Volatility Smile - Heston, SABR

Volatility Smile - Heston, SABR Volatility Smile - Heston, SABR

fam.tuwien.ac.at
from fam.tuwien.ac.at More from this publisher
28.08.2013 Views

Introduction Heston Model SABR Model Conclusio Volatility Smile Heston, SABR Nowak, Sibetz April 24, 2012 Nowak, Sibetz Volatility Smile

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

<strong>Volatility</strong> <strong>Smile</strong><br />

<strong>Heston</strong>, <strong>SABR</strong><br />

Nowak, Sibetz<br />

April 24, 2012<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Table of Contents<br />

1 Introduction<br />

Implied <strong>Volatility</strong><br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

2 <strong>Heston</strong> Model<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Implied <strong>Volatility</strong><br />

Calibration of the FX <strong>Heston</strong><br />

Model<br />

3 <strong>SABR</strong> Model<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

4 Conclusio<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Black Scholes Framework<br />

Implied <strong>Volatility</strong><br />

Black Scholes SDE<br />

The stock price follows a geometric Brownian motion with<br />

constant drift and volatility.<br />

dSt = µS dt + σS dWt<br />

Under the risk neutral pricing measure Q we have µ = rf<br />

One can perfectly hedge an option by buying and selling the<br />

underlying asset and the bank account dynamically<br />

The BSM option’s value is a monotonic increasing function of<br />

implied volatility c.p.<br />

⎛<br />

S<br />

σ2<br />

ln( ) + (r + )(T − t)<br />

Ct = StΦ ⎝ K 2<br />

σ √ ⎞<br />

⎠−Ke<br />

T − t<br />

−r(T −t) ⎛<br />

S<br />

σ2<br />

ln( ) + (r − )(T − t)<br />

Φ ⎝ K 2<br />

σ √ ⎞<br />

⎠<br />

T − t<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Black Scholes Implied <strong>Volatility</strong><br />

Implied <strong>Volatility</strong><br />

The implied volatility σimp is that the Black Scholes option<br />

model price C BS equals the option’s market price C mkt .<br />

C BS (S, K, σimp, rf , t, T ) = C mkt<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Table of Contents<br />

1 Introduction<br />

Implied <strong>Volatility</strong><br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

2 <strong>Heston</strong> Model<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong><br />

Model<br />

3 <strong>SABR</strong> Model<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

4 Conclusio<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Definition<br />

Stochastic <strong>Volatility</strong> Model<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

dSt = µStdt + √ νtStdW S t<br />

dνt = κ(θ − νt)dt + σ √ νtdW ν t<br />

dW S t dW ν t = ρdt<br />

The parameters in this model are:<br />

µ the drift of the underlying process<br />

κ the speed of mean reversion for the variance<br />

θ the long term mean level for the variance<br />

σ the volatility of the variance<br />

ν0 the initial variance at t = 0<br />

ρ the correlation between the two Brownian motions<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Sample Paths<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

Path simulation of the <strong>Heston</strong> model and the geometric Brownian<br />

motion.<br />

FX rate<br />

1.8 2.0 2.2 2.4 2.6 2.8<br />

<strong>Heston</strong><br />

GBM<br />

0 200 400 600<br />

<strong>Volatility</strong><br />

0.10 0.15 0.20 0.25 0.30 0.35<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

0 200 400 600


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

As we know the payoff of a European plain vanilla call option to be<br />

CT = (ST − K) +<br />

we can generally write the price of the option to be at any time<br />

point t ∈ [0, T ]:<br />

Ct = e −r(T −t) E (ST − K) + =<br />

<br />

Ft e −r(T −t) E =<br />

<br />

(ST − K)1 <br />

(ST >K) Ft<br />

e −r(T −t) E <br />

ST 1 Ft<br />

(ST >K) − e<br />

<br />

=:(∗)<br />

−r(T −t) KE <br />

1 Ft<br />

(ST >K)<br />

<br />

=:(∗∗)<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

With constant interest rates the stochastic discount factor using the bank<br />

account Bt then becomes 1/Bt = e − t<br />

0 rsds −rt<br />

= e . We now need to perform<br />

a Radon-Nikodym change of measure.<br />

Zt = dQ St BT<br />

Ft =<br />

dP<br />

Thus the first term (∗) gets<br />

Bt ST<br />

(∗) = e −r(T −t) E P ST 1(S T >K)<br />

<br />

Ft <br />

Ft<br />

= Bt<br />

E<br />

BT<br />

P ST 1(ST >K)<br />

= Bt<br />

E<br />

BT<br />

Q <br />

ZtST 1(S<br />

<br />

T >K) Ft<br />

= Bt<br />

E<br />

BT<br />

Q<br />

<br />

St BT<br />

ST 1(ST >K)<br />

Bt ST<br />

= E Q <br />

St1(S<br />

Ft<br />

T >K)<br />

<br />

Ft = StE Q 1(S T >K)<br />

= StQ (ST > K|Ft)<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

<br />

<br />

<br />

Ft


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Get the distribution function<br />

