29.08.2013 Views

Chapter 3 - Dynamics of Marine Vessels

Chapter 3 - Dynamics of Marine Vessels

Chapter 3 - Dynamics of Marine Vessels

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

<strong>Chapter</strong> 3 - <strong>Dynamics</strong> <strong>of</strong> <strong>Marine</strong> <strong>Vessels</strong><br />

3.1 Rigid-Body <strong>Dynamics</strong><br />

3.2 Hydrodynamic Forces and Moments<br />

3.3 6 DOF Equations <strong>of</strong> Motion<br />

3.4 Model Transformations Using Matlab<br />

3.5 Standard Models for <strong>Marine</strong> <strong>Vessels</strong><br />

Ṁ C D g g o w<br />

M - system inertia matrix (including added mass)<br />

C - Coriolis-centripetal matrix (including added mass)<br />

D - damping matrix<br />

g - vector <strong>of</strong> gravitational/buoyancy forces and moments<br />

- vector <strong>of</strong> control inputs<br />

go - vector used for pretrimming (ballast control)<br />

w - vector <strong>of</strong> environmental disturbances (wind, waves and currents)<br />

Ivar Ihle – TTK4190 Spring 2006


2<br />

3.2.4 Ballast Systems<br />

A floating or submerged vessel can be pretrimmed by pumping water between the<br />

ballast tanks <strong>of</strong> the vessel. This implies that the vessel can be trimmed in heave,<br />

pitch and roll:<br />

z zd, d, d 3 modes with restoring forces/moment<br />

Steady-state solution:<br />

where<br />

Ṁ X C X D X g Xgo w<br />

g d g o w<br />

d −, −, −, zd, d, d, − <br />

main equation for ballast computations<br />

The ballast vector g o is computed by using hydrostatic analyses.<br />

Ivar Ihle – TTK4190 Spring 2006


3<br />

3.2.4 Ballast Systems<br />

Consider a marine vessel with n ballast tanks <strong>of</strong> volumes V i ≤V i,max (i=1,…,n).<br />

For each ballast tank the water volume is defined:<br />

hi<br />

Vihi o<br />

Aihdh ≈ Aihi, (Aih constant)<br />

The gravitational forces W i in heave are:<br />

n n<br />

Zballast ∑ Wi g∑ Vi<br />

i1<br />

i1<br />

h i<br />

A(h)<br />

i i<br />

V i<br />

W i<br />

z<br />

g<br />

x<br />

zoom in<br />

Ivar Ihle – TTK4190 Spring 2006


4<br />

3.2.4 Ballast Systems<br />

Ballast tanks location with respect to O:<br />

Restoring moments due to the heave force Z ballast :<br />

m r f<br />

<br />

x<br />

y<br />

z<br />

Resulting<br />

ballast<br />

model:<br />

<br />

0<br />

0<br />

Zballast<br />

g o <br />

<br />

0<br />

0<br />

Zballast<br />

Kballast<br />

Mballast<br />

0<br />

yZ ballast<br />

−xZballast<br />

0<br />

g<br />

r i b xi, yi, zi , i 1, … , n<br />

0<br />

0<br />

n<br />

∑ Vi i1<br />

n<br />

∑ yi Vi i1<br />

n<br />

−∑ xiVi i1<br />

0<br />

Kballast g∑ i1<br />

Mballast −g∑ i1<br />

Ivar Ihle – TTK4190 Spring 2006<br />

n<br />

n<br />

yiVi<br />

xiVi


5<br />

3.2.4 Ballast Systems<br />

Conditions for Manual Pretrimming<br />

Trimming is usually done under the assumptions that d and d are small such:<br />

Reduced order system (heave, roll, and pitch):<br />

G r <br />

g d ≈ G d<br />

−Zz 0 −Z<br />

0 −K 0<br />

−Mz 0 −M<br />

Steady-state<br />

condition:<br />

−Zz 0 −Z<br />

0 −K 0<br />

−Mz 0 −M<br />

g o r g<br />

G r d r go r w r<br />

zd<br />

d<br />

d<br />

<br />

<br />

n<br />

∑ Vi i1<br />

n<br />

∑ yiVi i1<br />

n<br />

−∑ xiVi i1<br />

n<br />

g∑ Vi w3<br />

i1<br />

n<br />

g∑ yiVi w4<br />

i1<br />

n<br />

−g∑ xiVi w5<br />

i1<br />

d r zd, d, d <br />

w r w3,w4,w5 <br />

This is a set <strong>of</strong> linear<br />

equations where<br />

the volumes V i<br />

can be found by<br />

assuming that w i =0<br />

(zero disturbances)<br />

Ivar Ihle – TTK4190 Spring 2006


6<br />

3.2.4 Ballast Systems<br />

Assume that the disturbances in heave, roll, and pitch have means <strong>of</strong> zero.<br />

