strong>and</strong>-Altman difference plots for repeatability <strong>of</strong> progressive motility (PM) (%) obtained with the SQA-Ve <strong>and</strong> CASA<br />

for extended equine semen <strong>and</strong> for agreement <strong>of</strong> PM (%) between light microscopy (LM) <strong>and</strong> the SQA-Ve, <strong>and</strong> between LM <strong>and</strong> CASA for extended<br />

equine semen. ( line <strong>of</strong> perfect agreement, regression line fit the actual data)


CHAPTER 3.3<br />

3.3.5. Discussion<br />

120<br />

In this study, a new device for analyzing equine semen was evaluated. The SQA-Ve was highly<br />

repeatable when assessing sperm concentration, with a good agreement with the gold st<strong>and</strong>ard. The<br />

other SQA-Ve outcomes however, were less accurate. CASA proved to have a good repeatability as<br />

well as a good agreement with LM.<br />

The density <strong>of</strong> the extender might be an explanation for the lower repeatability when<br />

analyzing the concentration <strong>of</strong> extended semen compared to raw semen. The low repeatability for<br />

TM <strong>and</strong> PM obtained with the SQA-Ve <strong>and</strong> the poor agreement between LM <strong>and</strong> the SQA for these<br />

parameters clearly demonstrate that the tested version (1.00.43) <strong>of</strong> the SQA-Ve is, with its current<br />

algorithms, not suitable for the analysis <strong>of</strong> motility <strong>of</strong> raw or extended equine semen. Once more,<br />

these experiments prove the agreement between CASA <strong>and</strong> LM observations. This is as expected<br />

since the motility setup for CASA analysis was made in order to correspond with light microscopical<br />

findings. In conclusion, the SQA-Ve s<strong>of</strong>tware version 1.00.43 can be used with good results to<br />

determine stallion sperm concentration. This is especially true for raw semen <strong>and</strong> to a lesser extent<br />

for extended semen. However, repeatability for SQA-Ve was poor when analyzing motility, <strong>and</strong> not in<br />

agreement with the gold st<strong>and</strong>ard, making the device insufficiently accurate. This is in contrast with<br />

CASA, which is highly repeatable <strong>and</strong> agrees well with the gold st<strong>and</strong>ard when assessing TM <strong>and</strong> PM<br />

<strong>of</strong> extended stallion semen.


References<br />

CHAPTER 3.3<br />

Arunvipas P., VanLeeuwen J.A., Dohoo I.R., Keefe G.P. 2003. Evaluation <strong>of</strong> the reliability <strong>and</strong><br />

repeatability <strong>of</strong> automated milk urea nitrogen testing. Canadian Journal <strong>of</strong> Veterinary<br />

Research 67:60-63.<br />

Barth A.D., Oko R.J. 1989. Abnormal morphology <strong>of</strong> bovine spermatozoa. Ames, Iowa: Iowa State<br />

University Press.<br />

Bartoov B., Kalay D., Mayevsky A. 1981. Sperm motility analyzer (SMA), a practical tool <strong>of</strong> motility<br />

<strong>and</strong> cell concentration determinations in artificial insemination centers. Theriogenology<br />

15:173-182.<br />

Bl<strong>and</strong> J.M., Altman D.G. 1986. Statistical methods for assessing agreement between two methods <strong>of</strong><br />

clinical measurement. Lancet 1:307-310.<br />

Davis R.O., Katz D.F. 1993. Operational st<strong>and</strong>ards for CASA instruments. Journal <strong>of</strong> Andrology 14:385-<br />

394.<br />

H<strong>of</strong>lack G., Rijsselaere T., Maes D., Dewulf J., Opsomer G., de Kruif A., Van Soom A. 2005. Validation<br />

<strong>and</strong> usefulness <strong>of</strong> the sperm quality analyzer (SQA II-C) for bull semen analysis. <strong>Reproduction</strong><br />

in Domestic Animals 40:237-244.<br />

Hoogewijs M., Govaere J., Rijsselaere T., De Schauwer C., Vanhaesebrouck E., de Kruif A., De Vliegher<br />

S. 2009. Influence <strong>of</strong> technical settings on CASA motility parameters <strong>of</strong> frozen thawed stallion<br />

semen. Proceedings <strong>of</strong> the 55 th annual convention <strong>of</strong> the American Association <strong>of</strong> Equine<br />

Practitioners – Las Vegas 55:333-337.<br />

Hoogewijs M., Rijsselaere T., De Vliegher S., Vanhaesebrouck E., De Schauwer C., Govaere J., Thys M.,<br />

H<strong>of</strong>lack G., Van Soom A., de Kruif A. 2010. Influence <strong>of</strong> different centrifugation protocols on<br />

equine semen preservation. Theriogenology 74:118-126.<br />

Matson P.L. 1995. External quality assessment for semen analysis <strong>and</strong> sperm antibody detection:<br />

results <strong>of</strong> a pilot scheme. Human <strong>Reproduction</strong> 10:620-625.<br />

Perreault S.D. 2009. Special section on challenging assumptions about the meaning <strong>of</strong> sperm<br />

concentration <strong>and</strong> sperm counts. Journal <strong>of</strong> Andrology 30:621-622.<br />

Varner D.D. 2008. Developments in stallion semen evaluation. Theriogenology 70:448-462.<br />

Verstegen J., Iguer-Ouada M., Onclin K. 2002 Computer assisted semen analyzers in <strong>and</strong>rology<br />

research <strong>and</strong> veterinary practice. Theriogenology 57:149-179.<br />

World <strong>Health</strong> Organization (WHO). 2010. laboratory manual for the examination <strong>and</strong> preparation <strong>of</strong><br />

human semen. 5th ed. Geneva, Switzerl<strong>and</strong>, WHO Press.<br />

121


3.4<br />

Need for further improvement <strong>of</strong> SQA-Ve (1.00.61) for<br />

a univocal analysis <strong>of</strong> the quality <strong>of</strong> frozen-thawed<br />

equine semen<br />

Hoogewijs M., De Vliegher S., Govaere J., De Schauwer C.,<br />

Vanhaesebrouck E., de Kruif A., Van Soom A. in preparation<br />

123


3.4.1. Abstract<br />

CHAPTER 3.4<br />

In this study, two s<strong>of</strong>tware versions <strong>of</strong> the sperm quality analyzer V equine were tested for<br />

analyzing frozen-thawed equine semen. The first version (1.00.43) was poorly repeatable <strong>and</strong> agreed<br />

poorly with CASA. A newer s<strong>of</strong>tware version with improved algorithms (1.00.61) was capable <strong>of</strong><br />

analyzing the total motility in a more acceptable way although further improvements are m<strong>and</strong>atory<br />

before this device could serve as a diagnostic tool.<br />

3.4.2. Introduction<br />

Frozen equine semen is very <strong>of</strong>ten sold by the dose without any guarantee <strong>of</strong> producing a<br />

pregnancy. It is to be preferred to provide the mare owner with some quality assurance when selling<br />

the semen although one realizes sperm quality assessment remains subject for discussion. At least,<br />

subjective estimation <strong>of</strong> sperm motility is inaccurate <strong>and</strong> imprecise particularly if performed by<br />

inexperienced personnel (Davis <strong>and</strong> Katz, 1993). Nevertheless, motility remains one <strong>of</strong> the most<br />

important parameters when determining semen quality (Varner, 2008). Objective analysis using<br />

computer assisted sperm analysis (CASA) has a reputation <strong>of</strong> providing repeatable results that are<br />

however significantly influenced by motility settings (Hoogewijs et al., 2009).<br />

For human <strong>and</strong>rology research an automated device which does not require motility settings,<br />

the sperm quality analyzer (SQA, Medical Electronic Systems, Caesarea, Israel), has been developed<br />

in the 1980s (Bartoov et al., 1981). Recently, other versions <strong>of</strong> the SQA have become available for<br />

veterinary use. One <strong>of</strong> those, the SQA-Ve was especially designed for analyzing equine semen. This<br />

device (version 1.00.43) has been tested previously for analyzing raw <strong>and</strong> extended semen<br />

(Hoogewijs et al., 2010) <strong>and</strong> showed a good repeatability <strong>and</strong> good agreement when assessing<br />

concentration. Motility determined using the SQA-Ve, however, was poorly repeatable with a poor<br />

agreement to the gold st<strong>and</strong>ard. In that study, the device was not tested for its capability to analyze<br />

frozen-thawed semen.<br />

The aims <strong>of</strong> this study were to evaluate the repeatability <strong>of</strong> the SQA-Ve (1.00.43) <strong>and</strong> the<br />

agreement <strong>of</strong> two different SQA-Ve s<strong>of</strong>tware versions (1.00.43 <strong>and</strong> 1.0061) with CASA for the<br />

analysis <strong>of</strong> frozen-thawed equine semen.<br />

125


CHAPTER 3.4<br />

3.4.3. Materials <strong>and</strong> Methods<br />

126<br />

3.4.3.1. Stallions <strong>and</strong> semen preparation<br />

The semen used in this experiment was frozen in 0.5 mL straws at two European approved AI<br />

centers in Belgium. The straws were concentrated to contain about 300 × 10 6 spermatozoa per mL.<br />

Four straws per stallion, from the same ejaculate, were thawed in a water bath <strong>of</strong> 38°C for 30s, dried<br />

<strong>and</strong> pooled in a small cup, <strong>and</strong> kept at 38°C. An aliquot <strong>of</strong> 200µL was diluted tenfold with INRA96<br />

(IMV-technologies, L’Aigle, France), a clear semen extender free <strong>of</strong> debris when visualized<br />

microscopically. The samples, diluted <strong>and</strong> undiluted, were incubated at 38°C for 10 minutes prior to<br />

analysis.<br />

3.4.3.2. Analysis with the SQA-Ve<br />

The frozen-thawed semen was analyzed after proper incubation without diluting the thawed<br />

semen according to the manufacturer ‘s guidelines. The semen was aspirated into the specifically<br />

designed capillaries, wiped clean <strong>and</strong> inserted into the device following onscreen instructions. Prior<br />

to analysis, the SQA-Ve preheats the sample once more during 60 seconds after which the analysis<br />

starts automatically. The SQA-Ve does not require parameter settings, the s<strong>of</strong>tware version used was<br />

1.00.43 for experiment 1, <strong>and</strong> 1.00.61 for experiment 2.<br />

When total motility (TM) was equal to or lower than 30%, no actual value is being displayed,<br />

resulting in lack <strong>of</strong> progressive motility (PM) data. However, the number <strong>of</strong> progressive motile<br />

spermatozoa (PMS) per mL remains available. As soon as TM is lower than 10%, PMS is not reported<br />

either. As such, analysis with SQA-Ve can either result in actual values (complete data), in limited<br />

data (TM≤30%, <strong>and</strong> actual value for PMS), or no data at all (TM


CHAPTER 3.4<br />

therefore in these experiments CASA was used as gold st<strong>and</strong>ard for comparison with both versions <strong>of</strong><br />

the SQA-Ve.<br />

3.4.3.4. Experimental design<br />

Experiment 1<br />

For experiment 1, straws from 46 stallions were used. For motility assessment using CASA<br />

<strong>and</strong> SQA-Ve, each sample (diluted <strong>and</strong> undiluted, respectively) was analyzed twice (T1 <strong>and</strong> T2) within<br />

one minute with each device, so repeatability could be assessed (Fig. 1a).<br />

For agreement, the corresponding values at T1 obtained with each device were compared.<br />

Fig. 1. Over<strong>view</strong> <strong>of</strong> the experimental design <strong>and</strong> the number <strong>of</strong> analyses resulting in (in)complete<br />

data.<br />

Experiment 2<br />

For experiment 2, straws from 50 stallions were used. For motility assessment using CASA<br />

<strong>and</strong> SQA-Ve, each sample (diluted <strong>and</strong> undiluted, respectively) was analyzed once with each device,<br />

to assess agreement (Fig. 1b).<br />

127


CHAPTER 3.4<br />

128<br />

3.4.3.5. Statistical analyses<br />

The outcome variables analyzed were percentage TM <strong>and</strong> PM. To assess repeatability <strong>of</strong><br />

CASA <strong>and</strong> SQA-Ve (1.00.43) (experiment 1 only) each sample was analyzed twice within one minute.<br />

First, it was tested whether the parameters changed over time (T1 vs. T2), using a paired-samples t-<br />

test. Second, scatter plots were produced, where the value obtained at T1 was plotted against the<br />

value obtained at T2. The line <strong>of</strong> perfect agreement (hatched line at 45° <strong>and</strong> intercept zero) was<br />

integrated in each plot as comparison to the regression line to fit the data (Arunvipas et al., 2003).<br />

Third, Bl<strong>and</strong> <strong>and</strong> Altman plots were produced. This method plots the difference <strong>of</strong> the paired<br />

measurements (y-axis) against their mean (x-axis) (Bl<strong>and</strong> <strong>and</strong> Altman, 1986). Finally, for each<br />

parameter, the coefficient <strong>of</strong> variation (CV) was calculated per sample <strong>and</strong> reported as mean CV over<br />

all samples.<br />

To assess agreement (experiment 1 <strong>and</strong> 2, respectively) observations obtained with CASA<br />

were compared with these obtained with SQA-Ve. Statistical analysis was done as described for<br />

repeatability using a paired samples t-test, scatter plots <strong>and</strong> Bl<strong>and</strong> <strong>and</strong> Altman plots.<br />

To be able to analyze all available observations, data reported by CASA were categorized<br />

using the abovementioned SQA-Ve cut-<strong>of</strong>f criteria (≤30% <strong>and</strong> >30%) <strong>and</strong> analyzed on contingency<br />

tables using McNemar test (paired samples).<br />

Statistical analysis was done using SPSS (version 17.0, SPSS Inc., Chicago, Illinois, USA).<br />

3.4.4. Results<br />

3.4.4.1. Experiment 1<br />

For each <strong>of</strong> the different methods (CASA <strong>and</strong> SQA-Ve) 92 analyses were performed. This<br />

yielded complete data for all observations using CASA. Analysis with SQA-Ve resulted in complete<br />

data from 76 (82.6%) observations, incomplete data for 15 (16.3%) observations, <strong>and</strong> no data for 1<br />

(1.1%) observation (Fig. 1). Complete data were available at T1 <strong>and</strong> T2 from 34 stallions <strong>and</strong> used for<br />

further statistical analysis. Data were normally distributed. Averages did not differ significantly at T1<br />

<strong>and</strong> T2 (Table 1). Analysis with CASA had mean CV’s


CHAPTER 3.4<br />

The averages obtained at T1 with CASA <strong>and</strong> SQA-Ve differed significantly (Table 2). The TM<br />

<strong>and</strong> PM obtained with CASA <strong>and</strong> SQA-Ve were not significantly correlated (Table 2). The scatter plot<br />

<strong>and</strong> corresponding Bl<strong>and</strong>-Altman plots showed a very poor agreement between CASA <strong>and</strong> the SQA-<br />

Ve (Fig. 3).<br />

The categorized data for CASA <strong>and</strong> SQA-Ve (1.00.43) are summarized in table 3. The<br />

distribution <strong>of</strong> values ≤30% <strong>and</strong> >30% between the two devices did not differ significantly (p=0.20).<br />

Table 1. Averages <strong>of</strong> total (TM) <strong>and</strong> progressive motility (PM) obtained from frozen-thawed equine<br />

semen following analysis with CASA <strong>and</strong> with the SQA-Ve (version 1.00.43) at time 1 (T1)<br />

<strong>and</strong> time 2 (T2), the correlation coefficient (CC) between the values at T1 <strong>and</strong> T2, <strong>and</strong> the<br />

mean coefficient <strong>of</strong> variation (details see text), to assess repeatability <strong>of</strong> measurements.<br />

CASA SQA-Ve<br />

T1 T2 CC† CV T1 T2 CC‡ CV<br />

TM (%) 39.3 38.1 0.92 6.4 56.1 59.4 0.41 16.9<br />

PM (%) 22.8 22.4 0.95 8.2 45.5 48.8 0.40 16.9<br />

Pearson’s correlation coefficients at a level <strong>of</strong> † p


CHAPTER 3.4<br />

Fig. 2. Scatter plots <strong>and</strong> corresponding Bl<strong>and</strong>-Altman plots for repeatability <strong>of</strong> total motility<br />

obtained with CASA, <strong>and</strong> SQA-Ve (version 1.00.43) at time 1 (T1) <strong>and</strong> time (T2) for frozenthawed<br />

equine semen ( line <strong>of</strong> perfect agreement, regression line fit the actual<br />

data).<br />

Table 3. Distribution <strong>of</strong> all observations for total motility obtained with SQA-Ve (version 1.00.43 <strong>and</strong><br />

1.00.61, respectively) <strong>and</strong> CASA, categorized based on SQA-Ve cut-<strong>of</strong>f (≤30% <strong>and</strong> >30%); in<br />

every cell the average <strong>of</strong> the corresponding values obtained with SQA-Ve (S) <strong>and</strong> CASA (C) is<br />

given as well.<br />

CASA<br />

130<br />

Total Motility CASA T2 (%)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80<br />

Total Motility CASA T1 (%)<br />

Total Motility SQA-Ve T2 (%)<br />

SQA-Ve (1.00.43)<br />

SQA-Ve (1.00.61)<br />

≤30 >30 ≤30 >30<br />

≤30 5<br />

S≤30<br />

C=20.8<br />

19<br />

S=52.0<br />

C=23.4<br />

≤30 2<br />

S≤30<br />

C=20.5<br />

2<br />

S=42.9<br />

C=24.5<br />

>30 11<br />

S≤30<br />

C=38.6<br />

57<br />

S=57.3<br />

C=42.0<br />

>30 2<br />

S≤30<br />

C=43.5<br />

44<br />

S=54.9<br />

C=51.4<br />

CASA<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80<br />

Total Motility SQA-Ve T1 (%)


3.4.4.2. Experiment 2<br />

CHAPTER 3.4<br />

For each <strong>of</strong> the analysis methods (CASA <strong>and</strong> SQA-Ve) 50 analyses were performed. Complete data<br />

were obtained for all CASA observations, whereas SQA-Ve resulted in complete data for 46 (92%)<br />

observations <strong>and</strong> incomplete data for 4 (8%) observations (Fig. 1). Data were normally distributed.<br />

The averages obtained with either one <strong>of</strong> the analyses differed significantly (Table 4). The TM<br />

obtained with SQA-Ve showed significant correlation with the TM obtained with CASA, however, with<br />

a low CC. The PM obtained with both analyses were not correlated (Table 3).<br />

The scatter plot <strong>and</strong> corresponding Bl<strong>and</strong>-Altman plots showed a rather poor agreement<br />

between CASA <strong>and</strong> the SQA-Ve (Fig. 3).<br />

The categorized data for CASA <strong>and</strong> SQA-Ve (1.00.61) are summarized in table 3. The<br />

distribution <strong>of</strong> values ≤30% <strong>and</strong> >30% between the two devices was not significantly different<br />

(p=1.00).<br />

Table 4. Averages <strong>of</strong> total (TM) <strong>and</strong> progressive motility (PM) obtained from frozen-thawed equine<br />

semen following analysis with CASA <strong>and</strong> with the SQA-Ve (version 1.00.61), <strong>and</strong> the<br />

correlation coefficients (CC) between the results obtained with CASA <strong>and</strong> SQA-Ve.<br />

CASA SQA-Ve<br />

CASA - SQA-Ve<br />

CC p<br />

TM (%) 50.3 a 54.3 a 0.52 0.001<br />

PM (%) 22.4 b 44.0 b 0.22 0.14<br />

a,b Values with different superscript within row, differ significantly ( a p


CHAPTER 3.4<br />

132<br />

Total Motility SQA-Ve (%)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

SQA-Ve version 1.00.43 SQA-Ve version 1.0061<br />

Fig. 3. Scatter plots <strong>and</strong> corresponding Bl<strong>and</strong>-Altman plots for agreement <strong>of</strong> total motility obtained<br />

with CASA <strong>and</strong> SQA-Ve (version 1.00.43 <strong>and</strong> 1.00.61, respectively) for frozen-thawed equine<br />

semen ( line <strong>of</strong> perfect agreement, regression line fit the actual data).<br />

The algorithms used for motility analysis cannot be compared with the previous version to<br />

explain the differences. With further improvements, the SQA-Ve might be able to analyze motility in<br />

a more reliable way.<br />

0 20 40 60 80<br />

Total Motilty CASA (%)<br />

In conclusion, with the improved algorithms included in the newer s<strong>of</strong>tware, the SQA-Ve is<br />

able to analyze equine semen quality in a more acceptable way. However, the need remains for<br />

further improvements before this device can univocally report on thawed equine semen quality.<br />

Total Motility SQA-Ve (%)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80<br />

Total Motility CASA (%)


References<br />

CHAPTER 3.4<br />

Arunvipas P., VanLeeuwen J.A., Dohoo I.R., Keefe G.P. 2003. Evaluation <strong>of</strong> the reliability <strong>and</strong><br />

repeatability <strong>of</strong> automated milk urea nitrogen testing. Canadian Journal <strong>of</strong> Veterinary<br />

Research 67:60-63.<br />

Bartoov B, Kalay D, Mayevsky A. 1981. Sperm motility analyzer (SMA), a practical tool <strong>of</strong> motility <strong>and</strong><br />

cell concentration determinations in artificial insemination centers. Theriogenology 15:173-<br />

182.<br />

Bl<strong>and</strong> J.M., Altman D.G. 1986. Statistical methods for assessing agreement between two methods <strong>of</strong><br />

clinical measurement. Lancet 1:307-310.<br />

Davis R., Katz D. 1993. Operational st<strong>and</strong>ards for CASA instruments. Journal <strong>of</strong> Andrology 14:385-394.<br />

Hoogewijs M., De Vliegher S., De Schauwer C., Govaere J., Smits K., H<strong>of</strong>lack G., de Kruif A., Van Soom<br />

A. 2010. Validation <strong>and</strong> usefulness <strong>of</strong> the Sperm Quality Analyzer V equine for equine semen<br />

analysis. Theriogenology in press.<br />

Hoogewijs M., Govaere J., Rijsselaere T., De Schauwer C., Vanhaesebrouck E., de Kruif A., De Vliegher<br />

S. 2009. Influence <strong>of</strong> technical settings on CASA motility parameters <strong>of</strong> frozen thawed stallion<br />

semen. Proceedings <strong>of</strong> the 55 th annual convention <strong>of</strong> the American Association <strong>of</strong> Equine<br />

Practitioners – Las Vegas, USA 55:333-337.<br />

Loomis P.R., Graham J.K. 2008. Commercial semen freezing: individual male variation in cryosurvival<br />

<strong>and</strong> the response <strong>of</strong> stallion sperm to customized freezing protocols. Animal <strong>Reproduction</strong><br />

Science 105:119-128.<br />

Varner D.D. 2008. Developments in stallion semen evaluation. Theriogenology 70:448-462.<br />

133


CHAPTER 4<br />

Different centrifugation techniques – To what extent<br />

do they affect quality <strong>and</strong> preservation <strong>of</strong> equine<br />

semen?<br />

135


4.1<br />

Influence <strong>of</strong> different centrifugation protocols on<br />

equine semen preservation<br />

Hoogewijs M., Rijsselaere T., De Vliegher S., Vanhaesebrouck E., De<br />

Schauwer C., Govaere J., Thys M., H<strong>of</strong>lack G., Van Soom A., de Kruif A.<br />

2010 Theriogenology 74:118-126.<br />

137


4.1.1. Abstract<br />

CHAPTER 4.1<br />

Three experiments were conducted to evaluate the impact <strong>of</strong> centrifugation on cooled <strong>and</strong><br />

frozen preservation <strong>of</strong> equine semen. A st<strong>and</strong>ard centrifugation protocol (600 × g for 10 min = CP1)<br />

was compared to four protocols with increasing g-force <strong>and</strong> decreased time period (600 × g, 1200 × g,<br />

1800 × g <strong>and</strong> 2400 × g for 5 min for CP2, 3, 4 <strong>and</strong> ,5 respectively) <strong>and</strong> to an uncentrifuged negative<br />

control. In experiment 1, the influence <strong>of</strong> the different CPs on sperm loss was evaluated by<br />

calculating the total number <strong>of</strong> sperm cells in 90% <strong>of</strong> the supernatant. Moreover, the effect on<br />

semen quality following centrifugation was assessed by monitoring several sperm parameters<br />

(membrane integrity using SYBR14-PI, acrosomal status using PSA-FITC, percentage total motility<br />

(TM), percentage progressive motility (PM) <strong>and</strong> beat cross frequency (BCF) obtained with computer<br />

assisted sperm analysis (CASA)) immediately after centrifugation <strong>and</strong> daily during chilled storage for<br />

3 days. The use <strong>of</strong> CP1 resulted in a sperm loss <strong>of</strong> 22%. Increasing the centrifugation force to 1800 ×<br />

g <strong>and</strong> 2400 × g for 5 min led to significantly lower sperm losses (7.4% <strong>and</strong> 2.1%, respectively; p


CHAPTER 4.1<br />

4.1.2. Introduction<br />

140<br />

Numerous studies have demonstrated the beneficial effect <strong>of</strong> diluting raw semen with an<br />

appropriate extender. As such, the negative influence <strong>of</strong> seminal plasma (SP) on the preservation <strong>of</strong><br />

equine sperm can be reduced. Centrifugation <strong>of</strong> diluted equine semen <strong>and</strong> subsequent resuspension<br />

<strong>of</strong> the sperm pellet in fresh extender can even further reduce the amount <strong>of</strong> SP in stored samples. A<br />

small proportion <strong>of</strong> SP in semen improves sperm motility after cooling <strong>and</strong> storage (Jasko et al.,<br />

1991).<br />

However, centrifugation itself may act like a double edged sword exerting both beneficial<br />

<strong>and</strong> deleterious effects on sperm motility (Martin et al., 1979). Although the number <strong>of</strong> sperm cells<br />

can be maximized by increasing centrifugation time <strong>and</strong> force, physical damage is exerted on the<br />

sperm cells at the same time. The direct negative outcome <strong>of</strong> centrifugation on semen quality is<br />

demonstrated by the decrease in motility <strong>and</strong> velocity in contrast to uncentrifuged controls (Jasko et<br />

al., 1991) which indicates that the centrifugation protocol (CP) may play an important role in the<br />

quality <strong>of</strong> the inseminate. After 24h <strong>of</strong> cooled storage the harmful effect <strong>of</strong> centrifugation is no<br />

longer present (Jasko et al., 1991).<br />

A CP <strong>of</strong> 600 × g for 10 min is commonly used for equine semen (Ecot et al., 2005; Knop et al.,<br />

2005; Vidament et al., 2000; Weiss et al., 2004). In literature, data on the amount <strong>of</strong> sperm loss after<br />

using this protocol are contradictory <strong>and</strong> vary from 1.9% (Weiss et al., 2004) to 25% (Ecot et al., 2005;<br />

Knop et al., 2005). Nowadays, it is generally accepted that sperm losses will vary around 25% when<br />

diluted semen is centrifuged at 400-600 × g for 10-15 min (Aurich, 2008; Loomis, 2006).<br />

The importance <strong>of</strong> an appropriate CP has been clearly demonstrated for human sperm. The<br />

duration <strong>of</strong> centrifugation was shown to be more important than the centrifugation force for causing<br />

iatrogenic sperm membrane injuries which resulted in an increased formation <strong>of</strong> reactive oxygen<br />

species (Shekarriz et al., 1995). In boars, similar findings were described: a CP with a high g-force for<br />

a short time (2400 × g for 3 min) was used without detrimental effects on sperm yield compared to<br />

the st<strong>and</strong>ard regime (800 × g for 10 min) (Carvajal et al., 2004). Additionally, a positive effect on<br />

semen quality after cryopreservation was detected when using high g-forces for a shorter period <strong>of</strong><br />

time (Carvajal et al., 2004). Experiments with equine semen have been performed where semen was<br />

centrifuged at 400 × g for an increasing period <strong>of</strong> time. Sperm loss was approximately 20%, if<br />

samples were centrifuged for 10 min or longer, while no adverse effects on motility immediately<br />

after centrifugation were present, unless semen was centrifuged for 20 min. However, effects on<br />

preserved by cooling or freezing were not determined (Heitl<strong>and</strong> et al., 1996). A high g-force for a