How to do ...<br />

Find the characteristic function<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

Fourier Inversion theorem to get the probability distribution function<br />

We apply the Fourier Inversion Formula on the characteristic function<br />

FX(x) − FX(0) = lim<br />

T →∞<br />

T<br />

1 e<br />

2π −T<br />

iux − 1<br />

−iu ϕX(u)du<br />

and use the solution of Gil-Pelaez to get the nicer real valued solution of<br />

the transformed characteristic function:<br />

P(X > x) = 1 − FX(x) = 1<br />

∞ −iux<br />

1 e<br />

+ ℜ<br />

2 π iu ϕX(u)<br />

<br />

du<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

0


The <strong>Heston</strong> PDE<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

We apply the Ito-formula to expand dU(S, ν, t):<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

dU = Utdt + USdS + Uνdν + 1<br />

2 USS(dS) 2 + USν(dSdν) + 1<br />

2 Uνν(dν)2<br />

With the quadratic variation and covariation terms expanded we get<br />

(dS) 2 = d 〈S〉 = νS 2 <br />

d W S<br />

= νS 2 dt,<br />

(dSdν) =<br />

<br />

d 〈S, ν〉 = νSσd W S , W ν<br />

= νSσρdt, and<br />

(dν) 2 = d 〈ν〉 = σ 2 νd 〈W ν 〉 = σ 2 νdt.<br />

The other terms including d 〈t〉 , d 〈t, W ν 〉 , d t, W S are left out, as the quadratic<br />

variation of a finite variation term is always zero and thus the terms vanish. Thus<br />

dU = Utdt + USdS + Uνdν + 1<br />

2 USSνSdt + USννSσρdt + 1<br />

2 Uννσ2 νdt<br />

<br />

= Ut + 1<br />

2 USSνS + USννSσρ + 1<br />

2 Uννσ2 <br />

ν dt + USdS + Uνdν<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


The <strong>Heston</strong> PDE<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

As in the BSM portfolio replication also in the <strong>Heston</strong> model you get<br />

your portfolio PDE via dynamic hedging, but we have a portfolio<br />

consisting of:<br />

one option V (S, ν, t)<br />

a portion of the underlying ∆St and<br />

a third derivative to hedge the volatility φU(S, ν, t).<br />

1<br />

2 νUXX + ρσνUXν + 1<br />

2 σ2 <br />

νUνν + r − 1<br />

2 ν<br />

<br />

+ <br />

κ(θ − νt) − λ0νt Uν − rU − Uτ = 0<br />

where λ0νt is the market price of volatility risk.<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

UX +


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Characteristic Function PDE<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

<strong>Heston</strong> assumed the characteristic function to be of the form<br />

ϕ i xτ (u) = exp (Ci(u, τ) + Di(u, τ)νt + iux)<br />

The pricing PDE is always fulfilled irrespective of the terms in the call contract.<br />

S = 1, K = 0, r = 0 ⇒ Ct = P1<br />

S = 0, K = 1, r = 0 ⇒ Ct = −P2<br />

We have to set up the boundary conditions we know to solve the PDE:<br />

C(T, ν, S) = max(ST − K, 0)<br />

C(t, ∞, S) =<br />

−r(T −t)<br />

Se<br />

∂C<br />

(t, ν, ∞)<br />

∂S<br />

= 1<br />

C(t, ν, 0)<br />

rC(t, 0, S)<br />

=<br />

=<br />

0<br />

<br />

rS ∂C<br />

<br />

∂C ∂C<br />

+ κθ + (t, 0, S)<br />

∂S ∂ν ∂t<br />

The Feynman-Kac theorem ensures that then also the characteristic function follows<br />

the <strong>Heston</strong> PDE.<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


<strong>Heston</strong> Model Steps<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

