Mesoscopic models of lipid bilayers and bilayers with embedded ...

Mesoscopic models of lipid bilayers and bilayers with embedded ... Mesoscopic models of lipid bilayers and bilayers with embedded ...

science.uva.nl
from science.uva.nl More from this publisher
30.08.2013 Views

128 Summary vestigate hydrophobic mismatch. The matching between the lipid bilayer hydrophobic thickness and the hydrophobic length of integral membrane proteins has been proposed as a generic physical principle on which the lipid-protein interaction in biomembranes is based. The energy cost of exposing polar moieties, from either hydrocarbon chains or protein residues, is so high that the hydrophobic part of the lipid bilayer should match the hydrophobic domain of membrane proteins. The results from a number of investigations have indeed pointed out the relevance of the hydrophobic matching in relation to the lipid-protein interactions, hence to membrane organization and biological function. To address these issues, we study bilayers with embedded a single protein, which can vary in size and in hydrophobic length. We compute the coherence length for the protein-induced spatial fluctuations, and quantify it in terms of a decay length of the lipid bilayer hydrophobic thickness profile around the protein. This quantity is not accessible to experimental measurements, but can be important in determining the range of the protein-induced perturbation, and can be relevant in predicting lipid-mediated protein-protein interaction and aggregation. We find that the protein-induced lipid perturbation depends on the mismatch and on the temperature of the system, and that a protein-size dependence appears for values of temperatures approaching from above the transition temperature of the pure lipid bilayer, i.e. in the fluid phase of the system. An interesting and unexpected result of this study, is that we find that for large mismatch conditions, either positive or negative, and for large proteins, the decay of the protein-induced perturbation on the bilayer thickness is not of the exponential type, as previously predicted by lattice models. We find, instead, a non-monotonous decay. In the region next to the one closest to the protein hydrophobic surface and where hydrophobic matching occurs, the bilayer hydrophobic thickness is lower (undershooting) or higher (overshooting) than the unperturbed equilibrium thickness, depending on the sign of the mismatch. These localized changes in bilayer hydrophobic thickness can be of biological relevance for phenomena like cell adhesions, fusion, membrane rupture, or membrane permeability. We also consider the effect of the bilayer on the proteins, and we investigate the mismatch conditions under which membrane proteins may assume a tilted conformation with respect to the lipid bilayer normal. We find a size dependence of the tilt; large proteins, due to energetic and topological reasons, do not undergo relevant tilt, even for large (positive) mismatch, while smaller proteins undergo a tilt with an angle that increases with increasing mismatch. At temperatures below the main transition temperature, but above the pre-transition temperature of the pure system, i.e. in the ripple or striated phase, our results show that the embedded model-protein prefers to segregate along those stripes where the hydrophobic bilayer thickness matches the protein hydrophobic length.

Samenvatting Biologische membranen, zoals die gevonden worden in alle levende cellen, zijn complexe systemen. Ze bevatten veel verschillende molekulen en vertonen dynamische en strukturele eigenschappen die vele ordes van grootte omvatten, zowel in lengteals tijdschaal. De karakterisatie van de struktuur van lipide bilagen, hun thermodynamisch and dynamisch gedrag, de afhankelijkheid van deze eigenschappen van de samenstelling van het membraan, zowel als de wisselwerking van de lipide bilaag met andere molekulen, zijn sleutelvragen om te begrijpen hoe een membraan werkt en hoe specifieke funkties uitgevoerd worden. Verschillende benaderingen kunnen worden gebruikt om deze vragen aan te pakken. Disciplines zoals biologie, biochemie en natuurkunde, hebben verschillende en elkaar complementerende methoden gebruikt om deze complexe systemen te onderzoeken. Computer simulatie is een relatief nieuwe methode, die nuttig is gebleken bij het bestuderen van gecondenseerde materie. Vanuit het gezichtspunt van de fysicus is een membraan een zacht, quasi twee-dimensionaal aggregaat. Ten gevolge van de niet-covalente wisselwerking tussen de lipiden die de bilaag vormen, is een membraan vloeibaar. Lipiden en andere molekulen kunnen in het vlak van de bilaag diffunderen, of van de ene monolaag naar de andere springen, kleine ionen of molekulen kunnen erdoor heen en eiwitten kunnen worden opgenomen. Maar een membraan is geen vloeistof in de zin dat het een barriere vormt, naar men aanneemt semi-permeabel, waar grote molekulen niet doorheen kunnen, en dat de eigenschappen heeft van een elastische plaat. Het kan buigen, heeft een specifieke stijfheid en het kan samengedrukt of uitgerekt worden. Bovendien, omdat de lipiden waaruit het membraan bestaat een bepaalde orientatie hebben, heeft een membraan een interne struktuur. De lipide hydrofiele kopgroepen steken in de waterige omgeving en hydrofobe staarten steken in de kern van de bilaag. Computer simulaties als een middel om lipide bilagen te onderzoeken Het onderwerp van dit proefschrift is het bestuderen van lipide bilagen met computer simulaties op mesoscopische schaal. Deze mesoscopische benadering bestaat uit het “coarse-grainen” van de lipide molekulen die de bilaag vormen. In plaats van een atomaire representatie van de lipiden, worden groepen atomen samengesmolten tot “kralen”, die zijn verbonden in een kralensnoer door middel van veertjes. Deze kralen interakteren door middel van een versimpeld krachtveld, dat wordt beschreven in hoofdstuk 2. In dit hoofdstuk introduceren we ook de Dissipative Particle Dynamics techniek die we gebruiken om de beweging van deze deeltjes na te bootsen. Het eerste, belangrijke resultaat van deze aanpak is dat, ondanks de uitsluitend repulsieve wisselwerking tussen deeltjes van verschillende types, we vinden dat de

