Dynamics of Machines - Part II - IFS.pdf

Dynamics of Machines - Part II - IFS.pdf Dynamics of Machines - Part II - IFS.pdf

fam.web.mek.dtu.dk
from fam.web.mek.dtu.dk More from this publisher
28.08.2013 Views

The analytical solution can be divided into three steps: (I) homogeneous solution (transient analysis); (II) permanent solution (steady-state analysis) and (III) general solution (homogeneous + permanent), as mentioned in section 1.7.3. Introducing the initial conditions of displacement and velocity zini = { v1ini one gets v2ini v3ini y1ini y2ini y3ini }T z(t) = C1u1e λ1t + C2u2e λ2t + C3u3e λ3t + C4u4e λ4t + C5u5e λ5t + C6u6e λ6t + Ae iωt ⎧ ⎪⎨ ⎪⎩ C1 C2 C3 C4 C5 C6 where λ1 = −ξ1ωn1 − ωn1 1 − ξ2 1 · i and u1 λ2 = −ξ1ωn1 + ωn1 1 − ξ2 1 · i and u2 λ3 = −ξ2ωn2 − ωn2 1 − ξ2 2 · i and u3 λ4 = −ξ2ωn2 + ωn2 1 − ξ2 2 · i and u4 λ5 = −ξ3ωn3 − ωn3 1 − ξ2 3 · i and u5 λ6 = −ξ3ωn3 + ωn3 1 − ξ2 3 · i and u6 ⎫ A = [jωA + B] −1 f ⎪⎬ = [ u1 u2 u3 u4 u5 u6 ] −1 { zini − A} ⎪⎭ 1.8.3 Programming in Matlab – Theoretical Parameter Studies and Experimental Validation 52 (83) (82)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MACHINERY DYNAMICS LECTURES (72213) % % IKS - DEPARTMENT OF CONTROL ENGINEERING DESIGN % % DTU - TECHNICAL UNIVERSITY OF DENMARK % % % % Copenhagen, February 11th, 2000 % % IFS % % % % 3 D.O.F. SYSTEMS - 4 DIFFERENT EXPERIMENTAL CASES % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Concentred Masses Values m1= 0.191; %[Kg] m2= 0.191; %[Kg] m3= 0.191; %[Kg] m4= 0.191; %[Kg] m5= 0.191; %[Kg] m6= 0.191; %[Kg] %Elastic Properties of the Beam of 600 [mm] E= 2.07e11; %elasticity modulus [N/m^2] b= 0.030 ; %width [m] h= 0.0012 ; %thickness [m] Iz= (b*h^3)/12; %area moment of inertia [m^4] % (1.CASE) Data for the mass-spring system %__________________________________________________ M1=m1; %concentrated mass [Kg] | M2=m2; %concentrated mass [Kg] | M3=m3; %concentrated mass [Kg] | L1= 0.203; %length for positioning M1 [m] | L2= 0.406; %length for positioning M2 [m] | L3= 0.610; %length for positioning M3 [m] | %__________________________________________________| % Coefficients of the Stiffness Matrix [N/m] K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ... 2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3)); K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ... 2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ... L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3)); K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(... 2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3)); K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ... 2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ... L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3)); K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ... L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ... L1*L3 - 4*L2*L3)); K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ... 6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ... L2^2 + L1*L3 - 4*L2*L3)); K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ... + L2^2 + L1*L3 - 4*L2*L3)); K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ... 6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ... L2^2 + L1*L3 - 4*L2*L3)); K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ... L2^2 + L1*L3 - 4*L2*L3)); %Mass Matrix M= [M1 0 0; 0 M2 0; 0 0 M3]; %Stiffness Matrix K= [K11 K12 K13; K21 K22 K23; K31 K32 K33]; %Damping Matrix D= [0 0 0; 0 0 0; 0 0 0]; %State Matrices A= [ M D ; zeros(size(M)) M ] ; B= [ zeros(size(M)) K ; -M zeros(size(M))]; %Dynamical Properties of the Mass-Spring System [u,w]=eig(-B,A); %natural frequency [rad/s] %Dynamical Properties of the Mass-Spring System w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s] w1=w(1); %first natural frequency [Hz] w2=w(3); %second natural frequency [Hz] w3=w(5); %third natural frequency [Hz] 53 wexp1=1.031 %measured natural frequency [Hz] %IMPORTANT: Freq resolution 400 lines wexp2=7.000 %measured natural frequency [Hz] %IMPORTANT: Freq resolution 400 lines wexp3=19.312 %measured natural frequency [Hz] %IMPORTANT: Freq resolution 400 lines dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq. dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq. dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq. pause; % (2.CASE) Increasing the Mass Values % Data for the mass-spring system %__________________________________________________ M1=m1+m4; %concentrated mass [Kg] | M2=m2+m5; %concentrated mass [Kg] | M3=m3+m6; %concentrated mass [Kg] | L1= 0.203; %length for positioning M1 [m] | L2= 0.406; %length for positioning M2 [m] | L3= 0.610; %length for positioning M3 [m] | %__________________________________________________| % Coefficients of the Stiffness Matrix [N/m] K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ... 