Recall that we have a pricing formula of the form<br />

Ct = StP1(St, νt, τ) − e −r(T −t) KP2(St, νt, τ)<br />

where the two probabilities Pj are<br />

Pj = 1 1<br />

+<br />

2 π<br />

∞<br />

0<br />

<br />

e−iux ℜ<br />

iu ϕj<br />

X (u)<br />

<br />

du<br />

with the characteric function being of the form<br />

ϕj(u) = e Cj(τ,u)+Dj(τ,u)νt+iux .<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

FX Black Scholes Framework<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

The exchange rate process Qt is the price of units of domestic currency for 1<br />

unit of the foreign currency and is described under the actual probability<br />

measure P by<br />

dQt = µQtdt + σQtdWt<br />

Let us now consider an auxiliary process Q ∗ t := QtB f<br />

t /B d t which then of course<br />

satisfies<br />

Q ∗ t = QtBf<br />

t<br />

Bd t<br />

<br />

µ− σ2<br />

<br />

t+σWt<br />

2<br />

e (rf −rd)t <br />

µ+rf −rd− σ2<br />

<br />

t+σWt<br />

2<br />

= Q0e<br />

= Q0e<br />

Thus we can clearly see that Q ∗ t is a martingale under the original measure P iff<br />

µ = rd − rf .<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


FX Option Price<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

If we now assume that the underlying process (Qt) is now the<br />

exchange rate we still have the final payoff for a Call option of the<br />

form<br />

F XCT = max(QT − K, 0)<br />

and following the Garman-Kohlhagen model we know that the<br />

price of the FX option gets<br />

F XCt = e −rf (T −t) F X<br />

QtP1 (Qt, νt, τ) − e −rd(T −t) F X<br />

KP2 (Qt, νt, τ)<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

FX Option <strong>Volatility</strong> Surface<br />

Risk Reversal:<br />

Risk reversal is the difference between the<br />

volatility of the call price and the put<br />

price with the same moneyness levels.<br />

RR25 = σ25C − σ25P<br />

Butterfly:<br />

Butterfly is the difference between the<br />

avarage volatility of the call price and put<br />

price with the same moneyness level and<br />

at the money volatility level.<br />

BF25 = (σ25C + σ25P )/2 − σAT M<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

FX volatility smile with the 3-point<br />

market quotation<br />

Implied <strong>Volatility</strong><br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

●<br />

●<br />

FX <strong>Volatility</strong> <strong>Smile</strong><br />

●<br />

10C 25C ATM 25P 10P<br />

Delta<br />

BF10<br />

ATM<br />

●<br />

●<br />

RR10


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Bloomberg FX Option Data<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Bloomberg FX Option Data<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

USD/JPY and EUR/JPY volatility surface<br />

Implied <strong>Volatility</strong><br />

0.09 0.10 0.11 0.12 0.13 0.14 0.15<br />

USDJPY FX Option <strong>Volatility</strong> <strong>Smile</strong><br />

10C 25C ATM 25P 10P<br />

Delta<br />

Implied <strong>Volatility</strong><br />

0.12 0.14 0.16 0.18 0.20 0.22<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

EURJPY FX Option <strong>Volatility</strong> <strong>Smile</strong><br />

10C 25C ATM 25P 10P<br />

Delta


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

Calibration to the Implied <strong>Volatility</strong> Surface<br />

Implement the <strong>Heston</strong> Pricing procedure<br />

Characteristic function<br />

Numerical integration algorithm<br />

<strong>Heston</strong> pricer<br />

BSM implied volatility from <strong>Heston</strong> prices<br />

Sum of squared errors minimisation algorithm<br />

compare the market implied volatility ˆσ with the volatility returned<br />

by the <strong>Heston</strong> model σ(κ, θ, σ, ν0, ρ)<br />

⎛<br />

min ⎝ <br />

ˆσ − σ(κ, θ, σ, ν0, ρ) ⎞<br />

2⎠<br />

θ,σ,ρ<br />

i,j<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Parameter Impacts<br />

Recall<br />

⇒ set √ ν0 = σAT M .<br />

Implied <strong>Volatility</strong><br />

0.08 0.10 0.12 0.14 0.16<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

dSt = µStdt + √ νtStdW S t<br />

dνt = κ(θ − νt)dt + σ √ νtdW ν t<br />

dW S t dW ν t = ρdt<br />

Parameter Analysis − theta<br />

theta = 0.03<br />

theta = 0.05<br />

theta = 0.07<br />

10C 25C ATM 25P 10P<br />

Delta<br />

Implied <strong>Volatility</strong><br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

