Dynamics of Machines - Part II - IFS.pdf

Dynamics of Machines - Part II - IFS.pdf Dynamics of Machines - Part II - IFS.pdf

fam.web.mek.dtu.dk
from fam.web.mek.dtu.dk More from this publisher
28.08.2013 Views

1.7.7 Programming in Matlab – Frequency Response Analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MACHINERY DYNAMICS LECTURES (72213) % % IKS - DEPARTMENT OF CONTROL ENGINEERING DESIGN % % DTU - TECHNICAL UNIVERSITY OF DENMARK % % % % Copenhagen, February 11th, 2000 % % IFS % % % % 2 D.O.F. SYSTEMS - FRF (FREQUENCY RESPONSE FUNCTION) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Concentred Masses m1= 0.191; %[Kg] m2= 0.191; %[Kg] m3= 0.191; %[Kg] m4= 0.191; %[Kg] m5= 0.191; %[Kg] m6= 0.191; %[Kg] %Elastic Properties of the Beam of 600 [mm] E= 2e11; %elasticity modulus [N/m^2] b= 0.030 ; %width [m] h= 0.0012 ; %thickness [m] I= (b*h^3)/12; %area moment of inertia [m^4] % (1.CASE) Data for the mass-spring system %__________________________________________________ M1=m1+m2+m5; %concentrated mass [Kg] | M2=m3+m4+m6; %concentrated mass [Kg] | L1= 0.310; %length for positioning M1 [m] | L2= 0.610; %length for positioning M2 [m] | %__________________________________________________| % Coefficients of the Stiffness Matrix LL=(L1-4*L2)*(L1-L2)^2; K11= -12*(E*I/LL)*L2^3/L1^3; %equivalent Stiffness [N/m] K12= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m] K21= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m] K22= -12*(E*I/LL); %equivalent Stiffness [N/m] % Coefficients of the Damping Matrix D11= 2*0.01*(2*pi*5.0)*M1; %equivalent Damping [N/m] D12= 0; %equivalent Damping [N/m] D21= 0; %equivalent Damping [N/m] D22= 2*0.01*(2*pi*1.0)*M2; %equivalent Damping [N/m] %Mass Matrix M= [M1 0; 0 M2]; %Damping Matrix D=[D11 D12; D21 D22]; %Stiffness Matrix K= [K11 K12; K21 K22]; %State Matrices A= [ M D ; zeros(size(M)) M ] ; B= [ zeros(size(M)) K ; -M zeros(size(M))]; %Dynamical Properties of the Mass-Spring System [u,w]=eig(-B,A); %natural frequency [rad/s] %Dynamical Properties of the Mass-Spring System w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s] w1=w(1) %first natural frequency [Hz] w2=w(3) %second natural frequency [Hz] wexp1=0.625 %measured natural frequency [Hz] wexp2=4.405 %measured natural frequency [Hz] dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq. dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq. 42 % FRF -- FREQUENCY RESPONSE FUNCTION N = 800 ; % number of points for plotting (see HP-Analyzer) N_factor = 100 ; % Given Excitation Function acting on the the point 1 fo1 = 1 ; % [N] force amplitude acting on the point 1 of the beam fo2 = 0 ; % [N] force amplitude acting on the point 2 of the beam for i=1:N; F1(i)= fo1; F2(i)= fo2; end; % Calculation of the displacement, velocity and acceleration responses for i=1:N; w(i) = 2*pi*i/N_factor; j = sqrt(-1); AA = [(-M*w(i)*w(i)+K)+D*w(i)*j]; % Dynamical Stiffness Matrix x = inv(AA)*[F1(i) F2(i)]’; % Displacement (complex) x11(i) = x(1); % rail vibration displacement x21(i) = x(2); % sleeves displacement end; % Given Excitation Function acting on the the point 2 fo1 = 0 ; % [N] force amplitude acting on the point 1 of the beam fo2 = 1 ; % [N] force amplitude acting on the point 2 of the beam for i=1:N; F1(i)= fo1; F2(i)= fo2; end; % Calculation of the displacement, velocity and acceleration responses for i=1:N; w(i) = 2*pi*i/N_factor; j = sqrt(-1); AA = [(-M*w(i)*w(i)+K)+D*w(i)*j]; % Dynamical Stiffness Matrix x = inv(AA)*[F1(i) F2(i)]’; % Displacement (complex) x12(i) = x(1); % rail vibration displacement x22(i) = x(2); % sleeves displacement end; % Plotting the results figure(1) subplot(2,2,1),plot(w/2/pi,abs(x11)) title(’Excitation on Point 1 and Response of Point 1’) xlabel(’Frequency [Hz]’) ylabel(’(a) y11 [m/N]’) grid on subplot(2,2,2),plot(w/2/pi,abs(x12)) title(’Excitation on Point 2and Response of Point 1’) xlabel(’Frequency [Hz]’) ylabel(’(b) y12[m/N]’) grid on subplot(2,2,3),plot(w/2/pi,abs(x21)) title(’Excitation on Point 1 and Response of Point 2’) xlabel(’Frequency [Hz]’) ylabel(’(c) y21 [m/N]’) grid on subplot(2,2,4),plot(w/2/pi,abs(x22)) title(’Excitation on Point 2 and Response of Point 2’) xlabel(’Frequency [Hz]’) ylabel(’(d) y22 [m/N]’) grid on