CHAPTER 4.1<br />

short time was not detrimental for porcine sperm (Carvajal et al., 2004) <strong>and</strong> prolonged<br />

centrifugation <strong>of</strong> equine sperm negatively influenced sperm quality (Heitl<strong>and</strong> et al., 1996).<br />

The aim <strong>of</strong> the present study was to compare high speed CPs with the st<strong>and</strong>ard protocol on<br />

cooled <strong>and</strong> cryopreserved equine semen. The impact <strong>of</strong> CP on the subsequent number <strong>and</strong> quality <strong>of</strong><br />

sperm cells was assessed daily during 3 consecutive days <strong>of</strong> cooled preservation. Additionally, the<br />

effect <strong>of</strong> different CPs on the quality <strong>of</strong> frozen-thawed equine sperm was investigated.<br />

4.1.3. Materials <strong>and</strong> methods<br />

4.1.3.1. Stallions <strong>and</strong> semen collection<br />

For experiments 1 <strong>and</strong> 2, five ejaculates from each <strong>of</strong> five experienced Shetl<strong>and</strong> ponies<br />

(n=25), aged 3 to 6 years, were collected between August <strong>and</strong> October 2007. For experiment 3, one<br />

ejaculate from 4 <strong>of</strong> these ponies was used. The ponies were housed in groups in a straw bedded<br />

stable <strong>and</strong> were fed good quality hay ad libitum. Prior to the onset <strong>of</strong> the experiment, the extra-<br />

gonodal sperm reserves were depleted with 3 collections every other day for one week. For the<br />

experiment, the semen was collected twice a week. Semen was collected on a teaser mare using<br />

st<strong>and</strong>ard procedures with a custom made open ended artificial vagina based on the Colorado State<br />

University model as described by Pickett (1993). After collection, semen was filtered through a<br />

sterile gauze to remove the gel fraction <strong>and</strong> debris. The gel-free volume was noted <strong>and</strong> the sperm<br />

concentration was determined using a Bürker haemocytometer after 1:9 dilution with HCl 1M.<br />

4.1.3.2. Media<br />

Fresh-cooled semen was processed <strong>and</strong> stored in Gent Extender (Minitüb, L<strong>and</strong>shut,<br />

Germany), which is a skimmed milk based diluter containing 5 % clarified egg yolk <strong>and</strong> gentamycin (1<br />

mg/mL). If the semen was to be cryopreserved, a second dilution was performed in Gent Extender<br />

for Freezing (Minitüb, L<strong>and</strong>shut, Germany) which has the same composition as the Gent Extender<br />

plus 5 % glycerol.<br />

For the fluorescent staining procedures, the samples were diluted in a HEPES buffered<br />

solution containing 0.04% BSA.<br />

141


CHAPTER 4.1<br />

142<br />

4.1.3.3. Semen processing<br />

After determination <strong>of</strong> the initial sperm concentration, the semen was diluted to a final<br />

concentration <strong>of</strong> 25 × 10 6 sperm /mL using Gent Extender. Six conical bottom centrifuge tubes <strong>of</strong> 15<br />

mL (Cellstar ® , Greiner bio-one, Germany) were filled with the diluted semen (total <strong>of</strong> 375 × 10 6 sperm<br />

cells per tube) <strong>and</strong> served as the negative control or were subjected to one <strong>of</strong> the five different CPs,<br />

respectively. After centrifugation, 90% <strong>of</strong> the supernatant was aspirated, leaving a sperm pellet with<br />

a volume <strong>of</strong> approximately 1.5 mL.<br />

The concentration in the aspirated supernatant was determined using a Neubauer<br />

haemocytometer. The obtained concentration was multiplied by the volume <strong>of</strong> aspirated<br />

supernatant in order to calculate the total number <strong>of</strong> sperm cells lost per tube when the<br />

supernatant was discarded. The remaining sperm pellet was resuspended in the appropriate diluter<br />

for further processing as cooled or frozen semen.<br />

4.1.3.4. Evaluation <strong>of</strong> sperm characteristics <strong>and</strong> staining procedures<br />

Prior to analysis, an aliquot (500 µL) <strong>of</strong> semen was equilibrated to 37 °C. The morphology <strong>of</strong><br />

sperm cells was examined on eosin-nigrosin stained smears which were prepared as described by<br />

Barth <strong>and</strong> Oko (1989). At least 200 sperm cells were evaluated <strong>and</strong> recorded per slide, individual<br />

morphological abnormalities were noted according to their location (head, midpiece or tail).<br />

Motility was evaluated with a computer-assisted sperm analyzer (CASA) (Hamilton-Thorne<br />

Ceros 12.3). For each analysis, 5 µL <strong>of</strong> diluted semen was mounted on a disposable Leja counting<br />

chamber (Orange Medical, Brussels, Belgium) <strong>and</strong> maintained at 37 °C using a minitherm stage<br />

warmer. Five r<strong>and</strong>omly selected microscopic fields in the center <strong>of</strong> the slide were scanned 5 times<br />

each, obtaining 25 scans for every semen sample. The mean <strong>of</strong> the 5 scans for each microscopic field<br />

was used for the statistical analysis (Rijsselaere et al., 2003). The s<strong>of</strong>tware settings <strong>of</strong> the HTR 12.3,<br />

based on Loomis <strong>and</strong> Graham (2008), are summarized in Table 1.


Table 1. S<strong>of</strong>tware settings <strong>of</strong> the Hamilton Thorne Ceros 12.3 used in this study<br />

Parameter Value<br />

Frames acquired 30<br />

Frame rate (Hz) 60<br />

Minimum contrast 60<br />

Minimum cell size (pixels) 6<br />

Minimum static contrast 25<br />

Straightness cut-<strong>of</strong>f (%, STR) 75<br />

Average-path velocity cut-<strong>of</strong>f PM (µm/s,VAP) 50<br />

VAP cut-<strong>of</strong>f static cells (µm/s) 20<br />

Cell intensity 100<br />

Static head size 0.55 – 2.04<br />

Static head intensity 0.45 – 1.70<br />

Static elongation 11 - 99<br />

CHAPTER 4.1<br />

Membrane integrity was evaluated using a fluorescent SYBR14-Propidium Iodide (PI) staining<br />

technique (Molecular Probes cat n°: L-7011, Leiden, The Netherl<strong>and</strong>s) based on a previously<br />

described method (Garner <strong>and</strong> Johnson, 1995). Briefly, 225 µL HEPES-TALP was mixed with 25 µL <strong>of</strong><br />

diluted semen <strong>and</strong> 1.25 µL SYBR14 (1:50 dilution) was added. After 5 min <strong>of</strong> incubation at 37 °C, 1.25<br />

µL PI was added <strong>and</strong> incubated for another 5 min. Two hundred cells were evaluated per slide using<br />

a Leica DMR fluorescence microscope <strong>and</strong> three populations <strong>of</strong> sperm cells could be identified<br />

(green = living, red = dead <strong>and</strong> orange = moribund).<br />

Acrosomal status was determined using fluorescent Pisum Sativum Agglutinin (PSA)<br />

conjugated with fluorescein isothiocyanate (FITC) (Sigma-Aldrich cat n°: L 0770, Bornem, Belgium).<br />

The staining was performed in a similar way as described by Rathi et al. (2003). Briefly, 500 µL <strong>of</strong><br />

semen was centrifuged for 10 min at 720 × g <strong>and</strong> the pellet was resuspended with HEPES-TALP. The<br />

semen was centrifuged again for 10 min at 720 × g, the supernatant was removed <strong>and</strong> the pellet<br />

fixed in 100 µL absolute ethyl alcohol (Vel cat n°: 1115, Haasrode, Belgium) <strong>and</strong> cooled for 30 min at<br />

4 °C. A drop <strong>of</strong> 20 µL semen was smeared on a glass slide <strong>and</strong> 40 µL PSA-FITC (2 mg PSA-FITC diluted<br />

in 2 mL phosphate buffered saline (PBS)) was added. The glass slide was kept at 4 °C for 15 min,<br />

washed 10 times with aqua bidest <strong>and</strong> allowed to air-dry in the dark. Immediately after drying, two<br />

hundred sperm cells were evaluated per slide. The acrosomal region <strong>of</strong> the acrosome intact sperm<br />

cells was labeled heavily green, while the acrosome reacted sperm retained only an equatorial b<strong>and</strong><br />

<strong>of</strong> label with little or no labeling <strong>of</strong> the anterior head region.<br />

143


CHAPTER 4.1<br />

144<br />

In the experiment 3, DNA integrity was analyzed using a Terminal deoxynucleotidyl<br />

Transferase Biotin-dUTP Nick End Labeling (TUNEL) assay. The TUNEL assay was performed using the<br />

In Situ Cell Death Detection Kit (Boehringer, Mannheim, Germany) to detect the presence <strong>of</strong> free 3′-<br />

OH termini in single <strong>and</strong> double-str<strong>and</strong>ed sperm DNA (De Pauw et al., 2003). In short, sperm samples<br />

were diluted with PVP solution (1 mg/mL in PBS) to a final concentration <strong>of</strong> 10 × 10 6 sperm/mL from<br />

which a 10 μL aliquot was smeared onto a poly-l-lysine-coated microslide. After fixation with 4%<br />

paraformaldehyde in polyvinyl pyrrolidone (PVP) solution (pH 7.4) <strong>and</strong> permeabilisation with 0.5%<br />

(v/v) Triton X-100 in PBS, the sperm cells were incubated with the TUNEL-mixture (fluorescein-dUTP<br />

<strong>and</strong> terminal deoxynucleotidyl transferase) for 1 h at 37 °C in the dark. Both positive (1 mg/mL<br />

DNAse I) <strong>and</strong> negative controls (nucleotide mixture in the absence <strong>of</strong> transferase) were included in<br />

each replicate. Hoechst 33342 was used to counter stain sperm DNA. The samples were examined by<br />

fluorescence microscopy (Leica DMR; magnification 400×, oil immersion). At least 200 sperm cells<br />

from each sample were analyzed r<strong>and</strong>omly to evaluate the percentage <strong>of</strong> TUNEL-positive sperm cells<br />

(bright green nuclear fluorescence) (see De Pauw et al. (2003) for further details).<br />

4.1.3.5. Centrifugation protocols<br />

After dilution <strong>of</strong> the raw semen with Gent Extender (at 37 °C), each tube, except for the<br />

uncentrifuged control, was centrifuged with a Heraeus Multifuge 3 L-R (Kendro Laboratory Products,<br />

Waltham, USA) at ambient temperature using 1 <strong>of</strong> 5 CPs. Centrifugation protocol 1 was the<br />

reference protocol being 10 min at 600 × g (Ecot et al., 2005; Knop et al., 2005; Vidament et al., 2000;<br />

Weiss et al., 2004); CPs 2, 3, 4 <strong>and</strong> 5 were 5 min at 600 × g, 1200 × g, 1800 × g <strong>and</strong> 2400 × g,<br />

respectively. The deceleration speed was 1, which was the slowest possible deceleration in order to<br />

minimize disturbance due to turbulence. Since only one centrifuge was available, the processing <strong>of</strong><br />

each ejaculate from the same stallion started with a different CP to eliminate influence <strong>of</strong> a<br />

prolonged contact time with the SP. So for each stallion every ejaculate was centrifuged first with a<br />

different alternating protocol.


4.1.3.6.Experimental design<br />

CHAPTER 4.1<br />

EXPERIMENT 1: influence <strong>of</strong> the centrifugation protocol on the function <strong>of</strong> fresh <strong>and</strong> cooled<br />

sperm<br />

Fresh semen was analyzed (concentration, CASA, eosin/nigrosin staining <strong>and</strong> SYBR14-PI)<br />

immediately after collection (T0). The semen was diluted to 25 × 10 6 sperm cells/mL <strong>and</strong> allocated to<br />

six 15-mL test tubes (Cellstar ® , Greiner bio-one, Germany). Five <strong>of</strong> these tubes (1 to 5) were<br />

subjected to one <strong>of</strong> the 5 CPs whereas tube 6 served as a negative control (no centrifugation). After<br />

centrifugation, the sperm concentration was determined in the aspirated supernatant. The sperm<br />

pellet was resuspended in fresh diluter <strong>and</strong> an aliquot <strong>of</strong> each test tube was analyzed (T1). The test<br />

tubes containing the processed semen were allowed to cool gradually to 5°C in 50-mL test tubes<br />

filled with water (22°C) <strong>and</strong> placed in a 5°C refrigerator. Sperm analyses were repeated at 24h (T2),<br />

48h (T3) <strong>and</strong> 72h (T4). PSA-FITC staining was performed immediately after centrifugation <strong>and</strong> at 72h.<br />

EXPERIMENT 2: influence <strong>of</strong> the pre-freezing centrifugation protocol on the function <strong>of</strong><br />

frozen-thawed sperm<br />

The initial semen processing was performed as described in experiment 1. After<br />

centrifugation using each <strong>of</strong> the five CP’s, the sperm pellet was resuspended in Gent extender for<br />

freezing to a final concentration <strong>of</strong> 50×10 6 sperm cells/mL. The extended semen was loaded into 0.5<br />

mL straws (MRS1, L’Aigle Cedex, France) at ambient temperature, placed on racks <strong>and</strong> transported<br />

to the freezing chamber <strong>of</strong> an automated controlled rate freezer (IceCube 14S, Neupurkersdorf,<br />

Austria). The semen was first cooled from 22°C to 4°C in 80 min <strong>and</strong> then frozen from 4 °C to -140 °C<br />

at 60 °C/min (adapted from Vidament et al. (2000)). At -140 °C the freezing racks were removed<br />

from the freezing chamber <strong>and</strong> plunged into liquid nitrogen. Frozen semen was stored for at least 1<br />

month before analysis. The samples were thawed by plunging into a 37 °C water bath for 30 s. Five<br />

straws from the same batch (same ejaculate, same treatment) were pooled, allowed to equilibrate<br />

for 5 min at 37 °C <strong>and</strong> analyzed once, performing the same analyses as described in experiment 1.<br />

EXPERIMENT 3: influence <strong>of</strong> the centrifugation protocol on the DNA integrity <strong>of</strong> fresh <strong>and</strong><br />

cooled sperm<br />

From four stallions, one ejaculate was collected <strong>and</strong> diluted in Gent Extender to a final<br />

concentration <strong>of</strong> 25×10 6 sperm cells/mL. The diluted semen was subjected to three different CP’s<br />

(CP1, CP2 <strong>and</strong> CP5) whereas one tube served as negative (uncentrifuged) control. Immediately after<br />

145


CHAPTER 4.1<br />

centrifugation (T1) <strong>and</strong> 72 h (T4) after cooled storage, an aliquot <strong>of</strong> each tube was examined for DNA<br />

integrity using TUNEL assay.<br />

146<br />

4.1.3.7. Statistical analysis<br />

EXPERIMENT 1: influence <strong>of</strong> centrifugation protocol on function <strong>of</strong> fresh <strong>and</strong> cooled sperm<br />

1/ sperm loss<br />

To evaluate whether the treatment (CP 1, 2, 3, 4 <strong>and</strong> 5) had an influence on sperm<br />

concentration in the aspirated supernatant, a Kruskal Wallis H test was conducted (overall treatment<br />

effect) as well as a Mann-Whitney U test (to test the difference between CP 1 versus the other<br />

treatments, separately) using SPSS s<strong>of</strong>tware package (version 17.0, SPSS Inc., Chicago, IL).<br />

2/ effect <strong>of</strong> centrifugation (non CP vs CP)<br />

Mixed models were fitted in SAS 9.1.3. (PROC MIXED) with centrifugation (non CP vs CP),<br />

time (T1- T4) <strong>and</strong> interaction centrifugation × time included as predictor variables. Stallion (1-5) <strong>and</strong><br />

ejaculate (5 per stallion) were included as r<strong>and</strong>om effects to account for clustering <strong>of</strong> ejaculate in<br />

stallion <strong>and</strong> the repeated measurements over time, within ejaculate (including an AR(1) correlation<br />

structure), respectively. The outcome variables (percentage membrane intact sperm cells,<br />

percentage acrosome intact sperm cells, BCF, TM <strong>and</strong> PM) were normally distributed based on the<br />

inspection <strong>of</strong> QQ-plots <strong>and</strong> Kolmogorov-Smirnov tests.<br />

3/ effect <strong>of</strong> centrifugation protocol<br />

Mixed models were fitted in SAS 9.1.3. (PROC MIXED) with CP (1-5), time (T1- T4) <strong>and</strong> the<br />

interaction CP × time included as predictor variables. Stallion (1-5) <strong>and</strong> ejaculate (5 per stallion) were<br />

included as r<strong>and</strong>om effects to account for clustering <strong>of</strong> ejaculate in stallion <strong>and</strong> the repeated<br />

measurements over time, within ejaculate (including an AR(1) correlation structure), respectively.<br />

The outcome variables (percentage membrane intact sperm cells, percentage acrosome intact sperm<br />

cells, BCF, TM <strong>and</strong> PM) were normally distributed based on the inspection <strong>of</strong> QQ-plots <strong>and</strong><br />

Kolmogorov-Smirnov tests.


sperm<br />

CHAPTER 4.1<br />

EXPERIMENT 2: influence <strong>of</strong> pre-freezing centrifugation protocol on function <strong>of</strong> thawed<br />

Mixed models were fitted in SAS 9.1.3. (PROC MIXED) with CP (1-5), ejaculate (1-5) <strong>and</strong> the<br />

interaction CP × ejaculate included as predictor variables. Stallion (1-5) was included as r<strong>and</strong>om<br />

effects to account for clustering <strong>of</strong> ejaculate in stallion. The outcome variables (percentage<br />

membrane intact sperm cells, percentage acrosome intact sperm cells, BCF, TM <strong>and</strong> PM) were<br />

normally distributed based on the inspection <strong>of</strong> QQ-plots <strong>and</strong> Kolmogorov-Smirnov tests.<br />

sperm<br />

EXPERIMENT 3: influence <strong>of</strong> centrifugation protocol on DNA integrity <strong>of</strong> fresh <strong>and</strong> cooled<br />

Since the percentages <strong>of</strong> DNA intact sperm cells were not normally distributed, a time effect<br />

(T1 vs T4) was analyzed using Wilcoxon signed ranks test. Effect <strong>of</strong> treatment was determined using<br />

Kruskal-Wallis test at T1 <strong>and</strong> T4. Analyses were done using SPSS s<strong>of</strong>tware package (version 17.0,<br />

SPSS Inc., Chicago, IL).<br />

4.1.4. Results<br />

4.1.4.1. EXPERIMENT 1: influence <strong>of</strong> the centrifugation protocol on the function <strong>of</strong><br />

fresh <strong>and</strong> cooled sperm<br />

The general sperm characteristics over all the ejaculates from the 5 stallions immediately<br />

after collection are presented in Table 2.<br />

There was an overall effect <strong>of</strong> CP on sperm concentration in the recovered supernatant<br />

(p


CHAPTER 4.1<br />

(non CP vs CP) was significant for these parameters (p


35<br />

B<br />

100<br />

A<br />

33<br />

beat cross frequency (Hz)<br />

80<br />

31<br />

60<br />

29<br />

40<br />

27<br />

20<br />

% membrane intact sperm<br />

25<br />

0<br />

0 h 24 h 48 h 72 h<br />

0 h 24 h 48 h 72 h<br />

100<br />

D<br />

100<br />

C<br />

80<br />

% progressive motility<br />

80<br />

60<br />

60<br />

% total motiliy<br />

40<br />

40<br />

20<br />

20<br />

0<br />

0<br />

0 h 24 h 48 h 72 h<br />

0 h 24 h 48 h 72 h<br />

Centrifuged samples<br />

Uncentrifuged samples<br />

Fig. 1. Effect <strong>of</strong> centrifugation on percentage membrane intact sperm (A), beat cross frequency (B), total motility (C) <strong>and</strong> progressive motility (D) during<br />

chilled storage for 72 hours.


35<br />

B<br />

80<br />

A<br />

33<br />

beat cross frequency (Hz)<br />

75<br />

70<br />

31<br />

65<br />

29<br />

60<br />

27<br />

55<br />

% membrane intact sperm<br />

25<br />

50<br />

0 h 24 h 48 h 72 h<br />

0 h 24 h 48 h 72 h<br />

50<br />

D<br />

70<br />

C<br />

45<br />

% progressive motility<br />

65<br />

40<br />

60<br />

% total motiliy<br />

35<br />

55<br />

30<br />

50<br />

25<br />

45<br />

20<br />

40<br />

0 h 24 h 48 h 72 h<br />

0 h 24 h 48 h 72 h<br />

2400 × g 5 min<br />

CP5<br />

1800 × g 5 min<br />

CP4<br />

1200 × g 5 min<br />

CP3<br />

600 × g 5 min<br />

CP2<br />

600 × g 10 min<br />

CP1<br />

Fig. 2. Effect <strong>of</strong> different centrifugation protocols on percentage membrane intact sperm (A), beat cross frequency (B), total motility (C) <strong>and</strong> progressive<br />

motility (D) during chilled storage for 72 hours.


Beat cross frequency (Hz)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

a,b<br />

600 × g 10min<br />

CP1<br />

a<br />

600 × g 5min<br />

CP2<br />

b b<br />

1200 × g 5min<br />

CP3<br />

1800 × g 5min<br />

CP4<br />

CHAPTER 4.1<br />

Fig. 3. Effect <strong>of</strong> different centrifugation protocols on beat cross frequency <strong>of</strong> frozen-thawed stallion<br />

sperm, error bars are SD (columns with the same character are statistically different from<br />

the reference protocol (600 × g for 10 min), for a p


CHAPTER 4.1<br />

152<br />

4.1.4.2. EXPERIMENT 2: influence <strong>of</strong> the pre-freezing centrifugation protocol on the<br />

function <strong>of</strong> frozen-thawed sperm<br />

There was a significant effect <strong>of</strong> ejaculate for all evaluated parameters (% acrosome intact<br />

sperm, p


4.1.5. Discussion<br />

CHAPTER 4.1<br />

In this study, we demonstrated that the loss <strong>of</strong> sperm after centrifugation can be minimized<br />

by using an appropriate protocol without damaging the sperm. Centrifugation protocol had a limited<br />

effect on in vitro sperm characteristics in our study. We specifically showed that the use <strong>of</strong> the<br />

st<strong>and</strong>ard protocol (CP 1) led to an average sperm loss <strong>of</strong> 22%, resulting in a considerable reduction in<br />

the number <strong>of</strong> AI doses obtained. If the centrifugation time was decreased while the exerted g-force<br />

was increased up to 1800 × g or even 2400 × g, sperm losses were reduced to 7.4% <strong>and</strong> 2.1%,<br />

respectively, without any apparent changes in the in vitro sperm quality.<br />

If semen was cooled <strong>and</strong> stored after centrifugation, only a minimal effect <strong>of</strong> the used CP<br />

was noticed on total motility as evaluated by CASA. Surprisingly, the motility was reduced in the<br />

group where the lowest centrifugation force was used for the shortest time (600 × g for 5 min). The<br />

sperm pellet probably was very s<strong>of</strong>t which allowed the most motile sperm cells to swim up<br />

immediately after centrifugation had ceased. As a consequence, these highly motile sperm may be<br />

discarded during aspiration <strong>of</strong> the supernatant. This was confirmed in a preliminary experiment (n=4)<br />

by analyzing the supernatant <strong>of</strong> semen samples centrifuged according to CP1, 2 <strong>and</strong> 5 (data not<br />

shown). The average TM <strong>and</strong> PM in the supernatant was 41.3% <strong>and</strong> 23.5%, 54.8% <strong>and</strong> 31.8% <strong>and</strong> 8.3%<br />

<strong>and</strong> 4.0% for CP1, 2 <strong>and</strong> 5, respectively, suggesting that the motility <strong>of</strong> the discarded sperm cells in<br />

the supernatant is much higher when low centrifugation forces are used. Therefore, application <strong>of</strong> a<br />

low g-force for a short time leads to important losses <strong>of</strong> top quality sperm cells <strong>and</strong> must definitely<br />

be avoided.<br />

Additionally, we found a significant effect on BCF for sperm samples cooled <strong>and</strong> stored after<br />

centrifugation. The BCF <strong>of</strong> the sperm subjected to CPs 2 <strong>and</strong> 4 was reduced compared to the<br />

st<strong>and</strong>ard protocol. Moreover, the quality <strong>of</strong> the frozen-thawed samples after being subjected to one<br />

<strong>of</strong> the tested CPs did not differ significantly for any <strong>of</strong> the tested quality parameters except for BCF.<br />

Protocols 2 <strong>and</strong> 4 yielded the highest BCF values after thawing, which was in contrast with our<br />

observations for cooled preservation. However, the actual impact <strong>of</strong> BCF on fertility is difficult to<br />

predict since few data are available in literature (Gil et al., 2009). BCF is a parameter indicative for<br />

spermatic vigor. Changes in BCF under capacitating conditions in vitro are thought to be related to<br />

sperm hyperactivation that occurs in vivo <strong>and</strong> might favor the penetration <strong>of</strong> oocytes (Gil et al.,<br />

2009).<br />

The results <strong>of</strong> the experiment 3 showed a decrease <strong>of</strong> DNA integrity over time, although<br />

centrifugation did not influence DNA integrity. These findings are contradictory with the study <strong>of</strong><br />

153


CHAPTER 4.1<br />

Love <strong>and</strong> coworkers (2005) where increased DNA damage immediately after centrifugation was<br />

reported. These authors showed that complete removal <strong>of</strong> SP after centrifugation <strong>and</strong> subsequent<br />

resuspension <strong>of</strong> the sperm pellet in fresh diluter resulted in better sperm quality (motility <strong>and</strong> DNA)<br />

compared to samples in which SP was still present after simple dilution <strong>of</strong> the semen. Therefore the<br />

impact <strong>of</strong> the centrifugation on DNA integrity needed to be further examined. In our study, no<br />

difference in DNA damage was present immediately after centrifugation which might be explained<br />

by the method used to evaluate DNA integrity. The study <strong>of</strong> Love et al. (2005) evaluated DNA<br />

integrity using the sperm chromatin structure assay (SCSA). In comparison to the TUNEL assay, with<br />

the SCSA a larger number <strong>of</strong> sperm cells is analyzed by a flow cytometer based on the colour <strong>of</strong> the<br />

metachromatic dye acridine orange (Evenson <strong>and</strong> Wixon, 2006). Therefore it might be advisable to<br />

measure the direct impact <strong>of</strong> different CPs with flow cytometry (SCSA or TUNEL) to get a more<br />

accurate impression <strong>of</strong> the possible side effect <strong>of</strong> centrifugation on DNA integrity.<br />

154<br />

Cushioned centrifugation techniques have previously been described as an answer to reduce<br />

sperm damage while maximizing the sperm harvest. A variety <strong>of</strong> dense solutions acting as a cushion<br />

have been described (Cochran et al., 1984). The frequently used iodixanol was first reported for<br />

stallion sperm cells in 1997 (Revell et al., 1997). Very high recovery rates have been described (Ecot<br />

et al., 2005; Knop et al., 2005) using such a commercially available cushion, when centrifuging at<br />

1000 × g for 20 min. However, the most critical step is carefully removing the cushion material after<br />

centrifugation. Indeed, it is critical to aspirate as much cushion fluid as possible without aspirating<br />

sperm cells from the adjacent b<strong>and</strong> to avoid possible deleterious effects <strong>of</strong> the iodixanol solution<br />

(Waite et al., 2008). The use <strong>of</strong> very small amounts (30 µL) <strong>of</strong> cushion without removal was proven<br />

to be harmless. However, these small volumes require specially designed, custom-made nipple<br />

centrifugation tubes which are not readily available (Waite et al., 2008). Because <strong>of</strong> these important<br />

drawbacks, cushioned centrifugation is not commonly used in practice. Therefore, the impact <strong>of</strong> CP<br />

on sperm quality remains an important subject to examine.<br />

In summary, sperm losses can be reduced substantially by centrifuging stallion semen for 5<br />

min at 1800 or 2400 × g without a cushion <strong>and</strong> without impairing the in vitro sperm function after<br />

cooled or frozen storage. This leads to an increase in the number <strong>of</strong> AI doses produced per ejaculate.<br />

It can easily result in an additional two AI doses from an average ejaculate <strong>of</strong> 10 billion sperm.<br />

Nevertheless, the effects <strong>of</strong> these CPs on DNA damage requires further investigation as well as the<br />

impact on in vivo fertility.