0.10 0.12 0.14 0.16 0.18<br />

Parameter Analysis − nu0<br />

nu0 = 0.01<br />

nu0 = 0.02<br />

nu0 = 0.03<br />

10C 25C ATM 25P 10P<br />

Delta


Parameter Impacts 2<br />

Implied <strong>Volatility</strong><br />

0.09 0.10 0.11 0.12 0.13 0.14 0.15<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

dSt = µStdt + √ νtStdW S t<br />

dνt = κ(θ − νt)dt + σ √ νtdW ν t<br />

dW S t dW ν t = ρdt<br />

Parameter Analysis − sigma<br />

sigma = 0.20<br />

sigma = 0.30<br />

sigma = 0.40<br />

10C 25C ATM 25P 10P<br />

Delta<br />

Implied <strong>Volatility</strong><br />

0.10 0.11 0.12 0.13 0.14 0.15<br />

Parameter Analysis − kappa<br />

kappa = 0.5<br />

kappa = 1.5<br />

kappa = 3.0<br />

10C 25C ATM 25P 10P<br />

⇒ use for κ fixed values depending on curvature. E.g. 0.5, 1.5, or 3.<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

Delta


Parameter Impacts 3<br />

The skew parameter ρ:<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

dSt = µStdt + √ νtStdW S t<br />

dνt = κ(θ − νt)dt + σ √ νtdW ν t<br />

dW S t dW ν t = ρdt<br />

Implied <strong>Volatility</strong><br />

0.08 0.10 0.12 0.14<br />

Parameter Analysis − rho<br />

rho = −0.25<br />

rho = 0.05<br />

rho = 0.30<br />

10C 25C ATM 25P 10P<br />

Delta<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

FX Option Data Calibration<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong> Model<br />

USD/JPY and EUR/JPY volatility surface calibration<br />

optim NM optim BFGS nlmin constr.<br />

theta 0.03423300 0.03423542 0.03423272<br />

vol 0.27744796 0.27746901 0.27745127<br />

rho -0.01206708 -0.01208952 -0.01204884<br />

Implied <strong>Volatility</strong><br />

0.09 0.10 0.11 0.12 0.13 0.14 0.15<br />

USDJPY FX Option <strong>Volatility</strong> <strong>Smile</strong><br />

10C 25C ATM 25P 10P<br />

Delta<br />

optim NM optim BFGS nlmin constr.<br />

theta 0.0508903 0.0508923 0.0508911<br />

vol 0.4366006 0.4366059 0.4365979<br />

rho -0.3715149 -0.3715445 -0.3715368<br />

Implied <strong>Volatility</strong><br />

0.10 0.12 0.14 0.16 0.18 0.20 0.22<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

EURJPY FX Option <strong>Volatility</strong> <strong>Smile</strong><br />

10C 25C ATM 25P 10P<br />

Delta


Table of Contents<br />

1 Introduction<br />

Implied <strong>Volatility</strong><br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

2 <strong>Heston</strong> Model<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

Calibration of the FX <strong>Heston</strong><br />

Model<br />

3 <strong>SABR</strong> Model<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

4 Conclusio<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Definition<br />

Stochastic <strong>Volatility</strong> Model<br />

The parameters are<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

d ˆ F = ˆα ˆ F β dW1,<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

ˆ F (0) = f<br />

dˆα = ν ˆαdW2, ˆα(0) = α<br />

dW1dW2 = ρdt<br />

α the initial variance,<br />

ν the volatility of variance,<br />

β the exponent for the forward rate,<br />

ρ the correlation between the two Brownian motions.<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Derivation<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

The derivation is based on small volatility expansions, ˆα and ν, re-written<br />

to ˆα → ɛˆα and ν → ɛν such that<br />

d ˆ F = ɛˆαC( ˆ F )dW1,<br />

dˆα = ɛν ˆαdW2<br />

with dW1dW2 = ρdt in the distinguished limit ɛ ≪ 1 and C( ˆ F )<br />

generalized. The probability density is defined as<br />

<br />

p(t, f, α; T, F, A)dF dA = P rob F < ˆ F (T ) < F + dF, A < ˆα(T ) < A + dA<br />

| ˆ <br />

F (t) = f, ˆα(t) = α .<br />

Then the density at maturity T is defined as<br />

with<br />

<br />

T<br />

p(t, f, α; T, F, A) = δ(F − f)δ(A − α) +<br />

t<br />

p (t, f, α; T, F, A)dT<br />

T<br />

p =<br />

T 1<br />

2 ɛ2 2 ∂2<br />

A<br />

∂F 2 C2 (F )p + ɛ 2 ρν ∂2<br />

∂F ∂A A2C 2 (F )p + 1<br />

2 ɛ2 2 ∂2<br />

ν<br />

∂A2 A2p. Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Derivation<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