2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3)); K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ... 2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ... L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3)); K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(... 2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3)); K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ... 2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ... L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3)); K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ... L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ... L1*L3 - 4*L2*L3)); K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ... 6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ... L2^2 + L1*L3 - 4*L2*L3)); K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ... + L2^2 + L1*L3 - 4*L2*L3)); K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ... 6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ... L2^2 + L1*L3 - 4*L2*L3)); K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ... L2^2 + L1*L3 - 4*L2*L3)); %Mass Matrix M= [M1 0 0; 0 M2 0; 0 0 M3]; %Stiffness Matrix K= [K11 K12 K13; K21 K22 K23; K31 K32 K33]; %Damping Matrix D= [0 0 0; 0 0 0; 0 0 0]; %State Matrices A= [ M D ; zeros(size(M)) M ] ; B= [ zeros(size(M)) K ; -M zeros(size(M))]; %Dynamical Properties of the Mass-Spring System [u,w]=eig(-B,A); %natural frequency [rad/s] %Dynamical Properties of the Mass-Spring System w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s] w1=w(1); %first natural frequency [Hz] w2=w(3); %second natural frequency [Hz] w3=w(5); %third natural frequency [Hz] wexp1=0.71875 %measured natural frequency [Hz] %IMPORTANT: Freq resolution 400 lines wexp2=5.125 %measured natural frequency [Hz] %IMPORTANT: Freq resolution 400 lines wexp3=14.312 %measured natural frequency [Hz] %IMPORTANT: Freq resolution 400 lines dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq. dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq. dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq. pause;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% MACHINERY DYNAMICS LECTURES (72213) %<br />

% IKS - DEPARTMENT OF CONTROL ENGINEERING DESIGN %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 3 D.O.F. SYSTEMS - 4 DIFFERENT EXPERIMENTAL CASES %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

%Concentred Masses Values<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E= 2.07e11; %elasticity modulus [N/m^2]<br />

b= 0.030 ; %width [m]<br />

h= 0.0012 ; %thickness [m]<br />

Iz= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1; %concentrated mass [Kg] |<br />

M2=m2; %concentrated mass [Kg] |<br />

M3=m3; %concentrated mass [Kg] |<br />

L1= 0.203; %length for positioning M1 [m] |<br />

L2= 0.406; %length for positioning M2 [m] |<br />

L3= 0.610; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

53<br />

wexp1=1.031 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=7.000 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=19.312 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;<br />

% (2.CASE) Increasing the Mass Values<br />

% Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m4; %concentrated mass [Kg] |<br />

M2=m2+m5; %concentrated mass [Kg] |<br />

M3=m3+m6; %concentrated mass [Kg] |<br />

L1= 0.203; %length for positioning M1 [m] |<br />

L2= 0.406; %length for positioning M2 [m] |<br />

L3= 0.610; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

wexp1=0.71875 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=5.125 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=14.312 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!