References<br />

CHAPTER 4.1<br />

Aurich C. 2008. Recent advances in cooled-semen technology. Animal <strong>Reproduction</strong> Science 107:268-<br />

75.<br />

Barth A.D., Oko R.J. 1989. Abnormal morphology <strong>of</strong> bovine spermatozoa. Ames, Iowa: Iowa State<br />

University Press.<br />

Carvajal G., Cuello C., Ruiz M., Vázquez J.M., Martínez E.A., Roca J. 2004 Effects <strong>of</strong> centrifugation<br />

before freezing on boar sperm cryosurvival. Journal <strong>of</strong> Andrology 25:389-96.<br />

Cochran J.D., Amann R.P., Froman D.P., Pickett B.W. 1984. Effects <strong>of</strong> centrifugation, glycerol level,<br />

cooling to 5°C, freezing rate <strong>and</strong> thawing rate on the post-thaw motility <strong>of</strong> equine sperm.<br />

Theriogenology 22:25-38.<br />

De Pauw I.M.C., Van Soom A., Mintiens K., Verberckmoes S., de Kruif A. 2003 In vitro survival <strong>of</strong><br />

bovine spermatozoa stored at room temperature under epididymal conditions.<br />

Theriogenology 59:1093-107.<br />

Ecot P., Decuadro-Hansen G., Delhomme G., Vidament M. 2005. Evaluation <strong>of</strong> a cushioned<br />

centrifugation technique for processing equine semen for freezing. Animal <strong>Reproduction</strong><br />

Science 89:245-8.<br />

Evenson D.P., Wixon R. 2006. Clinical aspects <strong>of</strong> sperm DNA fragmentation detection <strong>and</strong> male<br />

infertility. Theriogenology 65:979-91.<br />

Garner D.L., Johnson L.A. 1995. Viability assessment <strong>of</strong> mammalian sperm using SYBR-14 <strong>and</strong><br />

propidium iodide. Biology <strong>of</strong> <strong>Reproduction</strong> 53:276-84.<br />

Gil M.C., García-Herreros M., Barón F.J., Aparicio I.M., Santos A.J., García-Marín L.J. 2009.<br />

Morphometry <strong>of</strong> porcine spermatozoa <strong>and</strong> its functional significance in relation with the<br />

motility parameters in fresh semen. Theriogenology 71:254-63.<br />

Heitl<strong>and</strong> A.V., Jasko D.J., Squires E.L., Graham J.K., Pickett B.W., Hamilton C. 1996 Factors affecting<br />

motion characteristics <strong>of</strong> frozen-thawed stallion spermatozoa. Equine Veterinary Journal<br />

28:47-53.<br />

Jasko D.J., Moran D.M., Farlin M.E., Squires E.L. (1991) Effect <strong>of</strong> seminal plasma dilution or removal<br />

on spermatozoal motion characteristics <strong>of</strong> cooled stallion semen. Theriogenology 35:1059-67.<br />

Knop K., H<strong>of</strong>fmann N., Rath D., Sieme H. 2005. Effects <strong>of</strong> cushioned centrifugation technique on<br />

sperm recovery <strong>and</strong> sperm quality in stallions with good <strong>and</strong> poor semen freezability. Animal<br />

<strong>Reproduction</strong> Science 2005;89:294-7.<br />

Loomis P.R. 2006. Advanced methods for h<strong>and</strong>ling <strong>and</strong> preparation <strong>of</strong> stallion semen. Veterinary<br />

Clinics <strong>of</strong> North America: Equine Practice 22:663-76.<br />

Loomis P.R., Graham J.K. 2008. Commercial semen freezing: individual male variation in cryosurvival<br />

<strong>and</strong> the response <strong>of</strong> stallion sperm to customized freezing protocols. Animal <strong>Reproduction</strong><br />

Science 105:119-28.<br />

155


CHAPTER 4.1<br />

Love C.C., Brinsko S.P., Rigby S.L., Thompson J.A., Blanchard T.L., Varner D.D. 2005 Relationship <strong>of</strong><br />

seminal plasma level <strong>and</strong> extender type to sperm motility <strong>and</strong> DNA integrity. Theriogenology<br />

63:1584-91.<br />

Martin J.C., Klug E., Günzel A.-R. 1979. Centrifugation <strong>of</strong> stallion semen <strong>and</strong> its storage in large<br />

volume straws. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility Supplement 27:47-51.<br />

Pickett B.W. 1993. Collection <strong>and</strong> evaluation <strong>of</strong> stallion semen for artificial insemination. In: Equine<br />

<strong>Reproduction</strong>, McKinnon AO, Voss JL (Ed.), Williams & Wilkins, pp.705-14.<br />

Rathi R., Colenbr<strong>and</strong>er B., Stout T.A., Bevers M.M., Gadella B.M. 2003. Progesterone induces<br />

acrosome reaction in stallion spermatozoa via a protein tyrosine kinase dependent pathway.<br />

Molecular <strong>Reproduction</strong> <strong>and</strong> Development 64:120-8.<br />

Revell S.G., Pettit M.T., Ford T.C. 1997. Use <strong>of</strong> centrifugation over iodixanol to reduce damage when<br />

processing stallion sperm for freezing. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> Fertility, Abstr series n°19,<br />

p38.<br />

Rijsselaere T., Van Soom A., Maes D., de Kruif A. 2003 Effect <strong>of</strong> technical settings on canine semen<br />

motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 60:1553-68.<br />

Shekarriz M., DeWire D.M., Thomas A.J. Jr., Agarwal A. 1995 A method <strong>of</strong> human semen<br />

centrifugation to minimize the iatrogenic sperm injuries caused by reactive oxygen species.<br />

European Urology 28:31-5.<br />

Vidament M., Ecot P., Noue P., Bourgeois C., Magistrini M., Palmer E. 2000 Centrifugation <strong>and</strong><br />

addition <strong>of</strong> glycerol at 22 degrees C instead <strong>of</strong> 4 degrees C improve post-thaw motility <strong>and</strong><br />

fertility <strong>of</strong> stallion spermatozoa. Theriogenology 54:907-19.<br />

Waite J.A., Love C.C., Brinsko S.P., Teague S.R., Salazar J.L. Jr., Mancil S.S., Varner D.D. 2008. Factors<br />

impacting equine sperm recovery rate <strong>and</strong> quality following cushioned centrifugation.<br />

Theriogenology 70:704-14.<br />

Weiss S., Janett F., Burger D., Hässig M., Thun R. 2004. The influence <strong>of</strong> centrifugation on quality <strong>and</strong><br />

freezability <strong>of</strong> stallion semen. Schweizer Archiv für Tierheilkunde 146:285-93.<br />

156


4.2<br />

Sperm selection using single layer centrifugation prior<br />

to cryopreservation can increase post-thaw sperm<br />

quality in stallions<br />

Hoogewijs M. 1 , Morrell J.², Van Soom A. 1 , Govaere J. 1 , Johannisson<br />

A.³,Piepers S. 1 , De Schauwer C. 1 , de Kruif A. 1 , De Vliegher S. 1<br />

submitted.<br />

1 <strong>Department</strong> <strong>of</strong> <strong>Reproduction</strong>, <strong>Obstetrics</strong> <strong>and</strong> <strong>Herd</strong> <strong>Health</strong>, Faculty <strong>of</strong> Veterinary Medicine,<br />

Ghent University, Merelbeke, Belgium<br />

² Division <strong>of</strong> <strong>Reproduction</strong>, <strong>Department</strong> <strong>of</strong> Clinical Sciences, Swedish University <strong>of</strong> Agricultural<br />

Sciences, Uppsala, Sweden<br />

³ <strong>Department</strong> <strong>of</strong> Anatomy, Physiology & Biochemistry, Swedish University <strong>of</strong> Agricultural Sciences,<br />

Uppsala, Sweden<br />

157


4.2.1. Abstract<br />

CHAPTER 4.2<br />

The increasing use <strong>of</strong> modern reproductive techniques in human medicine has led to a<br />

higher dem<strong>and</strong> for isolation <strong>of</strong> motile sperm. Several <strong>of</strong> these isolation techniques have been<br />

adapted for veterinary use <strong>and</strong> can be applied for the selection <strong>of</strong> a superior sperm sample from<br />

stallion semen. Until recently the major downside <strong>of</strong> such isolation techniques was the limitation in<br />

sperm volume that could be h<strong>and</strong>led. Androcoll-E had been shown to be successful for processing<br />

large volumes <strong>of</strong> equine semen but few data substantiate the potential beneficial effect <strong>of</strong> freezing<br />

an Androcoll-E selected equine sperm sample to obtain a higher post-thaw quality. In this study, the<br />

effect <strong>of</strong> Androcoll-E treatment <strong>of</strong> sperm prior to cryopreservation was compared with cushioned<br />

centrifugation using ejaculates from eight different stallions with different freezability. Androcoll-E<br />

treated sperm had increased quality parameters prior to freezing. The only downside <strong>of</strong> Androcoll-E<br />

treated sperm was the markedly lower yield following centrifugation when compared to the cushion<br />

centrifuged control group (50.9% vs. 97.1%, respectively). Post-thaw quality analysis showed an<br />

overall improved sperm quality for Androcoll-E treated samples. E.g., post-thaw progressive motility<br />

(PM) was on average 41.6% compared to 30.5% for the cushion centrifuged group. Androcoll-E<br />

treatment increased the likelihood that straws were accepted based on post-thaw PM (≥30%). In<br />

conclusion, Androcoll-E can be used with good results to select a superior sperm population prior to<br />

cryopreservation, in order to produce good quality frozen thawed semen.<br />

4.2.2. Introduction<br />

With the introduction <strong>of</strong> clinical assisted reproductive techniques in human reproductive<br />

medicine the requirement emerged for isolating the more motile spermatozoa. Isolation techniques<br />

evolved from simple washing procedures to actual separation based on different principles such as<br />

migration, filtration or density centrifugation (Henkel <strong>and</strong> Schill, 2003). In human <strong>and</strong>rology these<br />

techniques have been used also to select a superior sperm sample prior to freezing, in order to<br />

obtain a post-thaw sample with improved in vitro characteristics. The so-called swim-up procedure<br />

was proven to be successful to obtain a higher quality post-thaw sperm sample (Pérez-Sánchez et al.,<br />

1994; Esteves et al., 2000). Sperm cells after selection were equally susceptible to the stress induced<br />

by the freezing <strong>and</strong> thawing process as unselected sperm cells, indicating post-thaw quality<br />

improvement was probably only due to the initial better quality <strong>of</strong> the pre-freeze sample (Pérez-<br />

Sánchez et al., 1994). A discontinuous density gradient centrifugation prior to cryopreservation<br />

159


CHAPTER 4.2<br />

resulted in an improvement <strong>of</strong> sperm motility for up to 24 hours after thawing (Sharma <strong>and</strong> Agarwal,<br />

1996).<br />

160<br />

Different sperm selection techniques were compared such as the swim-up procedure <strong>and</strong><br />

the Percoll density gradient centrifugation which could process only limited volumes <strong>of</strong> semen,<br />

whereas glass wool Sephadex filtration (GWS) <strong>and</strong> Leucosorb ® filtration (LF) allowed filtration <strong>of</strong><br />

larger volumes (Sieme et al., 2003). The latter two were evaluated when used prior to<br />

cryopreservation. An increased post-thaw progressive motility (PM) for the GWS <strong>and</strong> LF treated<br />

samples was reported, but since Percoll centrifugation could only be used to process small volumes<br />

<strong>of</strong> 1 mL, the effect <strong>of</strong> density gradient centrifugation prior to cryopreservation was not evaluated. In<br />

another study, glass beads column separation resulted in an increased post-thaw sperm quality<br />

compared to unselected samples (Klinc et al., 2003). However, this technique requires specific<br />

material not readily available.<br />

The main drawbacks <strong>of</strong> gradient centrifugation can now be remedied since the technique<br />

has been simplified to a single layer centrifugation (SLC) protocol using Androcoll-E with comparable<br />

results for sperm yield <strong>and</strong> quality as for gradient centrifugation (Morrell et al., 2009a). Moreover, a<br />

technique using Androcoll-E-Large allows processing <strong>of</strong> 15 mL <strong>of</strong> extended semen per centrifugation<br />

tube (Morrell et al., 2009b), hence the problem <strong>of</strong> small volumes has been solved as well.<br />

Not all stallions produce semen that can be cryopreserved with good results. In a large<br />

French field study freezability <strong>of</strong> stallion semen was calculated by the ratio <strong>of</strong> the number <strong>of</strong><br />

selected ejaculates (PM>35%) over the total number <strong>of</strong> ejaculates frozen (Vidament et al., 1997).<br />

Over a total <strong>of</strong> 427 stallions, it was found that about 50% <strong>of</strong> the stallions were non freezable or poor<br />

freezers , about 25% were intermediate freezers <strong>and</strong> 25% were good freezers. The implementation<br />

<strong>of</strong> Androcoll-E in the freezing protocol might be a solution to improve sperm processing <strong>of</strong> poor<br />

freezing stallion semen.<br />

The aim <strong>of</strong> this study was to evaluate equine sperm selection using Androcoll-E-Large in a<br />

SLC prior to cryopreservation, by comparing this method with a cushioned centrifugation freezing<br />

protocol. The latter has consistently yielded the best results for freezing equine semen to date,<br />

making it an obvious point <strong>of</strong> comparison. In addition, it was evaluated whether the effect <strong>of</strong> the<br />

treatment (Androcoll-E-Large versus cushioned centrifugation) was modified by the freezability <strong>of</strong><br />

the stallion as determined by number <strong>of</strong> ejaculates with post-thaw PM ≥30%.


4.2.3. Materials <strong>and</strong> methods<br />

4.2.3.1. Stallions <strong>and</strong> semen collection<br />

CHAPTER 4.2<br />

Ejaculates (n=22) from 8 warm blood stallions <strong>of</strong> different freezability (7×3 ejaculates <strong>and</strong><br />

1×1, respectively), aged 3 to 14 years, were collected between March <strong>and</strong> May 2010. The stallions<br />

were housed individually in straw bedded stallion boxes <strong>and</strong> were fed good quality hay ad libitum<br />

<strong>and</strong> 2 kg <strong>of</strong> concentrates twice daily. Semen was collected using st<strong>and</strong>ard procedures as described<br />

by Pickett (1993). After collection, semen was filtered through a sterile gauze to remove the gel<br />

fraction <strong>and</strong> debris. The gel-free volume was recorded <strong>and</strong> the sperm concentration was determined<br />

using the Nucleocounter SP-100 (ChemoMetec, A/S, Allerød, Denmark) as described earlier (Hansen<br />

et al., 2006; Morrell et al., 2010).<br />

4.2.3.2. Semen processing<br />

Following collection, the ejaculates were processed as follows (Fig. 1). The raw semen was<br />

diluted to a final concentration <strong>of</strong> 100 × 10 6 sperm /mL using INRA96 (IMV, L’Aigle cedex, France) at<br />

37°C. After gentle homogenization <strong>of</strong> the diluted semen, 30 mL was transferred into a 50 mL conical<br />

bottom centrifuge tube (Cellstar ® , Greiner bio-one, Germany). Subsequently, 3.5 mL <strong>of</strong> MAXIFREEZE<br />

(IMV, L’Aigle cedex, France) was layered underneath the extended semen using a spinal needle <strong>and</strong><br />

5-mL syringe (Waite et al., 2008). The tubes were centrifuged (Universal 320R, Hettich, Beverly, MA,<br />

USA) at 1000 × g for 20 min at ambient temperature. After centrifugation, the supernatant was<br />

removed to the 5-mL mark (the top 5 mL <strong>of</strong> supernatant was kept separately in a two-part 5-mL<br />

syringe) <strong>and</strong> the majority <strong>of</strong> the cushion medium was removed by aspiration. Subsequently, the<br />

sperm pellet was resuspended in BotuCrio (Criovital, Gründau, Germany) to a final concentration <strong>of</strong><br />

100 × 10 6 sperm /mL as determined with the NucleoCounter. The diluted semen was loaded into 0.5<br />

mL straws, placed on racks <strong>and</strong> transported to the freezing chamber <strong>of</strong> an automated controlled rate<br />

freezer (IceCube 14S, Neupurkersdorf, Austria). The semen was first cooled from 22°C to 5°C in 20<br />

min <strong>and</strong> then frozen from 5 °C to -150 °C at 30 °C/min. At -150 °C the freezing racks were removed<br />

from the freezing chamber <strong>and</strong> plunged into liquid nitrogen.<br />

161


CHAPTER 4.2<br />

Fig. 1. Schematic presentation <strong>of</strong> the processing <strong>of</strong> the ejaculates using the cushioned<br />

centrifugation <strong>and</strong> the Androcoll-E selection, respectively<br />

162


CHAPTER 4.2<br />

For the SLC group, 15 mL <strong>of</strong> the diluted semen was gently layered on top <strong>of</strong> 15 mL Androcoll-<br />

E-Large (patent applied for) in a 50 mL conical bottom centrifuge tube. Two tubes were prepared as<br />

such <strong>and</strong> centrifuged (Heraeus Multifuge 3 L-R, Kendro Laboratory Products, Waltham, USA) for 20<br />

min at 300 × g. After centrifugation, the supernatant was removed as gently as possible without<br />

disturbing the sperm pellet <strong>and</strong> leaving as little colloid as possible. The sperm pellet was<br />

resuspended in 5 mL <strong>of</strong> INRA96 <strong>and</strong> washed by centrifugation for 10 min at 500 × g. Following<br />

washing, the sperm pellet was resuspended to a final sperm concentration <strong>of</strong> 100 × 10 6 sperm /mL,<br />

in 1.5 mL <strong>of</strong> supernatant from the cushioned group (which was filtered through t<strong>and</strong>em 5 µm <strong>and</strong><br />

1.2 µm sterile nylon syringe filters to remove any residual spermatozoa (Rigby et al., 2001)) <strong>and</strong><br />

BotuCrio. Adding back the supernatant ensured that the seminal plasma content <strong>of</strong> cushioned <strong>and</strong><br />

SLC treated samples was comparable. The diluted semen was loaded into 0.5 mL straws <strong>and</strong> frozen<br />

as described above.<br />

Fig. 2. Picture <strong>of</strong> equine semen diluted in INRA96® upon Androcoll-E for single layer centrifugation<br />

(a) before <strong>and</strong> (b) after centrifugation (300 × g for 20 min). The picture on the right clearly<br />

shows the selected sperm pellet.<br />

163


CHAPTER 4.2<br />

164<br />

4.2.3.3.Evaluation <strong>of</strong> sperm characteristics <strong>and</strong> staining procedures<br />

Motility analysis<br />

Objective motility evaluation was performed using CASA as described previously (Hoogewijs<br />

et al., 2010) except a Tokai Hit thermoplate was used to evaluate the semen at 37°C rather than a<br />

minitherm stage warmer. The parameters recorded by CASA available for statistical analysis were<br />

total motility (TM) <strong>and</strong> PM. Ejaculates with a post-thaw PM <strong>of</strong> ≥30% were classified as freezable as<br />

described by Loomis (2001) using the same strict CASA settings (Loomis <strong>and</strong> Graham, 2008).<br />

Freezability was calculated as described above (Vidament et al., 1997). If a stallion produced 2 or 3<br />

out <strong>of</strong> 3 ejaculates with a post-thaw PM <strong>of</strong> ≥30%, that stallion was classified as a good freezing<br />

stallion. If ≤1 <strong>of</strong> the ejaculates were freezable, the stallion was classified as a poor freezer.<br />

Morphology<br />

The morphology <strong>of</strong> the sperm cells was examined on eosin-nigrosin stained smears which<br />

were prepared as described by Barth <strong>and</strong> Oko (1989) using the ‘feathering’ technique (WHO, 2010).<br />

At least 200 membrane intact (unstained) sperm cells were evaluated <strong>and</strong> recorded per slide using<br />

×1000 magnification with oil immersion. The stained smears were identified with a number <strong>and</strong><br />

analyzed by one person, who was unaware <strong>of</strong> the identity <strong>of</strong> the samples. Individual morphological<br />

abnormalities were noted according to their location. The proportion <strong>of</strong> sperm with normal<br />

morphology (NM) <strong>and</strong> the proportion <strong>of</strong> sperm with abnormal head morphology (AH) were available<br />

for statistical analysis.<br />

Chromatin structure<br />

The chromatin structure was evaluated using the sperm chromatin structure assay (SCSA).<br />

This assay, developed by Evenson et al. (1980), assesses the susceptibility <strong>of</strong> sperm DNA to acid<br />

induced denaturation by using the metachromatic dye acridine orange (AO). In this test the ratio <strong>of</strong><br />

denaturated, single str<strong>and</strong>ed DNA (red fluorescence) to total DNA (stable, double str<strong>and</strong>ed DNA<br />

(green fluorescence) + single str<strong>and</strong>ed DNA) is calculated <strong>and</strong> expressed as the DNA fragmentation<br />

index (DFI, %). The procedure as well as the buffers <strong>and</strong> solutions used in the current study has been<br />

described in detail earlier (Januskauskas et al., 2001; Januskauskas et al., 2003; Evenson <strong>and</strong> Jost,<br />

2000). Briefly, straws containing the frozen semen were thawed in a water bath (37°C) for 30<br />

seconds. Immediately post thawing, an aliquot <strong>of</strong> semen was diluted in TNE buffer to a final sperm<br />

concentration <strong>of</strong> approximately 2 × 10 6 sperm/mL. An aliquot (100 µL) <strong>of</strong> the TNE diluted sperm was<br />

mixed with 200 µL <strong>of</strong> acid-detergent solution. Exactly 30 seconds later, the sample was stained by


CHAPTER 4.2<br />

adding 600 µL <strong>of</strong> AO staining solution. The stained samples were analyzed within 3-5 minutes <strong>of</strong> OA<br />

staining using a FACStar Plus flow cytometer (Becton Dickinson, San José, CA, USA) with settings <strong>and</strong><br />

s<strong>of</strong>tware as described by Morrell et al. (2008). The proportion DFI was available for statistical<br />

analysis.<br />

Membrane integrity<br />

Membrane integrity was evaluated using a fluorescent SYBR14-Propidium Iodide (PI) staining<br />

technique (Molecular Probes cat n°: L-7011, Leiden, The Netherl<strong>and</strong>s) based on a previously<br />

described method (Garner <strong>and</strong> Johnson, 1995). Briefly, after thawing in a 37°C water bath for 30s,<br />

the straws were emptied <strong>and</strong> 25 µL <strong>of</strong> semen was mixed with 225 µL HEPES-TALP <strong>and</strong> 1.25 µL<br />

SYBR14 (1:50 dilution) was added. After 5 min <strong>of</strong> incubation at 37 °C, 1.25 µL PI was added <strong>and</strong><br />

incubated for another 5 min at 37°C. Two hundred cells were evaluated per slide using a Leica DMR<br />

fluorescence microscope <strong>and</strong> the proportion <strong>of</strong> membrane intact (MI) sperm cells was calculated<br />

<strong>and</strong> used for statistical analysis.<br />

Acrosomal status<br />

The acrosomal status was determined using fluorescent Pisum Sativum Agglutinin (PSA)<br />

staining conjugated with fluorescein isothiocyanate (FITC) (Sigma-Aldrich cat n°: L 0770, Bornem,<br />

Belgium). The staining was performed in a similar way as described by Rathi et al. (2003). Briefly,<br />

after thawing in a 37°C water bath for 30s, the straws were emptied <strong>and</strong> 400 µL <strong>of</strong> semen was<br />

centrifuged for 10 min at 720 × g after which the pellet was resuspended with HEPES-TALP. The<br />

semen was centrifuged again for 10 min at 720 × g, the supernatant was removed <strong>and</strong> the pellet was<br />

fixed in 100 µL absolute ethyl alcohol (Vel cat n°: 1115, Haasrode, Belgium) <strong>and</strong> cooled for 30 min at<br />

4 °C. A drop <strong>of</strong> 20 µL semen was smeared on a glass slide <strong>and</strong> 40 µL PSA-FITC [2 mg PSA-FITC diluted<br />

in 2 mL phosphate buffered saline (PBS)] was added. The glass slide was kept at 4 °C for 15 min in<br />

the dark, washed 10 times with aqua bidest <strong>and</strong> allowed to air-dry in the dark. Immediately after<br />

drying, two hundred sperm cells were evaluated per slide. The acrosomal region <strong>of</strong> the acrosome<br />

intact sperm cells was labeled heavily green, while the acrosome reacted (AR) sperm retained only<br />

an equatorial b<strong>and</strong> <strong>of</strong> staining with little or no labeling <strong>of</strong> the anterior head region. The percentage<br />

<strong>of</strong> AR sperm was used for statistical analysis.<br />

165


CHAPTER 4.2<br />

166<br />

4.2.3.4. Experimental design<br />

Each <strong>of</strong> the 22 ejaculates was processed as described above. After re-dilution in BotuCrio,<br />

the sperm yield expressed as % was calculated [(final volume <strong>of</strong> in BotuCrio extended semen ×<br />

100×10 6 sperm/mL) divided by 3000×10 6 initial sperm per treatment multiplied by 100] <strong>and</strong> an<br />

aliquot <strong>of</strong> semen from each treatment was analyzed with CASA <strong>and</strong> a morphology smear was<br />

prepared prior to cryopreservation. Frozen semen was thawed <strong>and</strong> TM <strong>and</strong> PM were analyzed using<br />

CASA, while DFI, MI, AR <strong>and</strong> morphology were determined as well.<br />

4.2.3.5. Statistical analysis<br />

sperm quality parameters<br />

All data were percentages <strong>and</strong> were transformed by dividing them by 100 followed by<br />

calculating the arcsine <strong>of</strong> the square root <strong>of</strong> that value, in order to obtain a normal distribution as<br />

assessed by QQ-plots. The possible effect <strong>of</strong> “Treatment” (cushion vs. Androcoll-E) as the main<br />

variable <strong>of</strong> interest, on the different parameters (TM, PM, NM, AH, DFI, MI, AR, <strong>and</strong> yield,<br />

respectively) was studied. Therefore, multilevel models were fitted in MlwiN 2.02 (Centre for<br />

Multilevel Modeling, Bristol, UK) with the eight different parameters as outcome variables <strong>and</strong><br />

“Treatment” as fixed effect <strong>and</strong> “Stallion” as r<strong>and</strong>om effect to adjust for clustering <strong>of</strong> ejaculates<br />

within stallion. As well, “Freezability” (good vs. poor, see above) <strong>and</strong> the interaction term<br />

“Treatment” × “Freezability” were included in the model. Non-significant terms (p>0.05) were<br />

excluded from the full models.<br />

accepted straws <strong>and</strong> number <strong>of</strong> AI doses<br />

The association between “Treatment” <strong>and</strong> “Number <strong>of</strong> accepted straws” was studied using<br />

Chi 2 on 2×2 tables for poor <strong>and</strong> good freezing stallions using Win Episcope 2.0 (CLIVE, Edinburgh, UK).<br />

Breslow-Day test indicated interaction was present between “Freezability” <strong>and</strong> “Treatment”<br />

allowing only for stratum-specific (poor vs. good freezing stallions) conclusions. Odds ratios with 95%<br />

confidence interval were calculated to visualize the strength <strong>of</strong> the associations. As well, Chi² on 2×2<br />

table was used to test whether “Number <strong>of</strong> doses” was related to “Treatment” for good <strong>and</strong> poor<br />

freezing stallions. Significance was set at p


4.2.3. Results<br />

4.2.3.1. Sperm quality parameters<br />

CHAPTER 4.2<br />

Four stallions were considered to have a good freezability whereas the other four stallions<br />

were poor freezers. Good freezers had a significant higher pre-freeze TM <strong>and</strong> PM, <strong>and</strong> a higher post-<br />

thaw TM <strong>and</strong> MI compared to poor freezers (Table 1). The other parameters did not differ<br />

significantly between good <strong>and</strong> poor freezers.<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

A. Pre-freeze progressive motility (%) B. Yield (%)<br />

poor freezing<br />

stallions<br />

Fig. 2. Pre-freeze progressive motility <strong>and</strong> yield (with SD-bars) <strong>of</strong> stallion sperm following cushioned<br />

centrifugation or selection through Androcoll-E (good freezing vs. poor freezing vs. all<br />

stallions) <strong>of</strong> the stallion’s ejaculates.<br />

Analysis <strong>of</strong> the pre-freeze samples showed a significant improvement in sperm quality<br />

parameters for Androcoll-E treated sperm, although this was borderline non-significant for TM<br />