Let V (t, f, α) then be the value of an European call option at t at<br />

above defined state of economy:<br />

<br />

V (t, f, α) = E [ ˆ F (T ) − K] + | ˆ <br />

F (t) = f, ˆα(t) = α<br />

.<br />

=<br />

∞ ∞<br />

−∞<br />

K<br />

= [f − K] + +<br />

= [f − K] + + ɛ2<br />

2<br />

(F − K)p(t, f, α; T, F, A)dF dA<br />

T ∞ ∞<br />

t −∞ K<br />

T ∞ ∞<br />

= [f − K] + + ɛ2 C 2 (K)<br />

2<br />

= [f − K] + + ɛ2 C 2 (K)<br />

2<br />

t<br />

−∞ K<br />

T ∞<br />

t<br />

τ<br />

t<br />

(F − K)p T (t, f, α; T, F, A)dT<br />

A 2 (F − K) ∂2<br />

∂F 2 C2 (F )p dF dAdT<br />

−∞<br />

A 2 p(t, f, α; T, K, A)dAdT<br />

P (τ, f, α; K)dτ<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Derivation<br />

Where<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

P (t, f, α; T, K) =<br />

∞<br />

−∞<br />

and P (τ, f, α; K) is the solution of<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

A 2 p(t, f, α; T, K, A)dA<br />

Pτ = 1<br />

2 ɛ2α 2 C 2 (f) ∂2P ∂f 2 + ɛ2ρνα 2 C(f) ∂2P 1<br />

+<br />

∂f∂α 2 ɛ2ν 2 α 2 ∂ 2 P<br />

, for τ > 0,<br />

∂α2 P = α 2 δ(f − K), for τ = 0.<br />

with τ = T − t.<br />

Given these results one could obtain the option formula directly.<br />

However more useful formulas can be derived through<br />

1 Singular perturbation expansion<br />

2 Equivalent normal volatility<br />

3 Equivalent Black volatility<br />

4 Stochastic β model<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Singular perturbation expansion<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

The goal is to use perturbation expansion methods which yield a<br />

Gaussian density of the form<br />

α<br />

P = e<br />

2πɛ2C 2 )K)τ −<br />

(f−K)2<br />

2ɛ2α2 C2 (K)τ {1+··· } .<br />

Consiquently, the singular perturbation expansion yields a<br />

European call option value<br />

V (t, f, α) = [f − K] + +<br />

| f − K |<br />

4 √ π<br />

∞<br />

x 2<br />

2τ −ɛ2 θ<br />

e −q<br />

dq<br />

q3/2 with<br />

x = 1<br />

ɛν log<br />

<br />

1 − 2ɛρνz + ɛ2ν 2z2 − ρ + ɛνz<br />

, z =<br />

1 − ρ<br />

1<br />

f<br />

df<br />

ɛα K<br />

′<br />

C(f ′ ) ,<br />

ɛ 2 <br />

ɛαz 1/2<br />

xI (ɛνz)<br />

θ = log<br />

B(0)B(ɛαz) + log<br />

+<br />

f − K<br />

z<br />

1<br />

4 ɛ2ρναb1z 2 .<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Equivalent normal volatility<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

Suppose the previous analysis is repeated under the normal model<br />

d ˆ F = σ N dW, ˆ F (0) = f.<br />

with σ N constant, not stochastic. The option value would then be<br />

V (t, f) = [f − K] + +<br />

| f − K |<br />

4 √ π<br />

∞<br />

(f−K) 2<br />

2σ 2 N τ<br />

e −q<br />

dq<br />

q3/2 for C(f) = 1, ɛα = σN and ν = 0. Integration yields then<br />

<br />

f − K √ f − K<br />

V (t, f) = (f − K)Φ √ + σN τG √<br />

σN τ<br />

σN τ<br />

with the Gaussian density G<br />

G(q) = 1<br />

√ 2π e −q2 /2 .<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Equivalent normal volatility<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

