29.08.2013 Views

MuLan– a precision measurement of the positive muon lifetime and ...

MuLan– a precision measurement of the positive muon lifetime and ...

MuLan– a precision measurement of the positive muon lifetime and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MuLan–</strong> a <strong>precision</strong> <strong>measurement</strong> <strong>of</strong> <strong>the</strong><br />

<strong>positive</strong> <strong>muon</strong> <strong>lifetime</strong> <strong>and</strong> determination <strong>of</strong><br />

<strong>the</strong> Fermi constant.<br />

Tim Gorringe, Univ. <strong>of</strong> Kentucky,<br />

on behalf <strong>of</strong> MuLan Collaboration.<br />

Boston Univ. 5 , Groningen Univ 7 , James Madison Univ 6 ,<br />

TRIUMF 3 , Univ. <strong>of</strong> California Berkeley 2 , Univ. <strong>of</strong> Illinois<br />

at Urbana-Champaign 1 , Univ. <strong>of</strong> Kentucky 4 .


Overview<br />

● remarks on <strong>the</strong> <strong>muon</strong> <strong>lifetime</strong>, <strong>the</strong> Fermi<br />

constant <strong>and</strong> electroweak interactions<br />

● MuLan setup<br />

● MuLan systematics<br />

● 2004 run results<br />

● 2006/7 run progress


<strong>muon</strong> <strong>lifetime</strong>, Fermi constant <strong>and</strong><br />

electroweak interactions


Electroweak interactions ...<br />

α (±0.4ppb), G F (±10ppm),<br />

<strong>and</strong> M Z (±23ppm).<br />

predictive power <strong>of</strong><br />

electroweak interactions<br />

between quarks <strong>and</strong> leptons<br />

at tree level: SM relations to bare couplings <strong>and</strong> masses<br />

4 =g g ' / g 2 g' 2 , G F =2 / 2<br />

M Z=g 2 g' 2 , M W =g <br />

beyond tree level: quantum loops dress relations between bare<br />

couplings <strong>and</strong> masses<br />

heavy qq pairs + Higg's loops + SUSY loops? ...


μ<br />

μ<br />

Electroweak interactions ...<br />

W<br />

G F<br />

1<br />

<br />

Δq contains QED, QCD loops<br />

g<br />

g<br />

e<br />

ν e<br />

ν μ<br />

ν μ<br />

ν e<br />

e<br />

= G 2 5<br />

F m<br />

1q<br />

2<br />

192<br />

G F<br />

2<br />

Δr contains electroweak loops<br />

H<br />

g2<br />

= 2<br />

8 M W<br />

1r<br />

+ ...<br />

+ ...


Brief history <strong>of</strong> <strong>the</strong> Fermi Constant<br />

1934<br />

Fermi's four-fermion<br />

interaction <strong>of</strong> β-decay<br />

50's<br />

V-A structure <strong>of</strong><br />

weak interactions<br />

Universality <strong>of</strong><br />

weak interactions<br />

60's<br />

Unified <strong>the</strong>ory <strong>and</strong><br />

electroweak interactions<br />

70-80's<br />

Discovery <strong>of</strong> neutral currents,<br />

W,Z bosons<br />

LHC era<br />

higher symmetries?


Brief history <strong>of</strong> <strong>muon</strong> <strong>lifetime</strong><br />

τ = 2.19703(4) µs (PDG2002)<br />

one-by-one exptl limit,<br />

one-loop QED limit<br />

2002PDG world<br />

average


MuLan setup


Paul Scherrer Institute – proton<br />

accelerator complex


Paul Scherrer Institute – proton<br />

accelerator complex<br />

590 MeV, 2.0 mA<br />

proton cyclotron<br />

graphite target<br />

stations, π's, μ's<br />

μLan situated<br />

on πE3 beamline


principle <strong>of</strong> accumulating µ + 's <strong>and</strong> measuring e + 's<br />

µ +<br />

kicker<br />

on<br />

<strong>of</strong>f<br />

ball<br />

tgt<br />

e +


µLan method <strong>of</strong> accumulating µ + 's <strong>and</strong><br />

measuring e + 's<br />

beam on beam <strong>of</strong>f<br />

beam monitor<br />

µLan ball<br />

(FAST collaboration use alternative method)


wire chamber<br />

μ<br />

μLAN Setup.<br />

e<br />

scintillator tiles<br />

stopping target


a tile ....<br />

a house ..<br />

μLAN Setup<br />

<strong>the</strong> ball ...


μLAN Setup


MuLan systematics – pulse pileup<br />

“Minimize by segmentation <strong>and</strong> digitization<br />

– <strong>the</strong>n measure very carefully.”


digitize<br />

Δt = artifical deadtime<br />

±Δt = coincidence window<br />

fit<br />

Δt<br />

Data<br />

Analysis<br />

histogram<br />

counts counts<br />

time


digitize<br />

Δt = artifical deadtime<br />

±Δt = coincidence window<br />

“Double coincidence” pile-up,<br />

-Re -2t/τ distortion<br />

fit<br />

Δt<br />

histogram<br />

counts<br />

time


i.o<br />

beam<br />

on<br />

shadow<br />

window<br />

counts<br />

true<br />

hits, e -t/τ<br />

time<br />

“Double coincidence” correction,<br />

shadow windowing<br />

beam<br />

on<br />

counts<br />

Δt<br />

measured<br />

hits,e -t/<br />

time<br />

beam<br />

on<br />

= +<br />

τ ­ Re-2t/τ counts<br />

shadow<br />

hits, Re -2t/τ<br />

time


2004 data pile-up correction<br />

uncorrected<br />

spectrum<br />

shadow<br />

spectrum<br />

( τ – τ ) [ppm]<br />

<strong>of</strong>fset<br />

Measured τ vs artifical deadtime<br />

uncorrected<br />

<strong>lifetime</strong><br />

corrected<br />

<strong>lifetime</strong><br />

artifical deadtime [ns]


MuLan systematics – μSR<br />

“Minimize by dephasing, geometry <strong>and</strong> target choices<br />

– <strong>the</strong>n measure very carefully.”