Consequently:<br />

wr w3, w4, w5 0<br />

and<br />

can be written:<br />

−Zz 0 −Z<br />

0 −K 0<br />

−Mz 0 −M<br />

g<br />

zd<br />

d<br />

d<br />

<br />

1 1 1<br />

y1 yn−1 yn −x1 −xn−1 −xn<br />

n<br />

g∑ Vi w3<br />

i1<br />

n<br />

g∑ yiVi w4<br />

i1<br />

n<br />

−g∑ xiVi w5<br />

i1<br />

The water volumes V i is found by using the pseudo-inverse:<br />

H y H HH −1 y<br />

V1<br />

V2<br />

<br />

Vn<br />

H y<br />

<br />

<br />

−Zzzd−Zd<br />

−K d<br />

−Mzzd−Md<br />

Ivar Ihle – TTK4190 Spring 2006


7<br />

3.2.4 Ballast Systems<br />

Example (Semi-Submersible Ballast Control) Consider a semi-submersible<br />

b b b b with 4 ballast tanks located at r1 −x, −y, r2 x, −y, r3 x, y,r4 −x, y<br />

In addition, yz-symmetry implies that Z Mz 0<br />

H g<br />

y <br />

1 1 1 1<br />

−y −y y y<br />

x −x −x x<br />

−Zzzd<br />

−K d<br />

−Md<br />

H y H HH −1 y<br />

<br />

V1<br />

V2<br />

V3<br />

V4<br />

1<br />

4g<br />

1 − 1 y<br />

<br />

1<br />

x<br />

1 − 1 y − 1 x<br />

1 1 y − 1 x<br />

1 1 y<br />

1<br />

x<br />

gA wp 0z d<br />

g∇GMT d<br />

g∇GML d<br />

gA wp 0z d<br />

g∇GMT d<br />

g∇GML d<br />

p 1<br />

+<br />

V 1<br />

P P<br />

V 4<br />

O<br />

y b<br />

P<br />

P<br />

x b<br />

p 2<br />

Inputs: zd, d, d<br />

+<br />

+<br />

V 2<br />

P P<br />

V 3<br />

p 3<br />

Ivar Ihle – TTK4190 Spring 2006


8<br />

3.2.4 Ballast Systems<br />

SeaLaunch:<br />

An example <strong>of</strong> a highly sophisticated pretrimming system is the<br />

SeaLaunch trim and heel correction system (THCS):<br />

This system is designed such<br />

that the platform maintains<br />

constant roll and pitch angles<br />

during changes in weight. The<br />

most critical operation is when<br />

the rocket is transported from<br />

the garage on one side <strong>of</strong> the<br />

platform to the launch pad.<br />

During this operation the<br />

water pumps operate at their<br />

maximum capacity to<br />

counteract the shift in weight.<br />

A feedback system controls the pumps to maintain the<br />

correct water level in each <strong>of</strong> the legs during<br />

transportation <strong>of</strong> the rocket<br />

Ivar Ihle – TTK4190 Spring 2006


9<br />

3.2.4 Ballast Systems<br />

Automatic Pretrimming using Feedback from<br />

In the manual pretrimming case it was assumed that wr zd, d, d<br />

=0. This assumption can<br />

be removed by using feedback.<br />

The closed-loop dynamics <strong>of</strong> a PID-controlled water pump can be described by a<br />