(Table 1). However, sperm yield was markedly lower compared to the cushioned group. Analysis <strong>of</strong><br />

the post thawed samples revealed an overall increase in sperm quality for the Androcoll-E treated<br />

samples (Table 1).<br />

Cushion Androcoll-E<br />

good freezing<br />

stallions<br />

all stallions<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

poor freezing<br />

stallions<br />

Cushion Androcoll-E<br />

good freezing<br />

stallions<br />

all stallions<br />

167


Table 1. Average sperm quality parameters (raw data, ± SD) <strong>and</strong> related factors <strong>of</strong> 22 different split ejaculates from 8 stallions pre- <strong>and</strong> post freezing<br />

following cushioned centrifugation vs. Androcoll-E selection prior to cryopreservation.<br />

Treatment Freezability Treatment × Freezability<br />

Cushion Androcoll-E p 1 p p<br />

Pre-Freeze Total Motility (%) 87.4 ± 9.9 91.1 ± 7.8 0.055 < 0.05 NS 2<br />

Progressive Motility (%) 52.8 ± 14.5 64.9 ± 10.2


CHAPTER 4.2<br />

The aforementioned “Treatment” effect was comparable for poor <strong>and</strong> good freezers except<br />

for pre-freeze PM <strong>and</strong> yield as visualized by the significant interaction terms between “Treatment”<br />

<strong>and</strong> “Freezability” in Table 1.. For pre-freeze PM, poor-freezing stallions benefitted more from<br />

Androcoll-E treatment than good-freezing stallions. The yield for poor-freezing stallions was more<br />

reduced following Androcoll-E treatment in comparison to good freezing stallions (Fig. 2).<br />

4.2.3.1. Accepted straws <strong>and</strong> number <strong>of</strong> AI doses<br />

The number <strong>of</strong> freezable ejaculates, the number <strong>of</strong> accepted straws <strong>and</strong> the AI doses for<br />

good <strong>and</strong> poor-freezing stallions are presented in Table 2. The effect <strong>of</strong> “Treatment” on number <strong>of</strong><br />

straws accepted (from ejaculates with post-thaw PM ≥30%) was different for good freezers vs. poor<br />

freezers (p


Table 2. Descriptives <strong>of</strong> the different stallions (n=8) used in the study based on ejaculates (n=22) frozen following cushioned centrifugation or Androcoll-E<br />

selection prior to cryopreservation.<br />

Poor Freezer Good Freezers<br />

Treatment Total<br />

1 5 7 8 Subtotal 2 3 4 6 Subtotal<br />

Number <strong>of</strong> freezable 1 Cushion 11/22 55% 1/3 0/3 0/3 0/1 1/10 3/3 2/3 3/3 2/3 10/12<br />

ejaculates<br />

Androcoll-E 17/22 77% 3/3 0/3 2/3 0/1 5/10 3/3 3/3 3/3 3/3 12/12<br />

Number <strong>of</strong> accepted 2 Cushion 620 43 0 0 0 43 171 104 175 127 577<br />

straws<br />

Androcoll-E 519 70 0 59 0 129 89 111 106 84 390<br />

Cushion 58 3 0 0 0 3 13 11 21 10 55<br />

Number <strong>of</strong> AI doses<br />

Androcoll-E 54 5 0 4 0 9 9 12 14 10 45<br />

1<br />

Ejaculates were classified as freezable if post-thaw progressive motility was ≥30%<br />

2 Accepted straws were all the straws that originated from freezable ejaculates


CHAPTER 4.2<br />

Sperm yields markedly differed between the techniques. This is not unexpected since both<br />

techniques have different aims. Cushioned centrifugation allows the use <strong>of</strong> an increased g-force for a<br />

prolonged time, as such maximizing sperm yields (Ecot et al., 2005; Knop et al., 2005). On the<br />

contrary, the objective <strong>of</strong> sperm selection is to eliminate sperm with inferior structure <strong>and</strong> function,<br />

based on differences in size, shape <strong>and</strong> density properties (Pert<strong>of</strong>t, 2000). The high yields reported<br />

here using the cushioned technique are comparable with other findings in literature (Ecot et al., 2005;<br />

Knop et al., 2005; Waite et al., 2008). Using the SLC procedure as described here, the average sperm<br />

yields were slightly higher compared with previous findings (Morrell et al., 2009b). Sperm yield after<br />

selection depends on the initial quality <strong>of</strong> the sperm sample. The intent is to select the sperm<br />

population with a superior morphology <strong>and</strong> higher motility. The findings <strong>of</strong> the pre-freeze sperm<br />

quality are comparable with those <strong>of</strong> previous reports (Morrell et al., 2009a, 2009b; Morrell et al.,<br />

2010).<br />

Cryopreserved semen, with a post-thaw PM <strong>of</strong> ≥30%, is considered good for use in a<br />

commercial breeding program, while semen with a PM


CHAPTER 4.2<br />

subpopulation <strong>of</strong> superior sperm is cryopreserved. These sperm are more likely to withst<strong>and</strong> the<br />

cryopreservation protocol; additionally the harmful effect <strong>of</strong> seminal plasma is eliminated since<br />

almost all seminal plasma is discarded during the selection procedure <strong>and</strong> the subsequent washing <strong>of</strong><br />

the pellet. It is likely that some poor freezing stallions might have experienced additional benefit if<br />

heterologous seminal plasma from a good freezing stallion is used instead <strong>of</strong> the homologous<br />

seminal plasma that was added back in the present study, this was however not the intention <strong>of</strong> the<br />

present study. Nevertheless it is clear that Androcoll-E can be beneficial to successfully cryopreserve<br />

stallion semen. Stallion selection however, plays a key role in the eventual outcome.<br />

172<br />

In conclusion, sperm selection using Androcoll-E prior to cryopreservation resulted in an<br />

overall increased post-thaw sperm quality. Stallions that produce ejaculates with low post-thaw PM<br />

might benefit from sperm selection prior to cryopreservation. As such only the best population <strong>of</strong><br />

sperm is cryopreserved, which could result in good frozen semen. Androcoll-E can be beneficial to<br />

successfully cryopreserve stallion semen, but stallion freezability plays a role in the eventual<br />

outcome. Additional experiments need to be performed to evaluate the in vivo fertility <strong>of</strong> frozen<br />

thawed equine semen, selected with Androcoll-E prior to cryopreservation.


References<br />

CHAPTER 4.2<br />

Barth A.D., Oko R.J. 1989. Abnormal morphology <strong>of</strong> bovine spermatozoa. Ames, Iowa: Iowa State<br />

University Press.<br />

Ecot P., Decuadro-Hansen G., Delhomme G., Vidament M. 2005. Evaluation <strong>of</strong> a cushioned<br />

centrifugation technique for processing equine semen for freezing. Animal <strong>Reproduction</strong><br />

Science 89:245-8.<br />

Esteves S.C., Sharma R.K., Thomas Jr. A.J., Agarwal A. 2000 Improvement in motion characteristics<br />

<strong>and</strong> acrosome status in cryopreserved human spermatozoa by swim-up processing before<br />

freezing. Human <strong>Reproduction</strong> 15:2173-2179.<br />

Evenson D, Jost L. 2000. Sperm chromatin structure assay is useful for fertility assessment. Methods<br />

in Cell Science 22:169-189.<br />

Evenson D.P., Darzynkiewicz Z., Melamed M.R. 1980. Relation <strong>of</strong> mammalian sperm chromatin<br />

heterogeneity to fertility. Science 240:1131-1133.<br />

Garner D.L., Johnson L.A. 1995. Viability assessment <strong>of</strong> mammalian sperm using SYBR-14 <strong>and</strong><br />

propidium iodide. Biology <strong>of</strong> <strong>Reproduction</strong> 53:276-84.<br />

Hansen C., Vermeiden T., Vermeiden J.P.W., Simmet C., Day B.C., Feitsma H. 2006 Comparison <strong>of</strong><br />

FACSCount AF system, Improved Neubauer hemocytometer, Corning 254 photometer,<br />

SpermVision, UltiMate <strong>and</strong> NucleoCounter SP-100 for determination <strong>of</strong> sperm concentration<br />

<strong>of</strong> boar semen. Theriogenology 66:2188-2194.<br />

Henkel R.R., Schill W.-B. 2003. Sperm preparation for ART. Reproductive Biology <strong>and</strong> Endocrinology<br />

1:108-130.<br />

Hoogewijs M., Rijsselaere T., De Vliegher S., Vanhaesebrouck E., De Schauwer C., Govaere J., Thys M.,<br />

H<strong>of</strong>lack G., Van Soom A., de Kruif A. 2010. Influence <strong>of</strong> different centrifugation protocols on<br />

equine semen preservation. Theriogenology 74:118-126.<br />

Januskauskas A., Johannisson A., Rodriguez-Martinez H. 2001. Assessment <strong>of</strong> sperm quality through<br />

fluorometry <strong>and</strong> sperm chromatin structure assay in relation to field fertility <strong>of</strong> frozenthawed<br />

semen from Swedish AI bulls. Theriogenology 55:947-961.<br />

Januskauskas A., Johannisson A., Rodriguez-Martinez H. 2003. Subtle membrane changes in<br />

cryopreserved bull semen in relation with sperm viability, chromatin structure <strong>and</strong> field<br />

fertility. Theriogenology 60:743-758.<br />

Klinc P., Kosec M., Majdic G. 2005. Freezability <strong>of</strong> equine semen after glass beads column separation.<br />

Equine Veterinary Journal 37:43-47.<br />

Knop K., H<strong>of</strong>fmann N., Rath D., Sieme H. 2005. Effects <strong>of</strong> cushioned centrifugation technique on<br />

sperm recovery <strong>and</strong> sperm quality in stallions with good <strong>and</strong> poor semen freezability. Animal<br />

<strong>Reproduction</strong> Science 89:294-7.<br />

173


CHAPTER 4.2<br />

Loomis P.R. 2001. The equine frozen semen industry. Animal <strong>Reproduction</strong> Science 68:191-200.<br />

Loomis P.R., Graham J.K. 2008. Commercial semen freezing: individual male variation in cryosurvival<br />

<strong>and</strong> the response <strong>of</strong> stallion sperm to customized freezing protocols. Animal <strong>Reproduction</strong><br />

Science 105:119-28.<br />

Morrell J.M., Johannisson A., Dalin A.-M., Hammar L., S<strong>and</strong>ebert T., Rodriguez-Martinez H. 2008.<br />

Sperm morphology <strong>and</strong> chromatin integrity in Swedish warmblood stallions <strong>and</strong> their<br />

relationship to pregnancy rates. Acta Veterinaria Sc<strong>and</strong>inavica doi: 10.1186/1751-0147-50-2.<br />

Morrell J.M., Dalin A.-M., Rodriguez-Martinez H. 2009a. Comparison <strong>of</strong> density gradient <strong>and</strong> single<br />

layer centrifugation <strong>of</strong> stallion spermatozoa: yield, motility <strong>and</strong> survival. Equine Veterinary<br />

Journal 41:53-58.<br />

Morrell J.M., Johannisson A., Dalin A.-M., Rodriguez-Martinez H. 2009b. Single-layer centrifugation<br />

with Androcoll-E can be scaled up to allow large volumes <strong>of</strong> stallion ejaculate to be processed<br />

easily. Theriogenology 72:879-884.<br />

Morrell J.M., Johannisson A., Juntilla L., Rytty K., Bäckgren L., Dalin A.-M., Rodriguez-Martinez H.<br />

2010. Stallion sperm viability, as measured by the Nucleocounter SP-100, is affected by<br />

extender <strong>and</strong> enhanced by Single Layer Centrifugation. Veterinary Medicine International<br />

doi:10.4061/2010/659862.<br />

Pérez-Sánchez F., Cooper T.G., Yeung C.H., Nieschlag E. 1994. Improvement in quality <strong>of</strong><br />

cryopreserved human spermatozoa by swim-up before freezing. International Journal <strong>of</strong><br />

Andrology 17:115-120.<br />

Pert<strong>of</strong>t H. 2000. Fractionation <strong>of</strong> cells <strong>and</strong> subcellular particles with Percoll. Journal <strong>of</strong> Biochemical<br />

<strong>and</strong> Biophysical Methods 44:1-30.<br />

Pickett B.W. 1993. Collection <strong>and</strong> evaluation <strong>of</strong> stallion semen for artificial insemination. In: Equine<br />

<strong>Reproduction</strong>, McKinnon A.O., Voss J.L. (Ed.), Williams & Wilkins, pp.705-14.<br />

Rathi R., Colenbr<strong>and</strong>er B., Stout T.A., Bevers M.M., Gadella B.M. 2003. Progesterone induces<br />

acrosome reaction in stallion spermatozoa via a protein tyrosine kinase dependent pathway.<br />

Molecular <strong>Reproduction</strong> <strong>and</strong> Development 64:120-8.<br />

Rigby S.L., Brinsko S.P., Cochran M., Blancard T.L., Love C.C., Varner D.D. 2001. Advances in cooled<br />

semen technologies: seminal plasma <strong>and</strong> semen extender. Animal <strong>Reproduction</strong> Science<br />

68:171-180.<br />

Sharma R.K., Agarwal A. 1996. Sperm quality improvement in cryopreserved human semen. Journal<br />

<strong>of</strong> Urology 156:1008-1012.<br />

Sieme H., Martinsson G., Rauterberg H., Walter K., Aurich C., Petzoldt R., Klug E. 2003. Application <strong>of</strong><br />

techniques for sperm selection in fresh <strong>and</strong> frozen-thawed stallion semen. <strong>Reproduction</strong> in<br />

Domestic Animals 38:134-140.<br />

Vidament M., Dupere A.M., Julienne P., Evain A., Noue P., Palmer E. 1997. Equine frozen semen:<br />

Freezability <strong>and</strong> fertility field results. Theriogenology 48:907-917.<br />

174


CHAPTER 4.2<br />

Waite J.A., Love C.C., Brinsko S.P., Teague S.R., Salazar Jr. J.L., Mancill S.S., Varner D.D. 2008. Factors<br />

impacting equine sperm recovery rate <strong>and</strong> quality following cushioned centrifugation.<br />

Theriogenology 70:704-714.<br />

WHO. 2010. World <strong>Health</strong> Organization laboratory manual for the examination <strong>and</strong> preparation <strong>of</strong><br />

human semen. 5th ed. Geneva, Switzerl<strong>and</strong>, WHO Press.<br />

175


General discussion<br />

CHAPTER 5<br />

177


CHAPTER 5<br />

This thesis originated from the practical challenges faced when optimizing cryopreservation<br />

<strong>of</strong> equine semen at our clinic. Our original cryopreservation protocol was based on old-fashioned<br />

h<strong>and</strong>iwork using the same protocol for all stallions. Gradually, the cryopreservation protocol evolved<br />

<strong>and</strong> reached new levels, until one realized what it actually is: “the art <strong>of</strong> freezing”. As with any form<br />

<strong>of</strong> art, or science, the correct nomenclature plays a key role in discussing the topic, <strong>and</strong> a Babel-like<br />

confusion <strong>of</strong> tongues was <strong>and</strong> is present amongst scientists dealing with animal semen quality <strong>and</strong><br />

cryopreservation. Unlike human <strong>and</strong>rology, anarchy rules in this veterinarian kingdom. Hence this<br />

anarchy needs to be replaced by a code in which scientists have agreed upon : (1) criteria <strong>and</strong><br />

settings used for sperm analysis in order to gain consensus between different laboratories ; (2)<br />

st<strong>and</strong>ards for sperm manipulation procedures, <strong>and</strong> (3) definitions for semen quality parameters in<br />

different domestic species. In this thesis, we have taken the first two steps towards the generation <strong>of</strong><br />

such a code by describing how settings for sperm quality assessment <strong>and</strong> how manipulation <strong>of</strong><br />

semen can affect the eventual outcome <strong>of</strong> a sperm quality assessment in the horse. I hope that more<br />

studies <strong>of</strong> this kind, in the horse but also in other species, can lead to the generation <strong>of</strong> a code or a<br />

manual describing guidelines <strong>and</strong> strict criteria for sperm quality assessment in domestic animals, as<br />

it has already been done for human in the WHO Manual. In the next paragraphs, the importance <strong>of</strong><br />

using the right nomenclature, applying st<strong>and</strong>ardized equipment <strong>and</strong> manipulating semen using strict<br />

criteria, is discussed.<br />

179


5.1<br />

Semen (motility) Analysis<br />

180<br />

Spermatozoal motility is likely to remain one <strong>of</strong> the hallmarks <strong>of</strong> semen evaluation (Varner,<br />

2008). Still, the wide variety in settings <strong>and</strong> the use <strong>of</strong> many different chambers described in<br />

literature clearly indicates that objective motility analysis does not equal st<strong>and</strong>ardized analysis.<br />

5.1.1. Technical settings in CASA systems<br />

The results from this thesis clearly state the influence <strong>of</strong> different motility settings when<br />

using computer assisted sperm analysis (CASA) for the analysis <strong>of</strong> equine semen motility (Chapter<br />

3.1). Although this influence had not been described previously, these findings are not surprising <strong>and</strong><br />

can be easily explained. Analysis by means <strong>of</strong> CASA is based on the relative position changes <strong>of</strong> the<br />

head <strong>of</strong> a sperm cell as illustrated in Fig.1. As such, different trajectory parameters are calculated,<br />

which are used to determine a sperm cell as being motile, progressive motile or static. It is logical<br />

that changing the cut-<strong>of</strong>f values (low <strong>and</strong> medium VAP cut-<strong>of</strong>f <strong>and</strong> STR) will result in changes <strong>of</strong> the<br />

outcomes. After all, a sperm cell with a VAP <strong>of</strong> 30µm/s <strong>and</strong> a STR <strong>of</strong> 50% is progressive motile<br />

according to the settings <strong>of</strong> Varner’s lab (Waite et al., 2008), whereas according to the settings <strong>of</strong><br />

Loomis <strong>and</strong> Graham (2008) this same sperm cell would be assigned as motile. For analysis <strong>of</strong> equine<br />

semen, more than ten different motility settings have been reported (re<strong>view</strong>ed in the general<br />

introduction). For other species the variety in technical settings is as wide. The importance <strong>of</strong><br />

agreement <strong>of</strong> settings will become more pressing when global guidelines on AI doses would be<br />

established.<br />

Additionally, it is not completely clear how CASA systems from different manufacturers calculate<br />

motility, progressive motility <strong>and</strong> subdivide sperm populations into rapid, medium <strong>and</strong> slow (WHO,<br />

2010). Two different CASA systems (Ceros Hamilton-Thorn <strong>and</strong> ISAS Proiser) reported slightly<br />

different results, although analyses <strong>of</strong> the same samples agreed well when using the same settings<br />

<strong>and</strong> counting chamber (Hoogewijs, unpublished data). It should not be difficult to persuade the<br />

industry to imply the same mathematical calculations in their device, once the <strong>and</strong>rologists have<br />

come to an agreement. After all, non-conformity could result in non-approval <strong>of</strong> the devices from<br />

that company.


CHAPTER 5.1<br />

Fig. 1. Schematic presentation <strong>of</strong> the trajectory <strong>of</strong> a sperm cell as recorded by a computer assisted<br />

sperm analysis system, the green line represents the curved line velocity (VCL), the red line is<br />

the average pathway velocity (VAP <strong>and</strong> the blue line is the straight line velocity (VSL).<br />

Straightness (STR) <strong>and</strong> linearity (LIN) can be calculated by the presented formula.<br />

The uniformity in settings used is mere a matter <strong>of</strong> agreement, <strong>and</strong> once the debate has<br />

resulted into a consensus, st<strong>and</strong>ardized procedures can be performed worldwide. In the previous<br />

edition <strong>of</strong> the WHO manual (WHO, 1999), defined grading categories were made based on velocities<br />

<strong>and</strong> trajectories to classify human sperm into one <strong>of</strong> four categories (Table 1). In order to be<br />

considered rapid progressive motile, a sperm cell’s velocity should be ≥25 µm/s. Whereas if the<br />

velocity was


CHAPTER 5.1<br />

Table 1. Criteria for grading <strong>of</strong> spermatozoa into motility categories based on the 4 th WHO manual<br />

(WHO, 1999)<br />

Grading Category Velocity requirements<br />

a rapid progressive motile ≥25 µm/s<br />

b slow progressive motile < 25 µm/s <strong>and</strong> ≥5 µm/s<br />

c non-progressive motile


CHAPTER 5.1<br />

higher than the current costs for any laboratory, general acceptance <strong>of</strong> a more expensive chamber is<br />

not likely to be guaranteed. Furthermore, it is important to realize that not every <strong>and</strong>rology lab is<br />

using a CASA system, <strong>and</strong> to maximize agreement between subjective <strong>and</strong> CASA motility analysis , it<br />

might be advisable to use the same chamber, i.e. the WHO prepared slide (namely: an exact droplet<br />

<strong>of</strong> 10 µL <strong>of</strong> semen on a microscopical slide, covered with a 22 mm by 22 mm cover glass).<br />

Fig. 2. (A) Image <strong>of</strong> a 20 µm deep disposable Leja® chamber as used for motility analysis using CASA;<br />

the red circles indicate the loading area in which the sample placed so it can enter the<br />

chamber by capillary forces, <strong>and</strong> (B) schematic drawing <strong>of</strong> the same Leja® chamber, the black<br />

arrow indicates the flow <strong>of</strong> the sample taking the spermatozoa under the cover glass (CG)<br />

<strong>and</strong> the red arrow indicates the possible cause <strong>of</strong> damage to a spermatozoa when it is pulled<br />

against the CG.<br />

The different motility outcomes yielded between chamber types can be explained by the<br />

differing filling technique <strong>and</strong> chamber depth, <strong>and</strong> the interaction with the walls limiting the<br />

chamber.<br />

183


CHAPTER 5.1<br />

184<br />

The filling technique <strong>of</strong> a chamber is the first factor influencing sperm motility . A sperm<br />

sample analyzed using the same chamber, resulted in differing motility outcomes when the chamber<br />

was loaded with capillarity rather than drop filled with a cover slide (Chapter 3.2). This might be due<br />

to forces acting on the sperm during loading which can either have a direct damaging effect on the<br />

spermatozoa. It is however more likely that the tail <strong>of</strong> spermatozoa get damaged during the flow <strong>of</strong><br />

the suspension when touching the fixed cover glass as they are forced under the cover by the flow, as<br />

illustrated in Fig. 2., Spermatozoa that are damaged in this way might exhibit reduced motility <strong>and</strong><br />

might be prone to accelerated cell death. A possible way to verify this theory is loading the chamber<br />

with a sample <strong>of</strong> Sybr-14/PI stained sperm, <strong>and</strong> analyzing the proportion <strong>of</strong> membrane intact <strong>and</strong><br />

membrane damaged spermatozoa immediately after loading with a follow-up over prolonged time. It<br />

is hypothesized that spermatozoa that get damaged during loading, will take up PI faster.<br />

Depth <strong>of</strong> the preparation is another important factor influencing sperm motility. This depth<br />

should allow good visualization, preventing that spermatozoa can move in <strong>and</strong> out <strong>of</strong> the focus plane<br />

<strong>of</strong> the microscope. However, if the depth is too narrow it might interfere with the three dimensional<br />

movement <strong>of</strong> the sperm. Very shallow chambers might prohibit free rotation <strong>of</strong> the sperm head <strong>and</strong><br />

as such reduce their motility. In slightly deeper chambers where free rotation is possible, the motility<br />

might be artefactually enhanced because the spermatozoa are forced to move in only two directions<br />

instead <strong>of</strong> displaying normal movement in three dimensions. This might result in higher (progressive)<br />

motility, as observed when using the 10 µm Makler chamber. Not only is the percentage PM higher,<br />

the velocity parameters (VAP, VCL <strong>and</strong> VSL) are also higher in the Makler chamber. Therefore, the<br />

use <strong>of</strong> this chamber might be contra-indicated. On the other h<strong>and</strong>, WHO prepared slides are not as<br />

user-friendly when compared to the Makler chamber which is more easily prepared without air<br />

bubbles in the sample. A valid alternative might be the use <strong>of</strong> a modified version <strong>of</strong> the Makler<br />

chamber that will be available shortly. This chamber, the SpermTrack-20® (Proiser, Valencia, Spain),<br />

has a loading area that is comparable with the classic Makler but the depth <strong>of</strong> the new chamber is 20<br />

µm rather than 10 µm. This chamber needs to be evaluated before it can be promoted as chamber <strong>of</strong><br />

reference, but based on our findings in Chapter 3.2, this chamber might provide the ease <strong>of</strong> use <strong>of</strong><br />

the Makler chamber without affecting the motility pattern. In the meanwhile however, the WHO<br />

prepared slide might be the best solution for motility analysis in combination with CASA.<br />

Finally, the sperm cells’ motility patterns might be influenced by diverse physical forces<br />

acting on (moving) spermatozoa inside a chamber due to the differences in the “walls limiting the<br />

chamber”. Sperm kinematics differ significantly for different chambers with the same depth<br />

(Spiropoulos, 2001; Hoogewijs, unpublished data). The flagellar movement has been studied in detail<br />

<strong>and</strong> mathematical models for flagellar beating in fluids have been developed (Brokaw, 2002; Dillon et


CHAPTER 5.1<br />

al., 2007) showing a clear three dimensional movement <strong>of</strong> the flagella. The exact forces acting on<br />

moving spermatozoa inside different types <strong>of</strong> chambers have, so far, not been studied. However, the<br />

differences in motility outcomes between chambers <strong>of</strong> comparable depths indicate that spermatozoa<br />

are influenced to a large extent. If a diluter with small particles is used for motility analysis, the<br />

movement <strong>of</strong> (the tail <strong>of</strong>) the spermatozoa makes these particles move over a wider surface through<br />

initiation <strong>of</strong> waves, rather than through direct contact with the tail only. These waves might interfere<br />

more with motility in disposable chambers with fixed walls when compared to the menisci that<br />

create the border in disposable chambers or the WHO slide. This phenomenon can be easily<br />

visualized when looking at speedboats on rivers with natural banks rather than canals with concrete<br />

banks. The latter will result in more reflection <strong>of</strong> the waves, as such disturbing the water surface to a<br />

bigger extent when compared to smooth natural banks (Fig. 3). It is hypothesized the same principle<br />

occurs in disposable chambers with fixed wall (total reflection as in Fig. 3A), <strong>and</strong> as such interfere<br />

with motility, whereas in chambers with a loose cover slip the reflection might be minimized by the<br />

menisci creating the border (as in Fig. 3B). In this aspect, disposable chambers might cause different<br />

forces in the fluid filled chamber in comparison to the reusable chambers or the WHO prepared slide,<br />

in which the fluid menisci bordering the surface might partially absorb these “waves”.<br />

A.<br />

B.<br />

Fig. 3. Schematic presentation <strong>of</strong> a virtual speed boat (proxy for sperm cell) <strong>and</strong> the waves as they<br />

are (A) completely reflected by concrete borders, <strong>and</strong> (B) only partially reflected by the<br />

natural borders <strong>of</strong> a river absorbing a big part <strong>of</strong> the waves before reflection.<br />

185


CHAPTER 5.1<br />

5.1.3. SQA-Ve in st<strong>and</strong>ardized semen analysis<br />

186<br />

The sperm quality analyzer (SQA) is not susceptible to similar operational variations as CASA<br />

since the device uses integrated algorithms that cannot be changed by the users, <strong>and</strong> only allow<br />

insertion <strong>of</strong> the tailor-made capillary. As such, the above mentioned issues <strong>of</strong> settings <strong>and</strong> counting<br />

chambers will not manipulate results, reducing potential sources <strong>of</strong> bias (H<strong>of</strong>lack et al., 2005).<br />

Despite these advantages the present versions <strong>of</strong> the SQA-Ve should not be used for<br />

analyzing equine semen samples. So far, as shown in Chapter 3.3 <strong>and</strong> 3.4, the device is not precise<br />

enough <strong>and</strong> it lacks accuracy to report on equine semen quality. The improvements in the agreement<br />

