28.08.2013 Views

Dynamics of Machines - Part II - IFS.pdf

Dynamics of Machines - Part II - IFS.pdf

Dynamics of Machines - Part II - IFS.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DYNAMICS OF MACHINES 41614<br />

PART I – INTRODUCTION TO THE BASIC TOOLS OF<br />

MODELLING, SIMULATION, ANALYSIS & EXPERIMENTAL VALIDATION<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

x 10−4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

2<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

1<br />

x 10 −4<br />

−4<br />

1<br />

x 10 −3<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

0.5<br />

x 10 −7<br />

0.5<br />

Angular Velocity: 0 rpm Mode: 2 Nat. Freq.: 14.7288 Hz<br />

0<br />

0<br />

−0.5<br />

−0.5<br />

−1 0<br />

−1 0<br />

2<br />

Angular Speed: 1 Mode: 1 Nat. Freq.: 15.6815 Hz<br />

2<br />

Kompendie 1034 – February 2004<br />

4<br />

1<br />

4<br />

6<br />

6<br />

8<br />

8<br />

10<br />

10<br />

12<br />

12<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−10 −5 0 5 10<br />

Dr.-Ing. Ilmar Ferreira Santos, Associate Pr<strong>of</strong>essor<br />

Department <strong>of</strong> Mechanical Engineering<br />

Technical University <strong>of</strong> Denmark<br />

Building 358, Room 159<br />

2800 Lyngby<br />

Denmark<br />

Phone: +45 45 25 62 69<br />

Fax: +45 45 88 14 51<br />

E-Mail: ifs@mek.dtu.dk


Contents<br />

1 Introduction to Dynamical Modelling <strong>of</strong> <strong>Machines</strong> and Structures and Experimental<br />

Analysis <strong>of</strong> Mechanical Vibrations based on the Human Senses 3<br />

1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2 Description <strong>of</strong> the Test Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.3 Data <strong>of</strong> the Mechanical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.4 Calculating Equivalent Stiffness Coefficients – Beam Theory . . . . . . . . . . . 5<br />

1.5 Calculating Stiffness Matrices – Beam Theory . . . . . . . . . . . . . . . . . . . 7<br />

1.6 Mechanical Systems with 1 D.O.F. . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

1.6.1 Physical System and Mechanical Model . . . . . . . . . . . . . . . . . . . 9<br />

1.6.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

1.6.3 Analytical and Numerical Solution <strong>of</strong> the Equation <strong>of</strong> Motion . . . . . . . 10<br />

1.6.4 Analytical and Numerical Solution <strong>of</strong> Equation <strong>of</strong> Motion using Matlab . 15<br />

1.6.5 Comparison between the Analytical and Numerical Solutions <strong>of</strong> Equation<br />

<strong>of</strong> Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

1.6.6 Homogeneous Solution or Free-Vibrations or Transient Response - Experimental<br />

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

1.6.7 Natural Frequency – ωn [rad/s] or fn [Hz] . . . . . . . . . . . . . . . . . . 19<br />

1.6.8 Damping Factor ξ or Logarithmic Decrement β . . . . . . . . . . . . . . . 19<br />

1.6.9 Forced Vibrations or Steady-State Response . . . . . . . . . . . . . . . . 24<br />

1.6.10 Resonance and Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

1.6.11 Superposition <strong>of</strong> Transient and Forced Vibrations in Time Domain (Simulation)<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

1.6.12 Resonance – Experimental Analysis in Time Domain . . . . . . . . . . . . 28<br />

1.7 Mechanical Systems with 2 D.O.F. . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

1.7.1 Physical System and Mechanical Model . . . . . . . . . . . . . . . . . . . 31<br />

1.7.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

1.7.3 Analytical and Numerical Solution <strong>of</strong> System <strong>of</strong> Differential Linear Equations<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

1.7.4 Modal Analysis using Matlab eig-function [u, w] = eig(−B, A) . . . . . . . 37<br />

1.7.5 Analytical and Numerical Solutions <strong>of</strong> Equation <strong>of</strong> Motion using Matlab . 40<br />

1.7.6 Analytical and Numerical Results <strong>of</strong> the System <strong>of</strong> Equations <strong>of</strong> Motion . 41<br />

1.7.7 Programming in Matlab – Frequency Response Analysis . . . . . . . . . . 42<br />

1.7.8 Understanding Resonances and Mode Shapes using your Eyes and Fingers 43<br />

1.7.9 Resonance – Experimental Analysis in Time Domain . . . . . . . . . . . . 48<br />

1.8 Mechanical Systems with 3 D.O.F. . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

1.8.1 Physical System and Mechanical Model . . . . . . . . . . . . . . . . . . . 49<br />

1.8.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

1.8.3 Programming in Matlab – Theoretical Parameter Studies and Experimental<br />

Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

1.8.4 Theoretical Frequency Response Function . . . . . . . . . . . . . . . . . . 55<br />

1.8.5 Experimental – Natural Frequencies . . . . . . . . . . . . . . . . . . . . . 56<br />

1.8.6 Experimental – Resonances and Mode Shapes . . . . . . . . . . . . . . . . 56<br />

1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

1.10 Project 0 – Identification <strong>of</strong> Model Parameters (An Example) . . . . . . . . . . . 61<br />

1.11 Project 1 – Modal Analysis & Validation <strong>of</strong> Models . . . . . . . . . . . . . . . . . 66<br />

2


1 Introduction to Dynamical Modelling <strong>of</strong> <strong>Machines</strong> and Structures<br />

and Experimental Analysis <strong>of</strong> Mechanical Vibrations<br />

based on the Human Senses<br />

1.1 Summary<br />

The aim <strong>of</strong> this study is to show some theoretical and experimental examples to facilitate the<br />

understanding <strong>of</strong> the physical meaning <strong>of</strong> the main topics and definitions used in relation to<br />

vibrations in machines. Theoretical and experimental studies are led side-by-side, clarifying<br />

the definitions <strong>of</strong> stiffness, flexibility, natural frequency, damping factor, logarithmic decrement,<br />

resonance, phase, beating, unbalance, natural mode shape, modal node and so on. The experimental<br />

investigations are always carried out in low frequency ranges, aiming at making easy<br />

the visualization <strong>of</strong> the movements by the human eyes and the understanding <strong>of</strong> the mechanical<br />

vibrations without necessarily having to use sensors and electronic devices.<br />

1.2 Description <strong>of</strong> the Test Facilities<br />

Figures 1 and 2 show the simple elements used during the experimental investigations: a flexible<br />

beam (ruler), concentrated masses or magnets, a support, an accelerometer, a signal amplifier, a<br />

shaker and a signal analyzer. The beam or ruler already has a scale, enabling it to easily achieve<br />

the information about the position (length) where the magnets will be mounted. At each position<br />

more than one magnet can be mounted, allowing changes in the values <strong>of</strong> the concentrated<br />

masses. The masses or magnets can be easily moved and attached to different positions along<br />

the ruler, aiming at investigating changes in the natural frequencies <strong>of</strong> the magnet-ruler system<br />

(mass-spring system). The ruler is very flexible in one plane only due to the characteristic <strong>of</strong><br />

its cross-section (moment <strong>of</strong> inertia <strong>of</strong> area). The beam can easily be mounted with different<br />

boundary conditions, as free-free, clamped-free, simply supported in both ends, etc. allowing an<br />

investigation <strong>of</strong> the influence <strong>of</strong> the boundary conditions on its flexibility, and consequently on<br />

the natural frequencies <strong>of</strong> the system.<br />

Regarding rotating machines some analogies can be made between the mass-spring system presented<br />

here and a centrifugal compressor, while comparing the ruler (or flexible beam) to the<br />

flexible shaft, and the magnets (or concentrated masses) to the impellers or rigid discs. Changes<br />

in the montage <strong>of</strong> shaft into the bearings (boundary conditions) or changes in the positioning<br />

<strong>of</strong> the impellers along the shaft will lead to different critical speeds and mode shapes.<br />

As mentioned above, the mass-spring system was designed to have a very flexible behavior with<br />

very low natural frequencies. This allows the detection <strong>of</strong> natural frequencies, modes shapes<br />

and resonance using the human eyes as sensors (or sighting senses). Moreover, it is also made<br />

possible to excite the structure with human fingers, aiming at understanding the 90 degrees<br />

phase between displacement and excitation (while operating around resonance conditions) by<br />

means <strong>of</strong> tactile senses. Accelerometer, amplifier, shaker and signal analyzer are used aiming at<br />

confirming what the human senses detect.<br />

3


By understanding the topics related to mechanical vibration in low frequency ranges (high<br />

flexibility and slow motions detectable by human senses), it gets easier to understand mechanical<br />

vibration in high frequency ranges where one has faster motions with small amplitudes, just<br />

detectable by sensors and electronic devices.<br />

Figure 1: Experimental investigation <strong>of</strong> a mechanical continuous system with concentrated<br />

masses modelled as equivalent spring-mass systems with 1, 2 and 3 degrees <strong>of</strong> freedom (D.O.F.).<br />

Figure 2: Signal analyzer and shaker used for inducing and measuring mechanical vibrations<br />

while analyzing the behavior <strong>of</strong> the spring-mass systems with 1 D.O.F., 2 D.O.F. and 3 D.O.F.<br />

4


1.3 Data <strong>of</strong> the Mechanical System<br />

ρ material density <strong>of</strong> the beam 7, 800 Kg/m 3<br />

E elasticity modulus 2 × 10 11 N/m 2<br />

L total length <strong>of</strong> the beam 0.600 m<br />

b width <strong>of</strong> the beam 0.030 m<br />

h thickness 0.0012 m<br />

mi concentrated mass (i = 1, ...,6) 0.191 Kg<br />

Table 1: Data <strong>of</strong> the mass-spring system ”A”.<br />

ρ material density <strong>of</strong> the beam 7, 800 Kg/m 3<br />

E elasticity modulus 2 × 10 11 N/m 2<br />

L total length <strong>of</strong> the beam 0.300 m<br />

b width <strong>of</strong> the beam 0.025 m<br />

h thickness 0.0010 m<br />

ρ material density (steel) 7, 800 Kg/m 3<br />

mi concentrated mass (i = 1, ...,6) 0.191 Kg<br />

Table 2: Data <strong>of</strong> the mass-spring system ”B”.<br />

1.4 Calculating Equivalent Stiffness Coefficients – Beam Theory<br />

(a) (b)<br />

Figure 3: (a) Flexible beam – clamped-free boundary condition case with force applied to the end<br />

L; (b) clamped-free boundary condition case with force applied to a general position L ∗ ;<br />

By applying a vertical force F at the end <strong>of</strong> the beam as shown in figure 3(a) and using Beam<br />

Theory, one can write:<br />

EI d4y(x) = 0 (1)<br />

dx4 Integrating in X once, one has:<br />

EI d3 y(x)<br />

dx 3 = F(x) = C1 (2)<br />

5


Integrating twice in X, it gives:<br />

EI d2 y(x)<br />

dx 2 = M(x) = C1x + C2 (3)<br />

Integrating again in X, one gets the rotation angle <strong>of</strong> the beam:<br />

EI dy(x)<br />

dx<br />

x<br />

= EIΘ(x) = C1<br />

2<br />

2 + C2x + C3<br />

And finally, integrating the last time in X, one achieves the equation responsible for describing<br />

the deflexion <strong>of</strong> the beam:<br />

x<br />

EI y(x) = C1<br />

3<br />

6<br />

x<br />

+ C2<br />

2<br />

2 + C3x + C4<br />

The boundary conditions for the clamped-free beam are:<br />

•y(x = 0) = 0<br />

•Θ(x = 0) = 0<br />

•M(x = L) = 0<br />

•F(x = L) = −F (reaction)<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

After calculating the constants Ci using the boundary condition for the clamped-free beam case,<br />

one gets<br />

y(x) = − F<br />

E I<br />

dy(x)<br />

dx<br />

x 3<br />

6<br />

= Θ(x) = − F<br />

E I<br />

<br />

L x2<br />

−<br />

2<br />

x 2<br />

2<br />

<br />

− L x<br />

Using the relationship between applied force F and the induced deflexion at a given point along<br />

the beam length, x = L for instance, one gets the equivalent stiffness as:<br />

K = F<br />

y(L)<br />

= 3 EI<br />

L 3<br />

Suggestion (I): Change the beam boundary conditions, for example bi-supported at both ends,<br />

and calculate the equivalent stiffness in the new case.<br />

Suggestion (<strong>II</strong>): Change the beam boundary conditions, for example clamped-clamped at both<br />

ends, and calculate the equivalent stiffness in the new case.<br />

6<br />

(4)<br />

(5)<br />

(6)<br />

(7)<br />

(8)<br />

(9)


1.5 Calculating Stiffness Matrices – Beam Theory<br />

Two Different Lengths for Applying Forces – To facilitate the understanding <strong>of</strong> steps<br />

which will be presented, one can introduce the follow nomenclature (see figure 3(b)):<br />

• L ∗ = L1 or L ∗ = L2 – length where the force F is applied.<br />

• x = L1 or x = L2 – length where the displacement is measured.<br />

Taking into account two different points for applying the forces and measuring the displacements<br />

<strong>of</strong> the beam, one works with the following set <strong>of</strong> equations<br />

x [0, L ∗ ]<br />

and<br />

x [L ∗ , L]<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

y(x) = − F<br />

E I<br />

dy(x)<br />

dx<br />

= − F<br />

E I<br />

<br />

x3 6 − L∗ x2 <br />

2<br />

<br />

x2 2 − L∗ <br />

x<br />

y(x) = y(L ∗ ) + dy(x)<br />

dx<br />

dy(x)<br />

dx<br />

= dy(x)<br />

dx<br />

<br />

<br />

x=L ∗<br />

<br />

<br />

<br />

x=L∗ · (x − L∗ )<br />

which are responsible for describing the deflection <strong>of</strong> the beam, considering the loading on<br />

different coordinates.<br />

Let us introduce an example <strong>of</strong> a system with two points <strong>of</strong> force application. Assuming in case<br />

(I) the force F is applied to the first coordinate L ∗ = L1. One can measure and/or calculate<br />

the beam deflection at the coordinates x = L1 and x = L2 through equations (10) and (11):<br />

y1 = y(L1) = F · L3 1<br />

3 · EI<br />

and<br />

y2 = y(L2) = F<br />

6EI · (2L3 1 + 3L 2 1(L2 − L1)) (13)<br />

Assuming in case (<strong>II</strong>) that the force F is applied to the second coordinate L ∗ = L2, one can<br />

measure and/or calculate the follow beam displacements at the coordinates x = L1 and x = L2<br />

through the equations (10) and (11):<br />

y1 = y(L1) = F<br />

6EI · (2L3 1 + 3L 2 1(L2 − L1)) (14)<br />

and<br />

y2 = y(L2) = F · L3 2<br />

3 · EI<br />

7<br />

(10)<br />

(11)<br />

(12)<br />

(15)


In order to calculate the stiffness matrix (k11, k12, k21, k22) <strong>of</strong> the 2 d.o.f. system,<br />

Ky = f (16)<br />

where<br />

K =<br />

k11 k12<br />

k21 k22<br />

<br />

y = { y1 y2 } T<br />

f = { f1 f2 } T<br />

one has to solve the following system <strong>of</strong> equations for case (I) and case (<strong>II</strong>):<br />

k11 k12<br />

k21 k22<br />

<br />

y1<br />

·<br />

y2<br />

<br />

=<br />

Case (I): f = { F 0 } T<br />

k11 k12<br />

k21 k22<br />

<br />

·<br />

Case (<strong>II</strong>): f = { 0 F } T<br />

k11 k12<br />

k21 k22<br />

f1<br />

f2<br />

<br />

F ·L 3 1<br />

3·EI<br />

F<br />

6EI · (2L3 1 + 3L2 1 (L2 − L1))<br />

<br />

F<br />

6EI<br />

·<br />

· (2L31 + 3L21 (L2 − L1))<br />

F ·L3 2<br />

3·EI<br />

<br />

<br />

=<br />

=<br />

F<br />

0<br />

0<br />

F<br />

It leads to a system <strong>of</strong> 4 equations, which can be written in a matrix form:<br />

⎡<br />

⎢<br />

⎣<br />

F ·L 3 1<br />

3·EI<br />

F<br />

6EI · (2L31 + 3L 2 0<br />

1(L2 − L1))<br />

0<br />

0<br />

F ·L<br />

0<br />

3 1<br />

3·EI<br />

F<br />

6EI · (2L31 + 3L 2 F<br />

6EI<br />

1(L2 − L1))<br />

· (2L31 + 3L 2 1(L2 − L1))<br />

F ·L 3 0<br />

2<br />

3·EI<br />

0<br />

0<br />

F<br />

6EI<br />

0<br />

· (2L31 + 3L 2 1(L2 − L1))<br />

F ·L 3 ⎤<br />

⎥<br />

⎦<br />

2<br />

3·EI<br />

·<br />

⎧<br />

⎪⎨<br />

·<br />

⎪⎩<br />

⎫ ⎧<br />

⎪⎬ ⎪⎨<br />

F<br />

0<br />

=<br />

⎪⎭ ⎪⎩<br />

0<br />

F<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

(21)<br />

k11<br />

k12<br />

k21<br />

k22<br />

Solving this matrix system <strong>of</strong> order 4 by using the s<strong>of</strong>tware MATHEMATICA, or by using<br />

Cramer’s rule, one achieves the stiffness matrix:<br />

EI<br />

K =<br />

(4L2 − L1)(L1 − L2) 2<br />

⎡<br />

12(L2/L1)<br />

⎣<br />

3 ⎤<br />

6(L1 − 3L2)/L1<br />

⎦ (22)<br />

6(L1 − 3L2)/L1 12<br />

Similar procedure can be made in order to get the stiffness matrix <strong>of</strong> the 3 d.o.f system. This is<br />

the motivation <strong>of</strong> an exercise later on. The results (stiffness matrix with 9 stiffness coefficient)<br />

will be presented in the section describing mechanical systems with 3 d.o.f.<br />