The option price under the normal model matches the option price<br />

under the <strong>SABR</strong> model, iff σN is chosen the way that<br />

<br />

f − K<br />

σN = 1 + ɛ<br />

x<br />

2 <br />

θ<br />

τ + · · ·<br />

x2 through O(ɛ2 ). Simplifying yields the the implied normal volatility<br />

ɛα(f − K)<br />

σN (K) = f df ′<br />

<br />

ζ<br />

ˆx(ζ)<br />

with<br />

<br />

· 1 +<br />

K C(f ′ )<br />

2γ2 − γ 2 1<br />

24<br />

α 2 C 2 (fav) + 1<br />

4<br />

2 − 3ρ2<br />

ρναγ1C(fav) + ν<br />

24<br />

2<br />

<br />

ɛ 2 <br />

τ + · · ·<br />

fav = fK, γ1 = C′ (fav)<br />

C(fav) , γ2 = C′′ (fav)<br />

C(fav)<br />

ζ =<br />

ν(f − K)<br />

, ˆx(ζ) = log<br />

αC(fav)<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

<br />

1 − 2ρζ + ζ2 − ρ + ζ<br />

.<br />

1 − ρ


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Equivalent Black volatility<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

To derive the implied volatility consider again Black’s model<br />

d ˆ F = ɛσ B ˆ F dW, ˆ F (0) = f<br />

with ɛσ B for consistency of the analysis. The implied normal<br />

volatility for Black’s model for <strong>SABR</strong> can be obtained by setting<br />

C(f) = f and ν = 0 in previous results such that<br />

σ (K) =<br />

N ɛσ (f − K)<br />

B<br />

log f<br />

{1 −<br />

K<br />

1<br />

24 ɛ2σ 2<br />

τ + · · · }.<br />

B<br />

through O(ɛ 2 ). Solving the equation for σ B yields<br />

f<br />

α log<br />

K<br />

σ (K) =<br />

B f df<br />

K<br />

′<br />

C(f ′ <br />

ζ<br />

ˆx(ζ)<br />

)<br />

⎧ ⎡<br />

⎪⎨ 2γ2 − γ<br />

⎢<br />

· 1 + ⎣<br />

⎪⎩ 2 1 + 1<br />

f2 av<br />

α<br />

24<br />

2 C 2 (fav) + 1<br />

4 ρναγ1C(fav)<br />

2 − 3ρ2<br />

+ ν<br />

24<br />

2<br />

⎤<br />

⎥<br />

⎦ ɛ 2 ⎫<br />

⎪⎬<br />

τ + · · ·<br />

⎪⎭ .<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Stochastic β model<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

Finally, let’s look at the original state with C(f) = f β . Making the<br />

substitutions as previously and following approximations<br />

f − K = fK log f/K{1 + 1<br />

24 log2 f/K + 1<br />

1920 log4 f/K + · · · },<br />

f 1−β − K 1−β = (1 − β)(fK) (1−β)/2 (1 − β)2<br />

log f/K{1 + log<br />

24<br />

2 (1 − β)4<br />

f/K + log<br />

1920<br />

4 f/K + · · · },<br />

the implied normal volatility reduces to<br />

σ (K) = ɛα(fK)<br />

N β/2 1 + 1 24 log2 f/K + 1<br />

1920 log4 f/K + · · ·<br />

1 + (1−β)2<br />

log<br />

24<br />

2 f/K + (1−β)4<br />

log<br />

1920<br />

4 <br />

ζ<br />

f/K + · · · ˆx(ζ)<br />

<br />

2<br />

−β(2 − β)α ρανβ 2 − 3ρ2<br />

· 1 +<br />

+<br />

+ ν<br />

24(fK) 1−β 4(fK) (1−β)/2 24<br />

2<br />

<br />

ɛ 2 <br />

τ + · · ·<br />

with ζ = ν<br />

α (fK)(1−β)/2 log f/K. Setting ɛ = 1 one gets ...<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

<strong>SABR</strong> Implied <strong>Volatility</strong> - General<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

The implied volatility σ B (f, K) is given by<br />

σ B (K, f) =<br />

<br />

1 +<br />

(fK) (1−β)/2<br />

<br />

(1 − β) 2<br />

24<br />

where z is defined by<br />

1 + (1−β)2<br />

24<br />

α<br />

α 2<br />

1<br />

+<br />

(fK) 1−β 4<br />

2 f (1−β)4 f<br />

log + log4 K 1920 K<br />

z = ν<br />

α (fK)(1−β)/2 log f<br />

K<br />

<br />

z<br />

· ·<br />

x(z)<br />

ρβνα 2 − 3ρ2<br />

+ ν<br />

(fK) (1−β)/2 24<br />

2<br />

<br />

T<br />

and x(z) is given by<br />

<br />

1 − 2ρz + z2 + z − ρ<br />

x(z) = log<br />

.<br />

1 − ρ<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

<strong>SABR</strong> Implied <strong>Volatility</strong> - ATM<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

For at-the-money options (K = f) the formula reduces to<br />

σ B (f, f) = σ AT M such that<br />

σ AT M =<br />

<br />

(1−β) 2<br />

α 1 + 24<br />

α2 f 2−2β + 1 ρβνα<br />

4 f (1−β) + 2−3ρ2<br />

24 ν2<br />

<br />

f (1−β)<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

<br />

T<br />

.