<strong>of</strong> the SQA-Ve version 1.00.61 with CASA, as evidenced in Chapter 3.4, indicates that with further<br />

optimization <strong>of</strong> the algorithms the SQA might eventually be able to univocally report on equine<br />

semen quality.<br />

5.1.4. St<strong>and</strong>ardized semen analysis in relation to fertility<br />

So far, sperm motility only correlates poorly with stallion fertility (Jasko et al., 1992; Kuisma<br />

et al., 2006). Of course, a sperm cell needs more traits to fertilize, besides being motile. A<br />

spermatozoon should also be capable <strong>of</strong> initiating capacitation <strong>and</strong> the acrosome reaction, <strong>and</strong><br />

should have intact DNA in order to be fertile. Mare factors interfere equally with early conception,<br />

<strong>and</strong> affect fertility chances as well. The introduction <strong>of</strong> actual st<strong>and</strong>ards in semen analysis might<br />

enable scientists all over the world to assess semen in the same way. As such more <strong>and</strong> more<br />

uniform data will come available which might lead to additional value <strong>of</strong> in vitro parameters in<br />

predicting in vivo fertility.<br />

Based on in vivo fertility data <strong>of</strong> the previous breeding season, a breeding stallion can be<br />

classified as being highly fertile, fertile or sub-fertile. For each <strong>of</strong> these categories, a different artificial<br />

insemination (AI) dose <strong>of</strong> progressive motile sperm might be required to maintain at least a<br />

comparable fertility level. Following every season, the fertility status should be recalculated <strong>and</strong> used<br />

during the following breeding season. The AI dose for stallions <strong>of</strong> unknown fertility (such as young,<br />

novice stallions) can be arbitrary set at the same dose as for fertile stallions. As soon as actual fertility<br />

data are available, true fertility should be calculated.<br />

Much can be debated about the fertility status <strong>of</strong> a stallion, but at the end fertility is<br />

determined by the interaction <strong>of</strong> stallion, mare <strong>and</strong> management factors (Fig. 4). Influence <strong>of</strong> stallion<br />

<strong>and</strong> mare on fertility is evident, but “management” factors such as cycle control, timing <strong>of</strong> AI,


CHAPTER 5.1<br />

treatment strategy for endometritis, semen h<strong>and</strong>ling <strong>and</strong> so on will also interfere with the final<br />

fertility. In this thesis, the focus was partially on the quality <strong>of</strong> the semen <strong>and</strong> how it can be assessed<br />

(stallion factor influenced by management), <strong>and</strong> partially on preparation <strong>of</strong> AI doses (management<br />

factor influenced by the stallion <strong>and</strong> his initial semen quality).<br />

Fig. 4. Schematic presentation <strong>of</strong> the different factors affecting equine fertility. The proportions <strong>of</strong><br />

the different factors are arbitrary. However, note how semen quality (in green as determined<br />

by the stallion) is influenced by management when performing the analysis (pink border).<br />

Vice versa, semen h<strong>and</strong>ing to prepare the AI doses is influenced by the initial sperm quality<br />

(smaller volumes <strong>of</strong> highly concentrated semen are easier to process).<br />

The influence <strong>of</strong> “management” on determination <strong>of</strong> the sperm quality should be minimal<br />

<strong>and</strong> st<strong>and</strong>ardized, facilitating comparison. Correct analysis <strong>of</strong> the semen will also point out the<br />

weaknesses in the semen preparation more rapidly, which will result in increased sperm<br />

management. This will be discussed in the next section, where we evaluated the effect <strong>of</strong><br />

centrifugation on semen quality in horses.<br />

Mare<br />

Management<br />

Semen h<strong>and</strong>ling<br />

Semen quality<br />

Stallion<br />

187


Centrifugation technique<br />

188<br />

5.2<br />

Centrifugation is one <strong>of</strong> the common procedures when processing equine semen. Currently,<br />

centrifugation is m<strong>and</strong>atory when subjecting an equine ejaculate to cryopreservation. Alternative<br />

approaches such as fractionated collection are not as successful (Sieme et al., 2004) or are still in its<br />

infancy (sperm filters – Alvarenga et al., 2010).<br />

The influence <strong>of</strong> centrifugation on spermatozoa is not completely understood, or at least the<br />

principle(s) by which spermatozoa are influenced due to centrifugation remain(s) unclear. A first<br />

theory is based on alterations in the shape <strong>of</strong> cells submitted to centrifugation. Using an atomic force<br />

microscope, fitted in a large centrifuge, Van Loon et al. (2009) were able to visualize mouse<br />

osteoblasts during centrifugation. The osteoblasts were markedly reduced in height during<br />

centrifugation at only 3 × g. Although the structure <strong>of</strong> a spermatozoon is completely different from<br />

an osteoblast, especially because <strong>of</strong> the dramatic reduction in the cytoplasm <strong>of</strong> a mature sperm cell,<br />

it is likely that centrifugation at much higher speeds also affect the structure <strong>of</strong> a sperm cell. Further<br />

refinement <strong>of</strong> this technique by Van Loon et al. (2009) <strong>and</strong> research on different cell types is<br />

necessary in order to accurately describe what happens with spermatozoa during centrifugation.<br />

Another explanation could act at the level <strong>of</strong> the sperm membrane. Like any plasma<br />

membrane, a sperm membrane consists <strong>of</strong> a liquid phospholipid bilayer (Amann <strong>and</strong> Pickett, 1987).<br />

Different domains <strong>of</strong> the plasma membrane all contain different concentrations <strong>and</strong> distributions <strong>of</strong><br />

intramembranous particles, with different, specific functions in the process <strong>of</strong> fertilization (Flesch<br />

<strong>and</strong> Gadella, 2010). These domains undergo redistribution following capacitation (Gadella et al.,<br />

1994). Perhaps centrifugation acts on this liquid lipid layer <strong>and</strong> disturbs as such its function by<br />

rearranging the distribution <strong>of</strong> the intramembranous particles. Excessive centrifugation forces induce<br />

even more damage, <strong>and</strong> provoke a compact sperm pellet that is difficult to resuspend (Webb <strong>and</strong><br />

Dean, 2009).<br />

In order to identify the effects <strong>of</strong> centrifugation force on sperm damage, we investigated the<br />

impact <strong>of</strong> increasing forces (centrifugation protocols from 600 × g to 2400 × g) on stallion semen for<br />

a reduced period <strong>of</strong> time (5 min) (Chapter 4.1). Additionally, we investigated sperm loss when<br />

aspirating 90% <strong>of</strong> the supernatant following centrifugation using the different forces. Not all the<br />

spermatozoa were pelleted at the bottom <strong>of</strong> the tube, but a part remained in suspension in the


CHAPTER 5.2<br />

supernatant allowing sperm yield to be calculated. This technique <strong>of</strong> centrifugation only results in<br />

separation <strong>of</strong> the spermatozoa from the seminal plasma. Alternatively, the forces originating during<br />

centrifugation can also be used to select the superior sperm fraction from a sample when low g-<br />

forces are combined with a colloid (Chapter 4.2).<br />

5.2.1. Centrifugation to concentrate equine semen samples<br />

Much uncertainty exists on how spermatozoa react on a cellular level to centrifugation. The<br />

influence <strong>of</strong> centrifugation on sperm yields <strong>and</strong> semen characteristics is controversial as well.<br />

However, much <strong>of</strong> the variation in study results can be explained by differences in experimental<br />

design. Extender type (Cochran et al., 1984), volume per centrifugation tube (Cochran et al. 1984,<br />

Webb et al., 2009), dimensions <strong>of</strong> the centrifugation tube (Webb <strong>and</strong> Dean, 2009), <strong>and</strong> <strong>of</strong> course<br />

centrifugation time <strong>and</strong> force (Cochran et al., 1984; Weiss et al 2004; Len et al. 2008, 2010; Webb et<br />

al., 2009; Hoogewijs et al., 2010) are all factors influencing yield <strong>and</strong> quality <strong>of</strong> equine semen after<br />

centrifugation.<br />

Our findings (Chapter 4.1) on sperm yields were consistent with the general trends in<br />

literature. Using the st<strong>and</strong>ard protocol (600 × g for 10 min) 78% <strong>of</strong> the initial number <strong>of</strong> spermatozoa<br />

were maintained. Sperm quality was not influenced largely. Immediately following centrifugation<br />

motility <strong>and</strong> membrane integrity were only slightly reduced compared with non-centrifuged samples.<br />

The use <strong>of</strong> higher forces for a shorter period <strong>of</strong> time reduced sperm losses without affecting the in<br />

vitro sperm quality following cooled storage or cryopreservation.<br />

When looking at the variations in the above mentioned studies on sperm losses, it is obvious<br />

there might be a stallion effect as well. Some stallions have semen that sediments easier during<br />

centrifugation, <strong>and</strong> some have spermatozoa that are more prone to damage caused by centrifugation<br />

compared to other stallions (personal observations). So individual centrifugation protocols might be<br />

necessary for some stallions, <strong>and</strong> if corrections for sperm loss following centrifugation are made, it is<br />

important to re-assess the actual sperm number following centrifugation <strong>and</strong> not to use a fixed<br />

correction factor since sperm loss is influenced by so many parameters.<br />

189


CHAPTER 5.2<br />

A.<br />

Fig. 5. Different cushioned centrifugation techniques: (A) conventional cushioned centrifugation <strong>of</strong><br />

semen extended in an opaque extender (INRA96®) using a conical 50 mL centrifugation tube<br />

with 3.5 mL <strong>of</strong> clear MAXIFREEZE® directly underneath the sperm pellet (green arrow), <strong>and</strong> (B)<br />

Glass nipple-bottom tube following centrifugation <strong>of</strong> semen extended in an optically clear<br />

extender, with 30µL <strong>of</strong> clear cushion directly underneath the sperm pellet (red arrow) (Waite<br />

et al., 2008).<br />

190<br />

B.<br />

Some <strong>of</strong> the downsides <strong>of</strong> centrifugation can be circumvented by the use <strong>of</strong> a cushion. This<br />

technique, in which a protective fluid is placed at the bottom <strong>of</strong> the centrifugation tube underneath<br />

the extended semen, was described over 25 years ago (Cochran et al., 1984), but has been refined<br />

more recently (Ecot et al., 2005; Knop et al., 2005; Waite et al., 2008). The cushion fluid evolved from<br />

high concentrated glucose solutions (Cochran et al., 1984), over egg yolk extenders containing<br />

glycerol (Amann <strong>and</strong> Pickett, 1987) to iodixanol solutions (Revell et al., 1997). Various amounts <strong>of</strong><br />

these cushion solutions are applied, but with the introduction <strong>of</strong> commercially available cushions,<br />

reports mention the use <strong>of</strong> 3.5 (Fig. 5A) up to 5mL <strong>of</strong> cushion fluid (Ecot et al., 2005; Knop et al., 2005;<br />

respectively). The use <strong>of</strong> these cushions allows for longer centrifugation times <strong>and</strong> higher g-forces (20<br />

min, 1000 × g). These so-called cushions are fluids with a higher density than the sperm cells so that<br />

they are not compacted against the wall <strong>of</strong> the centrifuge tube (as with normal centrifugation, Fig.<br />

6A); instead they are layered on the cushion. Since fluids are nor easily compressed, the high forces<br />

(from the high speed centrifugation) will force the spermatozoa into the top layer <strong>of</strong> the cushion, as


CHAPTER 5.2<br />

such keeping the pellet s<strong>of</strong>t (Fig. 6B). Using the cushioned technique, higher sperm yields are<br />

obtained without impairing sperm quality, which results in a 30% increase <strong>of</strong> produced semen doses<br />

per ejaculate (Delhomme et al., 2004). The major downside <strong>of</strong> the cushioned centrifugation is the<br />

necessity to remove the majority <strong>of</strong> cushion fluid at the bottom, underneath the sperm pellet<br />

following aspiration <strong>of</strong> the supernatant. The cushion is aspirated with a syringe by placing a blunt<br />

tipped spinal needle gently through the pellet to the bottom <strong>of</strong> the tube, as indicated in Fig. 1 from<br />

Chapter 4.2. This additional step requires some technical skills, <strong>and</strong> might explain the lack <strong>of</strong><br />

popularity <strong>of</strong> cushioned centrifugation in practice. This downside was remedied by Waite et al. (2008)<br />

who adapted the protocol <strong>and</strong> used only 30 µL <strong>of</strong> cushion fluid (Fig. 5b). However, this technique<br />

requires special designed glass nipple-bottom centrifugation tubes with matching adapters.<br />

Unfortunately, the glass tubes are rather fragile <strong>and</strong> do not withst<strong>and</strong> high centrifugation forces,<br />

implying the use <strong>of</strong> severely reduced centrifugation forces (400 × g), which inevitably results in minor<br />

reductions in sperm yield. Whether the modified cushioned centrifugation will result in increased use<br />

in practice remains questionable. The requirement <strong>of</strong> the custom made, fragile glass nipple tubes<br />

might prove to be a larger obstacle compared to cushion aspiration when using the regular approach.<br />

A.<br />

Fig. 6. Schematic representation <strong>of</strong> (A) classical centrifugation where the rather compacted sperm<br />

pellet is located at the tip <strong>of</strong> the conical centrifuge tube, <strong>and</strong> (B) cushioned centrifugation<br />

where the spermatozoa are located on top <strong>of</strong> <strong>and</strong> in the upper layer <strong>of</strong> the cushion, which<br />

results in less compaction <strong>of</strong> the sperm pellet.<br />

B.<br />

191


CHAPTER 5.2<br />

5.2.2. Selection <strong>of</strong> spermatozoa<br />

192<br />

The possibility to perform sperm selection using a single layer centrifugation (Morrell et al.,<br />

2008) <strong>and</strong> the adaptation to scale up the volume per centrifugation tube (Morrell et al., 2009)<br />

extends its practical use in equine <strong>and</strong>rology. This technique was used to select a superior sperm<br />

population prior to cryopreservation <strong>and</strong> obtained post-thaw samples with increased overall sperm<br />

quality (Chapter 4.2). The sole intention <strong>of</strong> the cryopreservation protocol we used was to analyze the<br />

effect <strong>of</strong> cryopreservation <strong>of</strong> a superior sperm population. It is not surprising to find an overall<br />

increased sperm quality after cryopreservation. Dead, damaged, or spermatozoa with a dysfunctional<br />

motility are very unlikely to survive the freeze-thaw cycle, or to have a sufficient post-thaw quality.<br />

Until recently, it was accepted that reactive oxygen species (ROS) in (human) semen were<br />

almost exclusively produced by leucocytes. This is true for fertile men, although in oligozoospermic<br />

patients the spermatozoa themselves were identified as a second major source <strong>of</strong> ROS (Aitken et al.,<br />

1992). Equine semen is normally devoid <strong>of</strong> leucocytes in contrast to human semen, but equine<br />

spermatozoa are equally capable <strong>of</strong> generating ROS, since damaged spermatozoa or morphological<br />

abnormal spermatozoa generated significantly greater amounts <strong>of</strong> ROS than live, morphologically<br />

normal spermatozoa (Ball et al., 2001). The presence <strong>of</strong> ROS impairs in vitro motility <strong>of</strong> equine<br />

spermatozoa (Baumber et al., 2002) <strong>and</strong> promotes DNA fragmentation <strong>of</strong> equine spermatozoa<br />

( Baumber et al., 2003).<br />

We hypothesize that the increased post-thaw sperm quality we have noticed following pre-<br />

freeze SLC selection could perhaps also be partially attributed to reduced levels <strong>of</strong> ROS. The use <strong>of</strong><br />

Androcoll-E might remedy these ROS related problems by working on two levels. First, due to the<br />

selection procedure, the few leucocytes that are present are being held back from the sperm pellet.<br />

Second, fewer abnormal spermatozoa (dead spermatozoa or with excess residual cytoplasm) are<br />

present in the sperm pellet. As such the ROS content in the selected subpopulation <strong>of</strong> spermatozoa<br />

should be lower than in the “full” sperm pellet, reducing the ROS related sperm damage.<br />

The effect <strong>of</strong> sperm selection prior to cryopreservation could even be further increased if<br />

stallion-adapted cryopreservation protocols would be used, fitting specific needs . Additionally,<br />

sperm selection using Androcoll-E <strong>and</strong> subsequent washing <strong>of</strong> the sperm pellet removes all seminal<br />

plasma. In our study seminal plasma from the same stallion <strong>and</strong> the same ejaculate was added back<br />

to rule out any possible effect <strong>of</strong> presence or absence <strong>of</strong> seminal plasma on the post-thaw results.<br />

Seminal plasma from stallions with poor freezing sperm was shown to play an important role in the<br />

poor freezability (Aurich et al., 1996). The use <strong>of</strong> seminal plasma <strong>of</strong> stallions with good freezability<br />

improved the post-thaw quality <strong>of</strong> stallions with poor freezability (Aurich et al., 1996). The


CHAPTER 5.2<br />

components <strong>of</strong> the seminal plasma that are associated with fertility are not yet completely<br />

categorized. Jobim et al. (2005) described the absence <strong>of</strong> protein 19 <strong>and</strong> higher levels <strong>of</strong> protein 17 in<br />

the seminal plasma <strong>of</strong> low fertile stallions. The involvement <strong>of</strong> other seminal plasma components on<br />

fertility requires further research.<br />

The use <strong>of</strong> heterologous seminal plasma implies some risks. First <strong>of</strong> all the seminal plasma<br />

should be guaranteed free <strong>of</strong> spermatozoa, to avoid faulty paternity. A combination <strong>of</strong> high speed<br />

centrifugation (1000 × g for 10 min) <strong>of</strong> raw semen followed by passage <strong>of</strong> the supernatant through<br />

t<strong>and</strong>em 5 µm <strong>and</strong> 1.2 µm nylon syringe filters should be a safe procedure to avoid spermatozoa<br />

contamination (Rigby et al., 2001). Equally important are the risks <strong>of</strong> disease transmission through<br />

the seminal plasma <strong>of</strong> the donor. This donor should at least have the same sanitary status as the<br />

stallion whose spermatozoa should be frozen, <strong>and</strong> even so legislative limitations might occur.<br />

A modified protocol in which the best diluter for a given poor freezing stallion is used in<br />

combination with seminal plasma from a good freezing stallion might further increase post-thaw<br />

semen quality, <strong>and</strong> enable us to freeze semen from stallions previously deemed unfreezable. Further<br />

determination <strong>of</strong> the different components <strong>of</strong> the seminal plasma <strong>and</strong> the identification <strong>of</strong> their<br />

function might enable researchers to isolate those proteins which positively influence<br />

cryopreservation. These proteins could then be added to extenders to form an optimized defined<br />

cryopreservation diluter.<br />

Applying sperm selection prior to cryopreservation <strong>of</strong>fers great advantages compared to<br />

post-thaw selection <strong>of</strong> semen, as is frequently done in combination with assisted reproductive<br />

technologies such as in vitro fertilization or intracytoplasmic sperm injection. First <strong>of</strong> all, the ROS are<br />

removed prior to freezing, reducing the exposure <strong>of</strong> spermatozoa to the toxic influence. Besides that,<br />

application <strong>of</strong> sperm selection techniques after thawing requires some level <strong>of</strong> experience <strong>and</strong> the<br />

presence <strong>of</strong> laboratory facilities in order to process the semen, which factors are very <strong>of</strong>ten not<br />

present in practice. Selection prior to cryopreservation bypasses these problem since it delivers<br />

ready-to-use frozen semen.<br />

193


5.3<br />

Concluding remarks<br />

forward:<br />

194<br />

Based on the results from this thesis <strong>and</strong> literature, the following conclusions can be put<br />

♦ When performing computer assisted sperm analysis, the motility settings will influence the<br />

motility outcomes to a great extent.<br />

♦ The type <strong>of</strong> counting chamber used in combination with computer assisted sperm analysis has<br />

an important effect on the concentration <strong>and</strong> motility results. Capillarity used for filling a<br />

chamber restricts sperm motility severely.<br />

♦ The present version <strong>of</strong> the SQA-Ve is not accurate nor precise enough to univocally report on<br />

equine semen quality.<br />

♦ Centrifugation protocols have a major influence on sperm yield. High centrifugation forces (up<br />

to 2400 × g) for a short time (5 min) will substantially reduce sperm losses without apparent<br />

effect on in vitro sperm characteristics.<br />

♦ Sperm selection using Androcoll-E in a single layer centrifugation technique prior to<br />

cryopreservation, results in an overall increased sperm quality. This technique is promising for<br />

clinical use because it enables cryopreservation <strong>of</strong> a subgroup <strong>of</strong> stallions previously deemed<br />

as unfreezable.


Final reflections<br />

5.4<br />

Actual changes in sperm quality can easily be missed or misinterpreted with the current<br />

conceptions in animal <strong>and</strong>rology because <strong>of</strong> the lack <strong>of</strong> uniformity. Andrologists might have reached<br />

the point where the disorderly analyses are left behind <strong>and</strong> a consensus is put forward to achieve<br />

uniformity.<br />

Which setting <strong>of</strong> all the reported ones should be agreed on for global use is <strong>of</strong> minor<br />

importance compared to the actual implementation <strong>of</strong> the setting. In order to be able to distinguish<br />

between stallions with variable semen quality, it might be advisable not to use the extremes. The<br />

same principle should apply when deciding the counting chamber <strong>of</strong> preference. In our opinion,<br />

capillary filled chambers should be avoided as well as chambers influencing motility. With the current<br />

knowledge, the WHO prepared slide is in the lead to become the international chamber <strong>of</strong> reference.<br />

An international group <strong>of</strong> animal <strong>and</strong>rologists should come forward <strong>and</strong> crack the nut <strong>of</strong><br />

st<strong>and</strong>ardization, allowing laboratories throughout the world to analyze <strong>and</strong> report on semen quality<br />

in a (more) uniform way. This could be combined with a classification <strong>of</strong> stallions into one <strong>of</strong> three<br />

fertility classes (high fertile, normal fertile or sub-fertile) based on their proven in vivo fertility. The<br />

optimal sperm dose for each class should be determined, in order to serve as minimal requirements<br />

for AI doses. Stallions <strong>of</strong> unknown fertility are classified as fertile, <strong>and</strong> fertility status should be<br />

reassessed based on actual fertility <strong>of</strong> the preceding breeding season.<br />

Subfertile stallions could be uniformly categorized <strong>and</strong> perhaps used for breeding in a more<br />

controlled manner, where appropriate processing (sperm selection) might play a key role in obtaining<br />

better pregnancy rates.<br />

195


CHAPTER 5<br />

References<br />

Aitken R.J., Buckingham D., West K., Wu F.C., Zikopoulos K., Richardson D.W. 1992. Differential<br />

contribution <strong>of</strong> leucocytes <strong>and</strong> spermatozoa to the generation <strong>of</strong> reactive oxygen species in<br />

the ejaculates <strong>of</strong> oligospermic patients <strong>and</strong> fertile donors. Journal <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong><br />

Fertility 94:451-462.<br />

Alvarenga M.A., Melo C.M., Magalhães L.C.O., Papa F.O. 2010. A new method to concentrate equine<br />

sperm. Animal <strong>Reproduction</strong> Science 121:186-187.<br />

Amann R.P., Pickett B.W. 1987. Principles <strong>of</strong> cryopreservation <strong>and</strong> a re<strong>view</strong> <strong>of</strong> cryopreservation <strong>of</strong><br />

stallion spermatozoa. Journal <strong>of</strong> Equine Veterinary Science 7:145-173.<br />

Aurich J.E., Kühne A., Hoppe H., Aurich C. 1996. Seminal plasma affects membrane integrity <strong>and</strong><br />

motility <strong>of</strong> equine spermatozoa after cryopreservation. Theriogenology 46:791-797.<br />

Ball B.A., Vo A.T., Baumber J. 2001. Generation <strong>of</strong> reactive oxygen species by equine spermatozoa.<br />

American Journal <strong>of</strong> Veterinary Research 62:508-515.<br />

Baumber J., Vo A., Sabeur K., Ball B.A. 2002. Generation <strong>of</strong> reactive oxygen species by equine<br />

neutrophils <strong>and</strong> their effect on motility <strong>of</strong> equine spermatozoa. Theriogenology 57:1025-<br />

1033.<br />

Baumber J., Ball B.A., Linfor J.J., Meyers S.A. 2003. Reactive oxygen species <strong>and</strong> cryopreservation<br />

promote DNA fragmentation in equine spermatozoa. Journal <strong>of</strong> Andrology 24:621-628.<br />

Brokaw C.J. 2002. Computer simulation <strong>of</strong> flagellar movement VIII: coordination <strong>of</strong> dynein by local<br />

curvature control can generate helical bending waves. Cell Motility <strong>and</strong> the Cytoskeleton<br />

53:103-124.<br />

Bussallou E., Pinart E., Rivera M.M., Arias X., Briz M., Sancho S., Garía-Gil N., Bassols J., Pruneda A.,<br />

Yeste M., Casas I., Rigau T., Rodriguez-Gil J.E., Bonet S. 2008. Effects <strong>of</strong> filtration <strong>of</strong> semen<br />

doses from subfertile boars through neuter Sephadex columns. <strong>Reproduction</strong> in Domestic<br />

Animals 43:48-52.<br />

Cochran J.D., Amann R.P., Froman D.P., Pickett B.W. 1984. Effects <strong>of</strong> centrifugation, glycerol level,<br />

cooling to 5°C, freezing rate <strong>and</strong> thawing rate on the post-thaw motility <strong>of</strong> equine sperm.<br />

Theriogenology 22:25-38.<br />

Contri A., Valorz C., Faustini M., Wegher L., Carluccio A. 2010. Effect <strong>of</strong> semen preparation on casa<br />

motility results in cryopreserved bull spermatozoa. Theriogenology 74:424-435.<br />

Cooper T.G., Yeung C.-H. 2006. Computer-aided evaluation <strong>of</strong> assessment <strong>of</strong> “grade a” spermatozoa<br />

by experienced technicians. Fertility <strong>and</strong> Sterility 85:220-224.<br />

Delhomme G., Vidament M., Ecot P., Decuadro-Hansen G. 2004. Evaluation <strong>of</strong> a cushioned<br />

centrifugation technique for processing equine semen for freezing. Proceedings <strong>of</strong> the 15 th<br />

International Congress on Animal <strong>Reproduction</strong> – Porto Seguro – Brazil Abstracts Vol 2:496.<br />

196


CHAPTER 5<br />

Dillon R.H., Fauci L.J., Omoto C., Yang X. 2007. Fluid dynamic models <strong>of</strong> flagellar <strong>and</strong> ciliary beating.<br />

Annals <strong>of</strong> the New York Academy <strong>of</strong> Sciences 1101:494-505.<br />

Ecot P., Decuadro-Hansen G., Delhomme G., Vidament M. 2005. Evaluation <strong>of</strong> a cushioned<br />

centrifugation technique for processing equine semen for freezing. Animal <strong>Reproduction</strong><br />

Science 89:245-248.<br />

Flesch F.M., Gadella B.M. 2000. Dynamics <strong>of</strong> the mammalian sperm plasma membrane in the process<br />

<strong>of</strong> fertilization. Biochimica et Biophysica Acta 1469:197-235.<br />

Gaddum-Rosse P. 1981. Some observations on sperm transport through the uterotubal junction <strong>of</strong><br />

the rat. American Journal <strong>of</strong> Anatomy 160:333-341.<br />

Gadella B.M., Gadella T.W. Jr., Colenbr<strong>and</strong>er B., van Golde L.M., Lopez-Cardozo M. 1994.<br />

Visualization <strong>and</strong> quantification <strong>of</strong> glycolipid polarity dynamics in the plasma membrane <strong>of</strong><br />

the mammalian spermatozoon. Journal <strong>of</strong> Cell Science 107:2151-2163.<br />

Ho H.-C., Suarez S.S. 2001. Hyperactivation <strong>of</strong> mammalian spermatozoa: fuction <strong>and</strong> regulation.<br />

<strong>Reproduction</strong> 122:519-526.<br />

H<strong>of</strong>lack G., Rijsselaere T., Maes D., Dewulf J., Opsomer G., de Kruif A., Van Soom A. 2005. Validation<br />

<strong>and</strong> usefulness <strong>of</strong> the Sperm Quality Analyzer (SQA II-C) for bull semen analysis. <strong>Reproduction</strong><br />

in Domestic Animals 40:237-244.<br />

Hoogewijs M., De Vliegher S., De Schauwer C., Govaere J., Smis K., H<strong>of</strong>lack G., de Kruif A., Van Soom<br />