1st-order model with amplitude saturation:<br />

Tjṗ j pj satpdj<br />

T j (s) is a positive time constant<br />

p j (m³/s) is the volumetric flow rate pump j<br />

p d j is the pump set-point.<br />

The water pump capacity is different for<br />

positive and negative flow directions:<br />

satpdj <br />

p j,max pj p j,max<br />

pdj<br />

− <br />

pj,max ≤ pdj ≤ pj,max − −<br />

pj,max pdj pj,max pjmax ,<br />

0.63 pjmax ,<br />

p j<br />

T j<br />

Ivar Ihle – TTK4190 Spring 2006<br />

t


10<br />

3.2.4 Ballast Systems<br />

Example (Semi-Submersible Ballast Control, Continues): The water flow<br />

model corresponding to the figure is:<br />

<br />

V̇ 1 −p1<br />

V̇ 2 −p3<br />

V̇ 3 p2 p3<br />

V̇ 4 p1 − p2<br />

Tṗ p satp d <br />

V1<br />

V2<br />

V3<br />

V4<br />

̇ Lp<br />

, p <br />

p1<br />

p2<br />

p3<br />

, L <br />

−1 0 0<br />

0 0 −1<br />

0 1 1<br />

1 −1 0<br />

p 1<br />

+<br />

V 1<br />

P P<br />

V 4<br />

O<br />

y b<br />

P<br />

P<br />

x b<br />

p 2<br />

+<br />

+<br />

V 2<br />

P P<br />

V 3<br />

p 3<br />

Ivar Ihle – TTK4190 Spring 2006


11<br />

3.2.4 Ballast Systems<br />

Feedback control system:<br />

p d HpidsG r d r − r <br />

Hpids diagh1,pids, h2,pids,...,hm,pids<br />

ballast<br />

controller<br />

G r<br />

r<br />

ηd -<br />

p d<br />

sat( . )<br />

-<br />

T -1<br />

Closed-loop pump dynamics with water volume as output<br />

<strong>Dynamics</strong>:<br />

p<br />

Tṗ p satp d <br />

̇ Lp<br />

L<br />

υ<br />

r go ( υ)<br />

( G )<br />

r -1<br />

Steady-state relationship for<br />

water volume and trim<br />

G r r g o r w r<br />

η r<br />

Equilibrium equation:<br />

Ivar Ihle – TTK4190 Spring 2006


12<br />

3.2.4 Ballast Systems<br />

SeaLaunch Trim and Heel Correction System (THCS)<br />

(Courtesy: Sea Launch LDC)<br />

Ivar Ihle – TTK4190 Spring 2006


13<br />

3.2.4 Ballast Systems<br />

Ivar Ihle – TTK4190 Spring 2006


14<br />

Pitch angle (deg)<br />

3.2.4 Ballast Systems<br />

Roll and pitch angles during lift-<strong>of</strong>f<br />

roll<br />

roll and pitch (deg)<br />

pitch<br />

4.21<br />

A 1 < > jp<br />

0.95<br />

5.5 6<br />

4.5 5<br />

3.5 4<br />

2.5 3<br />

1.5 2<br />

0.5 1<br />

0.5 0<br />

1.5 1<br />

6<br />

4<br />

2<br />

0<br />

2<br />

0 187.5 375 562.5 750 937.5 1125 1312.5 1500<br />

2<br />

420 430 440 450 460 470<br />

420 jp<br />

time (secs)<br />

Measured pitch during launch<br />

Roll and pitch during launch<br />

470<br />

pitch angle (deg)<br />

4.326<br />

Z 4 < > . 180<br />

l<br />

π<br />

0.202<br />

6<br />

4<br />

2<br />

0<br />

2<br />

time (secs)<br />

20 10 0 10 20 30<br />

15<br />

Z<br />

time (secs)<br />

1 < > l<br />

Calculated pitch motions<br />

29.775<br />

Ivar Ihle – TTK4190 Spring 2006


15<br />

3.3 6 DOF Equations <strong>of</strong> Motion<br />

Body-Fixed Vector Representation<br />

M ̇ C D g g o w<br />

̇ J<br />

M MRB MA<br />

C CRB CA<br />

D DP DS DW DM<br />

NED Vector Representation<br />

Kinematic transformation (assuming that J exists-i.e., ):<br />

−1 ≠ /2<br />

̇ J J−1 ̇<br />

̈ J ̇ ̇J ̇ J−1̈ − ̇JJ −1 ̇<br />

M ∗ J − M J −1 <br />

C ∗ , J − C − MJ −1 ̇JJ −1 <br />

D∗, J− D J−1 g∗ J− g<br />

M ∗ ̈ C ∗ , ̇ D ∗ , ̇ g ∗ J − g o w<br />

Ivar Ihle – TTK4190 Spring 2006


16<br />

3.3.1 Nonlinear Equations <strong>of</strong> Motion<br />

Properties <strong>of</strong> the NED Vector Representation<br />

M ∗ ̈ C ∗ , ̇ D ∗ , ̇ g ∗ J − g o w<br />

(1) M ∗ M ∗ 0 ∀ ∈ 6<br />

(2) s ̇ M ∗ − 2C ∗ , s 0 ∀ s ∈ 6 , ∈ 6 , ∈ 6<br />

(3) D ∗ , 0 ∀ ∈ 6 , ∈ 6<br />

if M M 0and ̇ M 0.<br />

It should be noted that C ∗ , will not be skew-symmetrical although C is skew-symmetrical.<br />

Ivar Ihle – TTK4190 Spring 2006


17<br />

3.3.1 Nonlinear Equations <strong>of</strong> Motion<br />

Property (System Inertia Matrix) For a rigid body the system inertia matrix is<br />

strictly positive if and only if M A >0, that is:<br />

If the body is at rest (or at most is moving at low speed) under the assumption <strong>of</strong><br />

an ideal fluid, the zero-frequency system inertia matrix is always positive definite,<br />

that is<br />

M M 0<br />

where:<br />

M <br />

M MRB MA 0<br />

m − Xu̇ −Xv̇ −Xẇ<br />

−Xv̇ m − Yv̇ −Yẇ<br />

−Xẇ −Yẇ m − Zẇ<br />

−Xṗ −mzg−Yṗ my g −Zṗ<br />

mzg−Xq̇ −Yq̇ −mxg−Zq̇<br />

−my g −Xṙ mxg−Yṙ −Zṙ<br />

M ≠ M <br />

−Xṗ mzg−Xq̇ −my g −Xṙ<br />

−mzg−Yṗ −Yq̇ mxg−Yṙ<br />

my g −Zṗ −mxg−Zq̇ −Zṙ<br />

Ix−Kṗ −Ixy−Kq̇ −Izx−Kṙ<br />

−Ixy−Kq̇ Iy−Mq̇ −Iyz−Mṙ<br />

−Izx−Kṙ −Iyz−Mṙ Iz−Nṙ<br />

Ivar Ihle – TTK4190 Spring 2006


18<br />

3.3.1 Nonlinear Equations <strong>of</strong> Motion<br />

Property (Coriolis and Centripetal Matrix): For a rigid body moving<br />

through an ideal fluid the Coriolis and centripetal matrix can always be<br />

parameterized such that it is skew-symmetric, that is<br />

If M is nonsymmetric, we write M as the sum <strong>of</strong> a symmetric and skewsymmetric<br />

matrix:<br />

where<br />

C −C , ∀ ∈ 6<br />

M 1<br />

2 M M 1<br />

2 M − M <br />

M 0 T 1<br />

2 M 1<br />

2 M̄ 0<br />

M̄ M̄ 1<br />

2 M M 0<br />

This implies that we can compute C from<br />

M̄ M̄ 0<br />

1<br />

2 M − M 0<br />

Ivar Ihle – TTK4190 Spring 2006


19<br />

3.3.2 Linearized Equations <strong>of</strong> Motion<br />

Assumption (Small Roll and Pitch Angles) The roll and pitch angles:<br />

These are good assumptions for vessels where the pitch and roll motions are<br />

