30.08.2013 Views

The GNSS integer ambiguities: estimation and validation

The GNSS integer ambiguities: estimation and validation

The GNSS integer ambiguities: estimation and validation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

success rate <strong>and</strong> fail rate. From equation (5.4) it follows that:<br />

Pf = <br />

<br />

fâ(x)dx<br />

z∈Zn \{a} µSz,B<br />

= <br />

<br />

z∈Zn \{0} (2π)<br />

S0,B<br />

1<br />

2 n<br />

= <br />

<br />

1<br />

<br />

| 1<br />

µ 2 Qâ|<br />

z∈Zn \{0}<br />

F −1 (2π)<br />

(S0,B)<br />

1<br />

2 n<br />

1<br />

<br />

| 1<br />

µ 2 D|<br />

exp{− 1 1<br />

x +<br />

2<br />

exp{− 1 1<br />

y +<br />

2<br />

µ z 21 µ 2 Qâ }dx<br />

µ L−1z 2 1<br />

µ 2 D}dy<br />

where for the third equality the transformation F : x = Ly is used, with L the unit<br />

lower triangular matrix of Qâ = LDL T . This gives the transformed pull-in region<br />

F −1 (S0,B) = {y ∈ R n | | c T i y |≤ 1<br />

, i = 1, . . . , n}<br />

2<br />

Note that 1<br />

µ 2 D is a diagonal matrix having the scaled conditional variances 1<br />

µ 2 σ2 i|I as its<br />

entries, <strong>and</strong> the transformed pull-in region has become an origin-centered n-dimensional<br />

cube with all side lengths equal to 1. <strong>The</strong> multivariate integral can therefore be written<br />

as a product of one-dimensional integrals:<br />

Pf = n<br />

<br />

1<br />

√ exp{−<br />

2π 1<br />

<br />

yi +<br />

2<br />

1<br />

µ cTi L−1z 1<br />

µ σ 2 }dy<br />

i|I<br />

z∈Zn \{0} i=1<br />

= <br />

n<br />

z∈Zn \{0} i=1<br />

= <br />

n<br />

z∈Zn \{0} i=1<br />

i=1<br />

|yi|≤ 1<br />

2<br />

1<br />

µ σ i|I<br />

µ+2cT i L−1 z<br />

2σ i|I<br />

− µ−2cT i L−1 z<br />

2σ i|I<br />

<br />

Φ<br />

µ − 2c T i L −1 z<br />

2σ i|I<br />

1<br />

√ 2π exp{− 1<br />

2 v2 }dv<br />

<br />

+ Φ<br />

µ + 2c T i L −1 z<br />

2σ i|I<br />

<br />

− 1<br />

In a similar way it can be shown that the IAB success rate is given as:<br />

n<br />

<br />

Ps = 2Φ<br />

µ<br />

<br />

− 1<br />

2-D example<br />

2σ i|I<br />

(5.28)<br />

(5.29)<br />

Figure 5.12 shows in black all float samples for which ā = ǎ for two different fail rates.<br />

5.4.2 Integer Aperture Least-Squares<br />

<strong>The</strong> IA Least-Squares (IALS) estimator can be defined in a similar way as the IAB<br />

estimator, cf. (Teunissen 2004b). <strong>The</strong> aperture pull-in region is then defined as:<br />

Ωz,LS = µSz,LS<br />

(5.30)<br />

104 Integer Aperture <strong>estimation</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!