28.08.2013 Views

Experimental and Numerical Study of Swirling ... - Solid Mechanics

Experimental and Numerical Study of Swirling ... - Solid Mechanics

Experimental and Numerical Study of Swirling ... - Solid Mechanics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Experi imental <strong>and</strong> <strong>Numerical</strong> N Stud dy <strong>of</strong> <strong>Swirling</strong> g Flow in Scaveenging<br />

Processs<br />

for 2-Stroke<br />

Marin ne Diesel Engin nes<br />

Fig gure 4.9:<br />

Tan ngential Velocity for f<br />

L3=4 4D.<br />

<strong>and</strong> sca ans for the local l minimuum<br />

<strong>of</strong> the inn-plane<br />

veloccity<br />

magnitudde<br />

2 2<br />

u v (Cartesian coordinates) iin<br />

the region cclose<br />

to the cyylinder<br />

axis.<br />

The pro <strong>of</strong>ile shape re esembles closeely<br />

to the moodel<br />

<strong>of</strong> Burgeer<br />

vortex i.e. a<br />

rotation nal flow core region r with riggid<br />

body rotattion<br />

(forced vvortex)<br />

followeed<br />

by an ir rrotational/ po otential flow region also rreferred<br />

to as ‘free vortex’ oor<br />

‘annular r’ region. Sinc ce, in this expeeriment,<br />

no mmeasurements<br />

wwere<br />

conducteed<br />

close to cylinder wall l, the velocity pr<strong>of</strong>ile in thee<br />

high velocityy<br />

gradient ‘waall<br />

layer’ re egion cannot be b seen.<br />

At posit tions very close<br />

to the cylindder<br />

inlet, the ssize<br />

<strong>of</strong> the vorttex<br />

core is smaall<br />

compare ed to outer potential<br />

flow/ / free vortex rregion<br />

<strong>and</strong> thee<br />

peak value o<strong>of</strong><br />

non-dim mensional tang gential velocitty<br />

in the rotattional<br />

region iis<br />

higher at loow<br />

Reynold ds number Re eB compared too<br />

ReA. This diifference<br />

dimiinishes<br />

with thhe<br />

swirl de ecay <strong>and</strong> grow wth in the foorced<br />

vortex rregion<br />

downsttream<br />

the floow<br />

direction<br />

at z5. At z6 a small peak in the magnittude<br />

<strong>of</strong> tangential<br />

velocity is<br />

observed d as a result <strong>of</strong> f the flow beinng<br />

acceleratedd<br />

due to small diameter outlet<br />

pipe (z6 6 at L3 is comp paratively closser<br />

to cylinderr<br />

outlet than z9 <strong>and</strong> z13 at LL2<br />

<strong>and</strong> L1 respectively). r<br />

In I general, thee<br />

effect <strong>of</strong> variiation<br />

in Reynnolds<br />

number is<br />

only ob bserved in the vortex core reegion<br />

<strong>and</strong> thee<br />

potential floww<br />

region seemms<br />

to be insensitive<br />

to su uch variation aat<br />

all the measuuring<br />

positionns.<br />

4.2.3<br />

Axial Vel locity Pr<strong>of</strong>i file<br />

Chapter 4<br />

The axial<br />

velocity V exhibits a ‘wake-like’<br />

pr<strong>of</strong>iile<br />

(Figure 4.100).<br />

The effect <strong>of</strong><br />

z<br />

Reynold ds number see ems to be moore<br />

pronounceed<br />

compared to V not onnly<br />

<br />

in term ms <strong>of</strong> size <strong>of</strong> inn ner forced vorrtex<br />

but also inn<br />

the magnituude<br />

<strong>of</strong> Vz at thhe<br />

58<br />

<strong>Swirling</strong> Flow in a Pipe

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!