Dynamics of Machines - Part II - IFS.pdf

Dynamics of Machines - Part II - IFS.pdf Dynamics of Machines - Part II - IFS.pdf

fam.web.mek.dtu.dk
from fam.web.mek.dtu.dk More from this publisher
28.08.2013 Views

1.7.5 Analytical and Numerical Solutions of Equation of Motion using Matlab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DYNAMICS OF MACHINERY LECTURES (72213) % % MEK - DEPARTMENT OF MECHANICAL ENGINEERING % % DTU - TECHNICAL UNIVERSITY OF DENMARK % % % % Copenhagen, February 11th, 2000 % % % % IFS % % % % 2 D.O.F - EXACT AND NUMERICAL SOLUTION % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all; close all; %Concentred Masses m1= 0.191; %[Kg] m2= 0.191; %[Kg] m3= 0.191; %[Kg] m4= 0.191; %[Kg] m5= 0.191; %[Kg] m6= 0.191; %[Kg] %Elastic Properties of the Beam of 600 [mm] E = 2e11; %elasticity modulus [N/m^2] b = 0.030 ; %width [m] h = 0.0012 ; %thickness [m] Iz= (b*h^3)/12; %area moment of inertia [m^4] % (1.CASE) Data for the mass-spring system %__________________________________________________ M1=m1+m2; %concentrated mass [Kg] | M2=m3+m4; %concentrated mass [Kg] | L1= 0.310; %length for positioning M1 [m] | L2= 0.610; %length for positioning M2 [m] | %__________________________________________________| % Coefficients of the Stiffness Matrix LL=(L1-4*L2)*(L1-L2)^2; K11= -12*(E*Iz/LL)*L2^3/L1^3; % Stiffness coeff.[N/m] K12= -6*(E*Iz/LL)*(L1-3*L2)/L1; % Stiffness coeff.[N/m] K21= -6*(E*Iz/LL)*(L1-3*L2)/L1; % Stiffness coeff.[N/m] K22= -12*(E*Iz/LL); % Stiffness coeff.[N/m] % Coefficients of the Damping Matrix % (damping factor xi=0.005) D11= 2*0.005*sqrt(M1/K11); % Damping coeff.[Ns/m] D12= 0; % Damping coeff.[Ns/m] D21= 0; % Damping coeff.[Ns/m] D22= 2*0.005*sqrt(M2/K22); % Damping coeff.[Ns/m] %Mass Matrix M= [M1 0; 0 M2]; %Damping Matrix D=[D11 D12; D21 D22]; %Stiffness Matrix K= [K11 K12; K21 K22]; %State Matrices A & B % EQUATION (52) A= [ M D ; zeros(size(M)) M ] ; B= [ zeros(size(M)) K ; -M zeros(size(M))]; %Dynamical Properties of the Mass-Spring System [u,w]=eig(-B,A); %eigenvectors u %eigenvalues w w1=abs(imag(w(3,3)))/2/pi; %first natural freq.[Hz] w2=abs(imag(w(1,1)))/2/pi; %second natural freq.[Hz] wexp1=0.78125; %measured natural freq.[Hz] wexp2=5.563; %measured natural freq.[Hz] dif1=(w1-wexp1)/wexp1; %error calculated and measured freq. dif2=(w2-wexp2)/wexp2; %error calculated and measured freq. %_____________________________________________________ %Initial Condition y1_ini = -0.000 % beam initial deflection [m] y2_ini = -0.000 % beam initial deflection [m] v1_ini = -0.001 % beam initial velocity [m/s] v2_ini = -0.000 % beam initial velocity [m/s] freq_exc = 0.000 % excitation frequency [Hz] force1 = -0.000 % excitation force 1 [N] force2 = -0.000 % excitation force 2 [N] time_max = 30.0; % integration time [s] %_____________________________________________________ 40 %_____________________________________________________ %EXACT SOLUTION % EQUATION (68) n=2000; % number of points for plotting j=sqrt(-1); % complex number w_exc=2*pi*freq_exc; % excitation frequency [rad/s] z_ini = [v1_ini v2_ini y1_ini y2_ini]’; force_exc = [force1 force2 0 0 ]’; vec_aux = z_ini - inv((j*w_exc*A + B))*force_exc; lambda1=w(1,1); lambda2=w(2,2); lambda3=w(3,3); lambda4=w(4,4); u1=u(1:4,1); u2=u(1:4,2); u3=u(1:4,3); u4=u(1:4,4); C=inv(u)*(vec_aux); c1=C(1); c2=C(2); c3=C(3); c4=C(4); for i=1:n, t(i)=(i-1)/n*time_max; y_exact=c1*u1*exp(lambda1*t(i)) + ... c2*u2*exp(lambda2*t(i)) + ... c3*u3*exp(lambda3*t(i)) + ... c4*u4*exp(lambda4*t(i)) + ... inv((j*w_exc*A + B))*force_exc*exp(j*w_exc*t(i)); end y1_exact(i) = y_exact(3); y2_exact(i) = y_exact(4); figure(1) title(’Simulation of 2 D.O.F System in Time Domain’) subplot(2,1,1), plot(t,real(y1_exact),’b’) title(’Exact Solution ’) xlabel(’time [s]’) ylabel(’ y1_{exact}(t) [m]’) grid subplot(2,1,2), plot(t,real(y2_exact),’b’) xlabel(’time [s]’) ylabel(’y2_{exact}(t) [m]’) grid pause; %_____________________________________________________ %NUMERICAL SOLUTION % EQUATION (73) % deltaT=0.3605; % time step [s] % deltaT=0.3; % time step [s] % deltaT=0.1; % time step [s] % deltaT=0.05; % time step [s] % deltaT=0.01; % time step [s] deltaT=0.005; % time step [s] n_integ=time_max/deltaT; % number of points (integration) % Initial Conditions y1_approx(1) = y1_ini; % beam initial deflection [m] y2_approx(1) = y2_ini; % beam initial deflection [m] yp1_approx(1) = v1_ini; % beam initial velocity [m/s] yp2_approx(1) = v2_ini; % beam initial velocity [m/s] for i=1:n_integ, t_integ(i)=(i-1)*deltaT; ypp1_approx(i)=-1/M1*(K11*y1_approx(i)+K12*y2_approx(i) ... + D11*yp1_approx(i)+D12*yp2_approx(i) ... -(force1)*exp(j*w_exc*t_integ(i))); ypp2_approx(i)=-1/M2*(K21*y1_approx(i)+K22*y2_approx(i) ... +D21*yp1_approx(i)+D22*yp2_approx(i) ... -(force2)*exp(j*w_exc*t_integ(i))); yp1_approx(i+1)=yp1_approx(i) + ypp1_approx(i)*deltaT; yp2_approx(i+1)=yp2_approx(i) + ypp2_approx(i)*deltaT; y1_approx(i+1)=y1_approx(i)+yp1_approx(i+1)*deltaT; y2_approx(i+1)=y2_approx(i)+yp2_approx(i+1)*deltaT; end %_____________________________________________________