limited-i.e., highly metacentric stable vessels<br />

This assumption implies that:<br />

where<br />

, are small<br />

̇ J 0<br />

≈ P<br />

P <br />

R 033<br />

033 I33<br />

Ivar Ihle – TTK4190 Spring 2006


20<br />

3.3.2 Linearized Equations <strong>of</strong> Motion<br />

Definition (Vessel Parallel Coordinate System) The vessel parallel coordinate<br />

system is defined as:<br />

where p is the NED position/attitude decomposed in body coordinates and P<br />

is given by<br />

Notice that P T P = I 6×6 .<br />

NED<br />

y n<br />

xn<br />

p P <br />

P <br />

<br />

R 033<br />

033 I33<br />

p<br />

BODY<br />

y b<br />

x b<br />

Ivar Ihle – TTK4190 Spring 2006


21<br />

3.3.2 Linearized Equations <strong>of</strong> Motion<br />

Low Speed Applications (Station-Keeping)<br />

Vessel parallel (VP) coordinates implies:<br />

̇ p Ṗ P ̇<br />

Ṗ P p P P<br />

rS p <br />

where and<br />

r ̇<br />

S <br />

0 1 0 0 0 0<br />

−1 0 0 0 0 0<br />

0 0 0 0 0 0<br />

0 0 0 0 0 0<br />

0 0 0 0 0 0<br />

For low speed applications r ≈ 0. This gives a linear model:<br />

̇ p ≈ <br />

Ivar Ihle – TTK4190 Spring 2006


22<br />

3.3.2 Linearized Equations <strong>of</strong> Motion<br />

The gravitational and buoyancy forces can also be expressed in terms <strong>of</strong> VP<br />

coordinates. For small roll and pitch angles:<br />

g<br />

Notice that this formula confirms that the restoring forces <strong>of</strong> a leveled vessel<br />

( ) is independent <strong>of</strong> the yaw angle .<br />

0<br />

≈ PG PGP p Gp G<br />

0 <br />

For a neutrally buoyant submersible (W=B) with x g =x b and y g =y b we have:<br />