128 Summary<br />

vestigate hydrophobic mismatch. The matching between the <strong>lipid</strong> bilayer hydrophobic<br />

thickness <strong>and</strong> the hydrophobic length <strong>of</strong> integral membrane proteins has been<br />

proposed as a generic physical principle on which the <strong>lipid</strong>-protein interaction in<br />

biomembranes is based. The energy cost <strong>of</strong> exposing polar moieties, from either hydrocarbon<br />

chains or protein residues, is so high that the hydrophobic part <strong>of</strong> the <strong>lipid</strong><br />

bilayer should match the hydrophobic domain <strong>of</strong> membrane proteins. The results<br />

from a number <strong>of</strong> investigations have indeed pointed out the relevance <strong>of</strong> the hydrophobic<br />

matching in relation to the <strong>lipid</strong>-protein interactions, hence to membrane<br />

organization <strong>and</strong> biological function. To address these issues, we study <strong>bilayers</strong> <strong>with</strong><br />

<strong>embedded</strong> a single protein, which can vary in size <strong>and</strong> in hydrophobic length.<br />

We compute the coherence length for the protein-induced spatial fluctuations,<br />

<strong>and</strong> quantify it in terms <strong>of</strong> a decay length <strong>of</strong> the <strong>lipid</strong> bilayer hydrophobic thickness<br />

pr<strong>of</strong>ile around the protein. This quantity is not accessible to experimental measurements,<br />

but can be important in determining the range <strong>of</strong> the protein-induced perturbation,<br />

<strong>and</strong> can be relevant in predicting <strong>lipid</strong>-mediated protein-protein interaction<br />

<strong>and</strong> aggregation. We find that the protein-induced <strong>lipid</strong> perturbation depends on the<br />

mismatch <strong>and</strong> on the temperature <strong>of</strong> the system, <strong>and</strong> that a protein-size dependence<br />

appears for values <strong>of</strong> temperatures approaching from above the transition temperature<br />

<strong>of</strong> the pure <strong>lipid</strong> bilayer, i.e. in the fluid phase <strong>of</strong> the system.<br />

An interesting <strong>and</strong> unexpected result <strong>of</strong> this study, is that we find that for large<br />

mismatch conditions, either positive or negative, <strong>and</strong> for large proteins, the decay <strong>of</strong><br />

the protein-induced perturbation on the bilayer thickness is not <strong>of</strong> the exponential<br />

type, as previously predicted by lattice <strong>models</strong>. We find, instead, a non-monotonous<br />

decay. In the region next to the one closest to the protein hydrophobic surface <strong>and</strong><br />

where hydrophobic matching occurs, the bilayer hydrophobic thickness is lower (undershooting)<br />

or higher (overshooting) than the unperturbed equilibrium thickness,<br />

depending on the sign <strong>of</strong> the mismatch. These localized changes in bilayer hydrophobic<br />

thickness can be <strong>of</strong> biological relevance for phenomena like cell adhesions, fusion,<br />

membrane rupture, or membrane permeability.<br />

We also consider the effect <strong>of</strong> the bilayer on the proteins, <strong>and</strong> we investigate the<br />

mismatch conditions under which membrane proteins may assume a tilted conformation<br />

<strong>with</strong> respect to the <strong>lipid</strong> bilayer normal. We find a size dependence <strong>of</strong> the<br />

tilt; large proteins, due to energetic <strong>and</strong> topological reasons, do not undergo relevant<br />

tilt, even for large (positive) mismatch, while smaller proteins undergo a tilt <strong>with</strong> an<br />

angle that increases <strong>with</strong> increasing mismatch.<br />

At temperatures below the main transition temperature, but above the pre-transition<br />

temperature <strong>of</strong> the pure system, i.e. in the ripple or striated phase, our results<br />

show that the <strong>embedded</strong> model-protein prefers to segregate along those stripes<br />

where the hydrophobic bilayer thickness matches the protein hydrophobic length.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!