%_____________________________________________________ %Graphical Results figure(2) title(’Simulation of 2 D.O.F System in Time Domain’) subplot(2,1,1), plot(t_integ(1:n_integ), real(y1_approx(1:n_integ)),’r’) title(’Numerical Solution (delta T = 0.005 s)’) xlabel(’time [s]’) ylabel(’y1_{approx}(t) [m]’) grid subplot(2,1,2), plot(t_integ(1:n_integ), real(y2_approx(1:n_integ)),’r’) xlabel(’time [s]’) ylabel(’y2_{approx}(t) [m]’) grid %_____________________________________________________ %Graphical Results (Comparison Exact vs. Numerical) figure(3) subplot(2,1,1), plot(t,real(y1_exact),’b’, t_integ(1:n_integ),real(y1_approx(1:n_integ)),’r’) title(’Simulation of 2 D.O.F System in Time Domain - Exact Solution vs. Numerical Solution (delta T = 0.005 s)’) xlabel(’time [s]’) ylabel(’y1_{approx}(t) [m]’) grid subplot(2,1,2), plot(t,real(y2_exact),’b’, t_integ(1:n_integ),real(y2_approx(1:n_integ)),’r’) xlabel(’time [s]’) ylabel(’y2_{approx}(t) [m]’) grid 1.7.6 Analytical and Numerical Results of the System of Equations of Motion y1 exact (t) [m] y2 exact (t) [m] y1 approx (t) [m] y2 approx (t) [m] 2 0 −2 −4 x Exact 10−5 4 Solution −6 0 5 10 15 time [s] 20 25 30 4 2 0 −2 −4 −6 x 10−5 6 −8 0 5 10 15 time [s] 20 25 30 x Numerical 10−5 5 0 Solution (delta T = 0.005 s) −5 0 5 10 15 time [s] 20 25 30 4 2 0 −2 −4 −6 x 10−5 6 −8 0 5 10 15 time [s] 20 25 30 Figure 25: Analytical and Numerical Solutions – (a) Analytical solution with initial velocity condition at ˙y1(0) = 1 mm/s, ˙y2(0) = 0 mm/s, y1(0) = 0 mm and y2(0) = 0 mm; (b) Numerical solution (time step of 0.005 [s]) with the same initial conditions – Transient Analysis. 41