8<br />

<br />

<br />

(17)<br />

(18)<br />

(19)<br />

(20)


1.6 Mechanical Systems with 1 D.O.F.<br />

1.6.1 Physical System and Mechanical Model<br />

(a)<br />

(b)<br />

(c)<br />

Figure 4: (a) Real mechanical system composed <strong>of</strong> a turbine attached to an airplane flexible wing;<br />

(b) Laboratory prototype built by a lumped mass attached to a flexible beam); (c) Equivalent<br />

mechanical model with 1 D.O.F. for a lumped mass attached to a flexible beam.<br />

1.6.2 Mathematical Model<br />

It is important to point out, that the equations <strong>of</strong> motion in <strong>Dynamics</strong> <strong>of</strong> Machinery will frequently<br />

have the form <strong>of</strong> second order differential equations: ¨y(t) = F(y(t), ˙y(t)). Such equations<br />

can generally be linearized around an operational position <strong>of</strong> a physical system, leading to second<br />

order linear differential equations. It means that the coefficients which are multiplying the<br />

variables ¨y(t) , ˙y(t) , y(t) (co-ordinate chosen for describing the motion <strong>of</strong> the physical system)<br />

do not depend on the variables themselves. In the mechanical model presented in figure 4 these<br />

coefficients are constants: m1, d1 and k1. One <strong>of</strong> the aims <strong>of</strong> the course <strong>Dynamics</strong> <strong>of</strong> Machinery<br />

is to help the students to properly find these coefficients so that the equations <strong>of</strong> motion can<br />

really describe the movement <strong>of</strong> the physical system. The coefficients can be predicted using<br />

theoretical or experimental approaches.<br />

9


After having created the mechanical model for the physical system, the next step is to derive<br />

the equation <strong>of</strong> motion based on the mechanical model. The mechanical model is composed <strong>of</strong><br />

a lumped mass m1 (assumption !!!), spring with equivalent stiffness coefficient k1 (calculated<br />

using beam theory) and damper with equivalent viscous coefficient d (obtained experimentally).<br />

While creating the mechanical model and assuming that the mass is a particle, the equation <strong>of</strong><br />

motion can be derived, for example, using Newton’s second law:<br />

m1¨y1(t) + d1 ˙y1(t) + k1y1(t) = f1(t) (23)<br />

¨y1(t) + d1<br />

˙y1(t) +<br />

m1<br />

k1<br />

y1(t) =<br />

m1<br />

f1<br />

(t) (24)<br />

m1<br />

¨y1(t) + 2ξωn ˙y1(t) + ω 2 ny1(t) = f1<br />

(t) (25)<br />

m1<br />

1.6.3 Analytical and Numerical Solution <strong>of</strong> the Equation <strong>of</strong> Motion<br />

After having created the mechanical model (step 1) and derived the mathematical model (step<br />

2) for this mechanical model, the next step is to solve the equation <strong>of</strong> motion (step 3), aiming<br />

at analyzing (step 4) the dynamical behavior <strong>of</strong> the physical system. Here the analytical and<br />

numerical solutions <strong>of</strong> linear differential equations are presented and compared. Later on you<br />

can choose the most convenient way to solve the equations and analyze the dynamical behavior<br />

<strong>of</strong> physical systems. It is important to mention that the numerical procedure is very simple,<br />

an integrator <strong>of</strong> first-order. Other integrators can be used depending on the characteristics <strong>of</strong><br />

the mechanical models, for example, Runge-Kutta <strong>of</strong> higher order (third, fourth, etc.) among<br />

others.<br />

Homogeneous Solution or Transient Solution and Transient Analysis – The homogeneous<br />

solution <strong>of</strong> a linear differential equation is also called transient solution. The homogeneous<br />

differential equation is achieved when the right side <strong>of</strong> the equation is set zero (see eq.(26), or in<br />

other words, when no force acts on the system. All analyzes and conclusions obtained from the<br />

homogeneous solution are called transient analyzes, and provide information about the dynamical<br />

behavior <strong>of</strong> the system while perturbations <strong>of</strong> displacement and velocities (in case <strong>of</strong> second<br />

order differential equations <strong>of</strong> motion) are introduced into the system.<br />

¨y(t) + 2ξωn ˙y(t) + ω 2 ny(t) = 0 (26)<br />

yh(t) = Ce λt , (assumption) (27)<br />

˙yh(t) = λCe λt<br />

¨yh(t) = λ 2 Ce λt<br />

The assumption (27) and its derivatives are introduced into the differential equation (26), leading<br />

to<br />

⇕<br />

λ 2 Ce λt + 2ξωnλCe λt + ω 2 nCe λt = 0<br />

(λ 2 + 2ξωnλ + ω 2 n)Ce λt = 0 (28)<br />

10


Demanding (λ 2 + 2ξωnλ + ω 2 n) = 0, because Ce λt = 0 in eq.(28), one gets two values <strong>of</strong> λ, or<br />

two roots for the equation (λ 2 + 2ξωnλ + ω 2 n) = 0:<br />

<br />

λ1 = −ξωn − ωn 1 − ξ2 · i<br />

<br />

λ2 = −ξωn + ωn 1 − ξ2 · i<br />

It is important to highlight that all analyzes carried out here will be concentrated<br />

in cases where ξ < 1 (sub-critically damped system). Cases where ξ = 1 or ξ > 1<br />

are called critically or super-critically damped systems respectively. In these cases<br />

no problem related to amplification <strong>of</strong> vibration amplitudes can be found while<br />

crossing resonances. Using the roots λ1 and λ2 the homogenous solution is:<br />

yh(t) = C1e λ1t + C2e λ2t<br />

where C1 and C2 are defined as a function <strong>of</strong> the initial condition <strong>of</strong> the movement when t = 0:<br />

• initial displacement y(0) = yini<br />

• initial movement ˙y(0) = vini<br />

It is important to point out that these constants have to be calculated by using the general<br />

solution, which will be presented later.<br />

Permanent Solution and Steady-State Analysis – The permanent solution <strong>of</strong> a linear<br />

differential equation is also called steady-state solution. The complete differential equation is<br />

achieved when the right side <strong>of</strong> the equation is completed with the excitation (see eq.(30)), or<br />

in other words, when static or dynamic forces act on the system. All analyzes and conclusions<br />

obtained from the permanent solution are called steady-state analyzes, and provide information<br />

about the dynamical behavior <strong>of</strong> the system while excitation forces are introduced into the<br />

system. Let us introduce an excitation force which value oscillates in time with frequency ω<br />

[rad/s]:<br />

¨y(t) + 2ξωn ˙y(t) + ω 2 ny(t) = f<br />

m eiωt<br />

(29)<br />

(30)<br />

yh(t) = Ae iωt , (assumption) (31)<br />

˙yh(t) = jωAe iωt<br />

¨yh(t) = (jω) 2 Ae iωt = −(ω) 2 Ae iωt<br />

The assumption (31) and its derivatives are introduced into the differential equation (30), leading<br />

to:<br />

− (ω) 2 Ae iωt + 2ξωn(jωAe jωt ) + ω 2 nAe iωt = f<br />

m eiωt<br />

⇕<br />

(−ω 2 + ω 2 n + i2ξωnω)A = f<br />

m<br />

11<br />

(32)


The amplitude A eq.(33) and the particular solution yp(t) eq.(34) are derived by eq.(32) and<br />

(31):<br />

A =<br />

f/m<br />

−ω 2 + ω 2 n + i2ξωnω<br />

yp(t) = A · e iωt <br />

=<br />

f/m<br />

−ω 2 + ω 2 n + i2ξωnω<br />

<br />

· e iωt<br />

General Solution = Transient Solution + Steady-State Solution – The general solution<br />

<strong>of</strong> a linear differential equation is achieved by adding the homogenous and the permanent<br />

solutions, and sequentially by defining the initial conditions <strong>of</strong> the movement. This solution<br />

will provide information about the transient and steady-state response <strong>of</strong> the mechanical model.<br />

Considering that the order <strong>of</strong> the mechanical model is correct (in this case, one degree-<strong>of</strong>-freedom<br />

system), the solution <strong>of</strong> the linear differential equation will be useful for predicting the dynamical<br />

behavior <strong>of</strong> the physical system, if the coefficients <strong>of</strong> the differential equation (m, d and k,<br />

or ωn and ξ) are properly chosen, using either the theoretical or experimental information or a<br />

combination <strong>of</strong> both. The general solution <strong>of</strong> the differential equation <strong>of</strong> motion is given by:<br />

y(t) = C1e λ1t + C2e λ2t + Ae iωt<br />

where y(t) is the displacement <strong>of</strong> the mass-damping-spring system.<br />

For achieving the velocity <strong>of</strong> the mass-damping-spring system, eq.(35) has to be differentiated<br />

in time:<br />

˙y(t) = λ1C1e λ1t + λ2C2e λ2t + iωAe iωt<br />

Introducing the initial conditions <strong>of</strong> displacement and velocity into eq.(35) and (36), when t = 0,<br />

one gets:<br />

y(0) =C1e λ10 + C2e λ20 + Ae iω0 ⇒ yini = C1 + C2 + A (37)<br />

˙y(0) =λ1C1e λ10 + λ2C2e λ20 + iωAe iω0 ⇒ vini = λ1C1 + λ2C2 + iωA (38)<br />

Rewriting eq.(37) and eq.(38) in matrix form, one gets:<br />

1 1<br />

λ1 λ2<br />

C1<br />

C2<br />

<br />

=<br />

yini − A<br />

vini − jωA<br />

<br />

Solving the linear system eq.(39) using Cramer’s rule, the constants C1 and C2 are calculated:<br />

C1 =<br />

<br />

yini − A 1<br />

det<br />

vini − A λ2<br />

=<br />

1 1<br />

det<br />

λ2(yini − A) − (vini − iωA)<br />

λ2 − λ1<br />

λ1 λ2<br />

12<br />

(33)<br />

(34)<br />

(35)<br />

(36)<br />

(39)


1 yini − A<br />

det<br />

λ1 vini − A<br />

C2 = =<br />

1 1<br />

det<br />

−λ1(yini − A) + (vini − iωA)<br />

λ2 − λ1<br />

λ1 λ2<br />

Summarizing, below is the analytical solution <strong>of</strong> second order differential equation, which is<br />

responsible for describing the movements <strong>of</strong> the mass-damping-spring system in time domain,<br />

as a function <strong>of</strong> the excitation force and initial condition <strong>of</strong> displacement and velocity:<br />

y(t) = C1e λ1t + C2e λ2t + Ae iωt<br />

where<br />

<br />

λ1 = −ξωn − ωn 1 − ξ2 · i<br />

<br />

λ2 = −ξωn + ωn 1 − ξ2 · i<br />

A =<br />

f/m<br />

−ω 2 + ω 2 n + i2ξωnω<br />

C1 = λ1(yini − A) − (vini − iωA)<br />

λ2 − λ1<br />

C2 = −λ1(yini − A) + (vini − iωA)<br />

λ2 − λ1<br />

Numerical Solution According to Taylor’s expansion, an equation can be approximated by:<br />

f(t) ⋍ f(t0) + df<br />

<br />

<br />

<br />

<br />

dt<br />

t=t0<br />

(t − t0) + d2 f<br />

dt 2<br />

<br />

<br />

<br />

<br />

t=t0<br />

(t − t0)... + dn f<br />

dt n<br />

<br />

<br />

<br />

<br />

t=t0<br />

(40)<br />

(t − t0) (41)<br />

Assuming a very small time step t −t0 ≪ 1, the higher order terms <strong>of</strong> eq.(42) can be neglected.<br />

It turns:<br />

f(t) ⋍ f(t0) + df<br />

<br />

<br />

<br />

<br />

dt<br />

t=t0<br />

(t − t0) (42)<br />

Knowing the initial conditions <strong>of</strong> the movement when t = 0,<br />

y(0) = y0 = yini<br />

˙y(0) = ˙y0 = vini<br />

and the equation <strong>of</strong> motion, which has to be solved,<br />

¨y(t) = − 2ξωn ˙y(t) − ω 2 ny(t) + f<br />

m eiωt<br />

13<br />

(43)


one can get the initial acceleration, when t = 0, on the basis <strong>of</strong> initial conditions:<br />

t0 = 0<br />

˙y0<br />

y0<br />

⎫<br />

⎬<br />

⎭ ⇒ ¨y0 = −2ξωn ˙y0 − ω 2 ny0 + f<br />

m eiωt0<br />

The first predicted values <strong>of</strong> displacement, velocity and acceleration in time t1 = ∆t , using the<br />

approximation given by eq.(42), are:<br />

t1 = ∆t<br />

˙y1 = ˙y0 + ¨y0∆t<br />

y1 = y0 + ˙y1∆t<br />

¨y1 = −2ξωn ˙y1 − ω 2 ny1 + f<br />

m eiωt1<br />

The second predicted values <strong>of</strong> displacement, velocity and acceleration in time t2 = t1 + ∆t ,<br />

using the approximation given by eq.(42), are:<br />

t2 = 2∆t<br />

˙y2 = ˙y1 + ¨y1∆t<br />

y2 = y1 + ˙y2∆t<br />

¨y2 = −2ξωn ˙y2 − ω 2 ny2 + f<br />

m eiωt2<br />

The N-th predicted values <strong>of</strong> displacement, velocity and acceleration in time tN = tN−1 + ∆t ,<br />

using the approximation given by eq.(42), are:<br />

tN = N∆t<br />

˙yN = ˙yN−1 + ¨yN−1∆t<br />

yN = yN−1 + ˙yN∆t<br />

¨yN = −2ξωn ˙yN − ω 2 nyN + f<br />

m eiωtN (44)<br />

Plotting the points [y1, y2, y3, ..., yN] versus [t1, t2, t3, ..., tN], one can observe the numerical<br />

solution <strong>of</strong> the differential equation, which describes the displacement <strong>of</strong> the mass-dampingspring<br />

system in time domain. Plotting the points [ ˙y1, ˙y2, ˙y3, ..., ˙yN] versus [t1, t2, t3, ..., tN] or<br />

[¨y1, ¨y2, ¨y3, ..., ¨yN] versus [t1, t2, t3, ..., tN] one can also observe velocity and acceleration <strong>of</strong> the<br />

mass-damping-spring system in time domain. The analytical and numerical solutions eq.(43) <strong>of</strong><br />

the second order differential equation are illustrated using a Matlab code.<br />

14


1.6.4 Analytical and Numerical Solution <strong>of</strong> Equation <strong>of</strong> Motion using Matlab<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% DYNAMICS OF MACHINERY LECTURES (41035) %<br />

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, October 30th, 2003 %<br />

% %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 1 D.O.F. SYSTEM - EXACT AND NUMERICAL SOLUTION %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

clear all;<br />

close all;<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E = 2e11; %elasticity modulus [N/m^2]<br />

b = 0.030 ; %width [m]<br />

h = 0.0012 ; %thickness [m]<br />

Iz= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

%Mass-Spring-Damping System Properties<br />

L=0.610; %beam length<br />

K= 3*E*Iz/L^3; %stiffness coefficient<br />

M=m1+m2; %mass coefficient<br />

xi=0.005; %damping factor [no-dimension]<br />

D=2*xi*sqrt(K*M); %damping coefficient<br />

wn=sqrt(K/M); %natural frequency [rad/s]<br />

fn=wn/2/pi %natural frequency [Hz]<br />

fnexp=0.875; %measured natural frequency [Hz]<br />

dif=(fn-fnexp)/fnexp;%error between calculated<br />

%and measured frequencies<br />

%_____________________________________________________<br />

%Initial Condition<br />

y_ini= -0.000 % beam initial deflection [m]<br />

v_ini= -0.000 % beam initial velocity [m/s]<br />

freq_exc=0.95 % excitation frequency [Hz]<br />

force=-0.100 % excitation force [N]<br />

time_max=30.0; % integration time [s]<br />

%_____________________________________________________<br />

15<br />

%_____________________________________________________<br />

%EXACT SOLUTION % EQUATION (40)<br />

n=600; % number <strong>of</strong> points for plotting<br />

j=sqrt(-1); % complex number<br />

w=2*pi*freq_exc; % excitation frequency [rad/s]<br />

lambda1=-xi*wn+j*wn*sqrt(1-xi*xi);<br />

lambda2=-xi*wn-j*wn*sqrt(1-xi*xi); AA=(force/M)/(wn*wn-w*w +<br />

j*2*xi*wn*w); C1=(<br />

lambda2*(y_ini-AA)-(v_ini-j*w*AA))/(lambda2-lambda1);<br />

C2=(-lambda1*(y_ini-AA)+(v_ini-j*w*AA))/(lambda2-lambda1);<br />

for i=1:n,<br />

t(i)=(i-1)/n*time_max;<br />

y_exact(i)=C1*exp(lambda1*t(i)) + ...<br />

C2*exp(lambda2*t(i)) + ...<br />

AA*exp(j*w*t(i));<br />

end<br />

%_____________________________________________________<br />

%NUMERICAL SOLUTION % EQUATION (44)<br />

% trying different time steps to observe convergence<br />

% deltaT=0.3605; % time step [s]<br />

% deltaT=0.3; % time step [s]<br />

% deltaT=0.1; % time step [s]<br />

% deltaT=0.05; % time step [s]<br />

deltaT=0.01; % time step [s]<br />

n_integ=time_max/deltaT; % number <strong>of</strong> points (integration)<br />

% Initial Conditions<br />

y_approx(1) = y_ini; % beam initial deflection [m]<br />

yp_approx(1) = v_ini; % beam initial velocity [m/s]<br />

for i=1:n_integ,<br />

t_integ(i)=(i-1)*deltaT;<br />

ypp_approx(i) =-(wn*wn)*y_approx(i) ...<br />

-(2*xi*wn)*yp_approx(i) ...<br />

+(force/M)*exp(j*w*t_integ(i));<br />

yp_approx(i+1)= yp_approx(i) + ypp_approx(i)*deltaT;<br />

y_approx(i+1) = y_approx(i) + yp_approx(i+1)*deltaT;<br />

end<br />

%_____________________________________________________<br />

%Graphical Results<br />

title(’Simulation <strong>of</strong> 1 D.O.F System in Time Domain’)<br />

subplot(3,1,1), plot(t,real(y_exact),’b’)<br />

title(’(a) Exact Solution - (b) Numerical Solution<br />

(delta T = 0.01 s) - (c) Comparison’)<br />

xlabel(’time [s]’)<br />

ylabel(’(a) y(t) [m]’)<br />

grid<br />

subplot(3,1,2),<br />

plot(t_integ(1:n_integ),real(y_approx(1:n_integ)),’r’)<br />

xlabel(’time [s]’)<br />

ylabel(’(b) y(t) [m]’)<br />

grid<br />

subplot(3,1,3), plot(t,real(y_exact),’b’,t_integ(1:n_integ),<br />

real(y_approx(1:n_integ)),’r’)<br />

xlabel(’time [s]’)<br />

ylabel(’(c) y(t) [m]’)<br />

grid


1.6.5 Comparison between the Analytical and Numerical Solutions <strong>of</strong> Equation <strong>of</strong><br />

Motion<br />

(a) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.3605 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.4<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 5: Comparison between the analytical and numerical solutions when a time step <strong>of</strong><br />