A. 2010a. Validation <strong>and</strong> usefulness <strong>of</strong> the Sperm Quality Analyzer V equine for equine semen<br />

analysis. Theriogenology in press.<br />

Hoogewijs M., Rijsselaere T., De Vliegher S., Vanhaesebrouck E., De Schauwer C., Govaere J., Thys M.,<br />

H<strong>of</strong>lack G., Van Soom A., de Kruif A. 2010b. Influence <strong>of</strong> different centrifugation protocols on<br />

equine semen preservation. Theriogenology 74:118-126.<br />

Hoogewijs M., De Vliegher S., Govaere J., De Schauwer C., de Kruif A., Van Soom A. Counting<br />

chamber influences equine semen CASA outcomes. Journal <strong>of</strong> Andrology – submitted.<br />

Hoogewijs M., Morrell J., Van Soom A., Govaere J., Johannisson A., Piepers S., De Schauwer C., de<br />

Kruif A., De Vliegher S. Sperm selection using single layer centrifugation prior to<br />

cryopreservation can increase post-thaw sperm quality in stallions. Theriogenology –<br />

submitted.<br />

Iguer-ouada M., Verstegen J.P. 2001. Evaluation <strong>of</strong> the “Hamilton Thorn computer-bases automated<br />

system” for dog semen analysis. Theriogenology 55:733-749.<br />

Ishijima S., Baba S.A., Mohri H., Suarez S.S. 2002. Quantitative analysis <strong>of</strong> flagellar movement in<br />

hyperactivated <strong>and</strong> acrosome-reacted golden hamster spermatozoa. Molecular <strong>Reproduction</strong><br />

<strong>and</strong> Development 61:376-384.<br />

Jasko D.J., Little T.V., Lein D.H., Foote R.H. 1992. Comparison <strong>of</strong> spermatozoa movement <strong>and</strong> semen<br />

characteristics with fertility in stallions. 64 cases (1987-1988). Journal <strong>of</strong> the American<br />

Veterinary Medical Association 200:979-985.<br />

197


CHAPTER 5<br />

Jobim M.I.M., Bustamante Filho I.C., Trein C., Wald V.B., Gregory R.M., Mattos R.C. 2005. Equine<br />

seminal plasma proteins related with fertility. Animal <strong>Reproduction</strong> Science 89:305-308.<br />

Knop K., H<strong>of</strong>fmann., Rath D., Sieme H. 2005. Effects <strong>of</strong> cushioned centrifugation technique on sperm<br />

recovery <strong>and</strong> sperm quality in stallions with good <strong>and</strong> poor semen freezability. Animal<br />

<strong>Reproduction</strong> Science 89:294-297.<br />

Kuisma P., Andersson M., Koskinen E., Katila T. 2006. Fertility <strong>of</strong> frozen-thawed stallion semen cannot<br />

be predicted by the currently used laboratory methods. Acta Veterinaria Sc<strong>and</strong>inavica 48:14.<br />

Len J.A., Jenkins J.A., Eilts B.E., Paccamonti D.L., Lyle S.K., Hosgood G. 2008. Centrifugation has<br />

minimal effects on motility, viability, <strong>and</strong> acrosome integrity <strong>of</strong> equine sperm.<br />

Theriogenology 70:582-583.<br />

Len J.A., Jenkins J.A., Eilts B.E., Paccamonti D.L., Lyle S.K., Hosgood G. 2010. Immediate <strong>and</strong> delayed<br />

(after cooling) effects <strong>of</strong> centrifugation on equine sperm. Theriogenology 73:25-231.<br />

Lenz R.W., Kjell<strong>and</strong> M.E., Vonderhaar K., Swannack T.M., Moreno J.F. 2010. A comparison <strong>of</strong> bovine<br />

seminal quality assessments using different <strong>view</strong>ing chambers with a computer-assisted<br />

semen analyzer. Journal Animal Science 89:383-388.<br />

Loomis P.R., Graham J.K. 2008. Commercial semen freezing: individual male variation in cryosurvival<br />

<strong>and</strong> the response <strong>of</strong> stallion sperm to customized freezing protocols. Animal <strong>Reproduction</strong><br />

Science 105:119-128.<br />

Morrell J.M., Dalin A.-M., Rodriguez-Martinez H. 2008. Prolongation <strong>of</strong> stallion sperm survival by<br />

centrifugation through coated silica colloids: a priliminary study. Animal <strong>Reproduction</strong> 5:121-<br />

126.<br />

Morrell J.M., Johannisson A., Dalin A.-M., Rodriguez-Martinez H. 2009. Single-layer centrifugation<br />

with Androcoll-E can be scaled up to allow large volumes <strong>of</strong> stallion ejaculate to be processed<br />

easily. Theriogenology 72:879-884.<br />

Revell S.G., Pettit M.T., Ford T.C. 1997. Use <strong>of</strong> centrifugation over iodixanol to reduce damage when<br />

processing stallion sperm for freezing. Proceedings <strong>of</strong> the joint meeting society for the study<br />

<strong>of</strong> fertility abstract series n°92 p38.<br />

Rigby S.L., Brinsko S.P., Cochan M., Blancard T.L., Love C.C., Varner D.D. 2001. Advances in cooled<br />

semen technologies: seminal plasma <strong>and</strong> semen extender. Animal <strong>Reproduction</strong> Science<br />

68:171-180.<br />

Samper J.C., Tibary A. 2006. Disease transmission in horses. Theriogenology 66:551-559.<br />

Sieme H., Katila T., Klug E. 2004. Effect <strong>of</strong> semen collection practices on sperm characteristics before<br />

<strong>and</strong> after storage <strong>and</strong> on fertility <strong>of</strong> stallions. Theriogenology 61:769-784.<br />

Spiropoulos J. 2001. Computerized semen analysis (CASA): effect <strong>of</strong> semen concentration <strong>and</strong><br />

chamber depth on measurements. Archives <strong>of</strong> Andrology 46:37-42.<br />

198


CHAPTER 5<br />

Suárez S.S., Osman R.A. 1987. Initiation <strong>of</strong> hyperactivated flagellar bending in mouse sperm within<br />

the female reproductive tract. Biology <strong>of</strong> <strong>Reproduction</strong> 36:1191-1198.<br />

Turner R.M. 2003. Tales from the tail: what do we really know about sperm motility? Journal <strong>of</strong><br />

Andrology 24:790-803.<br />

Turner R.M. 2006. Moving to the beat: a re<strong>view</strong> <strong>of</strong> mammalian sperm motility regulation.<br />

<strong>Reproduction</strong>, Fertillity <strong>and</strong> Development 18:25-38.<br />

Waite J.A., Love C.C., Brinsko S.P., Teague S.R., Salazar Jr. J.L., Mancill S.S., Varner D.D. 2008. Factors<br />

impacting equine sperm recovery rate <strong>and</strong> quality following cushioned centrifugation.<br />

Theriogenology 70:704-714.<br />

Webb G.W., Dean M.M. 2009. Effect <strong>of</strong> centrifugation technique on post-storage characteristics <strong>of</strong><br />

stallion spermatozoa. Journal <strong>of</strong> Equine Veterinary Science 29:675-680.<br />

Weiss S., Janett F., Burger D., Hässig M., Thun R. 2004. The influence <strong>of</strong> centrifugation on quality <strong>and</strong><br />

freezability <strong>of</strong> stallion semen. Schweizer Archiv für Tierheilkunde 146:285-93.<br />

World <strong>Health</strong> Organization (WHO). 1999. WHO laboratory manual for the examination human semen<br />

<strong>and</strong> sperm-cervical mucus interaction. 4 th ed. Cambridge University Press.<br />

World <strong>Health</strong> Organization (WHO). 2010. Laboratory manual for the examination <strong>and</strong> preparation <strong>of</strong><br />

human semen. 5 th ed. Geneva, Switzerl<strong>and</strong>, WHO Press.<br />

199


SUMMARY<br />

Horse breeding has changed dramatically over the last century. Equine reproduction is no<br />

longer dominated by natural breeding. All kinds <strong>of</strong> assisted reproductive techniques are now being<br />

used for procreation <strong>of</strong> horses. To date, the most important <strong>of</strong> these techniques is artificial<br />

insemination (AI), used for both cooled <strong>and</strong> frozen-thawed semen. Unlike human <strong>and</strong>rology, where<br />

strict guidelines are followed concerning the h<strong>and</strong>ling, preparation <strong>and</strong> examination <strong>of</strong> an ejaculate,<br />

veterinary <strong>and</strong>rology is characterized by a general lack <strong>of</strong> uniformity. This represents an important<br />

problem for veterinarians involved in animal breeding, since every semen collection should be<br />

followed by a st<strong>and</strong>ardized analysis <strong>of</strong> the quality <strong>of</strong> the ejaculate prior to the processing <strong>and</strong><br />

preparation <strong>of</strong> AI doses, to ensure the quality <strong>of</strong> the final AI dose.<br />

So far, one <strong>of</strong> the most important in vitro sperm quality parameters remains sperm motility.<br />

The subjective analysis <strong>of</strong> sperm motility highly depends on the operators’ experience <strong>and</strong> is very<br />

<strong>of</strong>ten subject for discussion. Objective sperm motility analysis using computer assisted sperm<br />

analysis (CASA) is well known <strong>and</strong> appreciated for its precision. As such, results <strong>of</strong> CASA motility<br />

analyses should be comparable between laboratories, but since all laboratories perform CASA<br />

analysis in a different way the opposite is true. Therefore, the first aim <strong>of</strong> this thesis was to<br />

characterize <strong>and</strong> analyze the effect <strong>of</strong> technical motility settings <strong>and</strong> utensils on the outcome <strong>of</strong> CASA,<br />

since no uniformity is present.<br />

Additionally, when processing equine semen for either cooled storage or cryopreservation,<br />

centrifugation is a frequently used technique in order to increase the relative sperm concentration<br />

<strong>and</strong> to remove seminal plasma. Centrifugation, however, acts clearly as a double edged sword for the<br />

two intended goals, namely to produce high yields <strong>of</strong> sperm combined with limited side effects for<br />

sperm quality. Alternatively, centrifugation can also be used in combination with colloids to increase<br />

the quality <strong>of</strong> a sperm sample by removing inferior sperm cells from the original aliquot. This superior<br />

subsample might withst<strong>and</strong> cryopreservation in a superior way.<br />

The general aim <strong>of</strong> this thesis was to identify how CASA results are influenced by settings <strong>and</strong><br />

utensils (Chapter 3.1 <strong>and</strong> 3.2) <strong>and</strong> by trying out a new device supposedly capable <strong>of</strong> analyzing equine<br />

semen accurately <strong>and</strong> precise (Chapter 3.3 <strong>and</strong> 3.4). Additionally, the influence <strong>of</strong> different<br />

centrifugation protocols on sperm yield <strong>and</strong> quality was analyzed (Chapter 4.1). A new selection<br />

201


SUMMARY<br />

technique that enables processing <strong>of</strong> larger semen volumes was tested as well when applied prior to<br />

cryopreservation (Chapter 4.2).<br />

202<br />

Sperm motility is one <strong>of</strong> the key features <strong>of</strong> semen analysis. Nowadays, motility analysis is<br />

frequently performed using CASA. The repeatability <strong>of</strong> the analysis <strong>of</strong> frozen thawed equine semen<br />

using such a system is high. However, the settings used to analyze a semen sample influence the<br />

results to a large extent (Chapter 3.1). The use <strong>of</strong> different CASA settings yields significantly different<br />

motility outcomes. Depending on the settings used, total <strong>and</strong> progressive motility may differ to a<br />

large extent although results correlate well. Therefore, when reporting the motility <strong>of</strong> a sperm<br />

sample it is important to state the settings that were used. Preferably, CASA users throughout the<br />

world should use the same settings.<br />

Another frequently encountered problem during CASA analysis are the discrepancies that are<br />

present amongst different laboratories concerning the type <strong>of</strong> counting chamber used. Therefore,<br />

the effect <strong>of</strong> chamber type on concentration <strong>and</strong> motility <strong>of</strong> equine semen assessed with CASA was<br />

studied (Chapter 3.2). Motility analysis using CASA is always done in association with a counting<br />

chamber which provides a “monolayer” <strong>of</strong> sperm cells, so sperm recognition is facilitated. A wide<br />

variety <strong>of</strong> chambers is available, varying in depth <strong>and</strong> in loading technique. The most frequently used<br />

chambers are a disposable 20 µm deep chamber <strong>and</strong> a 10 µm reusable Makler chamber. In our study,<br />

we compared frequently used disposable Leja® chambers <strong>of</strong> different depths with disposable <strong>and</strong><br />

reusable ISAS chambers, a Makler chamber, <strong>and</strong> a WHO prepared motility slide. Concentration as<br />

well as motility parameters were significantly influenced by the chamber type that was used. The<br />

correlation <strong>of</strong> sperm concentration as assessed with the different chambers <strong>and</strong> the NucleoCounter®<br />

(which was used as gold st<strong>and</strong>ard) was low for all chambers, except for the 12 µm deep Leja®<br />

chamber. This emphasizes the shortcomings <strong>of</strong> CASA systems when determining sperm<br />

concentration. Motility parameters were equally influenced by the chamber type. Not only did the<br />

use <strong>of</strong> different chambers result in important difference in motility outcomes, motility was<br />

influenced as well when using the same chamber loaded with a different technique. In comparison<br />

with the WHO prepared motility slide, i.e. a 10 µl drop <strong>of</strong> semen covered with a 22 mm by 22 mm<br />

cover glass, loading a chamber by means <strong>of</strong> capillary forces will reduce sperm motility.<br />

The sperm quality analyzer (SQA) is an alternative device to objectively measure the motility<br />

<strong>of</strong> a sperm sample. Until recently, only human versions <strong>of</strong> the SQA were available. Analysis <strong>of</strong> motility<br />

by SQA is based on disturbance <strong>of</strong> a light beam due to movement <strong>of</strong> the spermatozoa which will<br />

scatter the light in different directions. These fluctuations are translated into a numerical motility<br />

value. Since human spermatozoa, <strong>and</strong> those from different animal species, have differently sized


SUMMARY<br />

sperm heads, the introduction <strong>of</strong> species-specific devices sounds logical. In a first experiment<br />

(Chapter 3.3) the SQA-Ve s<strong>of</strong>tware version 1.00.43 was analyzed for its repeatability <strong>and</strong> agreement<br />

with light microscopy when analyzing raw <strong>and</strong> diluted equine semen. Analyses with SQA-Ve were<br />

highly repeatable <strong>and</strong> agreed well with haemocytometer findings for concentration. However, the<br />

analysis <strong>of</strong> motility parameters <strong>and</strong> <strong>of</strong> the percentage <strong>of</strong> morphologically normal spermatozoa were<br />

poorly repeatable <strong>and</strong> did not agree with light microscopical evaluation. Light microscopy <strong>and</strong> CASA<br />

showed a good agreement <strong>and</strong> CASA analyses were once more highly repeatable. However, CASA<br />

was not able to analyze raw semen samples since concentration was out <strong>of</strong> range. Based on these<br />

findings, we concluded that the tested version (1.00.43) <strong>of</strong> the SQA-Ve is insufficiently accurate <strong>and</strong><br />

precise to analyze raw nor extended equine semen.<br />

In a next study (Chapter 3.4), two different s<strong>of</strong>tware versions <strong>of</strong> the SQA-Ve were tested for<br />

analyzing frozen-thawed equine semen. The first tested version (1.00.43) showed a poor<br />

repeatability <strong>and</strong> a poor agreement with CASA. A newer s<strong>of</strong>tware version (1.00.61) with improved<br />

algorithms was capable <strong>of</strong> analyzing the total motility in a more acceptable way. However, further<br />

improvements are m<strong>and</strong>atory before this device could serve as a diagnostic tool in equine<br />

spermatology. An additional downside at the current configuration <strong>of</strong> the SQA-Ve is the inability to<br />

report on motility if the samples total motility is equal to or below 30%. Under these circumstances,<br />

no actual motility information is provided.<br />

In literature, the reports on sperm losses associated with centrifugation are contradictory<br />

<strong>and</strong> may vary from less than 2% till up to 25% using the same protocol. A st<strong>and</strong>ard centrifugation<br />

protocol (600 × g for 10 min) was compared to four protocols with increasing g-force for a decreasing<br />

period <strong>of</strong> time (Chapter 4.1). Sperm losses differed tremendously (22% for the st<strong>and</strong>ard regime), but<br />

losses could be reduced by increasing g-force <strong>and</strong> reducing the time without affecting the apparent<br />

in vitro sperm quality. Preservation <strong>of</strong> semen was not affected following high speed centrifugation<br />

protocols, nor for cooled stored samples, neither for cryopreserved semen.<br />

In human reproductive medicine, several selection techniques are used to isolate a superior<br />

sperm population from the initial sample. These techniques only allow for processing <strong>of</strong> small volume<br />

<strong>of</strong> semen, rendering them rather useless for processing the larger stallion ejaculate. However,<br />

recently a new technique was developed which enabled us to increase the volume that can be<br />

processed. Single layer centrifugation through a colloid (Androcoll-E) can be used to process up to 15<br />

mL <strong>of</strong> diluted semen per tube. This procedure does not only increase the sperm sample immediately<br />

following centrifugation, it also increases the post-thaw sperm quality from semen processed prior to<br />

cryopreservation (Chapter 4.2). This technique can be very useful when trying to cryopreserve semen<br />

203


SUMMARY<br />

from stallions previously classified as unfreezable. Androcoll-E can be used with good results to select<br />

a superior sperm population prior to cryopreservation, in order to produce good quality frozen<br />

thawed semen.<br />

204<br />

Based on the results presented in this thesis <strong>and</strong> reported data in literature, the following<br />

conclusions can be put forward:<br />

♦ Motility settings, necessary when performing computer assisted sperm analysis, influence the<br />

motility outcomes to a great extent.<br />

♦ The type <strong>of</strong> counting chamber used in combination with computer assisted sperm analysis has<br />

an important effect on the concentration <strong>and</strong> motility results. Capillarity used for filling a<br />

chamber restricts sperm motility severely.<br />

♦ The present versions <strong>of</strong> the SQA-Ve are inefficient to univocally report on the quality <strong>of</strong> equine<br />

semen. The device has a poor repeatability <strong>and</strong> very poor agreement with gold st<strong>and</strong>ard<br />

methods to analyze sperm motility.<br />

♦ Centrifugation protocol has a major influence on sperm yield. High centrifugation forces (up to<br />

2400 × g) for a short time (5 min) can substantially reduce sperm losses without apparent<br />

effect on in vitro sperm characteristics.<br />

♦ Sperm selection using Androcoll-E in a single layer centrifugation technique prior to<br />

cryopreservation, results in an overall increased sperm quality. This technique is promising for<br />

clinical use because it enables cryopreservation <strong>of</strong> a subgroup <strong>of</strong> stallions previously deemed<br />

as unfreezable.


SAMENVATTING<br />

De voorbije decennia heeft er zich binnen de paardenfokkerij een ware evolutie voltrokken.<br />

Diverse geassisteerde reproductie technieken hebben hun intrede gedaan waardoor de voortplanting<br />

bij het paard niet langer gedomineerd wordt door natuurlijke dekking. Zo wordt tegenwoordig veel<br />

gebruik gemaakt van kunstmatige inseminatie (KI) met gekoeld <strong>of</strong> met diepvries sperma.<br />

In tegenstelling tot de humane geneeskunde waar strikte richtlijnen bestaan voor de analyse<br />

en het verwerken van sperma, wordt de veterinaire <strong>and</strong>rologie gekenmerkt door een gebrek aan<br />

eenduidige richtlijnen. Normaliter zou na elke sperma afname de kwaliteit ervan moeten<br />

gecontroleerd worden, waarna het ejaculaat verwerkt wordt en verschillende KI dosissen bereid<br />

worden. Dit is echter niet het geval. Tot op heden blijft de beweeglijkheid van de spermatozoa het<br />

belangrijkste in vitro kenmerk om de spermakwaliteit te beoordelen. De subjectieve bepaling ervan is<br />

sterk afhankelijk van de ervaring van de onderzoeker en is vaak onderhevig aan discussie. Met<br />

behulp van computer geassisteerde sperma analyse (CASA) kan de beweeglijkheid echter objectief en<br />

met een goede herhaalbaarheid geanalyseerd worden.<br />

De algemene doelstelling van dit proefschrift is de beweeglijkheid van hengstensperma op<br />

een uniforme en gest<strong>and</strong>aardiseerde manier te onderzoeken. Hiertoe werd zowel de invloed van<br />

verschillende CASA instellingen als van het gebruik van verschillende telkamers, op de beweeglijkheid<br />

van het sperma na gegaan (Ho<strong>of</strong>dstuk 3.1 en 3.2). Ook werd een nieuw toestel voor de analyse van<br />

hengstensperma als alternatief voor de CASA uitgetest (Ho<strong>of</strong>dstuk 3.3 en 3.4). Daarnaast werden de<br />

opbrengst van sperma en de spermakwaliteit na verschillende centrifugatieprotocollen onderzocht<br />

(Ho<strong>of</strong>dstuk 4.1). Als laatste werd de mogelijkheid van een nieuwe techniek na gegaan waarbij het<br />

sperma voor het invriezen opgezuiverd wordt met als doel de kwaliteit van het sperma na het<br />

ontdooien te verbeteren (Ho<strong>of</strong>dstuk 4.2).<br />

Zoals reeds vermeld is het bepalen van de beweeglijkheid van sperma één van de<br />

belangrijkste onderdelen van het spermaonderzoek. Hiervoor wordt meer en meer gebruik gemaakt<br />

van CASA toestellen die een goede herhaalbaarheid hebben met betrekking tot de analyse van o.a.<br />

ontdooid hengstensperma. Bovendien zouden de resultaten van de CASA tussen verschillende<br />

laboratoria kunnen vergeleken worden, ware het niet dat elk laboratorium zijn eigen analysetechniek<br />

heeft. Verschillen tussen diverse CASA instellingen zoals de minimale en medium afkapwaarden voor<br />

snelheid (VAP) en de rechtlijnigheid (STR), hebben een grote impact op de bekomen waarde voor de<br />

205


SAMENVATTING<br />

beweeglijkheid (Ho<strong>of</strong>dstuk 3.1). Zo zal zowel de totale als de rechtlijnige beweeglijkheid van<br />

eenzelfde spermastaal sterk verschillen wanneer verschillende instellingen gebruikt worden. Er is<br />

echter wel een sterke correlatie tussen deze resultaten. Daarom zouden de instellingen van het<br />

gebruikte CASA toestel telkens moeten weergegeven worden bij het vermelden van sperma analyse<br />

resultaten. Idealiter zouden deze CASA instellingen moeten gest<strong>and</strong>aardiseerd worden waardoor alle<br />

instellingen wereldwijd hetzelfde zijn.<br />

206<br />

Verder is het belangrijk bij het beoordelen van de spermakwaliteit met de CASA, een<br />

telkamer te gebruiken waarbij de spermacellen in één enkele laag gebracht worden. Hierdoor<br />

worden de spermacellen vlot herkend door de computer en kan het traject dat een spermacel aflegt,<br />

worden gevolgd en zijn beweging worden geanalyseerd. Er bestaan echter diverse telkamers met<br />

zowel verschillen in manieren waarop het sperma in de kamer kan gebracht worden, als in diepte van<br />

de kamer. Verschillende laboratoria gebruiken verschillende telkamers. De meest frequent gebruikte<br />

telkamers zijn enerzijds wegwerpkamers met een diepte van 20 µm en <strong>and</strong>erzijds de herbruikbare<br />

Makler telkamer met een diepte van 10 µm. In dit onderzoek werden Leja telkamers van<br />

verschillende diktes vergeleken met wegwerp en herbruikbare ISAS telkamers, met de Makler kamer<br />

en met een preparaat zoals het aangeraden wordt door de wereld gezondheidsorganisatie (WHO).<br />

Zowel de bekomen waarden voor concentratie als beweeglijkheid waren sterk afhankelijk van de<br />

gebruikte telkamer (Ho<strong>of</strong>dstuk 3.2). Behalve de 12 µm diepe Leja kamer vertoonden alle telkamers<br />

een zeer slechte correlatie met de concentratie die bepaald was met de Nucleocounter, die in deze<br />

studie beschouwd werd als de goudst<strong>and</strong>aard. Hiermee wordt bevestigd dat CASA toestellen niet<br />

geschikt zijn om de spermaconcentratie te bepalen. De beweeglijkheid van het sperma werd niet<br />

alleen beïnvloed door het type telkamer maar ook door de manier van laden. Als de kamer geladen<br />

werd met behulp van capillaire krachten, werd de beweeglijkheid sterk verminderd in vergelijking<br />

met het WHO preparaat, die in deze studie ook gebruikt als de goudst<strong>and</strong>aard. Een WHO preparaat<br />

bestaat uit een druppel sperma van exact 10 µL op een draagglaasje bedekt met een dekglaasje van<br />

22mm op 22mm.<br />

Als alternatief voor de CASA kan de Sperm Quality Analyzer (SQA) gebruikt worden. Bij deze<br />

techniek wordt een spermastaal belicht met een lichtstraal en op basis van de verstrooiing en de<br />

schommeling van de lichtstraal, die ontstaat door het bewegen van de spermacellen, kan de<br />

beweeglijkheid objectief geanalyseerd worden met behulp van wiskundige algoritmes. Tot voor kort<br />

was dit toestel enkel beschikbaar voor het beoordelen van humaan sperma. Gezien de verschillen<br />

tussen de mens enerzijds en de verschillende diersoorten <strong>and</strong>erzijds wat de afmetingen van de kop<br />

van een spermacel betreft, was het noodzakelijk om per diersoort specifieke toestellen te ontwerpen.<br />

In een eerste experiment werd de SQA bestemd voor het analyseren van hengstensperma, met name


SAMENVATTING<br />

de SQA-Ve met s<strong>of</strong>tware versie 1.00.43, getest en de herhaalbaarheid van de metingen geëvalueerd<br />

alsook de overeenkomst met de klassieke lichtmicroscopische analyse (Ho<strong>of</strong>dstuk 3.3), en dit zowel<br />

voor het analyseren van vers als van verdund sperma. De SQA-Ve had een goede herhaalbaarheid en<br />

een goede overeenkomst met de haemocytometer voor het bepalen van de concentratie. De<br />

weergegeven waarden voor de beweeglijkheid en voor het percentage morfologisch normale<br />

spermacellen waren echter weinig herhaalbaar en hadden bovendien een slechte overeenkomst met<br />

de lichtmicroscopische bevindingen. Deze laatste bevindingen vertoonden daarentegen wel een<br />

goede overeenkomst met de goed herhaalbare CASA waarnemingen. Uit dit onderzoek kan<br />

geconcludeerd worden dat de geteste versie van de SQA-Ve (versie 1.00.43) onvoldoende<br />

nauwkeurig is voor de analyse van zowel vers als verdund sperma.<br />

Voor het analyseren van ontdooid hengstensperma werd dezelfde versie van de SQA-Ve, met<br />

name de 1.00.43, alsook een recentere versie met vernieuwde s<strong>of</strong>tware algoritmes (1.00.61) getest<br />

(ho<strong>of</strong>dstuk 3.4). Ook voor diepvries sperma had de eerste versie een slechte herhaalbaarheid en een<br />

zeer slechte overeenkomst met de CASA waarnemingen. De vernieuwde versie daarentegen, was<br />

duidelijk beter geschikt om hengstensperma te analyseren, al zijn er nog bijkomende aanpassingen<br />

aan de s<strong>of</strong>tware algoritmes nodig om betrouwbare resultaten te verkrijgen. Een bijkomend nadeel<br />

aan de SQA-Ve is dat de ondergrens voor het weergeven van de beweeglijkheid ligt op 30% hetgeen<br />

concreet betekent dat waarden gelijk aan <strong>of</strong> kleiner dan 30% niet weergegeven worden.<br />

Na het beoordelen van de kwaliteit moet het sperma verwerkt worden. Om de concentratie<br />

aan spermacellen te verhogen, wordt bij de verwerking van hengstensperma vaak gebruik gemaakt<br />

van centrifugatie, zowel bij de gekoelde bewaring als bij het invriezen. De spermaverliezen die<br />

gerapporteerd worden na centrifugatie, zijn zeer variabel en gaan van minder dan 2% tot 25%<br />

wanneer gebruik gemaakt wordt van eenzelfde st<strong>and</strong>aardprotocol (600 × g gedurende 10 min). In<br />

ho<strong>of</strong>dstuk 4.1 werd dit protocol vergeleken met <strong>and</strong>ere protocollen waarbij het sperma gedurende<br />

een kortere tijd werd gecentrifugeerd aan een hogere kracht. De bekomen verliezen waren sterk<br />

verschillend naargelang het gebruikte protocol, met 22% verlies voor het st<strong>and</strong>aardprotocol. Bij een<br />

verhoogde centrifugatiekracht waren de verliezen aanzienlijk minder zonder aantasting van de<br />

spermakwaliteit. Noch bij gekoelde bewaring noch bij het invriezen van het sperma werd een<br />

duidelijke invloed waargenomen van het centrifugeren aan een hogere kracht gedurende een<br />

beperkte tijd.<br />

Door het sperma te centrifugeren wil men een maximale opbrengst van sperma verkrijgen<br />

zonder het echter te beschadigen, hetgeen in feite lijnrecht tegenover elkaar staat. Met behulp van<br />

een alternatieve manier van centrifugeren waarbij gebruik gemaakt wordt van een colloid, kunnen<br />

207


SAMENVATTING<br />

de spermacellen geselecteerd worden. Bij deze techniek worden de spermacellen gescheiden op<br />

basis van hun kwaliteit, zodat de gevormde pellet na centrifugatie voornamelijk morfologisch<br />

normaal sperma met een goede beweeglijkheid bevat. In de humane voortplantingsklinieken wordt<br />

vaak gebruik gemaakt van dergelijke technieken waarbij uit het oorspronkelijke staal de goede<br />

spermatozoa geselecteerd worden. Tot voor kort kon men echter enkel kleine hoeveelheden sperma<br />

verwerken met behulp van deze technieken zodat het niet mogelijk was deze aan te wenden voor<br />

hengstensperma. Recente aanpassingen laten echter toe om ook grotere hoeveelheden sperma te<br />

verwerken. Met deze nieuwe techniek waarbij slechts één enkele laag van het colloid (Androcoll-E)<br />

gebruikt wordt, is het mogelijk 15 mL sperma per centrifugeerbuis te verwerken, waardoor men<br />

minder sperma bekomt maar van een veel betere kwaliteit. In een volgend experiment werd dit<br />

opgezuiverde sperma ingevroren, waarbij verwacht werd dat de spermakwaliteit ook na ontdooien<br />

beter zou zijn (ho<strong>of</strong>dstuk 4.2). Deze hypothese werd bevestigd: alle gecontroleerde parameters<br />

waren na het ontdooien duidelijk beter in vergelijking met de niet-opgezuiverde stalen. Zodoende<br />

kan Androcoll-E een belangrijk hulpmiddel zijn om sperma in te vriezen van hengsten die normaal<br />

moeilijk <strong>of</strong> niet in te vriezen sperma hebben.<br />

208<br />

Op basis van de gevonden resultaten en gegevens uit de literatuur kunnen volgende<br />

conclusies getrokken worden:<br />

♦ De instellingen van een CASA toestel hebben een zeer grote invloed op de bekomen waarden<br />

voor de beweeglijkheid.<br />

♦ Het type telkamer dat gebruikt wordt bij het uitvoeren van een CASA analyse heeft een<br />

belangrijke impact op de gevonden waarden voor de concentratie en de beweeglijkheid. Als<br />

een kamer gevuld wordt door middel van capillariteit, wordt de beweeglijkheid aanzienlijk<br />

onderdrukt.<br />

♦ De huidige versies van de SQA-Ve zijn niet geschikt om op een eenduidige manier de kwaliteit<br />

van hengstensperma te beoordelen. Het toestel heeft een slechte herhaalbaarheid en vertoont<br />

onvoldoende overeenkomst met de klassieke alternatieven voor de analyse van de<br />

beweeglijkheid.