1.7.5 Analytical and Numerical Solutions <strong>of</strong> Equation <strong>of</strong> Motion using Matlab<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% DYNAMICS OF MACHINERY LECTURES (72213) %<br />

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 2 D.O.F - EXACT AND NUMERICAL SOLUTION %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

clear all;<br />

close all;<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E = 2e11; %elasticity modulus [N/m^2]<br />

b = 0.030 ; %width [m]<br />

h = 0.0012 ; %thickness [m]<br />

Iz= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m2; %concentrated mass [Kg] |<br />

M2=m3+m4; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*Iz/LL)*L2^3/L1^3; % Stiffness coeff.[N/m]<br />

K12= -6*(E*Iz/LL)*(L1-3*L2)/L1; % Stiffness coeff.[N/m]<br />

K21= -6*(E*Iz/LL)*(L1-3*L2)/L1; % Stiffness coeff.[N/m]<br />

K22= -12*(E*Iz/LL); % Stiffness coeff.[N/m]<br />

% Coefficients <strong>of</strong> the Damping Matrix<br />

% (damping factor xi=0.005)<br />

D11= 2*0.005*sqrt(M1/K11); % Damping coeff.[Ns/m]<br />

D12= 0; % Damping coeff.[Ns/m]<br />

D21= 0; % Damping coeff.[Ns/m]<br />

D22= 2*0.005*sqrt(M2/K22); % Damping coeff.[Ns/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Damping Matrix<br />

D=[D11 D12; D21 D22];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%State Matrices A & B % EQUATION (52)<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %eigenvectors u<br />

%eigenvalues w<br />

w1=abs(imag(w(3,3)))/2/pi; %first natural freq.[Hz]<br />

w2=abs(imag(w(1,1)))/2/pi; %second natural freq.[Hz]<br />

wexp1=0.78125; %measured natural freq.[Hz]<br />

wexp2=5.563; %measured natural freq.[Hz]<br />

dif1=(w1-wexp1)/wexp1; %error calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2; %error calculated and measured freq.<br />