0.3605 [s] is used – Divergence and numerical instability.<br />

(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.3 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.02<br />

0.01<br />

0<br />

−0.01<br />

−0.02<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.02<br />

0.01<br />

0<br />

−0.01<br />

−0.02<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 6: Comparison between the analytical and numerical solutions when a time step <strong>of</strong> 0.3 [s]<br />

is used – Divergence between the numerical and analytical solution due to a ro<strong>of</strong> time step.<br />

16


(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.1 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 7: Comparison between the analytical and numerical solutions when a time step <strong>of</strong> 0.1 [s]<br />

is used – Accumulation <strong>of</strong> errors with the number <strong>of</strong> iterations and divergence between the numerical<br />

and analytical solutions.<br />

(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.05 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 8: Comparison between the analytical and numerical solutions when a time step <strong>of</strong> 0.05 [s]<br />

is used – Accumulation <strong>of</strong> errors with the number <strong>of</strong> iterations and divergence between the numerical<br />

and analytical solutions.<br />

17


(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.01 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 9: Comparison between the analytical and numerical solutions when a time step <strong>of</strong> 0.01 [s]<br />

is used – Good agreement between the numerical and analytical solutions in the total range <strong>of</strong><br />

time.<br />

(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

1<br />

0.5<br />

0<br />

−0.5<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.01 s) − (c) Comparison<br />

−1<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

Figure 10: Comparison between the analytical and numerical solutions when a time step <strong>of</strong><br />

0.01 [s] is used – Good agreement between the numerical and analytical solutions in the total<br />

range <strong>of</strong> time. System behavior when excited by a harmonic force with a frequency near the<br />

natural frequency.<br />

18


1.6.6 Homogeneous Solution or Free-Vibrations or Transient Response - Experimental<br />

Analysis<br />

¨y1(t) + 2ξωn ˙y1(t) + ω 2 ny1(t) = 0 (45)<br />

1.6.7 Natural Frequency – ωn [rad/s] or fn [Hz]<br />

fn = 1<br />

<br />

k1<br />

2π m1<br />

= 1<br />

<br />

<br />

<br />

2π<br />

3EI<br />

L3 1 <br />

mi<br />

[Hz]<br />

number Length fn fexp fexp<br />

<strong>of</strong> masses [m] [Hz] [Hz] [Hz]<br />

(theor.) (*) (**)<br />

1 0.610 1.23 12/10 = 1.2 1.250<br />

2 0.610 0.87 8.5/10 = 0.85 0.875<br />

3 0.610 0.71 7/10 = 0.7 0.705<br />

4 0.610 0.61 6/10 = 0.6 0.625<br />

Table 3: Measuring the natural frequency <strong>of</strong> the mass-spring system ”A” with 1. d.o.f, (*) using<br />

the human eyes and a watch, and (**) using an accelerometer attached to the mass, and making<br />

a comparison to the theoretical mathematical model.<br />

number Length fexp<br />

<strong>of</strong> masses [m] [Hz]<br />

(*)<br />

2 0.610 0.875<br />

2 0.310 1.875<br />

Table 4: Measuring the natural frequency <strong>of</strong> the mass-spring system ”A” with 1. d.o.f, (*) using<br />

the human eyes and a watch, when the equivalent stiffness <strong>of</strong> the system is changed, by modifying<br />

the position (length) where the lumped mass is attached to the beam.<br />

1.6.8 Damping Factor ξ or Logarithmic Decrement β<br />

• Experimental identification without using sensors (OBS: Experiment carried out using a<br />

watch, light and shadow, a calculator, and the mass-spring system oscillating from an<br />

initial condition <strong>of</strong> displacement yo = yini until half the initial amplitude yN = yini/2.)<br />

1<br />

2πN<br />

ξ =<br />

ln<br />

<br />

yo<br />

yN<br />

<br />

<br />

1 1 + 2πN ln<br />

<br />

yo<br />

yN<br />

2<br />

or β = 2π ξ<br />

19


Using the information <strong>of</strong> figure 11 (signal in time domain), where<br />

yo = 3.0 · 10 −5 [m/s 2 ] (first peak <strong>of</strong> signal in time domain, figure 11)<br />

yN = y6 = 2.0 · 10 −5 [m/s 2 ] (after 6 peaks)<br />

N = 6,<br />

one gets<br />

• Damping Factor <strong>of</strong> the system ”A” (ξ)<br />

ξ = <br />

• Log Dec<br />

1 +<br />

1<br />

2π·6 ln<br />

1<br />

2π·6 ln<br />

3.0·10 −5<br />

2.0·10 −5<br />

<br />

3.0·10 −5<br />

2.0·10 −5<br />

β = 2π ξ = 2π 0.010 = 0.068<br />

• Equivalent Viscous Damping (d)<br />

<br />

=<br />

2 0.010755<br />

≈ 0.010<br />

1.000058<br />

d = 2 · ξ · ωn · m = 2 · 0.010 · (0.87 · 2 · π) · 0.382 ≈ 0.016 [N · s/m]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

2<br />

0<br />

−2<br />

x Signal 10−5<br />

4<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−4<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

x 10−5<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 11: Transient Vibration – Acceleration <strong>of</strong> the clamped-free flexible beam when two concentrated<br />

masses m = m1 +m2 = 0.382 Kg are attached at its free end (L = 0.610 m) – Natural<br />

frequency <strong>of</strong> the mass-spring system ”A”: 0.87 Hz.<br />

20


(a) Amplitude [m/s 2 ]<br />

x Signal 10−5<br />

5<br />

0<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b) Amplitude [m/s 2 ]<br />

x 10−5<br />

2<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 12: Transient Vibration – Acceleration <strong>of</strong> the clamped-free flexible beam when two concentrated<br />

masses m = m1 +m2 = 0.382 Kg are attached at its free end (L = 0.310 m) – Natural<br />

frequency <strong>of</strong> the mass-spring system ”B”: 1.75 Hz.<br />

• Damping Factor <strong>of</strong> the system ”B” – From fig.12, one gets: yo = 4.6 · 10 −5 [m/s 2 ], yN =<br />

y54 = 1.0 · 10 −5 [m/s 2 ] and N = 54:<br />

ξ = <br />

1 +<br />

1<br />

2π·54 ln<br />

1<br />

2π·54 ln<br />

4.6·10 −5<br />

1.0·10 −5<br />

<br />

4.6·10 −5<br />

1.0·10 −5<br />

• Equivalent Viscous Damping (d)<br />

<br />

=<br />

2 0.004498<br />

≈ 0.005 (46)<br />

1.000010<br />

d = 2 · ξ · ωn · m = 2 · 0.005 · (1.75 · 2 · π) · 0.382 ≈ 0.04 [N · s/m]<br />

21


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

0.5<br />

0<br />

−0.5<br />

x Signal 10−4<br />

1<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−1<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 13: Free vibration – Spring-mass systems with 1 D.O.F. Two masses m = m1 + m2 =<br />

0.382 Kg fixed at the middle <strong>of</strong> the beam L1 = 0.155 m, resulting in a system ”B” natural<br />

frequency <strong>of</strong> 3.81 Hz<br />

• Damping Factor <strong>of</strong> the system ”B” – From fig.13, one gets: yo = 0.95 · 10 −4 [m/s 2 ],<br />

yN = y34 = 0.50 · 10 −4 [m/s 2 ] and N = 34:<br />

ξ = <br />

1 +<br />

1<br />

2π·34 ln<br />

1<br />

2π·34 ln<br />

0.95·10 −4<br />

0.50·10 −4<br />

<br />

0.95·10 −4<br />

0.50·10 −4<br />

• Equivalent Viscous Damping (d)<br />

<br />

=<br />

2 0.003029<br />

≈ 0.003<br />

1.000005<br />

d = 2 · ξ · ωn · m = 2 · 0.003 · (3.81 · 2 · π) · 0.382 ≈ 0.05 [N · s/m]<br />

22


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

x 10 −4 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

x 10−5<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 14: Free vibration – Spring-mass systems with 1 D.O.F. One mass m = m1 = 0.191 Kg<br />

fixed at the middle <strong>of</strong> the beam L1 = 0.155 m, resulting in a system ”B” natural frequency <strong>of</strong><br />

4.94 Hz<br />

• Damping Factor <strong>of</strong> the system ”B” – From fig.13, one gets: yo = 0.95 · 10 −4 [m/s 2 ],<br />

yN = y14 = 0.50 · 10 −4 [m/s 2 ] and N = 14:<br />

ξ = <br />

1 +<br />

1<br />

2π·14 ln<br />

1<br />

2π·14 ln<br />

0.95·10 −4<br />

0.50·10 −4<br />

<br />

0.95·10 −4<br />

0.50·10 −4<br />

• Equivalent Viscous Damping (d)<br />

<br />

=<br />

2 0.007296<br />

≈ 0.007<br />

1.000026<br />

d = 2 · ξ · ωn · m = 2 · 0.007 · (4.94 · 2 · π) · 0.191 ≈ 0.08 [N · s/m]<br />

IMPORTANT CONCLUSION: THE DAMPING FACTOR IS A CHARACTER-<br />

ISTIC OF THE GLOBAL MECHANICAL SYSTEM AND SIMULTANEOUSLY DE-<br />

PENDS ON MASS m, STIFFNESS k AND DAMPING d COEFFICIENTS, NOT<br />

ONLY ON THE DAMPING COEFFICIENT, AS YOU CAN SEE IN THE DEFINI-<br />

TION:<br />

• ξ = d<br />

2·m·ωn<br />

= d1<br />

2· √ m·k<br />

IT IS POSSIBLE TO INCREASE THE DAMPING FACTOR OF A MECHANICAL<br />

SYSTEM EITHER BY DECREASING THE MASS m, OR BY DECREASING THE<br />

STIFFNESS k OR BY INCREASING THE DAMPING COEFFICIENT d. THE<br />

DAMPING FACTOR IS A VERY USEFUL PARAMETER FOR DEFINING THE<br />

RESERVE OF STABILITY IN MACHINERY DYNAMICS.<br />

23


1.6.9 Forced Vibrations or Steady-State Response<br />

The two most frequent ways <strong>of</strong> representing the frequency response function <strong>of</strong> mechanical<br />

systems are presented in figure 15: (a) and (b) real and imaginary parts as a function <strong>of</strong> the<br />

excitation frequency; (c) and (d) magnitude and phase as a function <strong>of</strong> the excitation frequency.<br />

Other alternative ways are presented in figures 16 and 17.<br />

(a) Frequency Response Function (Real <strong>Part</strong>)<br />

5<br />

ξ=0.005<br />

ξ=0.05<br />

Real(A(ω)) [m/N]<br />

0<br />

−5<br />

0 0.5 1 1.5 2<br />

Frequency [Hz]<br />

(b) Frequency Response Function (Imaginary <strong>Part</strong>)<br />

0<br />

ξ=0.005<br />

−2<br />

ξ=0.05<br />

Imag(A(ω)) [m/N]<br />

−4<br />

−6<br />

−8<br />

−10<br />

0 0.5 1 1.5 2<br />

Frequency [Hz]<br />

Phase(A(ω)) [ o]<br />

(c) Frequency Response Function (Amplitude)<br />

10<br />

ξ=0.005<br />

8<br />

ξ=0.05<br />

||A(ω)|| [m/N]<br />

6<br />

4<br />

2<br />

−100<br />

−150<br />

0<br />

0 0.5 1 1.5 2<br />

Frequency [Hz]<br />

(d) Frequency Response Function (Phase)<br />

0<br />

−50<br />

ξ=0.005<br />

ξ=0.05<br />

−200<br />

0 0.5 1 1.5 2<br />

Frequency [Hz]<br />

Figure 15: Steady state response in the frequency domain or Frequency Response Function<br />

f/m<br />

(FRF): (a) and (b) illustrate the real and imaginary part <strong>of</strong> A = −ω2 +ω2 n +i2ξωnω; (c) and (d)<br />

illustrate the magnitude and phase <strong>of</strong> the complex function A =<br />

1.6.10 Resonance and Phase<br />

f/m<br />

−ω 2 +ω 2 n+i2ξωnω .<br />

• In order to understand the ”90 degree phase while in resonance” use the tactile senses –<br />

Remember the experiments in the classroom using the mass-beam system and forces applied<br />

by your finger, and outside building 404, using a car and a tree and the forces applied by<br />

your hands (synchronization).<br />

• Complex Vector Diagram <strong>of</strong> Resonance and Phase<br />

24


Imag(A(ω)) [m/N]<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

−7<br />

−8<br />

Frequency Response Function (Real <strong>Part</strong>)<br />

ξ=0.005<br />

ξ=0.05<br />

−9<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

Real(A(ω)) [m/N]<br />

Figure 16: Steady state response in the frequency domain or Frequency Response Function (FRF)<br />

illustrated as the real versus the imaginary part <strong>of</strong> A =<br />

Imag(A(ω)) [m/N]<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

1<br />

0.5<br />

Real(A(ω)) [m/N]<br />

0<br />

Frequency Response Function<br />

−0.5<br />

0<br />

0.5<br />

f/m<br />

−ω 2 +ω 2 n +i2ξωnω.<br />

1<br />

1.5<br />

Frequency [Hz]<br />

2<br />

ξ=0.05<br />

Figure 17: Steady state response in the frequency domain or Frequency Response Function (FRF)<br />

f/m<br />

illustrated in a 3D-plot: the real and imaginary parts <strong>of</strong> A = −ω2 +ω2 as a function <strong>of</strong> the<br />

n+i2ξωnω<br />

frequency.<br />

25


(a)<br />

(b)<br />

(c)<br />

Figure 18: Complex vector diagram using an excitation force <strong>of</strong> constant magnitude: (a) the<br />

frequency <strong>of</strong> the excitation force is lower than the natural frequency; (b) the frequency <strong>of</strong> the<br />

excitation force is coincident with the natural frequency, characterizing a resonance case where<br />

the phase between the force and the displacement is 90 degrees, i.e. the phase between the force<br />

and the velocity is 0 degrees, meaning a synchronization between force and velocity; (c) the<br />

frequency <strong>of</strong> the excitation force is bigger than the natural frequency.<br />

26


1.6.11 Superposition <strong>of</strong> Transient and Forced Vibrations in Time Domain (Simulation)<br />

(a)<br />

(c)<br />

(e)<br />

y(t) [m]<br />

y(t) [m]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 0.1 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

y(t) [m]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 0.8 Hz<br />

(a) Excitation Frequency : 0.9 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b)<br />

(d)<br />

(f)<br />

y(t) [m]<br />

y(t) [m]<br />

y(t) [m]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 0.7 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 0.8702 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 1.0 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

Figure 19: Time response <strong>of</strong> the system with 1 D.O.F. excited by forces with different frequencies<br />

(a) ω = 0.1 Hz (before resonance); (b) ω = 0.7 Hz; (before resonance); (c) ω = 0.8 Hz (before<br />

resonance but close – beating); (d) ω = 0.8702 Hz (at resonance); (e) ω = 0.9 Hz (after<br />

resonance but close – beating); (f) ω = 1.0 Hz (after resonance).<br />

27


1.6.12 Resonance – Experimental Analysis in Time Domain<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

0.5<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

1.5<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

0.5<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

1.5<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 20: Resonance phenomena due to force excitations with frequency around the natural<br />

frequency <strong>of</strong> the mass-spring system: 1 D.O.F. system with natural frequency <strong>of</strong> 0.87 Hz, excited<br />

by the shaker with frequencies <strong>of</strong> 0.80 Hz, 0.87 Hz and 0.90 Hz – Spring-mass system (A) with<br />

two masses m = m1 + m2 = 0.382 Kg fixed at the beam (A) length L1 = 0.600 m, resulting in a<br />

natural frequency <strong>of</strong> 0.87 Hz.<br />

28


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

x Signal 10−5<br />

5<br />

0<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 21: Beating phenomena with two transient responses – Two spring-mass systems with 1<br />

D.O.F. each, vibrating with very similar natural frequencies (transient responses), resulting in<br />

beating phenomena: Spring-mass system ”A” with three masses m = m1 +m2 +m3 = 0.576 Kg<br />

fixed at the beam length L1 = 0.285 m, resulting in a natural frequency near 1.75 Hz; Springmass<br />

system ”B” with masses m = m4 + m5 = 0.382 Kg fixed at the end <strong>of</strong> the beam L1 =<br />

0.310 m, resulting in a natural frequency <strong>of</strong> 1.75 Hz<br />

29


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

x 10 −6 Signal (a) in Time Domain − (b) in Frequency Domain<br />

−8<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−6<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