G diag0, 0, 0, 0, zg − zbW, zg − zbW,0<br />

For a surface vessel G is defined as:<br />

G <br />

022<br />

032<br />

023<br />

G r<br />

0 0 0 0 0 0<br />

0<br />

0<br />

0<br />

0<br />

, G r <br />

−Zz 0 −Z<br />

0 −K 0<br />

−Mz 0 −M<br />

P Notice that:<br />

GP ≡ G<br />

Ivar Ihle – TTK4190 Spring 2006


23<br />

3.3.2 Linearized Equations <strong>of</strong> Motion<br />

Low-Speed Maneuvering and DP: ≈ 0 implies that the nonlinear Coriolis,<br />

centripetal, damping, restoring, and buoyancy forces and moments can be<br />

linearized about 0 and 0.<br />

Since C(0)=0 and Dn (0)=0 it makes<br />

sense to: approximate:<br />

Ṁ C D Dn<br />

0<br />

D<br />

The resulting state-space model becomes:<br />

A <br />

̇ p <br />

Ṁ D G p w<br />

0 I<br />

−M−1G −M−1D P p<br />

, B <br />

g Gp<br />

0<br />

M−1 g o w<br />

̇x Ax Bu Ew<br />

x p , , u <br />

, E <br />

0<br />

M−1 which is the linear time invariant (LTI) state-space model used in DP.<br />

Ivar Ihle – TTK4190 Spring 2006


24<br />

3.3.2 Linearized Equations <strong>of</strong> Motion<br />

<strong>Vessels</strong> in Transit (Cruise Condition):<br />

For vessels in transit the cruise speed is assumed to satisfy:<br />

u uo<br />

This suggests that<br />

where<br />

o uo,0,0,0,0,0 <br />

Nuo ∂<br />

∂ C D| o<br />

̇ p Δ o<br />

MΔ̇ NuoΔ G p w<br />

Linear parameter varying (LPV) model:<br />

Auo <br />

̇x Auox Bu Ew Fo<br />

0 I<br />

−M−1G −M−1Nuo , B <br />

0<br />

M−1 , E <br />

0<br />

M−1 Δ − o<br />

x p ,Δ <br />

, F <br />

I<br />

0<br />

Ivar Ihle – TTK4190 Spring 2006


25<br />

3.5 Standard Models for <strong>Marine</strong> <strong>Vessels</strong><br />

Models for ships, semi-submersibles, and underwater vehicles are usually<br />

represented as one <strong>of</strong> the following subsystemes:<br />

or:<br />

Surge model: velocity u<br />

Maneuvering model (sway and yaw): velocities v and r<br />

Horizontal motion (surge, sway, and yaw): velocities u,v, and r<br />

Longitudinal motion (surge, heave, and pitch): velocities u,w, and q<br />

Lateral motion: (sway, roll, and yaw): velocities v,p, and r<br />

Horizontal plane models: DOFs 1, 2, 6<br />

Longitudinal motion: DOFs 1, 3, 5<br />

Lateral motion: DOFs 2, 4, 6<br />

Ivar Ihle – TTK4190 Spring 2006


26<br />

3.5.1 3 DOF Horizontal Motion<br />

The horizontal motion <strong>of</strong> a ship or<br />

semi-submersible is described by<br />

the motion components in surge,<br />

sway, and yaw.<br />

u, v, r n,e, <br />

This implies that the dynamics<br />

associated with the motion in heave,<br />

roll, and pitch are neglected, that is<br />

w=p=q=0.<br />

Low-speed applications-i.e., dynamically positioned ships where U≈0,<br />

and maneuvering at high speed will now be treated separately.<br />

Ivar Ihle – TTK4190 Spring 2006


27<br />

3.5.1 3 DOF Horizontal Motion<br />

Low-Speed Model for Dynamically Positioned Ship<br />

Consider the 6 DOF kinematic expressions:<br />

J <br />

R b n Θ <br />

TΘΘ <br />

R b n Θ 033<br />

033 TΘΘ<br />

cc −sc css ss ccs<br />

sc cc sss −cs ssc<br />

−s cs cc<br />

1 st ct<br />

0 c −s<br />

0 s/c c/c<br />

For small roll and pitch angles and no heave this reduces to:<br />

J<br />

3 DOF<br />

R <br />

cos − sin 0<br />

sin cos 0<br />

0 0 1<br />

Ivar Ihle – TTK4190 Spring 2006


28<br />

3.5.1 3 DOF Horizontal Motion<br />

Assume that the ship has homogeneous mass distribution, xz-plane symmetry and y g =0:<br />

MRB <br />

MA −<br />

m 0 0 0 mzg −my g<br />

0 m 0 −mzg 0 mxg<br />

0 0 m my g −mxg 0<br />

0 −mzg my g Ix −Ixy −Ixz<br />

mzg 0 −mxg −Iyx Iy −Iyz<br />

X<br />

−my g mxg 0 −Izx −Izy Iz<br />

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ<br />

X<br />

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ<br />

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ<br />

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ<br />

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ<br />

X<br />

X<br />

X<br />

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ<br />

X<br />

MRB <br />

CRB <br />

MA <br />

CA <br />

m 0 0<br />

0 m mxg<br />

0 mxg Iz<br />

0 0 −mx g r v<br />

0 0 mu<br />

mx g r v −mu 0<br />

−Xu̇ 0 0<br />

0 −Y v̇ −Y ṙ<br />

0 −Yṙ −Nṙ<br />

0 0 Y v̇ v Y ṙ r<br />

0 0 −Xu̇ u<br />

−Yv̇ v − Y ṙ r Xu̇ u 0<br />

Ivar Ihle – TTK4190 Spring 2006


29<br />

3.5.1 3 DOF Horizontal Motion<br />

For the 3 DOF low speed model, M = M T and C = -C T , that is:<br />

M <br />

C <br />

m − Xu̇ 0 0<br />

0 m − Yv̇ mxg−Y ṙ<br />

0 mxg−Y ṙ Iz−Nṙ<br />

As for the system inertia matrix, linear damping in surge is decoupled from sway<br />

and yaw. This implies that:<br />

D <br />

0 0 − m − Y v̇ v − mx g −Yṙ r<br />

0 0 m − X u̇ u<br />

m − Y v̇ v mx g −Y ṙ r −m − X u̇ u 0<br />

−Xu 0 0<br />

0 −Yv −Y r<br />

0 −Nv −Nr<br />

Linear damping is a good assumption for low-speed applications. Similarly the<br />

quadratic velocity terms given by C<br />

are negligible in DP<br />

Ivar Ihle – TTK4190 Spring 2006


30<br />

3.5.1 3 DOF Horizontal Motion<br />

Resulting Low-Speed (DP) Model:<br />

̇ R<br />

Ṁ D <br />

where<br />

Bu<br />

M = M<br />

B is the control matrix describing the thruster configuration and u is the control input.<br />

T >0 and D = DT >0<br />

Nonlinear Maneuvering Model:<br />

At higher speeds the assumptions that D D Dn≈ D and C≈ 0 are violated<br />

This suggests the following 3 DOF nonlinear maneuvering model:<br />

̇ R<br />

Ṁ C D <br />

Ivar Ihle – TTK4190 Spring 2006


31<br />

3.5.2 Decoupled Models for Forward<br />

Speed/Maneuvering<br />

For vessels moving at constant (or at least slowly-varying) forward speed:<br />

U u 2 v 2 ≈ u<br />

the 3 DOF maneuvering model can be decoupled in a:<br />

Forward speed (surge subsystem)<br />

Sway-yaw subsystem for maneuvering<br />

Forward Speed Model<br />

Starboard-port symmetry implies that surge is decoupled from sway and yaw:<br />

m − Xu̇ u̇ − Xuu − X|u|u|u|u 1<br />

where 1<br />

is the sum <strong>of</strong> control forces in surge. Notice that both linear and quadratic<br />

damping have been included in order to cover low- and high-speed applications.<br />

Ivar Ihle – TTK4190 Spring 2006


32<br />

3.5.2 Decoupled Models for Forward<br />

Speed/Maneuvering<br />

2 DOF Linear Maneuvering Model (Sway-Yaw Subsystem)<br />

A linear maneuvering model is based on the assumption that the cruise speed:<br />

u uo ≈ constant<br />

while v and r are assumed to be small.<br />

Representation 1 (see also lecture notes by Pr<strong>of</strong>essor David Clark)<br />