%_____________________________________________________<br />

%Initial Condition<br />

y1_ini = -0.000 % beam initial deflection [m]<br />

y2_ini = -0.000 % beam initial deflection [m]<br />

v1_ini = -0.001 % beam initial velocity [m/s]<br />

v2_ini = -0.000 % beam initial velocity [m/s]<br />

freq_exc = 0.000 % excitation frequency [Hz]<br />

force1 = -0.000 % excitation force 1 [N]<br />

force2 = -0.000 % excitation force 2 [N]<br />

time_max = 30.0; % integration time [s]<br />

%_____________________________________________________<br />

40<br />

%_____________________________________________________<br />

%EXACT SOLUTION % EQUATION (68)<br />

n=2000; % number <strong>of</strong> points for plotting<br />

j=sqrt(-1); % complex number<br />

w_exc=2*pi*freq_exc; % excitation frequency [rad/s]<br />

z_ini = [v1_ini v2_ini y1_ini y2_ini]’;<br />

force_exc = [force1 force2 0 0 ]’;<br />

vec_aux = z_ini - inv((j*w_exc*A + B))*force_exc;<br />

lambda1=w(1,1);<br />

lambda2=w(2,2);<br />

lambda3=w(3,3);<br />

lambda4=w(4,4);<br />

u1=u(1:4,1);<br />

u2=u(1:4,2);<br />

u3=u(1:4,3);<br />

u4=u(1:4,4);<br />

C=inv(u)*(vec_aux);<br />

c1=C(1);<br />

c2=C(2);<br />

c3=C(3);<br />

c4=C(4);<br />

for i=1:n,<br />

t(i)=(i-1)/n*time_max;<br />

y_exact=c1*u1*exp(lambda1*t(i)) + ...<br />

c2*u2*exp(lambda2*t(i)) + ...<br />

c3*u3*exp(lambda3*t(i)) + ...<br />

c4*u4*exp(lambda4*t(i)) + ...<br />

inv((j*w_exc*A + B))*force_exc*exp(j*w_exc*t(i));<br />

end<br />

y1_exact(i) = y_exact(3);<br />

y2_exact(i) = y_exact(4);<br />

figure(1)<br />

title(’Simulation <strong>of</strong> 2 D.O.F System in Time Domain’)<br />

subplot(2,1,1), plot(t,real(y1_exact),’b’)<br />

title(’Exact Solution ’)<br />

xlabel(’time [s]’)<br />

ylabel(’ y1_{exact}(t) [m]’)<br />

grid<br />

subplot(2,1,2), plot(t,real(y2_exact),’b’)<br />

xlabel(’time [s]’)<br />

ylabel(’y2_{exact}(t) [m]’)<br />

grid<br />

pause;<br />

%_____________________________________________________<br />

%NUMERICAL SOLUTION % EQUATION (73)<br />

% deltaT=0.3605; % time step [s]<br />

% deltaT=0.3; % time step [s]<br />

% deltaT=0.1; % time step [s]<br />

% deltaT=0.05; % time step [s]<br />

% deltaT=0.01; % time step [s]<br />

deltaT=0.005; % time step [s]<br />

n_integ=time_max/deltaT; % number <strong>of</strong> points (integration)<br />

% Initial Conditions<br />

y1_approx(1) = y1_ini; % beam initial deflection [m]<br />

y2_approx(1) = y2_ini; % beam initial deflection [m]<br />

yp1_approx(1) = v1_ini; % beam initial velocity [m/s]<br />

yp2_approx(1) = v2_ini; % beam initial velocity [m/s]<br />

for i=1:n_integ,<br />

t_integ(i)=(i-1)*deltaT;<br />

ypp1_approx(i)=-1/M1*(K11*y1_approx(i)+K12*y2_approx(i) ...<br />

+ D11*yp1_approx(i)+D12*yp2_approx(i) ...<br />

-(force1)*exp(j*w_exc*t_integ(i)));<br />

ypp2_approx(i)=-1/M2*(K21*y1_approx(i)+K22*y2_approx(i) ...<br />

+D21*yp1_approx(i)+D22*yp2_approx(i) ...<br />

-(force2)*exp(j*w_exc*t_integ(i)));<br />

yp1_approx(i+1)=yp1_approx(i) + ypp1_approx(i)*deltaT;<br />

yp2_approx(i+1)=yp2_approx(i) + ypp2_approx(i)*deltaT;<br />

y1_approx(i+1)=y1_approx(i)+yp1_approx(i+1)*deltaT;<br />

y2_approx(i+1)=y2_approx(i)+yp2_approx(i+1)*deltaT;<br />

end<br />

%_____________________________________________________

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!