(a) Amplitude [m/s 2 ]<br />

x Signal 10−5<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−1.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b) Amplitude [m/s 2 ]<br />

x 10−6<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 22: Beating phenomena due to transient (low damping factor) and forced vibrations<br />

with similar frequencies: 1 D.O.F. system ”A” with natural frequency <strong>of</strong> 0.87 Hz, excited by<br />

a shaker with frequencies <strong>of</strong> 0.80 Hz and 0.90 Hz - Spring-mass system ”A” with two masses<br />

m = m1+m2 = 0.382 Kg fixed at the beam length L1 = 0.600 m, resulting in a natural frequency<br />

<strong>of</strong> 0.87 Hz.<br />

30


1.7 Mechanical Systems with 2 D.O.F.<br />

1.7.1 Physical System and Mechanical Model<br />

(a)<br />

(b)<br />

(c)<br />

Figure 23: (a) Real mechanical system built by two turbines attached to an airplane flexible wing;<br />

(b) Laboratory prototype built by two lumped masses attached to a flexible beam); (c) Equivalent<br />

mechanical model with 2 D.O.F. for the two lumped masses attached to the flexible beam.<br />

1.7.2 Mathematical Model<br />

M¨y(t) + D˙y(t) + Ky(t) = f(t) (47)<br />

m11 m12<br />

m21 m22<br />

¨y1<br />

¨y2<br />

<br />

d11 d12<br />

+<br />

d21 d22<br />

˙y1<br />

˙y2<br />

<br />

k11 k12<br />

+<br />

k21 k22<br />

31<br />

y1<br />

y2<br />

<br />

=<br />

f1<br />

f2<br />

<br />

(48)


where<br />

m11 = m1 + m2<br />

m12 = 0<br />

m21 = 0<br />

m22 = m3 + m4<br />

d11 = 2ξ k11m11<br />

d12 = 0<br />

d21 = 0<br />

d22 = 2ξ k22m22<br />

(49)<br />

⎫<br />

⎪⎬<br />

(Approximation <strong>of</strong> damping coefficients using the exp. damping factor!)<br />

⎪⎭<br />

12EI<br />

3<br />

k11 =<br />

(4L2 − L1)(L1 − L2) 2(L2/L1)<br />

6EI<br />

k12 =<br />

(4L2 − L1)(L1 − L2) 2(L1 − 3L2)/L1<br />

6EI<br />

k21 =<br />

(4L2 − L1)(L1 − L2) 2(L1 − 3L2)/L1<br />

12EI<br />

k22 =<br />

(4L2 − L1)(L1 − L2) 2<br />

The coefficients <strong>of</strong> the mass matrix can easily be achieved. Each <strong>of</strong> the single masses has<br />

m1 = m2 = m3 = m4 = m5 = m6 = 0.191 Kg. The stiffness coefficients kij were calculated<br />

in the section 1.5, using the geometry <strong>of</strong> the beam (I, L1 , L2) and its material properties<br />

(E). The damping matrix can be approximated by using proportional damping, for example,<br />

D = αM + βK. The coefficients α and β can be chosen, so that the damping factor ξ <strong>of</strong> the<br />

first resonance is <strong>of</strong> the same order as the one in the previous section. Please, note that this<br />

is just an approximation which be verified using Modal Analysis Techniques. Another way <strong>of</strong><br />

approximating the damping coefficients is given by eq.(50).<br />

1.7.3 Analytical and Numerical Solution <strong>of</strong> System <strong>of</strong> Differential Linear Equations<br />

System <strong>of</strong> Equation <strong>of</strong> motion<br />

<br />

m11<br />

m21<br />

<br />

m12 ¨y1 d11<br />

+<br />

m22 ¨y2 d21<br />

<br />

d12 ˙y1<br />

d22 ˙y2<br />

M¨y + D ˙y + Ky = ¯fe jωt<br />

<br />

+<br />

<br />

k11 k12 y1<br />

k21 k22<br />

Differential Equations 2nd order → 1st order<br />

<br />

M D ¨y<br />

0 M ˙y<br />

+<br />

<br />

0 K ˙y<br />

−M 0 y<br />

=<br />

<br />

¯f<br />

0<br />

A˙z(t) + Bz(t) = fe jωt<br />

32<br />

<br />

y2<br />

<br />

f1<br />

=<br />

f2<br />

e jωt<br />

<br />

e jωt<br />

(50)<br />

(51)<br />

(52)<br />

(53)


⎧ ⎫<br />

⎪⎨<br />

˙y1(t)<br />

⎪⎬<br />

˙y(t) ˙y2(t)<br />

z(t) = =<br />

y(t) ⎪⎩<br />

y1(t) ⎪⎭<br />

y2(t)<br />

→ velocity<br />

→ velocity<br />

→ displacement<br />

→ displacement<br />

The analytical solution can be divided into three steps: (I) homogeneous solution (transient analysis);<br />

(<strong>II</strong>) permanent solution (steady-state analysis) and (<strong>II</strong>I) general solution (homogeneous<br />

+ permanent).<br />

Homogeneous Solution and Transient Analysis – The homogeneous differential equation<br />

is achieved when the right side <strong>of</strong> the equation is set zero (see eq.(55)), or in other words, when<br />

no force is acting on the system.<br />

A˙zh(t) + Bzh(t) = 0 (55)<br />

(54)<br />

zh(t) = ue λt , (assumption) (56)<br />

˙zh(t) = λue λt<br />

The assumption (56) and its derivative are introduced into the differential equation (55), leading<br />

to an eigenvalue-eigenvector problem:<br />

[λA + B]ue λt = 0 ⇒ [λA + B]u = 0 (57)<br />

• Eigenvalues λi can be calculated by using eq.(58):<br />

determinant(λA + B) = 0 ⇒ λ1 , λ2 , λ3 , λ4 (58)<br />

• Eigenvectors ui can be calculated by using eq.(59):<br />

λ1Au = −Bu ⇒ u1<br />

λ2Au = −Bu ⇒ u2<br />

λ3Au = −Bu ⇒ u3<br />

λ4Au = −Bu ⇒ u4<br />

• The homogeneous solution can be written as:<br />

zh(t) = C1u1e λ1t + C2u2e λ2t + C3u3e λ3t + C4u4e λ4t<br />

where C1, C2, C3 and C4 are constants depending on the initial displacement and velocities <strong>of</strong><br />

the coordinates y1 and y2, when t = 0.<br />

33<br />

(59)


Permanent Solution and Steady-State Analysis – The permanent solution takes into<br />

account the right side <strong>of</strong> the differential equation (see eq.(60)), or in other words, the effect <strong>of</strong><br />

the force on the system. In case <strong>of</strong> harmonic excitation, one can write:<br />

A˙zp(t) + Bzp(t) = fe jωt<br />

(60)<br />

zp(t) = Ae jωt , (assumption!) (61)<br />

˙zp(t) = jωAe jωt<br />

The assumption adopted in eq.(61) and its derivative are introduced into the differential equation<br />

(60), leading to:<br />

[jωA + B]Ae jωt = fe jωt ⇒ A = [jωA + B] −1 f (62)<br />

The permanent solution <strong>of</strong> the equation <strong>of</strong> motion is given by:<br />

zp(t) = Ae jωt ⇒ zp(t) = [jωA + B] −1 fe jωt<br />

General Solution – The general solution <strong>of</strong> a linear differential equation is achieved by adding<br />

the homogenous and the permanent solutions, and by sequentially defining the initial conditions<br />

<strong>of</strong> the movement. This solution will provide information about the transient and steady-state<br />

response <strong>of</strong> the mechanical model. Considering that the order <strong>of</strong> the mechanical model is correct<br />

(in this case, the two degree-<strong>of</strong>-freedom system), the solution <strong>of</strong> the linear differential equation<br />

will be useful for predicting the dynamical behavior <strong>of</strong> the physical system, if the coefficients<br />

<strong>of</strong> the differential equation (M, D and K, or A and B) are properly chosen, either by using<br />

theoretical or experimental information or both. The general solution <strong>of</strong> the differential equation<br />

<strong>of</strong> motion is given by:<br />

z(t) = C1u1e λ1t + C2u2e λ2t + C3u3e λ3t + C4u4e λ4t + Ae iωt<br />

where z(t) gives information about the displacement and velocity <strong>of</strong> the coordinates y1 and y2.<br />

Introducing the initial conditions <strong>of</strong> displacement and velocity<br />

zini = { v1ini<br />

v2ini y1ini y2ini }T<br />

into eq.(64), when t = 0, one obtains<br />

z(0) = zini = C1u1e λ10 + C2u2e λ20 + C3u3e λ30 + C4u4e λ40 + Ae iω0<br />

or<br />

⎧<br />

⎪⎨<br />

zini = C1u1 + C2u2 + C3u3 + C4u4 + A = [ u1 u2 u3 u4 ]<br />

⎪⎩<br />

C1<br />

C2<br />

C3<br />

C4<br />

(63)<br />

(64)<br />

(65)<br />

(66)<br />

⎫<br />

⎪⎬<br />

+ A (67)<br />

⎪⎭<br />

Solving the linear system by inverting the modal matrix U = [ u1 u2 u3 u4 ] one achieves the<br />

vector c = { C1 C2 C3 C4 } T :<br />

34


zini = U c + A ⇒ c = U −1 {(zini − A)} (68)<br />

Summarizing, below is the analytical solution <strong>of</strong> a second order differential equation, which is<br />

responsible for describing the displacements and velocities <strong>of</strong> the coordinates y1(t) and y2(t) in<br />

time domain, as a function <strong>of</strong> the excitation force and the initial condition <strong>of</strong> displacement and<br />

velocity:<br />

z(t) = C1u1e λ1t + C2u2e λ2t + C3u3e λ3t + C4u4e λ4t + Ae iωt<br />

where<br />

<br />

λ1 = −ξ1ωn1 − ωn1 1 − ξ2 1 · i<br />

<br />

and u1<br />

λ2 = −ξ1ωn1 + ωn1 1 − ξ2 1 · i<br />

<br />

and u2<br />

λ3 = −ξ2ωn2 − ωn2 1 − ξ2 2 · i<br />

<br />

and u3<br />

λ4 = −ξ2ωn2 + ωn2 1 − ξ2 2 · i and u4<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

C1<br />

C2<br />

C3<br />

C4<br />

A = [jωA + B] −1 f<br />

⎫<br />

⎪⎬<br />

= [ u1 u2 u3 u4 ]<br />

⎪⎭<br />

−1 { zini − A}<br />

Numerical Solution – The numerical solution <strong>of</strong> the system <strong>of</strong> differential equations can be<br />

found by using the approximation according to Taylor’s expansion. Thus, one equation can be<br />

approximated by:<br />

f(t) ⋍ f(t0) + df<br />

<br />

<br />

<br />

<br />

dt<br />

t=t0<br />

(t − t0) + d2 f<br />

dt 2<br />

<br />

<br />

<br />

<br />

t=t0<br />

(t − t0)... + dn f<br />

dt n<br />

<br />

<br />

<br />

<br />

t=t0<br />

(69)<br />

(t − t0) (70)<br />

Assuming a very small time step t −t0 ≪ 1, the higher order terms <strong>of</strong> eq.(71) can be neglected.<br />

It turns:<br />

f(t) ⋍ f(t0) + df<br />

<br />

<br />

<br />

<br />

dt<br />

t=t0<br />

(t − t0) (71)<br />

Knowing the initial conditions <strong>of</strong> the movement, when t = t0 = 0,<br />

y(0) = y0<br />

y1(0)<br />

y2(0)<br />

<br />

=<br />

y1ini<br />

y1ini<br />

<br />

35<br />

(72)


and<br />

˙y(0) = ˙y0<br />

˙y1(0)<br />

˙y2(0)<br />

<br />

=<br />

v1ini<br />

v2ini<br />

<br />

and the equation <strong>of</strong> motion eq.(52), which has to be solved, one can calculate the acceleration,<br />

when t = t0 = 0:<br />

¨y0 = −M −1 D ˙y0 + Ky0 − ¯ jωt0 fe<br />

The first predicted values <strong>of</strong> displacement, velocity and acceleration in time t1 = ∆t , using the<br />

approximation given by eq.(71), are:<br />

t1 = ∆t<br />

˙y1 = ˙y0 + ¨y0∆t<br />

y1 = y0 + ˙y1∆t<br />

¨y1 = −M −1 D ˙y1 + Ky1 − ¯ jωt1 fe<br />

The second predicted values <strong>of</strong> displacement, velocity and acceleration in time t2 = t1 + ∆t ,<br />

using the approximation given by eq.(71), are:<br />

t2 = 2∆t<br />

˙y2 = ˙y1 + ¨y1∆t<br />

y2 = y1 + ˙y2∆t<br />

¨y2 = −M −1 D ˙y2 + Ky2 − ¯ jωt2 fe<br />

The N-th predicted values <strong>of</strong> displacement, velocity and acceleration in time tN = tN−1 + ∆t ,<br />

using the approximation given by eq.(74), are:<br />

tN = N∆t<br />

˙yN = ˙yN−1 + ¨yN−1∆t<br />

yN = yN−1 + ˙yN∆t<br />

¨yN = −M −1 D ˙yN + KyN − ¯ jωtN fe<br />

Plotting the points [y1,y2,y3, ...,yN] versus [t1, t2, t3, ..., tN], one can observe the numerical<br />

solution <strong>of</strong> the differential equation, which describes the displacements <strong>of</strong> the mass-dampingspring<br />

system in time domain. Plotting the points [ ˙y1, ˙y2, ˙y3, ..., ˙yN] versus [t1, t2, t3, ..., tN] or<br />

[¨y1, ¨y2, ¨y3, ..., ¨yN] versus [t1, t2, t3, ..., tN] one can also observe the velocity and acceleration <strong>of</strong><br />

the mass-damping-spring system in time domain. The analytical and numerical solutions <strong>of</strong> the<br />

second order differential equation, eq.(52), are illustrated using a Matlab code.<br />

36<br />

(74)<br />

(73)


1.7.4 Modal Analysis using Matlab eig-function [u, w] = eig(−B, A)<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% MACHINERY DYNAMICS LECTURES (41614) %<br />

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% <strong>IFS</strong> %<br />

% %<br />

% MODAL ANALYSIS %<br />

% %<br />

% 2 D.O.F. SYSTEMS - MODAL ANALYSIS - 3 EXPERIMENTAL CASES %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

clear all; close all;<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 mm<br />

E= 2e11; %elasticity modulus [N/m^2]<br />

b= 0.030 ; %width [m]<br />

h= 0.0012 ; %thickness [m]<br />

I= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1; %concentrated mass [Kg] |<br />

M2=m2; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*I/LL)*L2^3/L1^3; %equivalent Stiffness [N/m]<br />

K12= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K21= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K22= -12*(E*I/LL); %equivalent Stiffness [N/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%Damping Matrix<br />

D= [0 0; 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); % Eigenvectors u<br />

% Eigenvalues w [rad/s]<br />

w<br />

u<br />

pause;<br />

w_vector=diag(w);<br />

[natfreq,indice]=sort(w_vector); % Sorting the natural Frequencies<br />

% Natural Frequencies (Hz)<br />

w1=abs(imag(w_vector(indice(1))))/2/pi % First natural frequency<br />

w2=abs(imag(w_vector(indice(3))))/2/pi % Second natural frequency<br />

mass_position(1) = 0; mass_position(2) = L1; mass_position(3) =<br />

L2;<br />

% first mode shape<br />

uu1(1)=0; uu1(2)=u(1,indice(1)); uu1(3)=u(2,indice(1)); figure(1)<br />

plot(uu1,mass_position,’r*-.’,-uu1,mass_position,’r*-.’,’LineWidth’,1.5)<br />

grid f1=num2str(w1); set(gca,’FontSize’,12,’FontAngle’,’oblique’);<br />

title([’First Mode Shape - Freq.: ’,f1,’ Hz’])<br />

37<br />

% second mode shape<br />

uu2(1)=0; uu2(2)=u(1,indice(3)); uu2(3)=u(2,indice(3)); figure(2)<br />

plot(uu2,mass_position,’r*-.’,-uu2,mass_position,’r*-.’,’LineWidth’,1.5)<br />

grid f2=num2str(w2); set(gca,’FontSize’,12,’FontAngle’,’oblique’);<br />

title([’Second Mode Shape - Freq.: ’,f2,’ Hz’]) pause;<br />

% (2.CASE) Increasing the Mass Values<br />

%__________________________________________________<br />

M1=m1+m2; %concentrated mass [Kg] |<br />

M2=m3+m4; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*I/LL)*L2^3/L1^3; %equivalent Stiffness [N/m]<br />

K12= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K21= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K22= -12*(E*I/LL); %equivalent Stiffness [N/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%Damping Matrix<br />

D= [0 0; 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); % Eigenvectors u<br />

% Eigenvalues w [rad/s]<br />

w<br />

u<br />

pause;<br />

w_vector=diag(w);<br />

[natfreq,indice]=sort(w_vector); % Sorting the natural Frequencies<br />

% Natural Frequencies (Hz)<br />

w1=abs(imag(w_vector(indice(1))))/2/pi % First natural frequency<br />

w2=abs(imag(w_vector(indice(3))))/2/pi % Second natural frequency<br />

mass_position(1) = 0; mass_position(2) = L1; mass_position(3) =<br />

L2;<br />

% first mode shape<br />

uu1(1)=0; uu1(2)=u(1,indice(1)); uu1(3)=u(2,indice(1)); figure(3)<br />

plot(uu1,mass_position,’b*-.’,-uu1,mass_position,’b*-.’,’LineWidth’,1.5)<br />

grid f1=num2str(w1); set(gca,’FontSize’,12,’FontAngle’,’oblique’);<br />

title([’First Mode Shape - Freq.: ’,f1,’ Hz’])<br />

% second mode shape<br />

uu2(1)=0; uu2(2)=u(1,indice(3)); uu2(3)=u(2,indice(3)); figure(4)<br />

plot(uu2,mass_position,’b*-.’,-uu2,mass_position,’b*-.’,’LineWidth’,1.5)<br />

grid f2=num2str(w2); set(gca,’FontSize’,12,’FontAngle’,’oblique’);<br />

title([’Second Mode Shape - Freq.: ’,f2,’ Hz’]) pause;<br />

% (3.CASE) Increasing the Mass Values<br />

%__________________________________________________<br />

M1=m1+m2+m3; %concentrated mass [Kg] |<br />

M2=m4+m5+m6; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

...