Model Dynamics<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Approximate the model with λ = ν<br />

σB (K, f) = α<br />

f 1−β<br />

<br />

+ 1<br />

12<br />

The <strong>SABR</strong> model is then described with<br />

Backbone: α<br />

f 1−β<br />

Skew: − 1<br />

2<br />

<strong>Smile</strong>: 1<br />

12 (2 − 3ρ2 ) log<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

α f 1−β such that<br />

1 − 1<br />

K<br />

(1 − β − ρλ) log<br />

2 f<br />

2 2 2<br />

(1 − β) + (2 − 3ρ )λ log 2 <br />

K<br />

,<br />

f<br />

(1 − β − ρλ) log K<br />

2 K<br />

f<br />

f<br />

1 , 12 (1 − β)2 2 K log f<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Backbone<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Parameter Estimation<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

For estimation of the <strong>SABR</strong> model the estimation of β is used as a<br />

starting point.<br />

With β estimated, there are two possible choices to continue<br />

calibration:<br />

1 Estimate α, ρ and ν directly, or<br />

2 Estimate ρ and ν directly, and infer α from ρ, ν and the<br />

at-the-money.<br />

In general, it is more convenient to use the ATM volatility<br />

σ AT M , β, ρ and ν as the <strong>SABR</strong> parameters instead of the original<br />

parameters α, β, ρ and ν.<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Estimation of β<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

For estimation of β the at-the money volatility σ AT M from<br />

equation is used<br />

log σAT M = log α − (1 − β) log f +<br />

<br />

(1 − β) 2 α<br />

log 1 +<br />

24<br />

2 1 ρβνα 2 − 3ρ2<br />

+ + ν<br />

f 2−2β 4 f (1−β) 24<br />

2<br />

<br />

T<br />

≈ log α − (1 − β) log f<br />

Alternatively, β can be chosen from prior beliefs of the appropriate<br />

model:<br />

β = 1: stochastic log-normal, for FX option markets<br />

β = 0: stochstic normal, for markets with zero or negative f<br />

β = 1<br />

2<br />

: CIR model, for interest rate markets<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Estimation of α, ρ and ν<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

Estimation of all three parameters by minimization of the errors<br />

between the model and the market volatilities σmkt i at identical<br />

maturity T .<br />

Using the sum of squared errors (SSE)<br />

is produced.<br />

(ˆα, ˆρ, ˆν) = arg min<br />

α,ρ,ν<br />

<br />

i<br />

σ mkt<br />

i<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

− σ B (fi, Ki; α, ρ, ν) 2 .


Estimation of ρ and ν<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

The number of parameters can be reduced by extracting α directly<br />

from σ AT M . Thus, by inverting the equation the cubic equation is<br />

received<br />

(1 − β) 2 T<br />

24f 2−2β<br />

<br />

α 3 <br />

1<br />

+<br />

ρβνT<br />

4<br />

f (1−β)<br />

<br />

α 2 <br />

+ 1 +<br />

2 − 3ρ2<br />

ν<br />

24<br />

2 <br />

T α − σAT M f (1−β) = 0.<br />

As it it possible to receive more than one single real root, it is<br />

suggested to select the smallest positive real root.<br />

Given α the SSE<br />

(ˆα, ˆρ, ˆν) = arg min<br />

α,ρ,ν<br />

<br />

i<br />

σ mkt<br />

i<br />

has to be minimized for the ρ and ν.<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

− σ B (fi, Ki; α(ρ, ν), ρ, ν) 2


Calibration<br />

Implied <strong>Volatility</strong><br />

0.14 0.16 0.18 0.20 0.22<br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Calibration for a fictional<br />

data set, with 15 implied<br />

market volatilities at<br />

maturity T = 1.<br />

Market Implied Volatilities<br />

0.05 0.06 0.07 0.08 0.09 0.10 0.11<br />

Strike<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

1.Param. 2.Param.<br />

α 0.139 0.136<br />

ρ -0.069 -0.064<br />

ν 0.578 0.604<br />

SSE 2.456 · 10 −4<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

Implied <strong>Volatility</strong><br />

0.14 0.16 0.18 0.20 0.22<br />

●<br />

●<br />

●<br />

Difference by Parametrization<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0.05 0.06 0.07 0.08 0.09 0.10 0.11<br />

