Maria Bayard Dühring - Solid Mechanics

Maria Bayard Dühring - Solid Mechanics Maria Bayard Dühring - Solid Mechanics

fam.web.mek.dtu.dk
from fam.web.mek.dtu.dk More from this publisher
28.08.2013 Views

Resumé (in Danish) Forskningsomr˚adet, der omhandler elastiske og optiske bølger, er ekspanderet kraftigt i løbet af det sidste ˚arhundrede, og dette har resulteret i mange betydningsfulde anvendelser. Det er derfor blevet vigtigt at simulere og optimere bølgestrukturer. I denne afhandling bliver tre forskellige bølgeproblemer simuleret, og bølgestrukturer optimeres enten vha. topologioptimering eller parameterstudier af geometrien. Det første bølgeproblem omhandler akustiske bølger, som udbreder sig i luft. Topologioptimering bliver her anvendt til at designe strukturer, der reducerer støjen fra en punktkilde i et fastlangt omr˚ade. Metodens potentiale bliver illustreret ved at optimere formen af støjmure langs en vej, der virker bedre end de konventionelle lige og T-formede støjmure for b˚ade en enkelt frekvens og et frekvensinterval. Topologioptimeringsmetoden bliver herefter udvidet til at designe tværsnittet af fotoniske krystal fibre med en hul kerne. Det bliver vist, at energistrømningen gennem kernen kan forøges i det optimerede design, fordi overlappet mellem det magnetiske felt og det absorberende materiale, som omgiver kernen, reduceres. I den sidste problemstilling undersøges interaktionen mellem akustiske overfladebølger og optiske bølger i bølgeledere. Først bliver en Rayleigh-bølge genereret i et piezoelektrisk materiale vha. tynde elektroder, og et parameterstudie af den optiske bølgeleders geometri viser, at interaktionen kan forbedres med en størrelsesorden, fordi de mekaniske spændinger i bølgelederen forøges. Det bliver desuden vist, at ved at benytte topologioptimering kan der dannes en struktur af lufthuller under bølgelederen, der omdirigerer Rayleigh-bølgen og forøger interaktionen. Til sidst undersøges akustiske overfladebølger, der genereres vha. elektroder med stor højde i forhold til bredden. Antallet af akustiske bølgeformer stiger, n˚ar højden af elektroderne forøges. Det vises, at interaktionen mellem disse nye typer af akustiske overfladebølger og en optisk bølge kan forøges med mere end to størrelsesordener i forhold til interaktionen med overfladebølger genereret vha. konventionelle tynde elektroder. ii

Abstract The field of research dealing with propagating elastic and optical waves has expanded during the last century and that has resulted in many significant applications. It has therefore become important to simulate and optimize wave devices. In this work three different types of wave propagation problems are simulated and wave structures are improved by either topology optimization or parameter studies of their geometry. The first wave problem treats acoustic waves propagating in air. Topology optimization is applied to design structures such that noise from a point source is reduced in a fixed area. The strength of the method is validated by optimizing the shape of sound barriers along a road, which perform better than conventional straight and T-shaped barriers for both a single driving frequency and a frequency interval. The method of topology optimization is then extended to design the cross section of a photonic-crystal fiber with a hollow core. It is shown that the energy flow in the core can be increased in the optimized design because the overlap between the magnetic field and the lossy cladding material is reduced. The acousto-optical interaction between surface acoustic waves and optical waves in channel waveguides is investigated in the last problem. First a Rayleigh wave is generated in a piezoelectric material by conventional thin electrodes, and a parameter study of the waveguide geometry show that the acousto-optical interaction can be improved with an order of magnitude because of increased mechanical stress concentrations. It is furthermore demonstrated, that topology optimization can be employed to create a pattern of air holes that traps the Rayleigh wave below the waveguide such that the interaction is improved. Finally, the generation of surface acoustic waves by high aspect ratio electrodes is studied. Several confined acoustic modes exist for increasing aspect ratio. It is demonstrated, that the interaction between these new types of waves and an optical wave in a waveguide can be increased with more than two orders of magnitude compared to interaction with surface waves generated by conventional thin electrodes. iii

Abstract<br />

The field of research dealing with propagating elastic and optical waves has expanded<br />

during the last century and that has resulted in many significant applications. It<br />

has therefore become important to simulate and optimize wave devices. In this<br />

work three different types of wave propagation problems are simulated and wave<br />

structures are improved by either topology optimization or parameter studies of<br />

their geometry.<br />

The first wave problem treats acoustic waves propagating in air. Topology optimization<br />

is applied to design structures such that noise from a point source is<br />

reduced in a fixed area. The strength of the method is validated by optimizing<br />

the shape of sound barriers along a road, which perform better than conventional<br />

straight and T-shaped barriers for both a single driving frequency and a frequency<br />

interval.<br />

The method of topology optimization is then extended to design the cross section<br />

of a photonic-crystal fiber with a hollow core. It is shown that the energy flow in<br />

the core can be increased in the optimized design because the overlap between the<br />

magnetic field and the lossy cladding material is reduced.<br />

The acousto-optical interaction between surface acoustic waves and optical waves<br />

in channel waveguides is investigated in the last problem. First a Rayleigh wave is<br />

generated in a piezoelectric material by conventional thin electrodes, and a parameter<br />

study of the waveguide geometry show that the acousto-optical interaction can<br />

be improved with an order of magnitude because of increased mechanical stress<br />

concentrations. It is furthermore demonstrated, that topology optimization can be<br />

employed to create a pattern of air holes that traps the Rayleigh wave below the<br />

waveguide such that the interaction is improved. Finally, the generation of surface<br />

acoustic waves by high aspect ratio electrodes is studied. Several confined acoustic<br />

modes exist for increasing aspect ratio. It is demonstrated, that the interaction between<br />

these new types of waves and an optical wave in a waveguide can be increased<br />

with more than two orders of magnitude compared to interaction with surface waves<br />

generated by conventional thin electrodes.<br />

iii

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!