(1.CASE)<br />

w =<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); % Eigenvectors u<br />

% Eigenvalues w [rad/s]<br />

0 +48.8527i 0 0 0<br />

0 0 -48.8527i 0 0<br />

0 0 0 + 7.3517i 0<br />

0 0 0 0 - 7.3517i<br />

u =<br />

1.0000 1.0000 0.3300 0.3300<br />

-0.3300 -0.3300 1.0000 1.0000<br />

0 - 0.0355i 0 + 0.0355i 0 - 0.0778i 0 + 0.0778i<br />

0 + 0.0117i 0 - 0.0117i 0 - 0.2356i 0 + 0.2356i<br />

(2.CASE)<br />

w =<br />

0 +34.5441i 0 0 0<br />

0 0 -34.5441i 0 0<br />

0 0 0 + 5.1985i 0<br />

0 0 0 0 - 5.1985i<br />

u =<br />

1.0000 1.0000 -0.3300 -0.3300<br />

-0.3300 -0.3300 -1.0000 -1.0000<br />

0 - 0.0289i 0 + 0.0289i 0 + 0.0635i 0 - 0.0635i<br />

0 + 0.0096i 0 - 0.0096i 0 + 0.1924i 0 - 0.1924i<br />

(3.CASE)<br />

u =<br />

1.0000 1.0000 -0.3300 -0.3300<br />

-0.3300 -0.3300 -1.0000 -1.0000<br />

0 - 0.0205i 0 + 0.0205i 0 + 0.0449i 0 - 0.0449i<br />

0 + 0.0068i 0 - 0.0068i 0 + 0.1360i 0 - 0.1360i<br />

w =<br />

0 +28.2051i 0 0 0<br />

0 0 -28.2051i 0 0<br />

0 0 0 + 4.2445i 0<br />

0 0 0 0 - 4.2445i<br />

38


0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

First Mode Shape − Freq.: 1.1701 Hz<br />

0<br />

(a) −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

(b)<br />

(c)<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

First Mode Shape − Freq.: 0.82736 Hz<br />

First Mode Shape − Freq.: 0.67554 Hz<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Second Mode Shape − Freq.: 7.7751 Hz<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Second Mode Shape − Freq.: 5.4979 Hz<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Second Mode Shape − Freq.: 4.489 Hz<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

Figure 24: First and second mode shapes <strong>of</strong> the mechanical system modelled with 2 D.O.F. (a)<br />

(1.CASE) – one mass attached to each <strong>of</strong> the two coordinates; (b) (2.CASE) – two masses<br />

attached to each one <strong>of</strong> the two coordinates; (c) (3.CASE) – three masses attached to each one<br />

<strong>of</strong> the two coordinates.<br />

39


1.7.5 Analytical and Numerical Solutions <strong>of</strong> Equation <strong>of</strong> Motion using Matlab<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% DYNAMICS OF MACHINERY LECTURES (72213) %<br />

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 2 D.O.F - EXACT AND NUMERICAL SOLUTION %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

clear all;<br />

close all;<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E = 2e11; %elasticity modulus [N/m^2]<br />

b = 0.030 ; %width [m]<br />

h = 0.0012 ; %thickness [m]<br />

Iz= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m2; %concentrated mass [Kg] |<br />

M2=m3+m4; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*Iz/LL)*L2^3/L1^3; % Stiffness coeff.[N/m]<br />

K12= -6*(E*Iz/LL)*(L1-3*L2)/L1; % Stiffness coeff.[N/m]<br />

K21= -6*(E*Iz/LL)*(L1-3*L2)/L1; % Stiffness coeff.[N/m]<br />

K22= -12*(E*Iz/LL); % Stiffness coeff.[N/m]<br />

% Coefficients <strong>of</strong> the Damping Matrix<br />

% (damping factor xi=0.005)<br />

D11= 2*0.005*sqrt(M1/K11); % Damping coeff.[Ns/m]<br />

D12= 0; % Damping coeff.[Ns/m]<br />

D21= 0; % Damping coeff.[Ns/m]<br />

D22= 2*0.005*sqrt(M2/K22); % Damping coeff.[Ns/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Damping Matrix<br />

D=[D11 D12; D21 D22];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%State Matrices A & B % EQUATION (52)<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %eigenvectors u<br />

%eigenvalues w<br />

w1=abs(imag(w(3,3)))/2/pi; %first natural freq.[Hz]<br />

w2=abs(imag(w(1,1)))/2/pi; %second natural freq.[Hz]<br />

wexp1=0.78125; %measured natural freq.[Hz]<br />

wexp2=5.563; %measured natural freq.[Hz]<br />

dif1=(w1-wexp1)/wexp1; %error calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2; %error calculated and measured freq.<br />

%_____________________________________________________<br />

%Initial Condition<br />

y1_ini = -0.000 % beam initial deflection [m]<br />

y2_ini = -0.000 % beam initial deflection [m]<br />

v1_ini = -0.001 % beam initial velocity [m/s]<br />

v2_ini = -0.000 % beam initial velocity [m/s]<br />

freq_exc = 0.000 % excitation frequency [Hz]<br />

force1 = -0.000 % excitation force 1 [N]<br />

force2 = -0.000 % excitation force 2 [N]<br />

time_max = 30.0; % integration time [s]<br />

%_____________________________________________________<br />

40<br />

%_____________________________________________________<br />

%EXACT SOLUTION % EQUATION (68)<br />

n=2000; % number <strong>of</strong> points for plotting<br />

j=sqrt(-1); % complex number<br />

w_exc=2*pi*freq_exc; % excitation frequency [rad/s]<br />

z_ini = [v1_ini v2_ini y1_ini y2_ini]’;<br />

force_exc = [force1 force2 0 0 ]’;<br />

vec_aux = z_ini - inv((j*w_exc*A + B))*force_exc;<br />

lambda1=w(1,1);<br />

lambda2=w(2,2);<br />

lambda3=w(3,3);<br />

lambda4=w(4,4);<br />

u1=u(1:4,1);<br />

u2=u(1:4,2);<br />

u3=u(1:4,3);<br />

u4=u(1:4,4);<br />

C=inv(u)*(vec_aux);<br />

c1=C(1);<br />

c2=C(2);<br />

c3=C(3);<br />

c4=C(4);<br />

for i=1:n,<br />

t(i)=(i-1)/n*time_max;<br />

y_exact=c1*u1*exp(lambda1*t(i)) + ...<br />

c2*u2*exp(lambda2*t(i)) + ...<br />

c3*u3*exp(lambda3*t(i)) + ...<br />

c4*u4*exp(lambda4*t(i)) + ...<br />

inv((j*w_exc*A + B))*force_exc*exp(j*w_exc*t(i));<br />

end<br />

y1_exact(i) = y_exact(3);<br />

y2_exact(i) = y_exact(4);<br />

figure(1)<br />

title(’Simulation <strong>of</strong> 2 D.O.F System in Time Domain’)<br />

subplot(2,1,1), plot(t,real(y1_exact),’b’)<br />

title(’Exact Solution ’)<br />

xlabel(’time [s]’)<br />

ylabel(’ y1_{exact}(t) [m]’)<br />

grid<br />

subplot(2,1,2), plot(t,real(y2_exact),’b’)<br />

xlabel(’time [s]’)<br />

ylabel(’y2_{exact}(t) [m]’)<br />

grid<br />

pause;<br />

%_____________________________________________________<br />

%NUMERICAL SOLUTION % EQUATION (73)<br />

% deltaT=0.3605; % time step [s]<br />

% deltaT=0.3; % time step [s]<br />

% deltaT=0.1; % time step [s]<br />

% deltaT=0.05; % time step [s]<br />

% deltaT=0.01; % time step [s]<br />

deltaT=0.005; % time step [s]<br />

n_integ=time_max/deltaT; % number <strong>of</strong> points (integration)<br />

% Initial Conditions<br />

y1_approx(1) = y1_ini; % beam initial deflection [m]<br />

y2_approx(1) = y2_ini; % beam initial deflection [m]<br />

yp1_approx(1) = v1_ini; % beam initial velocity [m/s]<br />

yp2_approx(1) = v2_ini; % beam initial velocity [m/s]<br />

for i=1:n_integ,<br />

t_integ(i)=(i-1)*deltaT;<br />

ypp1_approx(i)=-1/M1*(K11*y1_approx(i)+K12*y2_approx(i) ...<br />

+ D11*yp1_approx(i)+D12*yp2_approx(i) ...<br />

-(force1)*exp(j*w_exc*t_integ(i)));<br />

ypp2_approx(i)=-1/M2*(K21*y1_approx(i)+K22*y2_approx(i) ...<br />

+D21*yp1_approx(i)+D22*yp2_approx(i) ...<br />

-(force2)*exp(j*w_exc*t_integ(i)));<br />

yp1_approx(i+1)=yp1_approx(i) + ypp1_approx(i)*deltaT;<br />

yp2_approx(i+1)=yp2_approx(i) + ypp2_approx(i)*deltaT;<br />

y1_approx(i+1)=y1_approx(i)+yp1_approx(i+1)*deltaT;<br />

y2_approx(i+1)=y2_approx(i)+yp2_approx(i+1)*deltaT;<br />

end<br />

%_____________________________________________________


%_____________________________________________________<br />

%Graphical Results<br />

figure(2)<br />

title(’Simulation <strong>of</strong> 2 D.O.F System in Time Domain’)<br />

subplot(2,1,1), plot(t_integ(1:n_integ),<br />

real(y1_approx(1:n_integ)),’r’)<br />

title(’Numerical Solution (delta T = 0.005 s)’)<br />

xlabel(’time [s]’)<br />

ylabel(’y1_{approx}(t) [m]’)<br />

grid<br />

subplot(2,1,2), plot(t_integ(1:n_integ),<br />

real(y2_approx(1:n_integ)),’r’)<br />

xlabel(’time [s]’)<br />

ylabel(’y2_{approx}(t) [m]’)<br />

grid<br />

%_____________________________________________________<br />

%Graphical Results (Comparison Exact vs. Numerical)<br />

figure(3)<br />

subplot(2,1,1), plot(t,real(y1_exact),’b’,<br />

t_integ(1:n_integ),real(y1_approx(1:n_integ)),’r’)<br />

title(’Simulation <strong>of</strong> 2 D.O.F System in Time Domain -<br />

Exact Solution vs. Numerical Solution<br />

(delta T = 0.005 s)’)<br />

xlabel(’time [s]’)<br />

ylabel(’y1_{approx}(t) [m]’)<br />

grid<br />

subplot(2,1,2), plot(t,real(y2_exact),’b’,<br />

t_integ(1:n_integ),real(y2_approx(1:n_integ)),’r’)<br />

xlabel(’time [s]’)<br />

ylabel(’y2_{approx}(t) [m]’)<br />

grid<br />

1.7.6 Analytical and Numerical Results <strong>of</strong> the System <strong>of</strong> Equations <strong>of</strong> Motion<br />

y1 exact (t) [m]<br />

y2 exact (t) [m]<br />

y1 approx (t) [m]<br />

y2 approx (t) [m]<br />

2<br />

0<br />

−2<br />

−4<br />

x Exact 10−5<br />

4<br />

Solution<br />

−6<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

x 10−5<br />

6<br />

−8<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x Numerical 10−5<br />

5<br />

0<br />

Solution (delta T = 0.005 s)<br />

−5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

x 10−5<br />

6<br />

−8<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

Figure 25: Analytical and Numerical Solutions – (a) Analytical solution with initial velocity<br />

condition at ˙y1(0) = 1 mm/s, ˙y2(0) = 0 mm/s, y1(0) = 0 mm and y2(0) = 0 mm; (b) Numerical<br />

solution (time step <strong>of</strong> 0.005 [s]) with the same initial conditions – Transient Analysis.<br />

41


1.7.7 Programming in Matlab – Frequency Response Analysis<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% MACHINERY DYNAMICS LECTURES (72213) %<br />

% IKS - DEPARTMENT OF CONTROL ENGINEERING DESIGN %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 2 D.O.F. SYSTEMS - FRF (FREQUENCY RESPONSE FUNCTION) %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E= 2e11; %elasticity modulus [N/m^2]<br />

b= 0.030 ; %width [m]<br />

h= 0.0012 ; %thickness [m]<br />

I= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m2+m5; %concentrated mass [Kg] |<br />

M2=m3+m4+m6; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*I/LL)*L2^3/L1^3; %equivalent Stiffness [N/m]<br />

K12= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K21= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K22= -12*(E*I/LL); %equivalent Stiffness [N/m]<br />

% Coefficients <strong>of</strong> the Damping Matrix<br />

D11= 2*0.01*(2*pi*5.0)*M1; %equivalent Damping [N/m]<br />

D12= 0; %equivalent Damping [N/m]<br />

D21= 0; %equivalent Damping [N/m]<br />

D22= 2*0.01*(2*pi*1.0)*M2; %equivalent Damping [N/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Damping Matrix<br />

D=[D11 D12; D21 D22];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1) %first natural frequency [Hz]<br />

w2=w(3) %second natural frequency [Hz]<br />

wexp1=0.625 %measured natural frequency [Hz]<br />

wexp2=4.405 %measured natural frequency [Hz]<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

42<br />

% FRF -- FREQUENCY RESPONSE FUNCTION<br />

N = 800 ; % number <strong>of</strong> points for plotting (see HP-Analyzer)<br />

N_factor = 100 ;<br />

% Given Excitation Function acting on the the point 1<br />

fo1 = 1 ; % [N] force amplitude acting on the point 1 <strong>of</strong> the beam<br />

fo2 = 0 ; % [N] force amplitude acting on the point 2 <strong>of</strong> the beam<br />

for i=1:N;<br />

F1(i)= fo1;<br />

F2(i)= fo2;<br />

end;<br />

% Calculation <strong>of</strong> the displacement, velocity and acceleration responses<br />

for i=1:N;<br />

w(i) = 2*pi*i/N_factor;<br />

j = sqrt(-1);<br />

AA = [(-M*w(i)*w(i)+K)+D*w(i)*j]; % Dynamical Stiffness Matrix<br />

x = inv(AA)*[F1(i) F2(i)]’; % Displacement (complex)<br />

x11(i) = x(1); % rail vibration displacement<br />

x21(i) = x(2); % sleeves displacement<br />

end;<br />

% Given Excitation Function acting on the the point 2<br />

fo1 = 0 ; % [N] force amplitude acting on the point 1 <strong>of</strong> the beam<br />

fo2 = 1 ; % [N] force amplitude acting on the point 2 <strong>of</strong> the beam<br />

for i=1:N;<br />

F1(i)= fo1;<br />

F2(i)= fo2;<br />

end;<br />

% Calculation <strong>of</strong> the displacement, velocity and acceleration responses<br />

for i=1:N;<br />

w(i) = 2*pi*i/N_factor;<br />

j = sqrt(-1);<br />

AA = [(-M*w(i)*w(i)+K)+D*w(i)*j]; % Dynamical Stiffness Matrix<br />

x = inv(AA)*[F1(i) F2(i)]’; % Displacement (complex)<br />

x12(i) = x(1); % rail vibration displacement<br />

x22(i) = x(2); % sleeves displacement<br />

end;<br />

% Plotting the results<br />

figure(1)<br />

subplot(2,2,1),plot(w/2/pi,abs(x11))<br />

title(’Excitation on Point 1 and Response <strong>of</strong> Point 1’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(a) y11 [m/N]’)<br />

grid on<br />

subplot(2,2,2),plot(w/2/pi,abs(x12))<br />

title(’Excitation on Point 2and Response <strong>of</strong> Point 1’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(b) y12[m/N]’)<br />

grid on<br />

subplot(2,2,3),plot(w/2/pi,abs(x21))<br />

title(’Excitation on Point 1 and Response <strong>of</strong> Point 2’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(c) y21 [m/N]’)<br />

grid on<br />

subplot(2,2,4),plot(w/2/pi,abs(x22))<br />

title(’Excitation on Point 2 and Response <strong>of</strong> Point 2’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(d) y22 [m/N]’)<br />

grid on


||y 1 (ω)|| [m/N]<br />

Phase [ o]<br />

Excitation on Point 1 and Response <strong>of</strong> Point 1<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

||y 2 (ω)|| [m/N]<br />

Phase [ o]<br />

Excitation on Point 1 and Response <strong>of</strong> Point 2<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

Figure 26: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

1.7.8 Understanding Resonances and Mode Shapes using your Eyes and Fingers<br />

• Understanding the ”90 Degree Phase between excitation force and displacement response<br />

while in Resonance” using tactile senses. In other words, understanding ”Zero Degree Phase<br />

between the excitation force and velocity response while in resonance” using tactile senses.<br />

• Visualization <strong>of</strong> the participation <strong>of</strong> modes shapes in the transient response – Visualization<br />

using your eyes! Transient motion <strong>of</strong> the physical system excited with different initial<br />

conditions by using your fingers!<br />

43


||y 1 (ω)|| [m/N]<br />

Phase [ o]<br />

Excitation on Point 2 and Response <strong>of</strong> Point 1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

||y 2 (ω)|| [m/N]<br />

Phase [ o]<br />

Excitation on Point 2 and Response <strong>of</strong> Point 2<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

Figure 27: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

44


||y i (ω)|| [m/N]<br />

Phase [ o]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

Excitation on Point 1<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

point 1<br />

point 2<br />

point 1<br />

point 2<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

||y i (ω)|| [m/N]<br />

Phase [ o]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

Excitation on Point 2<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

point 1<br />

point 2<br />

point 1<br />

point 2<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

Figure 28: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

45


Imag(y i (ω)/f 1 (ω)) (i=1,2) [m/N]<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

