Dynamics of Machines - Part II - IFS.pdf

Dynamics of Machines - Part II - IFS.pdf Dynamics of Machines - Part II - IFS.pdf

fam.web.mek.dtu.dk
from fam.web.mek.dtu.dk More from this publisher
28.08.2013 Views

equations of motion can really describe the movement of the physical system. After creating the mechanical model for the physical system, the next step is to derive the equation of motion based on the mechanical model. The mechanical model is built by lumped masses m1, m2, m1 (assumption !!!), springs with equivalent stiffness coefficient (calculated using Beam Theory) and dampers with equivalent viscous coefficient (obtained experimentally). While creating the mechanical model and assuming that the mass is a particle, the equation of motion can be derived using Newton’s or Lagrange axioms. For the 3 D.O.F system one can write: M¨y(t) + D˙y(t) + Ky(t) = f(t) (75) or ⎡ ⎣ m11 m12 m13 m21 m21 m23 m31 m32 m33 The mass coefficients ⎫ m11 = m1 + m2 m12 = 0 m13 = 0 m21 = 0 m22 = m3 + m4 m23 = 0 m31 = 0 m32 = 0 m33 = m5 + m6 ⎤⎧ ⎨ ¨y1 ⎦ ¨y2 ⎩ ¨y3 ⎪⎬ ⎪⎭ ⎫ ⎬ ⎭ + ⎡ ⎣ d11 d12 d13 d21 d22 d23 d31 d32 d33 ⎡ + ⎣ ⎤⎧ ⎨ ⎦ ⎩ ˙y1 ˙y2 ˙y3 k11 k12 k13 k21 k22 k23 k31 k32 k33 ⎫ ⎬ ⎭ + ⎤⎧ ⎨ ⎦ ⎩ y1 y2 y3 ⎫ ⎬ ⎭ = ⎧ ⎨ ⎩ f1 f2 f3 ⎫ ⎬ ⎭ ejωt can easily be achieved either by measuring the masses or by having the material density and mass dimensions. The equivalent damping coefficients can be approximated by d11 = 2ξ k11m11 d12 = 0 d13 = 0 d21 = 0 d22 = 2ξ k22m22 d23 = 0 d31 = 0 d32 = 0 d33 = 2ξ ⎫ ⎪⎬ (Approximation!!!) (78) ⎪⎭ k33m33 or by assuming, for example, proportional damping D = αM + βK. The coefficients α and β can be chosen, so that the damping factor ξ of the first resonance is of the same order as the damping factor achieved in the previous section. Please, note that this is just an approximation 50 (76) (77)

which could be verified using Modal Analysis Techniques. Another way of approximating the damping coefficients is given by eq.(78), which should also be verified through experiments! The stiffness coefficients k11 = 3EIL 3 2 (L2 − 4L3) L 3 1 (L1 − L2) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3) k12 = −3EI(−3L2(L2 − 2L3)L3 + L1(L 2 2 − 2L2L3 − 2L 2 3 )) L1(L1 − L2) 2 (L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3) k13 = −9EIL 2 2 L1(L1 − L2)(L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3) k21 = −3EI(−3L2(L2 − 2L3)L3 + L1(L 2 2 − 2L2L3 − 2L 2 3 )) L1(L1 − L2) 2 (L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3) k22 = k23 = k31 = k32 = k33 = 3EI(L1 − 4L3)(L1 − L3) 2 (L1 − L2) 2 (L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3) −3EI(L 2 1 − 2L1L2 − 2L 2 2 − 3L1L3 + 6L2L3) (L1 − L2)(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3) −9EIL2 2 L1(L1 − L2)(L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3) −3EI(L 2 1 − 2L1L2 − 2L 2 2 − 3L1L3 + 6L2L3) (L1 − L2)(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3) 3EI(L1 − 4L2) (L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3) can be calculated using the geometry of the beam (I, L1 , L2, L3) and its material properties (E), according to section 1.3. You can try to get these coefficients using the information presented in section 1.5. Differential Equations 2nd order → 1st order M D ¨y 0 M ˙y + 0 K ˙y −M 0 y = ¯f 0 A˙z(t) + Bz(t) = fe jωt z(t) = ˙y(t) y(t) ⎧ ⎪⎨ = ⎪⎩ ˙y1(t) ˙y2(t) ˙y3(t) y1(t) y2(t) y3(t) ⎫ ⎪⎬ ⎪⎭ → velocity → velocity → velocity → displacement → displacement → displacement 51 ⎫ ⎪⎬ ⎪⎭ e jωt (79) (80) (81)

which could be verified using Modal Analysis Techniques. Another way <strong>of</strong> approximating the<br />

damping coefficients is given by eq.(78), which should also be verified through experiments!<br />

The stiffness coefficients<br />

k11 =<br />

3EIL 3 2 (L2 − 4L3)<br />

L 3 1 (L1 − L2) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k12 = −3EI(−3L2(L2 − 2L3)L3 + L1(L 2 2 − 2L2L3 − 2L 2 3 ))<br />

L1(L1 − L2) 2 (L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k13 =<br />

−9EIL 2 2<br />

L1(L1 − L2)(L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k21 = −3EI(−3L2(L2 − 2L3)L3 + L1(L 2 2 − 2L2L3 − 2L 2 3 ))<br />

L1(L1 − L2) 2 (L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k22 =<br />

k23 =<br />

k31 =<br />

k32 =<br />

k33 =<br />

3EI(L1 − 4L3)(L1 − L3) 2<br />

(L1 − L2) 2 (L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

−3EI(L 2 1 − 2L1L2 − 2L 2 2 − 3L1L3 + 6L2L3)<br />

(L1 − L2)(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

−9EIL2 2<br />

L1(L1 − L2)(L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

−3EI(L 2 1 − 2L1L2 − 2L 2 2 − 3L1L3 + 6L2L3)<br />

(L1 − L2)(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

3EI(L1 − 4L2)<br />

(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

can be calculated using the geometry <strong>of</strong> the beam (I, L1 , L2, L3) and its material properties (E),<br />

according to section 1.3. You can try to get these coefficients using the information presented<br />

in section 1.5.<br />

Differential Equations 2nd order → 1st order<br />

<br />

M D ¨y<br />

0 M ˙y<br />

+<br />

<br />

0 K ˙y<br />

−M 0 y<br />

=<br />

<br />

¯f<br />

0<br />

A˙z(t) + Bz(t) = fe jωt<br />

z(t) =<br />

˙y(t)<br />

y(t)<br />

⎧<br />

⎪⎨<br />

=<br />

⎪⎩<br />

˙y1(t)<br />

˙y2(t)<br />

˙y3(t)<br />

y1(t)<br />

y2(t)<br />

y3(t)<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

→ velocity<br />

→ velocity<br />

→ velocity<br />

→ displacement<br />

→ displacement<br />

→ displacement<br />

51<br />

<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

e jωt<br />

(79)<br />

(80)<br />

(81)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!