The 2nd and 3rd rows in the DP model<br />

with u=u o , yields:<br />

C <br />

C <br />

<br />

0 0 − m − Y v̇ v − mx g −Yṙ r<br />

0 0 m − X u̇ u<br />

m − Y v̇ v mx g −Y ṙ r −m − X u̇ u 0<br />

m − X u̇ u o r<br />

m − Y v̇ u o v mx g −Y ṙ u o r − m − X u̇ u o v<br />

0 m − X u̇ u o<br />

X u̇ −Yv̇ u o mx g −Y ṙ u o<br />

v<br />

r<br />

Notice that<br />

C ≠−C <br />

Ivar Ihle – TTK4190 Spring 2006


33<br />

3.5.2 Decoupled Models for Forward<br />

Speed/Maneuvering<br />

Assume that the ship is controlled by a single rudder:<br />

and that linear damping dominates:<br />

then:<br />

where<br />

v, r <br />

b <br />

−Y<br />

−N<br />

D D D n ≈ D<br />

Ṁ Nuo b<br />

This is the linear maneuvering model<br />

as used by Clark, Fossen and others.<br />

Developed from M RB , C RB , M A , C A<br />

<br />

Notice: N includes the famous<br />

Munk moment and some other C A -terms<br />

M <br />

Nuo <br />

b <br />

m − Yv̇ mxg−Yṙ<br />

mxg−Y ṙ<br />

−Yv<br />

Iz−Nṙ<br />

m − X u̇ u o −Yr<br />

X u̇ −Yv̇ u o −Nv mx g −Y ṙ u o −Nr<br />

−Y<br />

−N<br />

Ivar Ihle – TTK4190 Spring 2006


34<br />

3.5.2 Decoupled Models for Forward<br />

Speed/Maneuvering<br />

2 DOF Linear Maneuvering Model (Sway-Yaw Subsystem)<br />

Representation 2 (Davidson and Schiff 1946). Starts with Newton’s law:<br />

where linear terms in acceleration, velocity and rudder are added according to:<br />

Notice: This approach does not included the C A -matrix. The resulting model is:<br />

M <br />

MRḂ CRB RB<br />

RB −<br />

Y<br />

N<br />

m − Yv̇ mxg−Yṙ<br />

mxg−Y ṙ<br />

Iz−Nṙ<br />

<br />

Yv̇ Yṙ<br />

Nv̇ Nṙ<br />

Ṁ Nuo b<br />

, Nuo <br />

In this model the Munk moment is missing in the yaw equation. This is a destabilizing moment<br />

known from aerodynamics which tries to turn the vessel. Also notice that two other less<br />

important C A -terms are removed from N(u o ) when compared to Representation 1.<br />

̇ <br />

−Yv<br />

Yv Yr<br />

Nv Nr<br />

muo−Y r<br />

−Nv mxguo−Nr<br />

<br />

, b <br />

−Y<br />

−N<br />

Ivar Ihle – TTK4190 Spring 2006


35<br />

3.5.2 Decoupled Models for Forward<br />

Speed/Maneuvering<br />

1 DOF Autopilot Model (Yaw Subsystem)<br />

A linear autopilot model for course control can be derived from the maneuvering model<br />

Ṁ Nuo b<br />

by defining the yaw rate r as output:<br />

r c , c 0, 1<br />

Hence, application <strong>of</strong> the Laplace transformation yields (Nomoto 1957):<br />

r<br />

<br />

s <br />

The 1st-order Nomoto model is obtained by defining the equivalent time constant as:<br />

T T1 T2 − T3<br />

r<br />

s K<br />

1Ts<br />

K1T3s<br />

1T1s1T2s<br />

2nd-order Nomoto model<br />

̇ r<br />

<br />

s K<br />

s1Ts<br />

Ivar Ihle – TTK4190 Spring 2006


36<br />

3.5.3 Longitudinal and Lateral Models<br />

The 6 DOF equations <strong>of</strong> motion can in many cases be divided into two noninteracting<br />

(or lightly interacting) subsystems:<br />

Longitudinal subsystem: states u,w,q, and <br />

Lateral subsystem: states v,p,r, and <br />

This decomposition is good for slender bodies (large length/width ratio). Typical<br />