Strike<br />

●<br />

●<br />

●<br />

●<br />

2.860 · 10 −4<br />

●<br />

●<br />

●<br />

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030<br />

Error


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Parameter dynamics - β, α<br />

Implied <strong>Volatility</strong><br />

0.14 0.16 0.18 0.20 0.22<br />

Dynamics of β<br />

0.05 0.06 0.07 0.08 0.09 0.10 0.11<br />

Strike<br />

β=1<br />

β= 1<br />

2<br />

β=0<br />

Implied <strong>Volatility</strong><br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

0.14 0.16 0.18 0.20 0.22<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

Dynamics of α<br />

0.05 0.06 0.07 0.08 0.09 0.10 0.11<br />

Strike<br />

α<br />

α+5%<br />

α−5%


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Parameter dynamics - ρ, ν<br />

Implied <strong>Volatility</strong><br />

0.14 0.16 0.18 0.20 0.22<br />

Dynamics of ν<br />

0.05 0.06 0.07 0.08 0.09 0.10 0.11<br />

Strike<br />

ν<br />

ν+15%<br />

ν−15%<br />

Implied <strong>Volatility</strong><br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

0.14 0.16 0.18 0.20 0.22<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

Dynamics of ρ<br />

0.05 0.06 0.07 0.08 0.09 0.10 0.11<br />

Strike<br />

ρ=− 0.06<br />

ρ=0.25<br />

ρ=− 0.25


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

<strong>SABR</strong> and FX Options- EUR/JPY<br />

Implied <strong>Volatility</strong><br />

0.12 0.14 0.16 0.18 0.20<br />

EURJPY FX Option <strong>Volatility</strong> <strong>Smile</strong><br />

10C 25C ATM 25P 10P<br />

Delta<br />

Implied <strong>Volatility</strong><br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

0.12 0.14 0.16 0.18 0.20<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

EURJPY FX Option <strong>Volatility</strong> <strong>Smile</strong><br />

10C 25C ATM 25P 10P<br />

Delta


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

<strong>SABR</strong> and FX Options - USD/JPY<br />

Implied <strong>Volatility</strong><br />

0.10 0.11 0.12 0.13<br />

USDJPY FX Option <strong>Volatility</strong> <strong>Smile</strong><br />

10C 25C ATM 25P 10P<br />

Delta<br />

Implied <strong>Volatility</strong><br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

0.10 0.11 0.12 0.13<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

EURJPY FX Option <strong>Volatility</strong> <strong>Smile</strong><br />

10C 25C ATM 25P 10P<br />

Delta


Table of Contents<br />

1 Introduction<br />

Implied <strong>Volatility</strong><br />

Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

2 <strong>Heston</strong> Model<br />

Derivation of the <strong>Heston</strong> Model<br />

Summary for the <strong>Heston</strong> Model<br />

FX <strong>Heston</strong> Model<br />

Calibration of the FX <strong>Heston</strong><br />

Model<br />

3 <strong>SABR</strong> Model<br />

Definition<br />

Derivation<br />

<strong>SABR</strong> Implied <strong>Volatility</strong><br />

Calibration<br />

4 Conclusio<br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong>


Introduction<br />

<strong>Heston</strong> Model<br />

<strong>SABR</strong> Model<br />

Conclusio<br />

Observations and Facts<br />

<strong>Heston</strong><br />

its volatility structure permits<br />

analytical solutions to be<br />

generated for European options<br />

this model describes important<br />

mean-reverting property of<br />

volatility<br />

allows price dynamics to be of<br />

non-lognormal probability<br />

distributions<br />

the model does not perform well<br />

for short maturities<br />

parameters after calibration to<br />

market data turn out to be<br />

non-constant<br />

<strong>SABR</strong><br />

Nowak, Sibetz <strong>Volatility</strong> <strong>Smile</strong><br />

simple stochastic volatility<br />

model; as only one formula<br />

no derivation of prices,<br />

comparision directly via implied<br />

volatility<br />

no time dependency<br />

implemented<br />

interpolation errenous and<br />

inaccurate (e.g. shifts)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!