Dynamics of Machines - Part II - IFS.pdf

Dynamics of Machines - Part II - IFS.pdf Dynamics of Machines - Part II - IFS.pdf

fam.web.mek.dtu.dk
from fam.web.mek.dtu.dk More from this publisher
28.08.2013 Views

Using the information of figure 11 (signal in time domain), where yo = 3.0 · 10 −5 [m/s 2 ] (first peak of signal in time domain, figure 11) yN = y6 = 2.0 · 10 −5 [m/s 2 ] (after 6 peaks) N = 6, one gets • Damping Factor of the system ”A” (ξ) ξ = • Log Dec 1 + 1 2π·6 ln 1 2π·6 ln 3.0·10 −5 2.0·10 −5 3.0·10 −5 2.0·10 −5 β = 2π ξ = 2π 0.010 = 0.068 • Equivalent Viscous Damping (d) = 2 0.010755 ≈ 0.010 1.000058 d = 2 · ξ · ωn · m = 2 · 0.010 · (0.87 · 2 · π) · 0.382 ≈ 0.016 [N · s/m] (a) Amplitude [m/s 2 ] (b) Amplitude [m/s 2 ] 2 0 −2 x Signal 10−5 4 (a) in Time Domain − (b) in Frequency Domain −4 0 5 10 15 time [s] 20 25 30 0.8 0.6 0.4 0.2 x 10−5 1 0 0 5 10 15 20 25 frequency [Hz] Figure 11: Transient Vibration – Acceleration of the clamped-free flexible beam when two concentrated masses m = m1 +m2 = 0.382 Kg are attached at its free end (L = 0.610 m) – Natural frequency of the mass-spring system ”A”: 0.87 Hz. 20

(a) Amplitude [m/s 2 ] x Signal 10−5 5 0 (a) in Time Domain − (b) in Frequency Domain −5 0 5 10 15 time [s] 20 25 30 (b) Amplitude [m/s 2 ] x 10−5 2 1 0 0 5 10 15 20 25 frequency [Hz] Figure 12: Transient Vibration – Acceleration of the clamped-free flexible beam when two concentrated masses m = m1 +m2 = 0.382 Kg are attached at its free end (L = 0.310 m) – Natural frequency of the mass-spring system ”B”: 1.75 Hz. • Damping Factor of the system ”B” – From fig.12, one gets: yo = 4.6 · 10 −5 [m/s 2 ], yN = y54 = 1.0 · 10 −5 [m/s 2 ] and N = 54: ξ = 1 + 1 2π·54 ln 1 2π·54 ln 4.6·10 −5 1.0·10 −5 4.6·10 −5 1.0·10 −5 • Equivalent Viscous Damping (d) = 2 0.004498 ≈ 0.005 (46) 1.000010 d = 2 · ξ · ωn · m = 2 · 0.005 · (1.75 · 2 · π) · 0.382 ≈ 0.04 [N · s/m] 21

Using the information <strong>of</strong> figure 11 (signal in time domain), where<br />

yo = 3.0 · 10 −5 [m/s 2 ] (first peak <strong>of</strong> signal in time domain, figure 11)<br />

yN = y6 = 2.0 · 10 −5 [m/s 2 ] (after 6 peaks)<br />

N = 6,<br />

one gets<br />

• Damping Factor <strong>of</strong> the system ”A” (ξ)<br />

ξ = <br />

• Log Dec<br />

1 +<br />

1<br />

2π·6 ln<br />

1<br />

2π·6 ln<br />

3.0·10 −5<br />

2.0·10 −5<br />

<br />

3.0·10 −5<br />

2.0·10 −5<br />

β = 2π ξ = 2π 0.010 = 0.068<br />

• Equivalent Viscous Damping (d)<br />

<br />

=<br />

2 0.010755<br />

≈ 0.010<br />

1.000058<br />

d = 2 · ξ · ωn · m = 2 · 0.010 · (0.87 · 2 · π) · 0.382 ≈ 0.016 [N · s/m]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

2<br />

0<br />

−2<br />

x Signal 10−5<br />

4<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−4<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

x 10−5<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 11: Transient Vibration – Acceleration <strong>of</strong> the clamped-free flexible beam when two concentrated<br />

masses m = m1 +m2 = 0.382 Kg are attached at its free end (L = 0.610 m) – Natural<br />

frequency <strong>of</strong> the mass-spring system ”A”: 0.87 Hz.<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!