applications are aircraft, missiles, and submarines.<br />

Ivar Ihle – TTK4190 Spring 2006


37<br />

3.5.3 Longitudinal and Lateral Models<br />

M <br />

M <br />

m11 m12 0 0 0 m16<br />

m21 m22 0 0 0 m26<br />

0 0 m33 m34 m35 0<br />

0 0 m43 m44 m45 0<br />

0 0 m53 m54 m55 0<br />

m61 m62 0 0 0 m66<br />

xy-plane <strong>of</strong> symmetry<br />

(bottom/top symmetry):<br />

m11 0 0 0 m15 0<br />

0 m22 0 m24 0 0<br />

0 0 m33 0 0 0<br />

0 m42 0 m44 0 0<br />

m51 0 0 0 m55 0<br />

0 0 0 0 0 m66<br />

yz-plane <strong>of</strong> symmetry<br />

(fore/aft symmetry)<br />

M <br />

m11 0 m13 0 m15 0<br />

0 m22 0 m24 0 m26<br />

m31 0 m33 0 m35 0<br />

0 m42 0 m44 0 m46<br />

m51 0 m53 0 m55 0<br />

0 m62 0 m64 0 m66<br />

xz-plane <strong>of</strong> symmetry<br />

(port/starboard symmetry)<br />

M diagm11,m 22,m 33,m 44,m 55,m 66<br />

xz-, yz- and xy-planes <strong>of</strong> symmetry<br />

(port/starboard, fore/aft and bottom/top<br />

symmetries).<br />

Ivar Ihle – TTK4190 Spring 2006


38<br />

3.5.3 Longitudinal and Lateral Models<br />

Starboard-port symmetry implies the following zero elements:<br />

M <br />

m11 0 m13 0 m15 0<br />

0 m22 0 m24 0 m26<br />

m31 0 m33 0 m35 0<br />

0 m42 0 m44 0 m46<br />

m51 0 m53 0 m55 0<br />

0 m62 0 m64 0 m66<br />

The longitudinal and lateral submatrices are:<br />

M long <br />

m11 m13 m15<br />

m31 m33 m35<br />

m51 m53 m55<br />

, M lat <br />

m22 m24 m26<br />

m42 m44 m46<br />

m62 m64 m66<br />

Ivar Ihle – TTK4190 Spring 2006


39<br />

3.5.3 Longitudinal and Lateral Models<br />

Longitudinal Subsystem (DOFs 1, 3, 5)<br />

J <br />

R b n Θ <br />

TΘΘ <br />

R b n Θ 033<br />

033 TΘΘ<br />

cc −sc css ss ccs<br />

sc cc sss −cs ssc<br />

−s cs cc<br />

1 st ct<br />

0 c −s<br />

0 s/c c/c<br />

Resulting kinematic equation:<br />

ḋ ̇<br />

<br />

cos 0<br />

0 1<br />

v, p, r, are small<br />

w<br />

q<br />

<br />

− sin<br />

0<br />

not controlling the N-position<br />

using speed control instead<br />

u<br />

Ivar Ihle – TTK4190 Spring 2006


40<br />

3.5.3 Longitudinal and Lateral Models<br />

Longitudinal Subsystem (DOFs 1, 3, 5)<br />

For simplicity, it is assumed that higher order damping can be neglected, that is<br />

Dn 0. Coriolis is, however, modelled by assuming that u 0 and that<br />

2nd-order terms in v,w,p,q, and r are small. Hence, DOFs 1, 3, 5 gives:<br />

CRB <br />

CRB ≈<br />

my g q z g rp − mx g q − wq − mx g r vr<br />

−mz g p − vp − mz g q uq mx g p y g qr<br />

mx g q − wu − mz g r xgpv mz g q uw I yz q I xz p − I z rp −I xz r − Ixyq I x pr<br />

