28.08.2013 Views

Maria Bayard Dühring - Solid Mechanics

Maria Bayard Dühring - Solid Mechanics

Maria Bayard Dühring - Solid Mechanics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

18 Chapter 3 Topology optimization applied to time-harmonic propagating waves<br />

The two expressions (3.16) and (3.17) are equivalent, which is seen by taking the<br />

complex conjugate on both sides of expression (3.17). This means that when λj is<br />

computed by equation (3.16) it will also fulfill equation (3.17). Equation (3.16) is<br />

transposed and it is used that Skj is symmetric<br />

J<br />

T ∂Φ<br />

j=1<br />

Skjλj =<br />

∂u R k<br />

− i ∂Φ<br />

∂u I k<br />

. (3.18)<br />

The expression in (3.18) can be solved as one system in a similar way as the discretized<br />

problem in (2.5). In the case where wk in the objective function (3.3) is<br />

equal to the field variable uk the right hand side of equation (3.18) is found by the<br />

expression<br />

∂Φ<br />

∂u R k,n<br />

− i ∂Φ<br />

∂u I k,n<br />

<br />

=<br />

<br />

=<br />

Ωo<br />

Ωo<br />

<br />

∂Φ<br />

∂u R k<br />

∂uR k<br />

∂uR k,n<br />

In the case where wk indicates the derivative ∂uk<br />

∂xk<br />

(3.18) is found by<br />

∂Φ<br />

∂u R k,n<br />

<br />

=<br />

Ωo<br />

− i ∂Φ<br />

∂u I k,n<br />

<br />

=<br />

2w R k − i2w I k<br />

∂Φ<br />

Ωo ∂wR k<br />

∂φk,n<br />

∂xk<br />

− i ∂Φ<br />

∂u I k<br />

∂u I k<br />

∂u I k,n<br />

<br />

dr<br />

(2u R k − i2u I k)φk,ndr. (3.19)<br />

− i ∂Φ<br />

<br />

dr =<br />

∂w I k<br />

Ωo<br />

∂φk,n<br />

∂xk<br />

<br />

2 ∂uR k<br />

∂xk<br />

the right hand side of equation<br />

dr<br />

− i2 ∂uI <br />

k ∂φk,n<br />

dr. (3.20)<br />

∂xk ∂xk<br />

The derivatives ∂uk can be calculated automatically by Comsol Multiphysics. The<br />

∂xk<br />

adjoint variable fields are now determined such that the two last terms in (3.13)<br />

vanish and the derivative of the objective function reduces to<br />

dΦ ∂Φ<br />

=<br />

dξ ∂ξ +<br />

J<br />

<br />

1<br />

2 λT<br />

J ∂Skj<br />

k<br />

∂ξ uj + 1<br />

2 ¯ λ T<br />

J ∂<br />

k<br />

¯ Skj<br />

∂ξ ūj<br />

<br />

, (3.21)<br />

k=1<br />

and can be rewritten in the form<br />

dΦ<br />

dξ<br />

= ∂Φ<br />

∂ξ +<br />

j=1<br />

J<br />

<br />

ℜ<br />

k=1<br />

λ T<br />

k<br />

J<br />

j=1<br />

j=1<br />

∂Skj<br />

∂ξ uj<br />

<br />

. (3.22)<br />

Finally, the derivative of the constraint function with respect to one of the design<br />

variables is<br />

<br />

∂ 1<br />

<br />

∂ξn Ωd dr<br />

<br />

<br />

ξ(r)dr − β =<br />

Ωd<br />

1<br />

<br />

Ωd dr<br />

<br />

φJ+1,n(r)dr. (3.23)<br />

Ωd<br />

The mentioned vectors ∂Φ/∂ξ, <br />

Ωo (2uRk − i2uI <br />

k )φk,ndr, 2 Ωo<br />

∂uR k<br />

∂xk − i2 ∂uI <br />

k<br />

∂φk,n<br />

∂xk ∂xk dr<br />

and <br />

Ωd φJ+1,n(r)dr as well as the matrix ∂Skj/∂ξ are assembled in Comsol Multiphysics<br />

as described in [66].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!