SAMENVATTING<br />

♦ Het gebruikte centrifugatieprotocol heeft een duidelijk effect op de sperma opbrengst. Hoge<br />

centrifugatiekrachten (tot 2400 × g) gedurende een korte tijd (5 min) kunnen het verlies aan<br />

spermacellen aanzienlijk beperken zonder invloed te hebben op de in vitro kwaliteit van het<br />

sperma.<br />

♦ Het selecteren van de populatie morfologisch goede spermacellen met behulp van<br />

centrifugatie over een enkele laag Androcoll-E voor het invriezen, heeft een positieve invloed<br />

op de spermakwaliteit na het ontdooien. Deze techniek is zeer bel<strong>of</strong>tevol om het sperma van<br />

hengsten dat normaal moeilijk <strong>of</strong> niet kan ingevroren worden, toch met goed gevolg in te<br />

vriezen.<br />

209


DANKWOORD<br />

Het obligatoire dankwoord… <strong>of</strong> is het toch meer dan dat? Uiteraard, want zonder de hulp van een massa<br />

mensen was er van dit doctoraat niets in huis gekomen. En ere wie ere toekomt, mijn ho<strong>of</strong>dpromotor,<br />

Pr<strong>of</strong>essor de Kruif verdient wel een groot woord van dank! Ik kan me geen periode van langer dan een ma<strong>and</strong><br />

voorstellen tijdens dewelke u me niet vroeg naar mijn onderzoek en hoe het met me ging. Een niet-aflatendezekerheid<br />

was jouw gelo<strong>of</strong> in het doel van mijn aanwezigheid aan de vakgroep, een doctoraat! En zeker als het<br />

na enige tijd voor de meesten een fata morgana dreigde te worden, bleef jij overtuigd dat zelfs ik uiteindelijk<br />

een doctoraat kon behalen. En zoals wel vaker krijg je toch weer eens gelijk… Naast jouw vertrouwen in de<br />

goede afloop van m’n onderzoek was je ook altijd een ooggetuige van het gebeuren, <strong>of</strong> zeg maar avontuur, dat<br />

zich op kliniek afspeelde. Je had waarschijnlijk bij alles wat ik deed wel je eigen idee en vermoedelijk zou je het<br />

vaak zelf <strong>and</strong>ers aangepakt hebben, maar net uit die vrijheid en je onvoorwaardelijk vertrouwen ben ik de<br />

dierenarts geworden die ik v<strong>and</strong>aag ben. En dat is me minstens even veel waard als dit doctoraat.<br />

Ann, van meet af aan werd het vrij snel duidelijk dat jij mede verantwoordelijk zou zijn om mij, een van die<br />

kliniekmensen, in de richting van het onderzoek te trekken. Kliniek kwam wel meer dan eens tussen ons, maar<br />

zoals je ziet ben je er toch in geslaagd om het eerste doctoraat voor de assistenten van paard in lange tijd te<br />

helpen verwezenlijken! Zo zie je maar; als we willen, kunnen we wel… ☺ Ik heb het je als promotor vaak knap<br />

lastig gemaakt, maar op een zeldzame bots na zijn er we er toch samen geraakt!<br />

De meest vreemde eend in de bijt van mijn onderzoek is ongetwijfeld mijn <strong>and</strong>ere promotor, pr<strong>of</strong>essor De<br />

Vliegher, Sarne! De wetenschappelijke samenwerking is begonnen met de statistiek van mijn eerste artikel. En<br />

ja, jouw “less is more” is weldegelijk blijven hangen, ook al heb je het nadien nog vaak moeten herhalen. Voor<br />

iem<strong>and</strong> die zich voornamelijk met melk bezig houdt weet je ook verdomd veel van sperma! Misschien heb ik je<br />

dat laatste wel zelf opgedrongen, maar je hebt het toch maar gedaan! Bedankt voor het nalezen, herlezen en<br />

steeds verder piekeren over hoe je het best kon analyseren waar ik naartoe wilde met mijn experimenten. Ik<br />

hoop dat ik het je niet TE moeilijk heb gemaakt. Binnen een paar jaar kijkt iedereen naar België als ze over<br />

Ryel<strong>and</strong>s spreken, en uiteraard over de vruchtbare glooiingen van Zwalm met jouw bollekes als stammoeders!<br />

Dr. Magistrini, Dear Michèle, thank you for your constructive remarks when carefully analysing my PhD<br />

manuscript. I will always remember the ISSR in Brazil where you talked so enthusiastic about all your research<br />

projects. Thank you once more that you were willing to be a member <strong>of</strong> my examination committee. Dr.<br />

Morrell, dear Jane, I hope we will be able to continue some research in the future. But let me thank you first for<br />

willing to collaborate for a part <strong>of</strong> the scientific work that is presented in this thesis. Without your help <strong>and</strong> my<br />

visit to Uppsala for the SCSA analysis I wouldn’t have made it ? here today! Pr<strong>of</strong>essor Vlaminck bedankt voor<br />

het grondig nalezen van mijn doctoraat en voor de kritische opmerkingen. Beste Lieven, bedankt voor al het<br />

praktische dat je me geleerd hebt, zowel als intern toen ik op heelkunde meeliep, maar ook later als ik weer<br />

eens op je kennis beroep moest doen. Pr<strong>of</strong>essor Sys, ik hoop dat mijn onderwerp je heeft kunnen boeien, maar<br />

uitga<strong>and</strong>e van je constructieve opmerkingen weet ik zeker dat je alles met veel zorg en a<strong>and</strong>acht bekeken hebt.<br />

Bedankt daarvoor.<br />

Beste Erik, bedankt voor zoveel! De leerrijke gesprekken en discussies op onze buitenl<strong>and</strong>se congres- en<br />

studiereizen, jouw gastvrijheid om mij bij je thuis te ontvangen en wegwijs te maken in jouw visie van de<br />

voortplanting en verloskunde. Je mag dan misschien een “boerke uit de Limburg” zijn zoals je het zelf altijd zegt,<br />

maar ik heb in elk geval al veel van je kunnen leren. Beste Adrie, het is leuk een gelijkgezinde te hebben als het<br />

over st<strong>and</strong>aardisatie van sperma analyse gaat. Jouw karrevracht aan ervaring en jouw inzicht in de materie<br />

hebben duidelijk bijgedragen in de verwezenlijking van mijn onderzoek, waarvoor dank. Tom, in drukke havens<br />

vaart men wel eens door <strong>and</strong>ermans vaarwater, en dat heb ik dan ook ruimschoots bij jou gedaan! Ondanks dit<br />

alles wist je altijd je kalmte te bewaren en wou je je steentje bijdragen aan mijn doctoraat. Bedankt…<br />

Voor het eerst in jaren (<strong>of</strong> bij mijn weten voor het eerst ooit?) worden de mensen van paard op onze vakgroep<br />

eens niet stiefmoederlijk beh<strong>and</strong>eld in één klein paragraafje! Dus alle mensen van paard, bedankt voor alles.<br />

Maar misschien beginnen bij Jan, nu kliniekho<strong>of</strong>d (dus mijn baas!) maar ooit een intern en resident… Toen was<br />

je al een bron van wijsheid en in de loop der jaren ben je naast een praktische mentor ook een vriend<br />

geworden. We houden er misschien een <strong>and</strong>ere pedagogische techniek op na, maar van de jouwe ben ik in elk<br />

211


DANKWOORD<br />

geval overtuigd dat hij werkt <strong>of</strong> toch zeker kan werken… Stress gegar<strong>and</strong>eerd als jij in Kemmel zat en ik alvast<br />

begon aan mijn eerste torsie! Maar gedraaid is ze toch. Als het (weer) eens een beetje (veel) minder ging op ’t<br />

werk en daarbuiten kon ik steeds op je rekenen, maar wat je bezielde in het voorjaar van 2008 is me nog steeds<br />

een raadsel. Volgaarne ben ik dan ingegaan op je vraag om peter te worden van je jongste, ik hoop dat je je het<br />

nog niet (te veel) beklaagd hebt. Ik ben alvast fier dat ik je spruiten van zo dicht bij mag zien opgroeien. Het zijn<br />

super kinderen, elk met hun eigen trekjes, maar ze vrolijken me altijd op! Geen flauw idee hoe je Greet zo ver<br />

gekregen hebt om je te volgen in dat waanzinnige voorstel, maar ook jij bedankt voor de voorbije jaren Greet.<br />

En Jan, nog een laatste detail! Denk ook eens aan je eigen onderzoek, ik zal het komende seizoen proberen<br />

zoveel mogelijk op mij te nemen, belo<strong>of</strong>d!<br />

Meerdere paardenmensen zijn sinds mijn komst al de revue gepasseerd op de kliniek, maar slechts weinigen<br />

zijn er ook lang gebleven. Catharina, sinds meer dan 6 jaar ben je nu al een vaste waarde op kliniek. Hopelijk<br />

ben je toch een beetje tevreden over je “voortgezette opleiding”… Ondertussen ben je al veel meer dan een<br />

collega en dat maakt het vaak nog complexer dan het zou moeten! Maar ja, moeilijk kan ook, niet bi? Probeer<br />

in elk ook maar werk te maken van je doctoraat en je overblijvende energie in je vakdierenartsopleiding<br />

steken… en ik belo<strong>of</strong> je, hoewel ik meer kliniek ga doen zal ik je je baanwerk laten, ok? Bedankt voor alles!<br />

Emilie, lang gedacht dat jij het ging volhouden bij ons keikoppen op de kliniek, maar jij weet als geen een hoe<br />

moeilijk wij het elkaar kunnen maken. In elk geval bedankt voor de vele hulp in ’t spermalabo. En toch ben je er<br />

sterk(er) uitgekomen. In elk geval hoop ik dat je het je verder voor de wind gaat… Al zal het voorlopig dan wel<br />

niet in Ierl<strong>and</strong> zijn. En wees gerust, we zien elkaar nog veel, zelfs al is het aan de <strong>and</strong>ere kant van de wereld<br />

maar dichter bij is ook goed! Je moet het echt zo ver niet gaan zoek als ons Katrientje! Smitsie, daar zo ver in<br />

Aruba, bedankt voor je nuchtere kijk op het leven als je nog bij ons was. Je buro blijft voorlopig “leeg”, ttz<br />

gevuld met papier van mij, maar <strong>of</strong>f limit voor een <strong>and</strong>er. In mijn ho<strong>of</strong>d ben jij nog altijd mijn buurmeisje!<br />

Kim, je weet ongetwijfeld al een beetje wat je te wachten staat, maar nu ik meer naar beneden kom zal ’t wel<br />

weer wat <strong>and</strong>ers zijn. In elk geval bedankt voor de hulp en we maken er nog minstens één geslaagd seizoen van!<br />

En James, baasje was akkoord, echt waar… dus word nu maar snel groot. Sarah, jouw eerste seizoen staat voor<br />

de deur, maar dat zal wel loslopen! En alle <strong>and</strong>ere mensen met wie ik ooit “op paard” heb mogen<br />

samenwerken, Lotte, Ines, Rita en Cabron bedankt!<br />

Maar onze kliniek zou lang geen kliniek zijn zonder de hulp van vele <strong>and</strong>ere mensen die vaak achter de<br />

schermen veel werk verzetten. Marnik en Veronique, bedankt voor de vele hulp! Het klutsen van eitjes op de<br />

onmogelijkste uren om weer eens een verdunner te maken voor een <strong>of</strong> <strong>and</strong>er onderzoekje, het opruimen van<br />

het vuil achter mij als ik weer eens te snel weg moest en voor zoveel meer. Marnik, nu ik weer iets meer tijd<br />

heb gaan we terug frequenter “een ciderke drinken” he! Willy, Dirk S en Wilfried, jullie ook bedankt… voor<br />

alles! Chef voor het delen van zijn rijke ervaringen in de schapenhouderij en al het bijhorende werk ☺. Dirk, jij<br />

ook bedankt voor het leiden van mijn hengsten, tot in het weekend toe (Sorry Ilse) en ja Dirk, nog een extra<br />

bedankt voor je hulp bij de afname van Atomic enkele jaren terug! Als jij er niet was geweest, dan was ik er<br />

geweest.<br />

De DI08 is veel meer dan alleen paard, dus ga ik nu proberen de <strong>and</strong>eren ook allemaal te bedanken. Maar als je<br />

er als ik ZO lang over doet dan zie je veel mensen komen en gaan dus hoop ik van harte dat ik niem<strong>and</strong> vergeet,<br />

en als dat toch zo zou zijn, dan alvast mijn excuses. Davy, alvast bedankt voor al je boerenwijsheden, ik zal ze<br />

nog hard nodig hebben in de toekomst, maar jij blijft nog dus dat zit al snor. Sebi, succes met je kalkoenen en je<br />

weet, mijn “duiventil” in Balegem heeft altijd iets staan om dorstigen te laven. De jonge krachten op de kliniek<br />

rund, Vanessa, Hilde, Kathelijne, Anneleen, Joren, als ge een extra h<strong>and</strong>je nodig hebt… bel gerust!<br />

De buitenpraktijk, waar is de tijd dat ik er deel van uitmaakte, eerst rund dan paard laten herrijzen! Geert O,<br />

bedankt voor jouw steun in en bij het einde van mijn BP-carrière. De buitenpraktijk gaat h<strong>and</strong> in h<strong>and</strong> met wat<br />

trekkers, Jef, van mijn studententijd tot nu heb ik veel van je geleerd, bedankt. Marcel, jij bent een nooit<br />

uitdovende vlam die wakkert voor de diergeneeskunde, ongelo<strong>of</strong>lijk hoe jij alles kan aanpakken. Zelfs een<br />

foetotomie is leuk werk samen met jou, en zeer leerrijk! De BP collega’s vroeger, Geert H, Bart M, Tom VH,<br />

Boudewijn (gelukkig ben jij in de buurt blijven wonen), Jo L, Steven V en Leen, wat een hechte groep was dat!<br />

Stefaan het gaat je goed nu je nieuwe horizonten verkent! Hans, je verblijf bij ons was kort, maar krachtig<br />

genoeg om vriendjes te blijven. Draag maar goed zorg voor Thijsje, en vergeet niet dat jullie nog kleine<br />

herkauwers moeten komen scannen! Phillipe en Muriel, jullie waren onvergetelijk en Dr. Filliers een extra<br />

“dank-u-tje” voor de manier waarop je Fari opgevolgd hebt. Ik ken 8 families waar een kleine farus loopt<br />

212


DANKWOORD<br />

dankzij jou en ze zijn er allemaal zot van, bedankt. Buurman Miel, nu het seizoen weer voor de deur staat gaan<br />

we hier terug gezellige nachten tegemoet! Hou je wel onze Cyrillus op het juiste spoor? Hij is nog zo jong… Met<br />

de hulp van Iris lukt dat wel hé! S<strong>of</strong>ie, bedankt voor je hulp met Oscar en het bezoek van zijn grootvader in<br />

Zweden. De <strong>and</strong>ere BP’ers Emily, Mieke, Ellen, Ilse, Anita, nog veel succes in alles. Als hulpverleners van de BP<br />

jullie ook bedankt voor alles Ria en Els! En Ria… ik vrees dat ons kieltjes nog wat nieuwe mouwkes kunnen<br />

gebruiken, dus als je eens tijd hebt… Alle Melk-meisjes (en Joren) zijn al gepasseerd maar onze Lars nog niet!<br />

Bedankt Larsje…<br />

Tot slot van de vakgroep rest me nog de “beneden van ons gebouwtje”… Ik zeg niet dat ik me er niet thuis voel<br />

maar zot veel ben ik er niet geweest. Desalniettemin hebben jullie ook vaak mijn fratsen in het labo moeten<br />

verdragen, dus nog maals Isabel en Petra, mijn oprechte excuses voor de geurhinder als gevolg van het koken<br />

van … en bedankt voor de vele hulp. Op het einde van de gang zit daar nu Josine met een nieuwe bende. Bekie,<br />

veel succes met jouw verder onderzoek. Met Hilde en Bart L is het daar een vij<strong>and</strong>ige overname van paard<br />

geworden, ook jullie succes bij jullie onderzoek. Voor de technische ondersteuning kon ik altijd reken op een<br />

arsenaal collega’s, Roger V en Steven B, S<strong>and</strong>ra (bedankt voor de uitbreiding van je takenpakket) en Leïla. Een<br />

welgemeende dank ook voor Nicole die steeds vrolijk orde schiep in onze buro… waar een kat vaak haar jongen<br />

niet terug zou vinden! Het idee van de briefjes op de deur is niet waterdicht maar wel een serieuze vooruitgang.<br />

Hopelijk bots je dit seizoen tegen niem<strong>and</strong> die ’s morgens zich nog even draait in ons bed ☺. (Tante) Nadine,<br />

dank om vele jaren onze buurvrouw te zijn, de reizen te regelen, klaar te staan voor een babbel en er gewoon<br />

altijd te zijn. Het is leuk je regelmatig terug te zien op de dienst <strong>of</strong> op de faculty club. Den 29 zijn al lang geen<br />

vreemden meer in je vrijdagavond clubje. En wanneer ga je nu ook eens mee op congres met mij?<br />

Ook veel mensen van buiten de dienst verdienen een speciale vermelding. Zonder Dirk DD had er voor mij geen<br />

diergeneeskunde ingezeten. Maak je geen zorgen, ik was gewaarschuwd maar doe het nog altijd met veel<br />

plezier. En ja, sommige zaken had ik liever <strong>and</strong>ers gezien… maar gedane zaken nemen geen keer. Nathalie, we<br />

gaan nu elk onze eigen weg, en soms heb ik het daar nog moeilijk mee… Het spijt me konijn!<br />

Iedereen van mijn familie, ook jullie bedankt voor de vele steun door de jaren heen. Zeker mijn zusje en broer<br />

verdienen samen met hun gezin een extra woord van dank. We lopen elkaars deur zeker niet plat maar het is<br />

toch leuk om weten dat ik altijd ergens terecht kan. Mieke, Krist<strong>of</strong>, Hebe en Rune, bedankt voor alle leuke<br />

momenten en jullie gastvrijheid. Pieter, Melissa en Quinten hetzelfde geldt voor jullie. En Quinten, weet jij wie<br />

de beste taart ter wereld KAN maken, maar het misschien iets te weinig doet? Ik wel…<br />

Waar had ik v<strong>and</strong>aag gestaan zonder de onvoorwaardelijke steun van mijn ouders. Gutta cavat lapidem, non vi,<br />

sed saepe cadendo… en zo is Colligur er gekomen na een dagje Roeselare! Dus jullie wisten misschien wel dat ik<br />

het kon volhouden maar toch ben ik blij dat jullie me zijn blijven steunen. Mama en papa, bedankt voor alle<br />

goede zorgen, voor alle hulp en nog zoveel meer. Ik ben blij jullie als ouders te hebben.<br />

Bedankt,<br />

Maarten<br />

213


CURRICULUM VITAE<br />

Maarten Hoogewijs werd geboren op 25 februari 1978 te Gent. Na het behalen van het<br />

diploma van het hoger secundair onderwijs aan het Sint-Lievens College te Gent begon hij in 1996<br />

met de studie Diergeneeskunde aan de Universiteit Gent. In 2002 behaalde hij het diploma<br />

dierenarts met grote onderscheiding.<br />

Op 1 oktober 2002 startte hij een roterend internship op de klinieken grote huisdieren van de<br />

faculteit Diergeneeskunde. In oktober 2003 werd hij resident voor het European College <strong>of</strong> Animal<br />

<strong>Reproduction</strong>. In oktober 2004 trad hij in dienst als voltijds assistent op de Vakgroep Voortplanting,<br />

Verloskunde en Bedrijfsdiergeneeskunde. Zijn taak bestond uit het klinische werk op de Kliniek<br />

Voortplanting en Verloskunde van de grote huisdieren en de Buitenpraktijk paard, en het opleiden<br />

van de studenten. De eerste 5 jaar op de faculteit deed hij ook dienst op de Buitenpraktijk rund. Bij<br />

het vele kliniekwerk was hij vooral geïnteresseerd in het mannelijke dier en stond hij grotendeels in<br />

voor de hengsten die werden aangeboden op de dienst. Vanuit die klinische achtergrond is hij zijn<br />

onderzoek gestart naar de st<strong>and</strong>aardisatie van sperma onderzoek bij de hengst en het verbeteren<br />

van de verwerking van sperma.<br />

Maarten is auteur en mede-auteur van verschillende wetenschappelijke publicaties in<br />

nationale en internationale tijdschriften en presenteerde zijn onderzoeksresultaten op meerdere<br />

internationale congressen.<br />

215


CURRICULUM VITAE<br />

Maarten Hoogewijs was born on February 25th 1978 in Ghent, Belgium. After finishing<br />

secondary school at Sint-Lievens College in Ghent (Science – Mathematics) in 1996, he started his<br />

study in Veterinary Medicine at Ghent University. In 2002 he graduated as Veterinarian with great<br />

distinction.<br />

After a rotating internship he started as resident for the European College <strong>of</strong> Animal<br />

<strong>Reproduction</strong>. In October 2004, he became assistant at the department <strong>of</strong> <strong>Reproduction</strong>, <strong>Obstetrics</strong><br />

<strong>and</strong> <strong>Herd</strong> <strong>Health</strong>. He was also responsible for the clinical education <strong>of</strong> the students during the clinical<br />

<strong>and</strong> ambulatory work at the department. During his first five years as a vet, Maarten participated in<br />

the night <strong>and</strong> weekend work <strong>of</strong> the bovine ambulatory clinic <strong>of</strong> the department. With his colleagues<br />

from the “equine team”, he was responsible for the clinic <strong>of</strong> <strong>Reproduction</strong> <strong>and</strong> <strong>Obstetrics</strong>, including<br />

night <strong>and</strong> weekend work. When working in the clinic he became especially interested in working with<br />

the male animal. From this clinical perspective, he started his PhD research concerning<br />

st<strong>and</strong>ardization <strong>of</strong> equine semen analysis <strong>and</strong> improvements for semen cryopreservation.<br />

Maarten is author <strong>and</strong> co-author <strong>of</strong> multiple scientific publications in national <strong>and</strong><br />

international journals, <strong>and</strong> presented his research results on several international meetings.<br />

217


PUBLICATIONS IN INTERNATIONAL PEER-REVIEWED JOURNALS<br />

BIBLIOGRAPHY<br />

Deprez P., Hoogewijs M., Vlamick L., Vansch<strong>and</strong>evijl K., Lefevre L., Van Loon G. 2006. Incarceration <strong>of</strong><br />

the small intestine in the epiploic foramen <strong>of</strong> three calves. Veterinary Record 158:869-870.<br />

Van Brantegem L., de Cock H.E.V., Affolter V.K., Duchateau L., Hoogewijs M.K., Govaere J., Ferraro<br />

G.L., Ducatelle R. 2007. Antibodies to elastin peptides in sera <strong>of</strong> Belgian draught horses with<br />

chronic progressive lymphoedema. Equine Veterinary Journal 39:418-421.<br />

Govaere J.L.J., Hoogewijs M.K., De Schauwer C., Dewulf J., de Kruif A. 2008. Transvaginal ultrasoundguided<br />

aspiration <strong>of</strong> unilateral twin gestation in the mare. Equine Veterinary Journal 40:521-<br />

522.<br />

Govaere J., Hoogewijs M., De Schauwer C., Van Loon G., de Kruif A. 2008. Incomplete placentation<br />

after twin reduction in a mare. Veterinary Record 163:747-748.<br />

Delesalle C., Hoogewijs M., Govaere J., Declercq J., Schauvliege S., Vansch<strong>and</strong>evijl K., Deprez P. 2009.<br />

Ultrasound-guided perivaginal drainage <strong>of</strong> abscesses associated with rectal tears in four<br />

mares. Veterinary Record 165:662-663.<br />

Govaere J., Hoogewijs M., De Schauwer C., Van Zeveren A., Smits K., Cornillie P., de Kruif A. 2009. An<br />

abortion <strong>of</strong> monozygotic twins in a warmblood mare. <strong>Reproduction</strong> in Domestic Animals<br />

44:852-854.<br />

Smits K., Goossens K., Van Soom A., Govaere J., Hoogewijs M., Vanhaesebrouck E., Galli C., Colleoni<br />

S., V<strong>and</strong>esompele J., Peelman L. 2009. Selection <strong>of</strong> reference genes for quantitative real-time<br />

PCR in equine in vivo <strong>and</strong> fresh <strong>and</strong> frozen-thawed in vitro blastocysts. BMC Research Notes<br />

2:246.<br />

Thys M., Nauwynck H., Maes D., Hoogewijs M., Vercauteren D., Rijsselaere T., Favoreel H., Van Soom<br />

A. 2009. Expression <strong>and</strong> putative function <strong>of</strong> fibronectin <strong>and</strong> its receptor (integrin<br />

alpha(5)beta(1)) in male <strong>and</strong> female gametes during bovine fertilization. <strong>Reproduction</strong><br />