||y 1 (ω)|| [m/N] Phase [ o] Excitation on Point 1 and Response of Point 1 0.25 0.2 0.15 0.1 0.05 −100 −150 −200 −250 −300 0 0 2 4 Frequency [Hz] 6 8 0 −50 −350 0 2 4 Frequency [Hz] 6 8 ||y 2 (ω)|| [m/N] Phase [ o] Excitation on Point 1 and Response of Point 2 0.8 0.6 0.4 0.2 −100 −150 −200 −250 −300 0 0 2 4 Frequency [Hz] 6 8 0 −50 −350 0 2 4 Frequency [Hz] 6 8 Figure 26: Forced Vibration – Theoretical Frequency Response Function (FRF) of the clampedfree flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its middle (L = 0.310 m) – Natural frequencies of the 2. D.O.F. mass-spring system ”A”: 0.81 Hz and 5.56 Hz. 1.7.8 Understanding Resonances and Mode Shapes using your Eyes and Fingers • Understanding the ”90 Degree Phase between excitation force and displacement response while in Resonance” using tactile senses. In other words, understanding ”Zero Degree Phase between the excitation force and velocity response while in resonance” using tactile senses. • Visualization of the participation of modes shapes in the transient response – Visualization using your eyes! Transient motion of the physical system excited with different initial conditions by using your fingers! 43

1.7.7 Programming in Matlab – Frequency Response Analysis<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% MACHINERY DYNAMICS LECTURES (72213) %<br />

% IKS - DEPARTMENT OF CONTROL ENGINEERING DESIGN %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 2 D.O.F. SYSTEMS - FRF (FREQUENCY RESPONSE FUNCTION) %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E= 2e11; %elasticity modulus [N/m^2]<br />

b= 0.030 ; %width [m]<br />

h= 0.0012 ; %thickness [m]<br />

I= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m2+m5; %concentrated mass [Kg] |<br />

M2=m3+m4+m6; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*I/LL)*L2^3/L1^3; %equivalent Stiffness [N/m]<br />

K12= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K21= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K22= -12*(E*I/LL); %equivalent Stiffness [N/m]<br />

% Coefficients <strong>of</strong> the Damping Matrix<br />

D11= 2*0.01*(2*pi*5.0)*M1; %equivalent Damping [N/m]<br />

D12= 0; %equivalent Damping [N/m]<br />

D21= 0; %equivalent Damping [N/m]<br />

D22= 2*0.01*(2*pi*1.0)*M2; %equivalent Damping [N/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Damping Matrix<br />

D=[D11 D12; D21 D22];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1) %first natural frequency [Hz]<br />

w2=w(3) %second natural frequency [Hz]<br />

wexp1=0.625 %measured natural frequency [Hz]<br />

wexp2=4.405 %measured natural frequency [Hz]<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

42<br />

% FRF -- FREQUENCY RESPONSE FUNCTION<br />

N = 800 ; % number <strong>of</strong> points for plotting (see HP-Analyzer)<br />

N_factor = 100 ;<br />

% Given Excitation Function acting on the the point 1<br />

fo1 = 1 ; % [N] force amplitude acting on the point 1 <strong>of</strong> the beam<br />

fo2 = 0 ; % [N] force amplitude acting on the point 2 <strong>of</strong> the beam<br />

for i=1:N;<br />

F1(i)= fo1;<br />

F2(i)= fo2;<br />

end;<br />

% Calculation <strong>of</strong> the displacement, velocity and acceleration responses<br />

for i=1:N;<br />

w(i) = 2*pi*i/N_factor;<br />

j = sqrt(-1);<br />

AA = [(-M*w(i)*w(i)+K)+D*w(i)*j]; % Dynamical Stiffness Matrix<br />

x = inv(AA)*[F1(i) F2(i)]’; % Displacement (complex)<br />

x11(i) = x(1); % rail vibration displacement<br />

x21(i) = x(2); % sleeves displacement<br />

end;<br />

% Given Excitation Function acting on the the point 2<br />

fo1 = 0 ; % [N] force amplitude acting on the point 1 <strong>of</strong> the beam<br />

fo2 = 1 ; % [N] force amplitude acting on the point 2 <strong>of</strong> the beam<br />

for i=1:N;<br />

F1(i)= fo1;<br />

F2(i)= fo2;<br />

end;<br />

% Calculation <strong>of</strong> the displacement, velocity and acceleration responses<br />

for i=1:N;<br />

w(i) = 2*pi*i/N_factor;<br />

j = sqrt(-1);<br />

AA = [(-M*w(i)*w(i)+K)+D*w(i)*j]; % Dynamical Stiffness Matrix<br />

x = inv(AA)*[F1(i) F2(i)]’; % Displacement (complex)<br />

x12(i) = x(1); % rail vibration displacement<br />

x22(i) = x(2); % sleeves displacement<br />

end;<br />

% Plotting the results<br />

figure(1)<br />

subplot(2,2,1),plot(w/2/pi,abs(x11))<br />

title(’Excitation on Point 1 and Response <strong>of</strong> Point 1’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(a) y11 [m/N]’)<br />

grid on<br />

subplot(2,2,2),plot(w/2/pi,abs(x12))<br />

title(’Excitation on Point 2and Response <strong>of</strong> Point 1’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(b) y12[m/N]’)<br />

grid on<br />

subplot(2,2,3),plot(w/2/pi,abs(x21))<br />

title(’Excitation on Point 1 and Response <strong>of</strong> Point 2’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(c) y21 [m/N]’)<br />

grid on<br />

subplot(2,2,4),plot(w/2/pi,abs(x22))<br />

title(’Excitation on Point 2 and Response <strong>of</strong> Point 2’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(d) y22 [m/N]’)<br />

grid on

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!