−0.6<br />

FRF − Excitation on Point 1<br />

point 1<br />

point 2<br />

−0.7<br />

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4<br />

Real(y (ω)/f (ω)) (i=1,2) [m/N]<br />

i 1<br />

Figure 29: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

46


Imag(y i (ω)/f 1 (ω)) (i=1,2) [m/N]<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

1<br />

0.5<br />

Real(y i (ω)/f 1 (ω)) (i=1,2) [m/N]<br />

0<br />

FRF − Excitation on Point 1<br />

−0.5<br />

0<br />

2<br />

4<br />

6<br />

Frequency [Hz]<br />

8<br />

point 1<br />

point 2<br />

Figure 30: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

47


1.7.9 Resonance – Experimental Analysis in Time Domain<br />

(a) Amplitude [m/s 2 ]<br />

1<br />

0<br />

−1<br />

x Signal 10−5<br />

2<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−2<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b) Amplitude [m/s 2 ]<br />

4<br />

3<br />

2<br />

1<br />

x 10 −6<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

(a) Amplitude [m/s 2 ]<br />

1<br />

0<br />

−1<br />

x Signal 10−5<br />

2<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−2<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b) Amplitude [m/s 2 ]<br />

8<br />

6<br />

4<br />

2<br />

x 10 −6<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 31: Resonance phenomena due to the excitation force with frequency around the natural<br />

frequency <strong>of</strong> the mass-spring system: 2 D.O.F. system with the natural frequencies <strong>of</strong> 0.62 Hz<br />

and 4.59, excited by the shaker – Spring-mass system ”A” with three masses m = m1+m2+m3 =<br />

0.573 Kg fixed at the beam length L2 = 0.610 m and three additional masses m = m4+m5+m6 =<br />

0.573 Kg fixed at the middle L1 = 0.310 m resulting in two natural frequencies <strong>of</strong> 0.62 Hz and<br />

4.60 Hz.<br />

48


1.8 Mechanical Systems with 3 D.O.F.<br />

1.8.1 Physical System and Mechanical Model<br />

(a)<br />

(b)<br />

(c)<br />

Figure 32: (a) Real mechanical system built by three turbines attached to an airplane flexible<br />

wing; (b) Laboratory prototype built by three lumped masses attached to a flexible beam); (c)<br />

Equivalent mechanical model with 3 D.O.F. for the three lumped masses attached to a flexible<br />

beam.<br />

1.8.2 Mathematical Model<br />

It is important to point out again, that the equations <strong>of</strong> motion in <strong>Dynamics</strong> <strong>of</strong> Machinery will<br />

frequently have the form <strong>of</strong> a second order differential equation: ¨y(t) = F(y(t), ˙y(t)). Such<br />

equations can generally be linearized around an operational position <strong>of</strong> the physical system,<br />

leading to second order linear differential equations. It means that the coefficients which are<br />

multiplying the variables ¨y1(t) , ˙y1(t) , y1(t) , ¨y2(t) , ˙y2(t) , y2(t) , ¨y3(t) , ˙y3(t) , y3(t) (coordinates<br />

chosen to describe the motion <strong>of</strong> the physical system) do not depend on the variables<br />

themselves. In the case <strong>of</strong> the mechanical model presented in figure 32, these coefficients are<br />

constants: m1, m2 and m3 are related to the masses; d11, d12, d13, d21, d22, d23, d31, d32 and<br />

d33 are related to the equivalent viscous damping; and k11, k12, k13, k21, k22, k23, k31, k32 and<br />

k33 are related to equivalent stiffness. One <strong>of</strong> the goals <strong>of</strong> the course (<strong>Dynamics</strong> <strong>of</strong> <strong>Machines</strong>) is<br />

to present theoretical or experimental approaches to properly find these coefficients, so that the<br />

49


equations <strong>of</strong> motion can really describe the movement <strong>of</strong> the physical system.<br />

After creating the mechanical model for the physical system, the next step is to derive the<br />

equation <strong>of</strong> motion based on the mechanical model. The mechanical model is built by lumped<br />

masses m1, m2, m1 (assumption !!!), springs with equivalent stiffness coefficient (calculated<br />

using Beam Theory) and dampers with equivalent viscous coefficient (obtained experimentally).<br />

While creating the mechanical model and assuming that the mass is a particle, the equation <strong>of</strong><br />

motion can be derived using Newton’s or Lagrange axioms. For the 3 D.O.F system one can<br />

write:<br />

M¨y(t) + D˙y(t) + Ky(t) = f(t) (75)<br />

or<br />

⎡<br />

⎣<br />

m11 m12 m13<br />

m21 m21 m23<br />

m31 m32 m33<br />

The mass coefficients<br />

⎫<br />

m11 = m1 + m2<br />

m12 = 0<br />

m13 = 0<br />

m21 = 0<br />

m22 = m3 + m4<br />

m23 = 0<br />

m31 = 0<br />

m32 = 0<br />

m33 = m5 + m6<br />

⎤⎧<br />

⎨ ¨y1<br />

⎦ ¨y2<br />

⎩<br />

¨y3<br />

⎪⎬<br />

⎪⎭<br />

⎫<br />

⎬<br />

⎭ +<br />

⎡<br />

⎣<br />

d11 d12 d13<br />

d21 d22 d23<br />

d31 d32 d33<br />

⎡<br />

+ ⎣<br />

⎤⎧<br />

⎨<br />

⎦<br />

⎩<br />

˙y1<br />

˙y2<br />

˙y3<br />

k11 k12 k13<br />

k21 k22 k23<br />

k31 k32 k33<br />

⎫<br />

⎬<br />

⎭ +<br />

⎤⎧<br />

⎨<br />

⎦<br />

⎩<br />

y1<br />

y2<br />

y3<br />

⎫<br />

⎬<br />

⎭ =<br />

⎧<br />

⎨<br />

⎩<br />

f1<br />

f2<br />

f3<br />

⎫<br />

⎬<br />

⎭ ejωt<br />

can easily be achieved either by measuring the masses or by having the material density and<br />

mass dimensions.<br />

The equivalent damping coefficients can be approximated by<br />

d11 = 2ξ k11m11<br />

d12 = 0<br />

d13 = 0<br />

d21 = 0<br />

d22 = 2ξ k22m22<br />

d23 = 0<br />

d31 = 0<br />

d32 = 0<br />

d33 = 2ξ ⎫<br />

⎪⎬<br />

(Approximation!!!) (78)<br />

⎪⎭<br />

k33m33<br />

or by assuming, for example, proportional damping D = αM + βK. The coefficients α and β<br />

can be chosen, so that the damping factor ξ <strong>of</strong> the first resonance is <strong>of</strong> the same order as the<br />

damping factor achieved in the previous section. Please, note that this is just an approximation<br />

50<br />

(76)<br />

(77)


which could be verified using Modal Analysis Techniques. Another way <strong>of</strong> approximating the<br />

damping coefficients is given by eq.(78), which should also be verified through experiments!<br />

The stiffness coefficients<br />

k11 =<br />

3EIL 3 2 (L2 − 4L3)<br />

L 3 1 (L1 − L2) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k12 = −3EI(−3L2(L2 − 2L3)L3 + L1(L 2 2 − 2L2L3 − 2L 2 3 ))<br />

L1(L1 − L2) 2 (L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k13 =<br />

−9EIL 2 2<br />

L1(L1 − L2)(L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k21 = −3EI(−3L2(L2 − 2L3)L3 + L1(L 2 2 − 2L2L3 − 2L 2 3 ))<br />

L1(L1 − L2) 2 (L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k22 =<br />

k23 =<br />

k31 =<br />

k32 =<br />

k33 =<br />

3EI(L1 − 4L3)(L1 − L3) 2<br />

(L1 − L2) 2 (L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

−3EI(L 2 1 − 2L1L2 − 2L 2 2 − 3L1L3 + 6L2L3)<br />

(L1 − L2)(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

−9EIL2 2<br />

L1(L1 − L2)(L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

−3EI(L 2 1 − 2L1L2 − 2L 2 2 − 3L1L3 + 6L2L3)<br />

(L1 − L2)(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

3EI(L1 − 4L2)<br />

(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

can be calculated using the geometry <strong>of</strong> the beam (I, L1 , L2, L3) and its material properties (E),<br />

according to section 1.3. You can try to get these coefficients using the information presented<br />

in section 1.5.<br />

Differential Equations 2nd order → 1st order<br />

<br />

M D ¨y<br />

0 M ˙y<br />

+<br />

<br />

0 K ˙y<br />

−M 0 y<br />

=<br />

<br />

¯f<br />

0<br />

A˙z(t) + Bz(t) = fe jωt<br />

z(t) =<br />

˙y(t)<br />

y(t)<br />

⎧<br />

⎪⎨<br />

=<br />

⎪⎩<br />

˙y1(t)<br />

˙y2(t)<br />

˙y3(t)<br />

y1(t)<br />

y2(t)<br />

y3(t)<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

→ velocity<br />

→ velocity<br />

→ velocity<br />

→ displacement<br />

→ displacement<br />

→ displacement<br />

51<br />

<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

e jωt<br />

(79)<br />

(80)<br />

(81)


The analytical solution can be divided into three steps: (I) homogeneous solution (transient analysis);<br />

(<strong>II</strong>) permanent solution (steady-state analysis) and (<strong>II</strong>I) general solution (homogeneous<br />

+ permanent), as mentioned in section 1.7.3. Introducing the initial conditions <strong>of</strong> displacement<br />

and velocity<br />

zini = { v1ini<br />

one gets<br />

v2ini v3ini y1ini y2ini y3ini }T<br />

z(t) = C1u1e λ1t + C2u2e λ2t + C3u3e λ3t + C4u4e λ4t + C5u5e λ5t + C6u6e λ6t + Ae iωt<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

C1<br />

C2<br />

C3<br />

C4<br />

C5<br />

C6<br />

where<br />

<br />

λ1 = −ξ1ωn1 − ωn1 1 − ξ2 1 · i<br />

<br />

and u1<br />

λ2 = −ξ1ωn1 + ωn1 1 − ξ2 1 · i<br />

<br />

and u2<br />

λ3 = −ξ2ωn2 − ωn2 1 − ξ2 2 · i<br />

<br />

and u3<br />

λ4 = −ξ2ωn2 + ωn2 1 − ξ2 2 · i<br />

<br />

and u4<br />

λ5 = −ξ3ωn3 − ωn3 1 − ξ2 3 · i<br />

<br />

and u5<br />

λ6 = −ξ3ωn3 + ωn3 1 − ξ2 3 · i and u6<br />

⎫<br />

A = [jωA + B] −1 f<br />

⎪⎬<br />

= [ u1 u2 u3 u4 u5 u6 ] −1 { zini − A}<br />

⎪⎭<br />

1.8.3 Programming in Matlab – Theoretical Parameter Studies and Experimental<br />

Validation<br />

52<br />

(83)<br />

(82)


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% MACHINERY DYNAMICS LECTURES (72213) %<br />

% IKS - DEPARTMENT OF CONTROL ENGINEERING DESIGN %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 3 D.O.F. SYSTEMS - 4 DIFFERENT EXPERIMENTAL CASES %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

%Concentred Masses Values<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E= 2.07e11; %elasticity modulus [N/m^2]<br />

b= 0.030 ; %width [m]<br />

h= 0.0012 ; %thickness [m]<br />

Iz= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1; %concentrated mass [Kg] |<br />

M2=m2; %concentrated mass [Kg] |<br />

M3=m3; %concentrated mass [Kg] |<br />

L1= 0.203; %length for positioning M1 [m] |<br />

L2= 0.406; %length for positioning M2 [m] |<br />

L3= 0.610; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

53<br />

wexp1=1.031 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=7.000 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=19.312 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;<br />

% (2.CASE) Increasing the Mass Values<br />

% Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m4; %concentrated mass [Kg] |<br />

M2=m2+m5; %concentrated mass [Kg] |<br />

M3=m3+m6; %concentrated mass [Kg] |<br />

L1= 0.203; %length for positioning M1 [m] |<br />

L2= 0.406; %length for positioning M2 [m] |<br />

L3= 0.610; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

wexp1=0.71875 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=5.125 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=14.312 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;


% (3.CASE) Changing the Position <strong>of</strong> the Concentrated Masses<br />

% Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m2; %concentrated mass [Kg] |<br />

M2=m3+m4; %concentrated mass [Kg] |<br />

M3=m5+m6; %concentrated mass [Kg] |<br />

L1= 0.150; %length for positioning M1 [m] |<br />

L2= 0.300; %length for positioning M2 [m] |<br />

L3= 0.450; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

wexp1=1.094 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=7.188 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=20.25 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;<br />

54<br />

% (4.CASE) Changing the Position and the Values <strong>of</strong> the Concentrated Masses<br />

% Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m4+m5; %concentrated mass [Kg] |<br />

M2=m2+m6; %concentrated mass [Kg] |<br />

M3=m3; %concentrated mass [Kg] |<br />

L1= 0.150; %length for positioning M1 [m] |<br />

L2= 0.300; %length for positioning M2 [m] |<br />

L3= 0.450; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

exp1=1.312 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=7.219 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=18.000 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;


1.8.4 Theoretical Frequency Response Function<br />

(a) y11 [m/N]<br />

(d) y21 [m/N]<br />

(c) y31 [m/N]<br />

0.1<br />

0.05<br />

Excitation on Point 1<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

(b) y12 [m/N]<br />

(a) y22 [m/N]<br />

(d) y32 [m/N]<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Excitation on Point 2<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

(c) y13 [m/N]<br />

(b) y23 [m/N]<br />

(d) y33 [m/N]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Excitation on Point 3<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

3<br />

2<br />

1<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

Figure 33: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m33 = m1 + m2 = 0.382 Kg are attached at<br />

its free end (L = 0.610 m), two additional masses m22 = m3 + m4 = 0.382 Kg are attached<br />

at L = 0.410 m and two additional masses m11 = m5 + m6 = 0.382 Kg are attached at<br />

L = 0.210 m – – Natural frequencies <strong>of</strong> the 3 D.O.F. mass-spring system ”A”: 1.03 Hz,<br />

7.00 Hz and 19.31 Hz.<br />

55


1.8.5 Experimental – Natural Frequencies<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

x Signal 10−4<br />

3<br />

1<br />

(a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

2<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 34: Transient Vibration – Acceleration <strong>of</strong> the clamped-free flexible beam when two concentrated<br />

masses m = m1 + m2 = 0.382 Kg are attached at its free end (L3 = 0.610 m), two<br />

additional masses m = m1 + m2 = 0.382 Kg are attached at its length (L2 = 0.410 m) and two<br />

additional masses m = m1 +m2 = 0.382 Kg are attached at its length (L1 = 0.210 m) – Natural<br />

frequencies <strong>of</strong> the 3 D.O.F. mass-spring system ”A”: 1.03 Hz, 7.00 Hz and 19.31 Hz.<br />

1.8.6 Experimental – Resonances and Mode Shapes<br />

• Visualization <strong>of</strong> the participation <strong>of</strong> modes shapes in the transient response – Visualization<br />

using your eyes! Transient motion <strong>of</strong> the physical system excited with different initial<br />

conditions by using your fingers!<br />

• Applying an oscillatory excitation by using your finger at the 3 different points <strong>of</strong> the<br />

physical system (co-ordinates <strong>of</strong> the mechanical model) and detecting the participation <strong>of</strong><br />

the mode shapes in the permanent solution or steady-state response by using your eyes.<br />

56


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1.5<br />

1<br />

0.5<br />

x 10 −5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

1.5<br />

0.5<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1<br />

x 10 −5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

1.5<br />

0.5<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1<br />

x 10 −5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 35: Resonance phenomena due to the excitation force with frequencies around the natural<br />

frequencies <strong>of</strong> the mass-spring system: 3 D.O.F. system with the natural frequencies <strong>of</strong> 0.75 Hz,<br />

5.12 Hz and 14.68 Hz, excited by the shaker – Spring-mass system ”A” with two masses m =<br />

m1 + m2 = 0.382 Kg fixed at the beam length L3 = 0.610 m, two additional masses fixed at<br />

L2 = 0.410 m and two more at L1 = 0.210 m.<br />

57


1.9 Exercises<br />

• Answer the questions using the Matlab program d<strong>of</strong>1-integration.m:<br />

1. Vary the cross section parameters <strong>of</strong> the beam (b,h) while exciting the mass-spring system<br />

with just an initial velocity (initial displacement and excitation force are set zero). (a)<br />

Explain what happens with the natural frequency <strong>of</strong> the mass-spring system; (b) What<br />

happens with the maximum vibration amplitude <strong>of</strong> the system?<br />

2. Vary the beam length (L) while exciting the mass-spring system with just an initial velocity<br />

(initial displacement and excitation force are set zero). (a) Explain what happens with<br />

the natural frequency <strong>of</strong> the mass-spring system; (b) What happens with the maximum<br />

vibration amplitude <strong>of</strong> the system?<br />

3. Vary the number <strong>of</strong> masses attached to the beam while exciting the mass-spring system with<br />

just an initial velocity (initial displacement and excitation force are set zero). (a) Explain<br />

what happens with the natural frequency <strong>of</strong> the mass-spring system; (b) What happens<br />

with the maximum vibration amplitude <strong>of</strong> the system?<br />

4. Vary the damping factor ξ while exciting the mass-spring-damping system with just an<br />

initial velocity (initial displacement and excitation force are set zero). (a) Explain what<br />

happens with the natural frequency wn <strong>of</strong> the mass-spring system and the damped natural<br />

frequency wd; (b) What happens with the maximum vibration amplitude <strong>of</strong> the system?<br />

5. Set the damping factor ξ = 0.005 while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f = 0.1 · e j·w·t [N] and initial velocity (initial displacement is set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies<br />

when: (a) w = 10%wn; (b) w = 50%wn; (c) w = 90%wn; (d) w = wn; (e) w = 110%wn; (f)<br />

w = 150%wn and (g) w = 200%wn.<br />

6. Set the damping factor at 10 times more than before, ξ = 0.05, while exciting the massspring-damping<br />

system with just an excitation force <strong>of</strong> f = 0.1·e j·w·t [N] and initial velocity<br />