138:471-482.<br />

Thys M., V<strong>and</strong>aele L., Morrell J.,M., Mestach J., Van Soom A., Hoogewijs M., Rodriguez-Martinez H.<br />

2009. In vitro fertilizing capacity <strong>of</strong> frozen-thawed bull spermatozoa selected by single-layer<br />

(Glycidoxypropyltrimethoxysilane) silane-coated silica colloidal centrifugation. <strong>Reproduction</strong><br />

in Domestic Animals 44:390-394.<br />

Filliers M., Rijsselaere T., Bossaert P., Zambelli D., Anastasi P., Hoogewijs M., Van Soom A. 2010. In<br />

vitro evaluation <strong>of</strong> fresh sperm quality in tomcats: A comparison <strong>of</strong> two collection techniques.<br />

Theriogenology 74:31-39.<br />

219


BIBLIOGRAPHY<br />

Govaere J., Ducatelle R., Hoogewijs M., De Schauwer C., de Kruif A. 2010. Case <strong>of</strong> bilateral seminoma<br />

in a trotter stallion. <strong>Reproduction</strong> in Domestic Animals 45:537-539.<br />

Hoogewijs M., Rijsselaere T., De Vliegher S., Vanhaesebrouck E., De Schauwer C., Govaere J., Thys M.,<br />

H<strong>of</strong>lack G., Van Soom A., de Kruif A. 2010. Influence <strong>of</strong> different centrifugation protocols on<br />

equine semen preservation. Theriogenology 74:118-126.<br />

Hoogewijs M., De Vliegher S., De Schauwer C., Govaere J., Smits K., H<strong>of</strong>lack G., de Kruif A., Van Soom<br />

A. 2010. Validation <strong>and</strong> usefulness <strong>of</strong> the Sperm Quality Analyzer V equine for equine semen<br />

analysis. Theriogenology 75:189-194.<br />

De Schauwer C., Meyer E., Cornillie P., De Vliegher S., van de Walle G.R., Hoogewijs M., Declercq H.,<br />

Govaere J., Demeyere K., Cornelissen M., Van Soom A. Optimization <strong>of</strong> the isolation, culture<br />

<strong>and</strong> characterization <strong>of</strong> umbilical cord blood mesenchymal stromal cells. submitted.<br />

Hoogewijs M., Morrell J., Van Soom A., Govaere J., Johannisson A., Piepers S., De Schauwer C., de<br />

Kruif A., De Vliegher S. Sperm selection using single layer centrifugation prior to<br />

cryopreservation can increase post-thaw sperm quality in stallions. submitted.<br />

Hoogewijs M., De Vliegher S., Govaere J., De Schauwer C., de Kruif A., Van Soom A. Counting<br />

chamber influences equine semen CASA outcomes. submitted.<br />

Hoogewijs M., De Vliegher S., Govaere J., De Schauwer C., Vanhaesebrouck E., de Kruif A., Van Soom<br />

A. Need for further improvement <strong>of</strong> the SQA-Ve s<strong>of</strong>tware for a univocal analysis <strong>of</strong> the<br />

quality <strong>of</strong> frozen thawed equine semen. In preparation.<br />

220


PUBLICATIONS IN NATIONAL PEER-REVIEWED JOURNALS<br />

BIBLIOGRAPHY<br />

Hoogewijs M., Govaere J.L.J., Paijmans L., Van Hove E., Deuch<strong>and</strong>e R., de Kruif A. 2004.<br />

Tweelingdracht bij de merrie. Vlaams Diergeneeskundig Tijdschrift 73:396-406.<br />

Paijmans L., Govaere J.L.J., Hoogewijs M., Deuch<strong>and</strong>e R., de Kruif A. 2004. Endometriumcysten bij de<br />

merrie. Vlaams Diergeneeskundig Tijdschrift 73:23-237.<br />

Govaere J.L.J., Hoogewijs M., Paijmans L., Van Crombruggen I., Riga P., Sterckx J., de Kruif A. 2005.<br />

Nieuwe inseminatietechnieken bij de merrie. Vlaams Diergeneeskundig Tijdschrift 74:222-<br />

232.<br />

De Bock M., Govaere J., Martens A., Hoogewijs M., De Schauwer C., Van Damme K., de Kruif A. 2007.<br />

Torsion <strong>of</strong> the spermatic cord in a warmblood stallion. Vlaams Diergeneeskundig Tijdschrift<br />

76:443-446.<br />

Martens K., Govaere J.L.J., Hoogewijs M.K., Lefevre L., Nollet H., Vlaminck L., Chiers L., de Kruif A.<br />

2008. Uterine torsion in the mare: a re<strong>view</strong> <strong>of</strong> three case reports. Vlaams Diergeneeskundig<br />

Tijdschrift 77:397-405.<br />

Smits K., Govaere J., Hoogewijs M., De Schauwer C., Van Haesebrouck E., Van Poucke M., Peelman<br />

L.J., van den Berg M., Vullers T., Van Soom A. 2010. Birth <strong>of</strong> the First ICSI foal in the Benelux.<br />

Vlaams Diergeneeskundig Tijdschrift 79:134-138.<br />

Vanhaesebrouck E., Govaere J., Smits K., Durie I., Vercauteren G., Martens A., Schauvliege S.,<br />

Ducatelle R., Hoogewijs M., De Schauwer C., de Kruif A. 2010. Ovarian teratoma in the mare:<br />

a re<strong>view</strong> <strong>of</strong> two cases. Vlaams Diergeneeskundig Tijdschrift 79:32-41.<br />

Van Loo H., Govaere J., Chiers K., Hoogewijs M., Opsomer G., de Kruif A. 2010. Hydrops uteri in a<br />

BWB heifer combined with a vascular hamartoma <strong>of</strong> the m<strong>and</strong>ible <strong>of</strong> the calf. Vlaams<br />

Diergeneeskundig Tijdschrift 79:139-142.<br />

221


BIBLIOGRAPHY<br />

ABSTRACTS AND PROCEEDINGS IN INTERNATIONAL CONFERENCES<br />

Govaere J., Hoogewijs M., De Schauwer C., De Vliegher S., Duchateau L., Van Soom A., de Kruif A.<br />

2007. Effect <strong>of</strong> artificial insemination protocol <strong>and</strong> sperm dose on pregnancy results in mares.<br />

Theriogenology 68:505.<br />

De Schauwer C., Piepers S., Hoogewijs M.K., Govaere J.L.J., Rijsselaere T., Demeyere K., Meyer E.,<br />

Van Soom A. 2008. Isolation, preservation <strong>and</strong> characterization <strong>of</strong> equine umbilical cord<br />

blood stem cells. <strong>Reproduction</strong>, Fertility <strong>and</strong> Development 20:220.<br />

Govaere J., Hoogewijs M., De Schauwer C., De Vliegher S., Saey V., de Kruif A. 2008. Lack <strong>of</strong><br />

association between low vitamin E levels <strong>and</strong> retentio secundinarum in Belgian draught<br />

horses (BDH) <strong>and</strong> warmblood (WB) mares. 16 th International Congress on Animal<br />

<strong>Reproduction</strong> – Budapest – Hungary.<br />

Govaere J.L.J., Hoogewijs M.K., De Schauwer C., De Vliegher S., Van Crombruggen I., Van Molle A., de<br />

Kruif A. 2008. Lack <strong>of</strong> association between hypocalcemia <strong>and</strong> retained placenta in Belgian<br />

draft horses <strong>and</strong> warmblood horses. 54 th annual meeting <strong>of</strong> the American Association <strong>of</strong><br />

Equine Practitioners – San Diego – California – USA.<br />

De Schauwer C., Meyer E., Hoogewijs M., De Vliegher S., Rijsselaere T., Govaere J., Demeyere K., Van<br />

Soom A. 2009. Comparison <strong>of</strong> different methods to isolate <strong>and</strong> culture multipotent<br />

mesenchymal stromal cells from equine umbilical cord blood. 13 th Annual Conference <strong>of</strong> the<br />

European Society <strong>of</strong> Domestic Animal <strong>Reproduction</strong> – Ghent – Belgium.<br />

Govaere J., Hoogewijs M., De Schauwer C., Smits K., Van Haesebrouck E., de Kruif A. 2009. Placental<br />

characteristics in Belgian draught <strong>and</strong> warmblood horses. 13 th Annual Conference <strong>of</strong> the<br />

European Society <strong>of</strong> Domestic Animal <strong>Reproduction</strong> – Ghent – Belgium.<br />

Govaere J., Martens K., Van Haesebrouck E., Hoogewijs M., De Schauwer C., Smits K., Roels K.,<br />

V<strong>and</strong>aele L., de Kruif A. 2009. The FoalinMare: insights inside the foaling mare. 13 th Annual<br />

Conference <strong>of</strong> the European Society <strong>of</strong> Domestic Animal <strong>Reproduction</strong> – Ghent – Belgium.<br />

Hoogewijs M., Piepers S., Rijsselaere T., Govaere J., de Kruif A. 2009. Effect <strong>of</strong> egg yolk in skimmed<br />

milk extender on cooled preservation <strong>of</strong> equine semen. 13 th Annual Conference <strong>of</strong> the<br />

European Society <strong>of</strong> Domestic Animal <strong>Reproduction</strong> – Ghent – Belgium.<br />

Hoogewijs M., Vanhaesebrouck E., De Vliegher S., Govaere J.L.J., Rijsselaere T., Van Soom A., De<br />

Schauwer C., Smits K., de Kruif A. 2009. Effects <strong>of</strong> centrifugation protocol on sperm loss <strong>and</strong><br />

sperm quality <strong>of</strong> equine semen. Annual conference <strong>of</strong> the American College <strong>of</strong><br />

Theriogenologists – Albuquerque – New Mexico – USA.<br />

Hoogewijs M.K., Govaere J.L., Rijsselaere T., De Schauwer C., Vanhaesebrouck E., de Kruif A., De<br />

Vliegher S. 2009. The influence <strong>of</strong> technical settings on CASA motility parameters <strong>of</strong> frozen<br />

thawed stallion semen. 55 th Annual meeting <strong>of</strong> the American Association <strong>of</strong> Equine<br />

Practitioners – Las Vegas – Nevada – USA.<br />

222


BIBLIOGRAPHY<br />

Filliers M., Rijsselaere T., Bossaert P., Anastasi P., Hoogewijs M., Van Soom A. 2010. In vitro<br />

evaluation <strong>of</strong> fresh sperm quality in tomcats: a comparison <strong>of</strong> collection techniques.<br />

<strong>Reproduction</strong>, Fertility <strong>and</strong> Development 22:291.<br />

Govaere J., Hoogewijs M., De Schauwer C., Smits K., V<strong>and</strong>aele H., Van Loon G., de Kruif A. 2010.<br />

Twisting <strong>of</strong> mummified remains around the umbilical cord as a potential risk <strong>of</strong> delayed twin<br />

reduction in the mare. 14 th Annual Conference <strong>of</strong> the European Society <strong>of</strong> Domestic Animal<br />

<strong>Reproduction</strong> – Eger – Hungary.<br />

Hoogewijs M., Piepers S., Govaere J., De Schauwer C., Smits K., de Kruif A., Van Soom A. 2010.<br />

Influence <strong>of</strong> extender on the storage <strong>of</strong> equine semen at different temperatures. 14 th Annual<br />

Conference <strong>of</strong> the European Society <strong>of</strong> Domestic Animal <strong>Reproduction</strong> – Eger – Hungary.<br />

Hoogewijs M.K., De Vliegher S., Govaere J.L., De Schauwer C., de Kruif A., Van Soom A. 2010. Need<br />

for further improvement <strong>of</strong> SQA-Ve s<strong>of</strong>tware for a univocal analysis <strong>of</strong> the quality <strong>of</strong> frozen<br />

thawed equine semen. 7 th Biennial meeting <strong>of</strong> the Association for Applied Animal Andrology<br />

– Sydney – Australia.<br />

223


FUNDAMENTAL ASPECTS OF CRYOPRESERVATION<br />

ADDENDUM I<br />

Cryopreservation <strong>of</strong> equine semen is associated with a wide range <strong>of</strong> stresses. Spermatozoa<br />

are exposed to components in the extender, cooling, intracellular changes due to dehydration, <strong>and</strong><br />

damage by ice crystals (Amann <strong>and</strong> Pickett, 1987).<br />

The plasma membrane is composed <strong>of</strong> lipids <strong>and</strong> proteins, arranged as a lipid bilayer (mainly<br />

phospholipids <strong>and</strong> cholesterol) with the hydrophilic ends <strong>of</strong> the lipids externally <strong>and</strong> the hydrophobic<br />

fatty acyl chains internally (Fig. 1) (Robertson, 1983).This lamellar arrangement provides a<br />

hydrophobic barrier through which water, <strong>and</strong> molecules dissolved in water pass only with difficulty.<br />

Molecules normally pass or are transported through channels <strong>and</strong> pores formed by proteins that are<br />

intermingled with the lipids. The different phospholipids are r<strong>and</strong>omly arranged in a lamellar<br />

structure, <strong>and</strong> move free laterally within one leaflet <strong>of</strong> the membrane bilayer (Quinn, 1981), because<br />

membranes are “fluid” at body temperature. Temperature is a very important factor altering the<br />

membrane fluidity. By cooling, the phase <strong>of</strong> the “liquid membrane” shifts to a crystalline state as a<br />

consequence <strong>of</strong> alteration in shape <strong>of</strong> the phospholipid molecules (Robertson, 1983). In the<br />

crystalline conformation the phospholipids can no longer move in a r<strong>and</strong>om fashion, which will result<br />

in clustering <strong>of</strong> the integral proteins in small regions <strong>of</strong> liquid lipids. The aggregation <strong>of</strong> proteins can<br />

result in increased membrane permeability <strong>and</strong> decreased metabolic function.<br />

The cooling <strong>of</strong> phospholipids (normally shaped like an inverted cone) will alter their shape,<br />

<strong>and</strong> will result in a more sharply conical shape. Groups <strong>of</strong> these phospholipids may assume a special<br />

configuration, termed hexagonal-II phase. This is a circular arrangement with the head groups<br />

internally <strong>and</strong> the fatty acyl chains outward (Fig. 1). This is more likely to occur with rapid reduction<br />

in temperature <strong>and</strong> results in increased membrane permeability. This formation may not be reversed<br />

upon reheating when reformation <strong>of</strong> a lamellar bilayer occurs (Quinn, 1981).<br />

225


ADDENDUM I<br />

a.<br />

b.<br />

Fig. 1. (a) Schematic presentation <strong>of</strong> the plasma membrane with the different components; (A)<br />

phosholipid, (B) transmembrane protein, (C) hydrophobic region, <strong>and</strong> (D) hydrophilic region<br />

in r<strong>and</strong>om arrangement in the classical lamellar bilayer, <strong>and</strong> (b) the different presentations as<br />

response to cooling; (b1). phospholipids in crystalline domains, (b2). Hexagonal-II inverted<br />

micelle, <strong>and</strong> (b3) aggregated proteins (adapted from Amann <strong>and</strong> Pickett, 1987).<br />

226<br />

When spermatozoa in a suspension are cooled below 0°C, ice crystals start to form. Initially,<br />

ice crystals are formed in the extracellular fluid. Due to these ice crystals, the relative amount <strong>of</strong> free<br />

extracellular water diminishes, resulting in increased concentration <strong>of</strong> salts <strong>and</strong> other osmotic active<br />

compounds (such as sugars) <strong>and</strong> as such, resulting in a hypertonic extracellular environment. Water<br />

within the spermatozoa does not freeze at this stage but will be transported extracellular which will<br />

lead to a progressive dehydration (Amann <strong>and</strong> Pickett, 1987; Muldrew et al., 2004). If cooling<br />

proceeds at a constant slow rate, the spermatozoa will remain close to the osmotic equilibrium by<br />

losing water at the same rate that water is lost by the extracellular fluid by its conversion to ice. In<br />

contrast a faster cooling rate will cause extracellular water to crystallize more rapidly than the cell<br />

can lose water, resulting in an increased osmotic gradient. Cells are damaged at rapid <strong>and</strong> slow<br />

cooling rates, so the optimal cooling rate should be in between these extremes (Mazur, 1984). Slow<br />

cooling will induce “solution-effects” injury, caused by exposure to high concentrations <strong>of</strong> solutes<br />

(hyper-osmolarity). Rapid cooling injury is associated with the formation <strong>of</strong> intracellular ice crystals.<br />

Slow cooling injuries can be avoided by increasing the cooling rate, <strong>and</strong> vice versa (Mazur et al.,<br />

1972).<br />

The addition <strong>of</strong> cryoprotectant agents (CPAs) to the freezing extender will increase the<br />

survival following freezing <strong>and</strong> thawing substantially. The CPAs used to cryopreserve semen are<br />

penetrating CPAs, they diffuse through the plasma membrane <strong>and</strong> equilibrate in the cytoplasm. The


ADDENDUM I<br />

presence <strong>of</strong> these CPAs affects the freezing point, <strong>and</strong> more importantly, they lower the<br />

concentration <strong>of</strong> salts normally found in physiological solutions for a given temperature (Muldrew et<br />

al., 2004). They do so by lowering the amount <strong>of</strong> ice present at a given temperature (less ice equals<br />

more water), <strong>and</strong> they act as secondary solvents for the salts (Pegg, 1984). Penetrating CPAs can<br />

greatly reduce slow-cooling injury, however, they provide little protection against rapid cooling injury.<br />

Fig. 2. Schematic representation <strong>of</strong> the physical changes in equine spermatozoa <strong>and</strong> surrounding<br />

extender during freezing. The effect <strong>of</strong> various cooling rates on the formation <strong>of</strong> ice crystals<br />

or microcrystals (large or small stars) <strong>and</strong> the movement <strong>of</strong> solvents <strong>and</strong> penetrating solutes<br />

(heavy or light arrows) are shown (Figure from Amann <strong>and</strong> Picket, 1987; Hammerstedt et al.,<br />

1990).<br />

227


ADDENDUM I<br />

228<br />

Slow cooling injury can be caused by solute toxicity (mechanisms not yet elucidated) or by<br />

shrinkage <strong>of</strong> the cells resulting from the hypertonic extracellular solution. Intracellular ice formation<br />

(rapid cooling injury) occurs when a cell is not able to maintain osmotic equilibrium with the external<br />

environment (Fig. 2). Due to the sudden exaggerated extracellular ice formation, the increase in<br />

solutes is so dramatically that the cell cannot respond to it with exosmosis. The cytoplasm will<br />

consequently become increasingly supercooled, as such increasing the likelihood <strong>of</strong> intracellular ice<br />

formation (Muldrew et al., 2004). There are multiple hypotheses that attempt to explain how<br />

extracellular ice interacts with the plasma membrane in the initiation <strong>of</strong> intracellular ice formation,<br />

but they are all topic <strong>of</strong> debate. The nature <strong>of</strong> cellular injury caused by freezing <strong>and</strong> thawing is very<br />

complex.<br />

Amann <strong>and</strong> Pickett (1987) assumed that for stallion spermatozoa, in an extender <strong>of</strong> given<br />

composition, there should be a cooling rate that maximizes sperm survival. Figure 3 represents such<br />

a theoretical cooling curve, depicting the sperm survival as a function <strong>of</strong> the cooling rate. Slow<br />

cooling (pathway A to B) will cause sperm damage due to excessive dehydration (solution effect),<br />

while rapid cooling (pathway C to D) will cause sperm damage because <strong>of</strong> intracellular ice formation.<br />

The optimal cooling rate is between B <strong>and</strong> C, <strong>and</strong> so far this optimal cooling rate can only be<br />

determined empirically (Amann <strong>and</strong> Pickett, 1987). A theoretical approach for determining the<br />

optimal cooling rate for the cryopreservation <strong>of</strong> bull semen has been proposed based on the<br />

different compositions in the extender used (Woelders <strong>and</strong> Chaveiro, 2004). So far, no such work has<br />

been presented for stallion spermatozoa.<br />

A very remarkable observation concerning cryo-injury was the demonstration that<br />

membrane integrity <strong>of</strong> ram sperm during cryopreservation clearly retained throughout the freeze-<br />

thaw procedure, <strong>and</strong> that the permeabilization occurred not only after the samples had been thawed,<br />

but once they reached threshold temperatures (Holt et al., 2005). These findings are in contrast with<br />

the concept that the lethality is situated in the intermediate zone <strong>of</strong> temperature (between freezing<br />

point <strong>and</strong> -60°C) that the cells must traverse twice during the freeze <strong>and</strong> thaw cycle (Mazur, 1963).


ADDENDUM I<br />

Fig. 3. Theoretical curve indicating the survival <strong>of</strong> cells as function <strong>of</strong> the cooling rate at the<br />

presence (green line) or absence (red line) <strong>of</strong> glycerol in the extender (Adapted from Amann<br />

<strong>and</strong> Pickett, 1987).<br />

All the above clearly states that cryopreservation (<strong>of</strong> sperm) induces many important<br />

changes with the cells. So far the knowledge concerning these changes is incomplete, <strong>and</strong> therefore<br />

till date, semen cryopreservation is a science as well as an art.<br />

References<br />

Amann R.P., Pickett B.W. 1987. Principles <strong>of</strong> cryopreservation <strong>and</strong> a re<strong>view</strong> <strong>of</strong> cryopreservation <strong>of</strong><br />

stallion spermatozoa. Journal <strong>of</strong> Equine Veterinary Science 7:145-173.<br />

Hammerstedt R.H., Graham J.K., Nolan J.P. 1990. Cryopreservation <strong>of</strong> mammalian sperm: What we<br />

ask them to survive. Journal <strong>of</strong> Andrology 11:73-88.<br />

Holt W.V., Medrano A., Thurston L.M., Watson P.F. 2005. The significance <strong>of</strong> cooling rates <strong>and</strong> animal<br />

variability for boar sperm cryopreservation: insights from the cryomicoscope. Theriogenology<br />

63:370-382.<br />

Mazur P. 1963. Kinetics <strong>of</strong> water loss from cells at subzero temperatures <strong>and</strong> the likelihood <strong>of</strong><br />

intracellular freezing. Journal <strong>of</strong> General Physiology 47:347-369.<br />

Mazur P. 1984. Freezing <strong>of</strong> living cells: Mechanisms <strong>and</strong> implications. American Journal <strong>of</strong> Physiology<br />

247:125-142.<br />

Mazur P., Leibo S.P., Chu E.H. 1972. A two-factor hypothesis <strong>of</strong> freezing injury. Evidence from Chinese<br />

hamster tissue-culture cells. Experimental Cell Research 71:345-355.<br />

229


ADDENDUM I<br />

Muldrew K., Acker J.P., Elliott J.A.W., McGann L.E. 2004. The water to ice transition: implications for<br />

living cells. In: Life in the frozen state Fuller B.J., Lane N., Benson E.E. (Ed.) CRC Press, pp. 67-<br />

108.<br />

Pegg D.E. 1984. Red cell volume in glycerol/sodium chloride/water mixtures. Cryobiology 21:234-239.<br />

Quinn P.J. 1981. The fluidity <strong>of</strong> cell membranes <strong>and</strong> its regulation. Progress in Biophysics <strong>and</strong><br />

Molecular Biology 38:1-104.<br />

Robertson R.N. 1983. The lively membranes. Cambridge University press – Cambridge – UK.<br />

Woelders H., Chaveiro A. 2005. Theoretical prediction <strong>of</strong> ‘optimal’ freezing programmes. Cryobiologie<br />

49:258-271.<br />

230


ADDENDUM II<br />

DETAILED LOADING TECHNIQUE OF THE DIFFERENT TYPES OF COUNTING CHAMBERS<br />

USED TO ANALYZE EQUINE SEMEN SAMPLES WITH CASA<br />

1. Disposable Leja, 10 µm depth, 4 chambers per slide (Leja10) – Each chamber has a volume <strong>of</strong><br />

1 µl, the chamber was loaded with 2.5 µl <strong>of</strong> diluted semen as described by the manufacturer.<br />

Briefly, the sample was placed carefully within the boundaries <strong>of</strong> the loading area so that the<br />

chamber was filled by capillary force. Once the sample reached the air vent at the other end<br />

<strong>of</strong> the chamber, the excess semen was carefully removed with a tip <strong>of</strong> a kimwipe tissue to<br />

prevent floating <strong>of</strong> cells. The filled chamber was left to rest for 10 seconds after which<br />

analysis was started.<br />

2. Disposable Leja, 12 µm, 2 chambers per side (Leja12) – Each chamber has a volume <strong>of</strong> 3µl<br />

<strong>and</strong> was loaded with 5µl as described above.<br />

3. Disposable Leja, 20 µm, 4 chambers per slide (Leja20) – Each chamber has a volume <strong>of</strong> 2 µl<br />

<strong>and</strong> was loaded with 5µl as described above. The filling time (time from pushing down the<br />

piston until the sample reached the air vent at the other end <strong>of</strong> the chamber) was recorded<br />

as described in the loading instructions, in order to be able to correct for the Segre Silberberg<br />

(SS) effect (Leja20SS).<br />

4. Disposable ISAS, 12 µm, 4 chambers per slide (ISAS12d) – The volume <strong>of</strong> the disposable ISAS<br />

chambers is not mentioned on the slide or box. The chambers were loaded in a similar way<br />

as described for the Leja slides. Briefly, the loaded tip (5µl) <strong>of</strong> the pipette was carefully<br />

placed within the boundaries <strong>of</strong> the loading area, taking care not to touch the cover slip to<br />

prevent premature filling. The piston was pushed down allowing the chamber to be filled<br />

with capillary force, taking care that the sample stayed within the borders <strong>of</strong> the loading area.<br />

Once the sample reached the opposed air vent, excess semen form the loading area was<br />

231


ADDENDUM II<br />

232<br />

removed by means <strong>of</strong> a kimwipe. The filled chamber was left to rest for 10 seconds after<br />

which analysis was started.<br />

5. Disposable ISAS, 16 µm, 4 chambers per slide (ISAS16d) – The chamber was loaded as<br />

described for 12µm ISAS slide.<br />

6. Disposable ISAS, 20 µm, 4 chambers per slide (ISAS20d) – The chamber was loaded as<br />

described for 12µm ISAS slide.<br />

7. Reusable ISAS, 20 µm, loaded like a Makler chamber (ISAS20rM) – The chamber was loaded<br />

with 5 µl <strong>of</strong> the sample by reverse pipetting, immediately followed by placing the special<br />

cover slide (24mm by 24mm, <strong>and</strong> 400µm thick) <strong>and</strong> the metal weight to assure a chamber<br />

depth <strong>of</strong> 20 µm. The loaded chamber was left to rest until the drifting had ceased (between<br />

10 <strong>and</strong> 20 seconds).<br />

8. Reusable ISAS, 20 µm, loaded by capillary force (ISAS20rC) – The chamber was assembled by<br />

placing the cover slide (24mm by 24mm, <strong>and</strong> 400µm thick) <strong>and</strong> the metal weight after which<br />

the chamber was loaded with 5 µl <strong>of</strong> diluted semen by capillary force. The filled chamber was<br />

left to rest for about 10 seconds until drifting had stopped, after which analysis was started<br />

9. Reusable Makler, 10 µm (Makler) – The Makler chamber was loaded with 5 µl <strong>of</strong> diluted<br />

semen (Matson et al., 1999) by reversed pipetting <strong>and</strong> the cover glass was applied<br />

immediately. The filled chamber was left to rest for 10 seconds after which analysis was<br />

started<br />

10. Slide prepared according to WHO guidelines (WHO) – A fixed volume <strong>of</strong> 10 µl <strong>of</strong> the diluted<br />

semen was placed on a clean glass slide by reversed pipetting. A 22mm by 22mm coverslip<br />

was applied immediately afterwards, taking care to avoid formation <strong>and</strong> trapping <strong>of</strong> air<br />

bubbles. The slide was evaluated as soon as the contents stopped drifting (WHO manual,<br />

2010).


In m’n ho<strong>of</strong>d is alles heel eenvoudig<br />

In m’n ho<strong>of</strong>d valt alles op z’n plaats<br />

Raymond van het Groenewoud


In m’n ho<strong>of</strong>d is alles heel eenvoudig<br />

In m’n ho<strong>of</strong>d valt alles op z’n plaats<br />

Raymond van het Groenewoud

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!