ν<br />

π +<br />

parity violating<br />

pion decay<br />

μ +<br />

beamline<br />

μ +<br />

θ<br />

parity violating<br />

<strong>muon</strong> decay<br />

e +


transverse field μSR longitudinal field μSR<br />

μ μ<br />

TFµSR effect is minimized<br />

by dephasing.<br />

LFµSR effect is minimized<br />

by geometry.


1) dephasing<br />

2) targets<br />

beam on<br />

1 2 3 4<br />

a) μ + in B int =5000G<br />

ferromagnetic Fe-Cr-Ni alloy<br />

3) geometry<br />

μ<br />

μ<br />

B<br />

tgt tgt<br />

FF<br />

TF μSR<br />

3<br />

4<br />

1<br />

2<br />

b) μ + e ­ in B ext =100G<br />

quartz (SiO 2 )<br />

F+B<br />

F-B


Dedicated quartz TF μSR <strong>measurement</strong><br />

showing<br />

precession signal.<br />

~500 ppm precession signal in<br />

quartz production data.<br />

Dedicated quartz LF μSR <strong>measurement</strong><br />

showing<br />

longitudinal relaxation<br />

±50 ppm <strong>lifetime</strong> shift in<br />

quartz production data.


MuLan systematics – errant <strong>muon</strong>s<br />

“put <strong>the</strong> target in <strong>the</strong> beampipe<br />

– <strong>the</strong>n measure very carefully.”


eam on beam <strong>of</strong>f<br />

~10 -3 beam extinction


plastic scintillator beam pr<strong>of</strong>ile<br />

at ~1m upstream <strong>of</strong> target position<br />

beampipe<br />

radius<br />


MuLan systematics –<br />

o<strong>the</strong>r systematics include instrumental stabilities<br />

(timing, gain, pedestal, etc) over <strong>the</strong> <strong>measurement</strong> period


MuLan results – 2004 run<br />

“First results.”<br />

- in-air ferromagnetic target<br />

- multihit TDC readout<br />

- ~10 10 decays


2004 results - <strong>the</strong> fit


2004 results – <strong>the</strong> numbers<br />

source uncertainty<br />

statistical 9.6 ppm<br />

systematic 5.0 ppm<br />

total 11 ppm<br />

time-errant <strong>muon</strong>s 3.5 ppm<br />

space-errant <strong>muon</strong>s 2 ppm<br />

pulse pile-up 2 ppm<br />

instrumental linearites 2.5 ppm<br />

τ μ (MuLan) =<br />

2.197013(21)(11) μs


11ppm<br />

16ppm


MuLan progress – 06,07 runs<br />

“Part-per-million goal.”<br />

- improved beam extinction<br />

- in-vacuum targets<br />

- 500 MHz waveform digitizers


2006<br />

ferromagnetic alloy<br />

2007<br />

quartz crystal


10 12 decays -> ~100 TB raw data -> ~10 5 CPU hours<br />

underst<strong>and</strong>ing systematics including ~100 ppm effects <strong>of</strong><br />

pile-up <strong>and</strong> µSR to sub-ppm levels<br />

e.g<br />

+ + ...


Goal 1ppm!


muCap experiment – negative <strong>muon</strong> <strong>lifetime</strong><br />

in 1% LH 2 density, 300 K, ultra-pure hydrogen<br />

−1 −1<br />

p n , . D= − p<br />

g p coupling ,QCD symmetries<br />

muSun experiment – negative <strong>muon</strong> <strong>lifetime</strong><br />

in 5% LD 2 density, 30 K, ultra-pure deuterium<br />

d n n , D= .<br />

−1 − d<br />

−1<br />

astro− phys , neutrino− phys.


muCap experiment – negative <strong>muon</strong> <strong>lifetime</strong><br />

in 1% LH 2 density, 300 K, ultra-pure hydrogen<br />

muSun experiment – negative <strong>muon</strong> <strong>lifetime</strong><br />

in 5% LD 2 density, 30 K, ultra-pure deuterium


muCap experiment – negative <strong>muon</strong> <strong>lifetime</strong><br />

in 1% LH 2 density, 300 K, ultra-pure hydrogen<br />

muSun experiment – negative <strong>muon</strong> <strong>lifetime</strong><br />

in 5% LD 2 density, 30 K, ultra-pure deuterium


muCap experiment – negative <strong>muon</strong> <strong>lifetime</strong><br />

in 1% LH 2 density, 300 K, ultra-pure hydrogen<br />

−1 −1 −1<br />

p n ; . S= − p=725±17<br />

s ; g p=7.3±1.1<br />

muSun experiment – negative <strong>muon</strong> <strong>lifetime</strong><br />

in 5% LD 2 density, 30 K, ultra-pure deuterium<br />

−1 −1 −1<br />

d n n ; . D= − d=?<br />

s ; astro ,neutrino

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!