(initial displacement is set zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong><br />

amplitudes and frequencies when: (a) w = 10%wn; (b) w = 50%wn; (c) w = 90%wn; (d)<br />

w = wn; (e) w = 110%wn; (f) w = 150%wn and (g) w = 200%wn.<br />

7. Explain how this parameters variation could be useful in the case <strong>of</strong> a real machine?<br />

• Answer the questions using the Matlab program d<strong>of</strong>2-integration.m:<br />

1. Excite the mass-spring system just with an initial velocity at the first coordinate ( ˙y1ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> points y1 and y2.<br />

2. Excite the mass-spring system just with an initial velocity at the second coordinate ( ˙y2ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> points y1 and y2.<br />

3. Compare the two last simulations. Why is the transient behavior so different when the<br />

system is perturbed with initial velocity at point y1 or at point y2?<br />

58


4. Vary the number <strong>of</strong> masses attached to the first coordinate y1 the beam while exciting<br />

the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini ) (initial<br />

displacements and excitation forces are set zero). (a) Explain what happens with the natural<br />

frequencies <strong>of</strong> the system; (b) How many natural frequencies change when you change the<br />

mass in just one point <strong>of</strong> the structure? Explain.<br />

5. Vary the number <strong>of</strong> masses attached to the second coordinate <strong>of</strong> the beam, y2, while exciting<br />

the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini ) (initial<br />

displacements and excitation forces are set zero). (a) Explain what happens with the natural<br />

frequencies <strong>of</strong> the system; (b) How many natural frequencies change when you change the<br />

mass in just one point <strong>of</strong> the structure? Explain.<br />

6. Set the damping factor ξ = 0.005, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f1 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2.<br />

7. Set the damping factor ξ = 0.05, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f1 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2.<br />

8. Set the damping factor ξ = 0.005, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f2 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2.<br />

9. Set the damping factor ξ = 0.05, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f2 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2;<br />

10. Explain how the variation <strong>of</strong> such parameters could be useful in a case with a real machine?<br />

• Create a program d<strong>of</strong>3-integration.m based on d<strong>of</strong>2-integration.m and answer the following<br />

questions:<br />

1. Make use <strong>of</strong> the beam theory, and show how to get the 9 stiffness coefficients k11, k12, k13,<br />

k21, k22, k23, k31, k32 and k33.<br />

2. Excite the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> the points y1, y2 and y3.<br />

3. Excite the mass-spring system with just an initial velocity at the second coordinate ( ˙y2ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> the points y1, y2 and y3.<br />

59


4. Excite the mass-spring system with just an initial velocity at the third coordinate ( ˙y3ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> the points y1, y2 and y3.<br />

5. Compare the three last simulations. Why is the transient behavior so different when the<br />

system is perturbed with initial velocity at point y1, y2 or y3.<br />

6. Vary the number <strong>of</strong> masses attached to the first coordinate <strong>of</strong> the beam, y1, while exciting<br />

the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini ) (initial<br />

displacements and excitation forces are set zero). (a) Explain what happens with the natural<br />

frequencies <strong>of</strong> the system; (b) How many natural frequencies change when you change the<br />

mass in just one point <strong>of</strong> the structure? Explain.<br />

7. Vary the number <strong>of</strong> masses attached to the second coordinate <strong>of</strong> the beam, y2, while exciting<br />

the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini ) (initial<br />

displacements and excitation forces are set zero). (a) Explain what happens with the natural<br />

frequencies <strong>of</strong> the system; (b) How many natural frequencies change when you change the<br />

mass in just one point <strong>of</strong> the structure? Explain.<br />

8. Set the damping factor ξ = 0.005, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f1 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2; (j) w = 90%wn3; (k)<br />

w = wn3; (l) w = 110%wn3; (m) w = 200%wn3.<br />

9. Set the damping factor ξ = 0.05, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f1 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2; (j) w = 90%wn3; (k)<br />

w = wn3; (l) w = 110%wn3; (m) w = 200%wn3.<br />

10. Set the damping factor ξ = 0.005, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f3 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2; (j) w = 90%wn3; (k)<br />

w = wn3; (l) w = 110%wn3; (m) w = 200%wn3.<br />

11. Set the damping factor ξ = 0.05, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f3 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2; (j) w = 90%wn3; (k)<br />

w = wn3; (l) w = 110%wn3; (m) w = 200%wn3;<br />

12. Explain how such a variation <strong>of</strong> parameters could be useful in a case with a real machine?<br />

60


1.10 Project 0 – Identification <strong>of</strong> Model Parameters (An Example)<br />

GOAL – With the first project the student will face a practical problem <strong>of</strong> the real life: how<br />

to properly choose the coefficients <strong>of</strong> linear differential equations <strong>of</strong> second order, aiming at<br />

achieving a reliable mathematical model, which can predict the machine dynamics?<br />

(a) (b)<br />

Figure 36: (a) Offshore platform http : //www.civl.port.ac.uk/comp−prog/<strong>of</strong>fshore−platforms;<br />

(b) Laboratory prototype composed <strong>of</strong> one concentrated mass (foundation and rotor) attached<br />

to four flexible beams – An equivalent model <strong>of</strong> 1 D.O.F. system for analyzing the platform’s<br />

linear vibration in the horizontal direction.<br />

To represent the 2D-movements <strong>of</strong> the <strong>of</strong>fshore platform shown in figure 36(a) a laboratory<br />

prototype was built, as it can be seen in figure 36(b). This simplified test rig is composed <strong>of</strong> one<br />

concentrated mass (foundation and rotor) attached to four flexible beams. An equivalent model<br />

<strong>of</strong> 1 D.O.F. system can be created with the purpose <strong>of</strong> analyzing the platform’s linear vibration<br />

in the horizontal direction.<br />

m0 2.108 [kg] platform mass<br />

L0 0.205 [m] beam length<br />

b0 0.025 [m] beam width<br />

h0 0.001 [m] beam thickness<br />

E 1.9 · 10 11 [N/m 2 ] steel elastic modulus<br />

Table 5: Main parameters <strong>of</strong> the test rig (platform)<br />

1. Create a mechanical model <strong>of</strong> one-degree-<strong>of</strong>-freedom for describing the horizontal vibration<br />

<strong>of</strong> the test rig. Use Newton’s law and equivalent coefficients <strong>of</strong> mass m [Kg], viscous<br />

damping d [N/(m/s)] and linear stiffness k [N/m].<br />

2. There are two different ways <strong>of</strong> experimentally obtaining the forced vibration response<br />

<strong>of</strong> the platform in the frequency domain, i.e. its frequency response functions FRF(ω),<br />

namely by means <strong>of</strong> H1(ω) and H2(ω) functions. Detail about how to experimentally<br />

obtain H1(ω) and H2(ω) will be given in the second part <strong>of</strong> manuscript. Anyway, for now,<br />

it is important to relate such experimental functions to the frequency response functions<br />

61


presented in section 1.6.9, to learn how to deal with experimental data and how to extract<br />

important information. H1(ω) as well as H2(ω) are obtained when an excitation force<br />

is horizontally acting on the platform mass and its value is measured by using a force<br />

transducer, and simultaneously the acceleration response <strong>of</strong> the platform is measured using<br />

a acceleration sensor. The experimental setup can be seen in figure 36(b). The most<br />

common ways <strong>of</strong> representing the frequency response functions H1(ω) and H2(ω) are in<br />

the form <strong>of</strong> amplitude and phase, or real and imaginary. In table 6 such values are presented<br />

in the real and imaginary forms and in figure 37 they are plotted. Please, plot H1(ω) and<br />

H2(ω) in terms <strong>of</strong> magnitude and phase.<br />

Frequency - H1 - H2 COHERENCE<br />

[Hz] [(m/s 2 )/N] [(m/s 2 )/N]<br />

1.6250 0.0490 - 0.0040i 0.0595 - 0.0049i 0.8236<br />

1.7500 0.0610 - 0.0051i 0.0698 - 0.0058i 0.8745<br />

1.8750 0.0750 - 0.0071i 0.0855 - 0.0080i 0.8776<br />

2.0000 0.0826 - 0.0068i 0.0945 - 0.0078i 0.8744<br />

2.1250 0.0974 - 0.0025i 0.1093 - 0.0028i 0.8907<br />

2.2500 0.1124 + 0.0015i 0.1204 + 0.0016i 0.9335<br />

2.3750 0.1310 - 0.0018i 0.1393 - 0.0019i 0.9403<br />

2.5000 0.1411 - 0.0100i 0.1477 - 0.0105i 0.9555<br />

2.6250 0.1540 - 0.0112i 0.1601 - 0.0116i 0.9621<br />

2.7500 0.1817 - 0.0040i 0.1889 - 0.0041i 0.9619<br />

2.8750 0.2113 - 0.0145i 0.2184 - 0.0150i 0.9677<br />

3.0000 0.2474 - 0.0172i 0.2520 - 0.0176i 0.9819<br />

3.1250 0.2676 - 0.0230i 0.2726 - 0.0234i 0.9817<br />

3.2500 0.3016 - 0.0364i 0.3080 - 0.0371i 0.9792<br />

3.3750 0.3460 - 0.0487i 0.3536 - 0.0497i 0.9787<br />

3.5000 0.4072 - 0.0467i 0.4173 - 0.0479i 0.9758<br />

3.6250 0.4601 - 0.0673i 0.4697 - 0.0687i 0.9795<br />

3.7500 0.5107 - 0.0903i 0.5165 - 0.0914i 0.9887<br />

3.8750 0.5894 - 0.1239i 0.5974 - 0.1256i 0.9866<br />

4.0000 0.6862 - 0.1427i 0.6994 - 0.1454i 0.9812<br />

4.1250 0.8110 - 0.1959i 0.8228 - 0.1987i 0.9857<br />

4.2500 0.9381 - 0.2824i 0.9539 - 0.2872i 0.9834<br />

4.3750 1.1113 - 0.4002i 1.1429 - 0.4116i 0.9723<br />

4.5000 1.3290 - 0.5385i 1.3711 - 0.5556i 0.9693<br />

4.6250 1.5586 - 0.8030i 1.6312 - 0.8405i 0.9555<br />

4.7500 1.8764 - 1.4666i 1.9844 - 1.5509i 0.9456<br />

4.8750 1.8832 - 2.0905i 2.0664 - 2.2938i 0.9114<br />

5.0000 1.2159 - 3.1027i 1.3216 - 3.3723i 0.9201<br />

5.1250 0.2098 - 3.6778i 0.2413 - 4.2301i 0.8694<br />

5.2500 -1.6165 - 3.2734i -1.7564 - 3.5568i 0.9203<br />

5.3750 -2.2154 - 2.3597i -2.3326 - 2.4844i 0.9498<br />

5.5000 -2.1657 - 1.4778i -2.2476 - 1.5337i 0.9635<br />

5.6250 -1.9289 - 1.1157i -1.9659 - 1.1371i 0.9812<br />

5.7500 -1.7058 - 0.8104i -1.7278 - 0.8208i 0.9873<br />

5.8750 -1.5511 - 0.6322i -1.5665 - 0.6384i 0.9902<br />

6.0000 -1.4389 - 0.5016i -1.4438 - 0.5033i 0.9966<br />

6.1250 -1.3520 - 0.4295i -1.3559 - 0.4307i 0.9971<br />

6.2500 -1.2591 - 0.3428i -1.2621 - 0.3436i 0.9976<br />

6.3750 -1.1843 - 0.3000i -1.1866 - 0.3006i 0.9980<br />

6.5000 -1.1241 - 0.2668i -1.1264 - 0.2673i 0.9980<br />

6.6250 -1.0716 - 0.2302i -1.0725 - 0.2304i 0.9991<br />

6.7500 -1.0206 - 0.2121i -1.0216 - 0.2123i 0.9990<br />

6.8750 -0.9715 - 0.1980i -0.9722 - 0.1981i 0.9993<br />

7.0000 -0.9376 - 0.1766i -0.9384 - 0.1767i 0.9992<br />

7.1250 -0.9073 - 0.1613i -0.9077 - 0.1614i 0.9995<br />

7.2500 -0.8793 - 0.1528i -0.8797 - 0.1529i 0.9995<br />

7.3750 -0.8516 - 0.1459i -0.8519 - 0.1459i 0.9996<br />

7.5000 -0.8271 - 0.1377i -0.8273 - 0.1377i 0.9998<br />

7.6250 -0.8107 - 0.1259i -0.8109 - 0.1260i 0.9997<br />

7.7500 -0.7879 - 0.1204i -0.7881 - 0.1204i 0.9997<br />

7.8750 -0.7695 - 0.1170i -0.7696 - 0.1170i 0.9998<br />

8.0000 -0.7513 - 0.1098i -0.7515 - 0.1098i 0.9998<br />

8.1250 -0.7374 - 0.1058i -0.7376 - 0.1059i 0.9998<br />

8.2500 -0.7240 - 0.1038i -0.7242 - 0.1038i 0.9998<br />

8.3750 -0.7122 - 0.0994i -0.7123 - 0.0994i 0.9998<br />

8.5000 -0.6963 - 0.0949i -0.6964 - 0.0950i 0.9998<br />

8.6250 -0.6861 - 0.0930i -0.6862 - 0.0930i 0.9999<br />

8.7500 -0.6792 - 0.0897i -0.6793 - 0.0897i 0.9998<br />

8.8750 -0.6705 - 0.0886i -0.6706 - 0.0886i 0.9998<br />

9.0000 -0.6606 - 0.0847i -0.6607 - 0.0847i 0.9999<br />

9.1250 -0.6544 - 0.0815i -0.6545 - 0.0815i 0.9998<br />

9.2500 -0.6463 - 0.0793i -0.6465 - 0.0794i 0.9997<br />

9.3750 -0.6365 - 0.0765i -0.6367 - 0.0765i 0.9997<br />

9.5000 -0.6287 - 0.0774i -0.6289 - 0.0774i 0.9997<br />

9.6250 -0.6250 - 0.0762i -0.6253 - 0.0762i 0.9996<br />

9.7500 -0.6207 - 0.0722i -0.6209 - 0.0722i 0.9997<br />

9.8750 -0.6160 - 0.0711i -0.6162 - 0.0711i 0.9997<br />

10.0000 -0.6081 - 0.0741i -0.6083 - 0.0741i 0.9998<br />

Table 6: Two experimental frequency response functions H1(ω) and H2(ω) <strong>of</strong> the test rig.<br />

3. Identification <strong>of</strong> model parameters – Suppose you have no access to the values <strong>of</strong> mass<br />

62


(a)<br />

(b)<br />

REAL(Acc/force) [(m/s 2 )/N]<br />

REAL(Acc/force) [(m/s 2 )/N]<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

Experimental Frequency Response Function (with damper)<br />

measured<br />

−15<br />

0 1 2 3 4 5<br />

Frequency [Hz]<br />

6 7 8 9 10<br />

IMAG(Acc/force) [(m/s 2 )/N]<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

measured<br />

0 1 2 3 4 5<br />

Frequency [Hz]<br />

6 7 8 9 10<br />

Experimental Frequency Response Function (with damper)<br />

measured<br />

−15<br />

0 1 2 3 4 5<br />

Frequency [Hz]<br />

6 7 8 9 10<br />

IMAG(Acc/force) [(m/s 2 )/N]<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

measured<br />

0 1 2 3 4 5<br />

Frequency [Hz]<br />

6 7 8 9 10<br />

Figure 37: Two experimental frequency response function FRF(ω) <strong>of</strong> the test rig obtained by<br />

means <strong>of</strong> H1(ω) and H2(ω) functions.<br />

63


m [kg], damping d [N/(m/s)] and stiffness k [N/m] <strong>of</strong> the platform and then can not be<br />

calculated. However, you can measure the forces applied to the platform and its acceleration<br />

response (steady-state response) and are able to experimentally obtain the frequency response<br />

function presented in table 1 6 and plotted in figure 37. Remember that the frequency<br />

response function is acceleration/force in this case, or<br />

FRF(ω) =<br />

−ω 2 /m<br />

(−ω 2 + ω 2 n + 2 · ξ · ωn · ω · i) =<br />

−ω 2<br />

(−m · ω 2 + d · ω · i + k)<br />

Elaborate a simple parameter identification procedures based on the Least-Square Method,<br />

assuming that the frequency response functions FRF(ω) are known, and identify simultaneously<br />

the three parameter, i.e. mass, stiffness and damping:<br />

⎡<br />

⎢<br />

⎣<br />

−ω 2 1 1<br />

−ω 2 2 1<br />

−ω 2 3 1<br />

... ...<br />

−ω 2 N 1<br />

⎤<br />

⎥<br />

⎥ m<br />

⎥<br />

⎦ k<br />

⎧<br />

⎪⎩<br />

<br />

REAL<br />

<br />

REAL<br />

⎪⎨ <br />

= REAL<br />

<br />

...<br />

REAL<br />

ω2 1<br />

FRF(ω1)<br />

ω2 2<br />

FRF(ω2)<br />

ω2 3<br />

FRF(ω3)<br />

ω 2 N<br />

FRF(ωN)<br />

<br />

<br />

<br />

<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

(84)<br />

=⇒ A · x = b (85)<br />

x = A T · A −1 · A T · b (86)<br />

⎡<br />

⎢<br />

⎣<br />

ω1<br />

ω2<br />

ω3<br />

...<br />

ωN<br />

⎤<br />

⎧<br />

<br />

IMAG<br />

<br />

IMAG<br />

⎥ ⎪⎨ ⎥<br />

<br />

⎥ d = IMAG<br />

⎦<br />

<br />

...<br />

⎪⎩ IMAG<br />

ω2 1<br />

FRF(ω1)<br />

ω2 2<br />

FRF(ω2)<br />

ω2 3<br />

FRF(ω3)<br />

ω 2 N<br />

FRF(ωN)<br />

<br />

<br />

<br />

<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

=⇒ Ā · ¯x = ¯ b (87)<br />

¯x = Ā T · Ā −1 · Ā T · ¯ b (88)<br />

Implement the identification procedure using MAPLE, or MATHEMATICA or MATLAB or<br />