Collecting terms in u,w, and q, gives:<br />

0 0 0<br />

0 0 −mu<br />

0 0 mxgu<br />

Assuming a diagonal M A gives:<br />

CA <br />

−Zẇ wq Y v̇ vr<br />

−Y v̇ vp X u̇ uq<br />

u<br />

w<br />

Z ẇ −Xu̇ uw N ṙ −Kṗ pr<br />

q<br />

≈<br />

0 0 0<br />

0 0 Xu̇ u<br />

0 Z ẇ −Xu̇ u 0<br />

CRB ≠−CRB<br />

The skew-symmetric property is<br />

destroyed for the decoupled model:<br />

<br />

u<br />

w<br />

q<br />

Ivar Ihle – TTK4190 Spring 2006


41<br />

3.5.3 Longitudinal and Lateral Models<br />

Longitudinal Subsystem (DOFs 1, 3, 5)<br />

The restoring forces with W=B and xg =xb :<br />

g <br />

g <br />

−<br />

W − B sin<br />

W − B cos sin<br />

− W − B cos cos<br />

− ygW − ybB cos cos zgW − zbB cos sin<br />

z g W − zbB sin x g W − xbB cos cos<br />

− x g W − xbB cos sin − y g W − y b B sin<br />

0<br />

0<br />

WBGz sin <br />

Ivar Ihle – TTK4190 Spring 2006


42<br />

3.5.3 Longitudinal and Lateral Models<br />

Longitudinal Subsystem (DOFs 1, 3, 5)<br />

<br />

m − Xu̇ −Xẇ mzg − Xq̇<br />

−Xẇ m − Zẇ −mxg − Zq̇<br />

mzg − Xq̇ −mxg − Zq̇ Iy − Mq̇<br />

0 0 0<br />

0 0 −m − Xu̇ u<br />

0 Zẇ − Xu̇ u mxgu<br />

u uo constant<br />

<br />

m − Zẇ<br />

−mxg−Zq̇<br />

−mxg−Zq̇<br />

Iy−Mq̇<br />

0 −m − X u̇ u o<br />

Z ẇ −Xu̇ u o<br />

mxguo<br />

ẇ<br />

q̇<br />

<br />

w<br />

q<br />

u<br />

w<br />

q<br />

u̇<br />

ẇ<br />

q̇<br />

<br />

<br />

−Zw −Zq<br />

−Mw −Mq<br />

<br />

−Xu −Xw −Xq<br />

−Zu −Zw −Zq<br />

−Mu −Mw −Mq<br />

0<br />

0<br />

WBGz sin<br />

0<br />

BGzWsin <br />

w<br />

q<br />

<br />

<br />

3<br />

5<br />

1<br />

3<br />

5<br />

u<br />

w<br />

q<br />

Ivar Ihle – TTK4190 Spring 2006


43<br />

3.5.3 Longitudinal and Lateral Models<br />

Longitudinal Subsystem (DOFs 1, 3, 5)<br />

Linear pitch dynamics (decoupled):<br />

where the natural frequency is:<br />

Iy − Mq̇ ̈ − Mq̇ BGzW 5<br />

<br />

BGz W<br />

Iy−Mq̇ <br />

Ivar Ihle – TTK4190 Spring 2006


44<br />

3.5.3 Longitudinal and Lateral Models<br />

Lateral Subsystem (DOFs 2, 4, 6)<br />

J <br />

R b n Θ <br />

TΘΘ <br />

R b n Θ 033<br />

033 TΘΘ<br />

cc −sc css ss ccs<br />

sc cc sss −cs ssc<br />

−s cs cc<br />

1 st ct<br />

0 c −s<br />

0 s/c c/c<br />

Resulting kinematic equation:<br />

̇ p<br />

̇ r<br />

u, w, p, r, and are small<br />

not controlling the E-position<br />

using heading control instead<br />

Ivar Ihle – TTK4190 Spring 2006


45<br />

3.5.3 Longitudinal and Lateral Models<br />

Lateral Subsystem (DOFs 2, 4, 6)<br />

Again it is assumed that higher order velocity terms can be neglected so that<br />

Dn 0.<br />

Hence:<br />

CRB <br />

Collecting terms in v,p, and r, gives:<br />

CRB ≈<br />

Assuming a diagonal M A gives:<br />

CA <br />

−my g p wp mz g r xgpq − my g r − ur<br />

−my g q z g ru my g p wv mz g p − vw −I yz q − I xz p I z rq I yz r Ixyp − I y qr<br />

mx g r vu my g r − uv − mx g p y g qw −I yz r − Ixyp I y qp I xz r Ixyq − I x pq<br />

0 0 muo<br />

0 0 0<br />

0 0 mxguo<br />

Zẇ wp − X u̇ ur<br />

Y v̇ −Zẇ vw M q̇ −Nṙ qr<br />

X u̇ −Y v̇ uv K ṗ −Mq̇ pq<br />

v<br />

p<br />

r<br />

≈<br />

CRB ≠−CRB<br />

The skew-symmetric property is<br />

destroyed for the decoupled model:<br />

<br />

0 0 −Xu̇ u<br />

0 0 0<br />

X u̇ −Y v̇ u 0 0<br />

v<br />

p<br />

r<br />

Ivar Ihle – TTK4190 Spring 2006


46<br />

3.5.3 Longitudinal and Lateral Models<br />

Lateral Subsystem (DOFs 2, 4, 6)<br />

The restoring forces with W=B, xg =xb and yg =zg :<br />

g <br />

g <br />

−<br />

W − B sin<br />

W − B cos sin<br />

− W − B cos cos<br />

− ygW − ybB cos cos zgW − zbB cos sin<br />

z g W − zbB sin x g W − xbB cos cos<br />

− x g W − xbB cos sin − y g W − y b B sin<br />

0<br />

WBGzsin 0<br />

Ivar Ihle – TTK4190 Spring 2006


47<br />

3.5.3 Longitudinal and Lateral Models<br />

Lateral Subsystem (DOFs 2, 4, 6)<br />

<br />

m − Yv̇ −mzg − Yṗ mxg − Yṙ<br />

−mzg − Yṗ Ix − Kṗ −Izx − Kṙ<br />

mxg − Yṙ −Izx − Kṙ Iz − Nṙ<br />

0 0 m − Xu̇ u<br />

0 0 0<br />

Xu̇ − Yv̇ u 0 mxgu<br />

u uo constant<br />

m − Yv̇ mxg−Yṙ<br />

mxg−Y ṙ<br />

<br />

Iz−Nṙ<br />

v̇<br />

ṙ<br />

<br />

0 m − X u̇ u o<br />

X u̇ −Y v̇ u o<br />

mxguo<br />

v<br />

p<br />

r<br />

v̇<br />

ṗ<br />

ṙ<br />

<br />

<br />

−Yv −Yr<br />

−Nv −Nr<br />

v<br />

r<br />

−Yv −Yp −Yr<br />

−Mv −Mp −Mr<br />

−Nv −Np −Nr<br />

0<br />

WBGzsin 0<br />

<br />

v<br />

r<br />

2<br />

6<br />

<br />

2<br />

4<br />

6<br />

v<br />

p<br />

r<br />

Ivar Ihle – TTK4190 Spring 2006


48<br />

3.5.3 Longitudinal and Lateral Models<br />

Lateral Subsystem (DOFs 2, 4, 6)<br />

Linear roll dynamics (decoupled):<br />

where the natural frequency is:<br />

Ix − Kṗ ̈ − Kp ̇ WBGz 4<br />

<br />

BGz W<br />

Ix−Kṗ <br />

Ivar Ihle – TTK4190 Spring 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!