MATCAD or another s<strong>of</strong>tware. Use H1(ω) as well as H2(ω) for identifying the coefficients<br />

<strong>of</strong> mass m [kg], stiffness k [N/m] and damping d [N/(m/s)].<br />

4. Find theoretical and experimental ways <strong>of</strong> checking the identified values <strong>of</strong> mass, stiffness<br />

and damping, in order to assure that such values are really the correct mass, stiffness and<br />

damping coefficients <strong>of</strong> the real system. The more ”checking procedures” you can find, the<br />

better! Explain them all in details.<br />

5. Model application – On the platform top a rotating machine is mounted, as it can be seen in<br />

figure.36(b). Its characteristics are delivered by the manufacturer. The maximum angular<br />

velocity is 1, 200 [rpm] (20 [Hz]). It is also known that the machine unbalance (m unb · ε) is<br />

0.00012 [Kg · m]. By using your mathematical model, plot the vibration amplitude <strong>of</strong> the<br />

platform as a function <strong>of</strong> the machine angular velocity. Determine the maximum vibration<br />

amplitude <strong>of</strong> the platform.<br />

1 It is important to notice that the values <strong>of</strong> H1(ω) and H2(ω) presented in table 6 are −H1(ω) and −H2(ω).<br />

When using the values <strong>of</strong> such functions to identify the model parameters, they have to be multiplied by -1.<br />

64


6. Model application – As explained in the last item, the motor characteristics are delivered<br />

by the manufacturer. The maximum angular velocity is 1, 200 [rpm] (20 [Hz]). It is also<br />

known that the machine unbalance (m unb · ε) is 0.00012 [Kg · m]. Based on the dynamic<br />

equilibrium between motor torque, and torques associated to inertia, losses and external<br />

loading, the motor start-up curve shows a linear variation <strong>of</strong> angular velocity from 0 to<br />

1, 200 [rpm] in a period <strong>of</strong> 40 [s]. Based on your mathematical model, please simulate<br />

computationally the vibration behavior <strong>of</strong> the platform during the period <strong>of</strong> 40 [s], knowing<br />

that, when the motor starts, the platform is already deformed due to a constant lateral<br />

wind. The platform static deformation is 0.001 [m]. Plot the platform displacement in<br />

the time domain, considering two cases: (a) considering the static wind force acting on<br />

the platform the whole time; (b) considering the lateral wind force suddenly disappears 30<br />

[s] after the motor start-up. Analyze and discuss the behavior <strong>of</strong> the plots. What is the<br />

maximum vibration amplitude <strong>of</strong> the platform in both cases?<br />

7. Question – Explain why the test rig can be modelled as an one-degree-<strong>of</strong>-freedom system in<br />

the range <strong>of</strong> 0 to 10 Hz, if one knows that a rigid body in the space (platform mass <strong>of</strong> the<br />

test rig) should be represented by a mechanical model <strong>of</strong> six-degrees-<strong>of</strong>-freedom, i.e. three<br />

linear and three angular displacements.<br />

8. Write your final conclusions.<br />

(No Technical report!)<br />

65


1.11 Project 1 – Modal Analysis & Validation <strong>of</strong> Models<br />

GOAL – To get familiar with the dynamic interaction between machine and structure, the elaboration<br />

<strong>of</strong> mechanical and mathematical models for representing rotor-structure vibrations in<br />

2D, implementation and vibration analysis using Matlab, visualization <strong>of</strong> natural frequencies and<br />

mode shapes. To test the accuracy <strong>of</strong> an analytical mathematical model proposed for describing<br />

the system dynamic behavior, i.e. natural frequencies and mode shapes. Remember, if the measured<br />

frequencies and mode shapes agree with those predicted by the analytical mathematical<br />

model, the model is verified and can be useful for design proposes and vibration predictions with<br />

some confidence. Otherwise, the analytical models are useless.<br />

(a) (b)<br />

Figure 38: Machine-structure dynamical interaction – (a) Offshore platform http :<br />

//www.oil−gas.uwa.edu.au/Troll−A−Graphics.htm; (b) Equivalent laboratory prototype composed<br />

<strong>of</strong> four concentrated masses attached to four flexible beams: 1- mass on the first floor, 2mass<br />

on the second floor, 3- mass on the third floor, 4- mass on the fourth floor, 5- motor-disk<br />

with unbalanced masses for simulating a rotating machine with unbalance problems, 6- acceleration<br />

sensor attached to the second mass, 7- acceleration sensor attached to the third mass,<br />

8- magnetic actuator for simulating wave excitation, 9- magnetic actuator for simulating waves<br />

excitation.<br />

Figures 38(a) and (b) illustrate an <strong>of</strong>fshore platform and an equivalent laboratory prototype,<br />

where the students can carry on measurements and vibration analyzes. The laboratory prototype<br />

is composed <strong>of</strong> four concentrated masses attached to four flexible beams. Elements 1,2,3 and<br />

4 are the four masses connected by means <strong>of</strong> flexible beams. Element 5 is a motor-disk with a<br />

66


changeable unbalanced mass for simulating rotating machines (for example compressors, turbines<br />

or pumps) with an unbalance problem. Elements 6 and 7 are two acceleration sensors attached<br />

to the second and third masses. Elements 8 and 9 are magnetic actuators built to apply forces<br />

with different dynamic characteristics (oscillatory, random, pulse etc.) to the structure (first<br />

floor). In that way it is possible to simulate the wave forces coming from the ocean by means<br />

<strong>of</strong> the magnetic actuators.<br />

The motor-disk with unbalanced masses is mounted at the top <strong>of</strong> the platform (fourth floor). The<br />

motor has variable angular velocity from 0 to 40 Hz (2400 rpm). Due to the unbalanced masses<br />

strong vibration amplitudes can be detected on the second and third floor <strong>of</strong> the platform.<br />

To represent the dynamical behavior <strong>of</strong> the system a mechanical model has to be created.<br />

Considering the range <strong>of</strong> frequencies between 0 and 40 Hz, all rotor-structure movements happen<br />

in a vertical plane (2D motion), and an appropriate mechanical model would be the one presented<br />

in figure 39(b). For the suggested mechanical model:<br />

(a) (b)<br />

Figure 39: Machine-structure dynamical interaction – (a) Laboratory prototype; (b) Mechanical<br />

model composed <strong>of</strong> four lumped masses attached to four flexible beams, an equivalent model <strong>of</strong> a<br />

4 D.O.F. system for analyzing the linear vibrations <strong>of</strong> the platform in the horizontal direction<br />

due to the interaction with a machine and ocean waves.<br />

1. MODELLING – The main information about the geometric properties <strong>of</strong> the structure<br />

presented in figure 39(b) is given below:<br />

67


% Lumped Masses<br />

m1 = 1.95 % [kg] lowest mass<br />

m2 = 1.72 % [kg] above lowest mass<br />

m3 = 1.95 % [kg] below highest mass<br />

m4 = 3.04 % [kg] highest mass with motor<br />

% Beam Properties<br />

E=2.0e11 % [N/m^2] elasticity modulus<br />

b=0.0291 % [m] width<br />

h=0.0011 % [m] thickness<br />

I=(b*h^3)/12 % [m^4] area moment <strong>of</strong> inertia<br />

% Position <strong>of</strong> the Platforms<br />

L1=0.122 % [m] Length to Platform 1<br />

L2=0.123 % [m] Length from Platform 1 to Platform 2<br />

L3=0.149 % [m] Length from Platform 2 to Platform 3<br />

L4=0.127 % [m] Length from Platform 3 to Platform 4<br />

• Write the mathematical model (equations <strong>of</strong> motion) based on Newton’s laws, achieving<br />

the mass M, stiffness K and damping D matrices.<br />

• How is the structure <strong>of</strong> the mass matrix M? How to properly calculate the mass<br />

coefficients?<br />

• How is the structure <strong>of</strong> the stiffness matrix K? Find two different ways <strong>of</strong> obtaining<br />

the stiffness coefficients.<br />

• How is the structure <strong>of</strong> the damping matrix D? Find three different ways <strong>of</strong> obtaining<br />

the damping coefficients, using proportional damping,<br />

D1 = α · M.<br />

D2 = β · K.<br />

D3 = α · M + β · K.<br />

Remember that when you do not know how to exactly model and achieve the damping<br />

coefficients <strong>of</strong> the matrix D, assumptions have to be made. A realistic approximation<br />

<strong>of</strong> the structural damping factor ξ is 0.005, according to the experimental results<br />

obtained in equation (46). Try to adjust the proportionality factors α and β so that<br />

the damping factor ξ1 related to the first mode shape <strong>of</strong> the structure is 0.005. Feel<br />

free to do your own assumptions regarding damping, if you want!<br />

2. NUMERICAL IMPLEMENTATION – Write a program in Matlab d<strong>of</strong>4-integration.m, or<br />

use the program <strong>of</strong> your preference. Use as reference the d<strong>of</strong>2-integration.m, if you want.<br />

Calculate the natural frequencies ωi (i = 1, ...,4) <strong>of</strong> the mechanical model and the damping<br />

ratios ξi (i = 1, ...,4) related to the 4 modes shapes, considering the three different damping<br />

matrices D1, D2 and D3.<br />

%State Matrices A and B<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

68


%Modal Matrix u with mode shapes<br />

%Matrix w with damping factors and damped natural frequencies<br />

[u,w]=eig(-B,A);<br />

3. ANALYSIS – Neglecting the damping, write the modal matrix with help <strong>of</strong> your program<br />

d<strong>of</strong>4-integration.m. Based on the information contained in such a matrix describe the mode<br />

shapes <strong>of</strong> the structure with some drawings;<br />

4. ANALYSIS – Without neglecting the damping, write the modal matrix with help <strong>of</strong> your<br />

program d<strong>of</strong>4-integration.m. Based on the information contained in such a matrix describe<br />

the mode shapes <strong>of</strong> the structure and try to explain the physical meaning <strong>of</strong> the complex<br />

numbers in the modal matrix.<br />

5. EXPERIMENTAL – Try to predominately excite the first mode shape <strong>of</strong> the building using<br />

an appropriate initial condition <strong>of</strong> displacement. Capture the acceleration signal in time<br />

domain and plot it. Based on the logarithmic decrement try to establish the damping<br />

factor ξ1 associated to the first mode shape <strong>of</strong> the building. Please, download the file<br />

yyy4−trans.txt from campus net in order to rebuild figure 40. After obtaining the damping<br />

ratio ξ1, compare with your assumption <strong>of</strong> 0.005.<br />

acc [m/s 2 ]<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

Acceleration <strong>of</strong> Mass 4<br />

−4<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

Figure 40: Experimental transient vibration response (acceleration) <strong>of</strong> mass 4 after initial condition<br />

<strong>of</strong> displacement, which excites only the first mode shape <strong>of</strong> the structure.<br />

6. EXPERIMENTAL – Obtain 4 frequency response functions in the range <strong>of</strong> 0 − 40 Hz,<br />

when the building is excited on the first mass by magnetic forces. Please, download the<br />

files: frf−general.m, xxx1.txt, xxx2.txt, xxx3.txt, xxx4.txt, yyy1.txt, yyy2.txt, yyy3.txt,<br />

yyy4.txt (campus net)<br />

7. EXPERIMENTAL – Experimental Modal Analysis (EMA) deals with the determination <strong>of</strong><br />

natural frequencies, modes shapes, and damping ratios from experimental measurements.<br />

The fundamental idea behind modal testing is the resonance. If a structure is excited at<br />

resonance, its response exhibits two distinct phenomena: (a) as the excitation frequency<br />

69


approaches the natural frequency <strong>of</strong> the structure, the magnitude at resonance rapidly<br />

approaches a sharp maximum value, provided that the damping ratio is less than about<br />

0.5; (b) the phase <strong>of</strong> the response between excitation force and displacement shift by 180 o<br />

as the frequency sweeps through resonance, with the value <strong>of</strong> the phase at resonance being<br />

90 o . This physical phenomenon is used to determine the natural frequency <strong>of</strong> a structure<br />

from measurements <strong>of</strong> the magnitude and phase <strong>of</strong> the force response <strong>of</strong> the structure as<br />

the driving frequency is swept through a wide range <strong>of</strong> values.<br />

Identify 4 different 1-DOF systems around each one <strong>of</strong> the 4 natural frequencies <strong>of</strong> the<br />

building. Use your frequency domain identification procedure, which was already developed<br />

in the project 1 and is based on the Least Square Method, and obtain the experimental<br />

natural frequencies and the experimental damping factors <strong>of</strong> each one <strong>of</strong> the 4 mode shapes<br />

<strong>of</strong> the building.<br />

8. MODEL VALIDATION (VERIFICATION) – Compare the theoretical and experimental<br />

frequency response functions <strong>of</strong> the first, second, third and fourth floors, when the structure<br />

is excited by the magnetic forces on the first floor. Justify the discrepancies between<br />

theoretical and experimental results.<br />

9. APPLICATION OF THE MODEL – The values <strong>of</strong> the unbalance mass and eccentricity<br />

are:<br />

% Disk Unbalance<br />

m=0.045 % [kg] unbalance mass<br />

e=0.040 % [m] eccentricity<br />

Consider the 5 different angular velocities, close to the resonances <strong>of</strong> the building and among<br />

them, as following:<br />

• 225 rpm (3,75 Hz),<br />

• 495 rpm (8,25 Hz),<br />

• 615 rpm (10,25 Hz),<br />

• 900 rpm (15,00 Hz) and<br />

• 975 rpm (16,25 Hz).<br />

Use your mathematical model to predict the vibration amplitude <strong>of</strong> the top mass,<br />

i.e. acceleration <strong>of</strong> the top mass, when the rotor-disk operates unbalanced at<br />

the 5 different angular velocities. Check your results comparing with the experimental<br />

results. Explain the discrepancies between the results obtained with<br />

help <strong>of</strong> your mathematical model and the experiments. Please, download the<br />

files yyy4−unbal−3−75−HZ.txt, yyy4−unbal−8−25−HZ.txt, yyy4−unbal−10−25−HZ.txt,<br />

yyy4−unbal−15−00−HZ.txt, yyy4−unbal−16−25−HZ.txt and acc−in−time−domain.m to<br />

rebuild figure 41.<br />

10. MODEL ADJUSTMENT – Try to adjust the natural frequencies ωi (i = 1, ...,4) <strong>of</strong> the<br />

analytical model using the experimental natural frequencies obtained via Experimental<br />

Modal Analysis. Remember that the parameter<br />

% Beam Properties<br />

E=(2.0 +- 0.1)e11 % [N/m^2] elasticity modulus<br />

70


acc [m/s 2 ]<br />

acc [m/s 2 ]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

1<br />

0<br />

(b) Acceleration <strong>of</strong> Mass 4<br />

(d) Acceleration <strong>of</strong> Mass 4<br />

−5<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

acc [m/s 2 ]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Acceleration <strong>of</strong> Mass 4<br />

−2.5<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

acc [m/s 2 ]<br />

acc [m/s 2 ]<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

(c) Acceleration <strong>of</strong> Mass 4<br />

−6<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

−8<br />

(e) Acceleration <strong>of</strong> Mass 4<br />

−10<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

Figure 41: Experimental forced vibration response (acceleration) <strong>of</strong> mass 4 due to a disk operating<br />

with an unbalance mass m = 0.045 Kg with an eccentricity radius e = 0.040 m at 5 rotational<br />

speeds: (a) 225 rpm (3,75 Hz); (b) 495 rpm (8,25 Hz); (c) 615 rpm (10,25 Hz); (d) 900 rpm<br />

(15,00 Hz) and (e) 975 rpm (16,25 Hz).<br />

71


=(0.0291 +- 0.0001) % [m] width<br />

h=(0.0011 +- 0.0001) % [m] thickness<br />

I=(b*h^3)/12 % [m^4] area moment <strong>of</strong> inertia<br />

% Position <strong>of</strong> the Platforms<br />

L1=(0.122 +- 0.001) % [m] Length to Platform 1<br />

L2=(0.123 +- 0.001) % [m] Length from Platform 1 to Platform 2<br />

L3=(0.149 +- 0.001) % [m] Length from Platform 2 to Platform 3<br />

L4=(0.127 +- 0.001) % [m] Length from Platform 3 to Platform 4<br />

can be varied based on the geometry and assembly tolerances, as well as on material properties.<br />

Changes <strong>of</strong> such parameters lead to changes in the stiffness matrix K.<br />

11. MODEL ADJUSTMENT – After adjustment <strong>of</strong> the natural frequencies, try to adjust the<br />

damping ratios ξi (i = 1, ...,4) <strong>of</strong> the analytical model using the experimental damping<br />

ratios obtained via Experimental Modal Analysis. Remember that alpna and β are the<br />

parameters to be varied, if you have proportional damping matrices D1, D2 and D3.<br />

12. APPLICATION OF THE ADJUSTED MODEL – Consider the 5 different angular velocities,<br />

close to the resonances <strong>of</strong> the building and among them, as following:<br />

• 225 rpm (3,75 Hz),<br />

• 495 rpm (8,25 Hz),<br />

• 615 rpm (10,25 Hz),<br />

• 900 rpm (15,00 Hz) and<br />

• 975 rpm (16,25 Hz).<br />

Use your adjusted analytical model to predict the vibration amplitude <strong>of</strong> the top mass, i.e.<br />

acceleration <strong>of</strong> the top mass, when the rotor-disk operates unbalanced at the 5 different<br />

angular velocities. Check your theoretical results comparing with the experimental results.<br />

Explain the discrepancies between the results obtained with help <strong>of</strong> your mathematical<br />

model and the experiments.<br />

13. Write about your conclusions!<br />

(Technical report until 01/04/2005)<br />

72

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!