27.08.2013 Views

pdf 6.58M

pdf 6.58M

pdf 6.58M

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

pK I exp.<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

AFMoC con : Incorporating ligand<br />

and receptor conformational<br />

variability into tailor-made<br />

scoring functions<br />

Serineproteases<br />

r 2 = 0.85<br />

1<br />

8<br />

1 2 3 4 5 6 7 8 9 10<br />

Holger Gohlke<br />

DrugScore<br />

Frequency<br />

Property<br />

W = -ln[P]<br />

„Potential“<br />

Property<br />

Gohlke, Hendlich, Klebe, JMB 2000.<br />

Predicting binding affinities<br />

pK i calc.<br />

pK i exp.<br />

1adc<br />

Ferrara, Gohlke et al., JMC 2004.<br />

14<br />

12<br />

10<br />

6<br />

Metalloenzymes<br />

r 2 = 0.74<br />

4<br />

14<br />

2<br />

2 4 6 8 10 12 12 14<br />

pK i calc.<br />

• Data sets from LPDB<br />

• Scaling of DrugScore<br />

pK i= c * DrugScore<br />

pK i exp.<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10 12 14<br />

pK i calc.<br />

1ebg<br />

Mixed: r 2 = 0.34<br />

Scoring protein-ligand interactions<br />

Identify binding mode<br />

DrugScore<br />

Prioritize ligands<br />

pK i (calc)<br />

-ln(g(R) / g ref (R))<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

pK i (exp)<br />

Distance-dependent<br />

pair potentials<br />

1 2 3 4 5 6<br />

R [Å] O N<br />

R O O R<br />

R<br />

R<br />

O<br />

O N<br />

R<br />

O O R<br />

Only non-H atoms + Fast +<br />

General applicable + Tolerant against (exp.) errors<br />

Beware of mass dependence<br />

Recalc. with data from<br />

Wang, Lu, Wang,<br />

JMC 2003.<br />

Correlation with<br />

mass of the ligands<br />

R S = 0.56<br />

Velec, Gohlke, Klebe, JMC 2005.<br />

1


Overview<br />

Adaptation of Fields for Molecular Comparison<br />

∑<br />

p∈P<br />

AFMoC<br />

and<br />

Docking<br />

ΔP<br />

= ΔW<br />

)<br />

g , t<br />

t,<br />

Τ(<br />

p)<br />

( rg<br />

, p<br />

AFMoC<br />

and<br />

Conformational<br />

Variability<br />

Predicting ‘hot spots’<br />

Gohlke, Hendlich, Klebe, PD3 2000.<br />

Methods in rational drug design<br />

Candidate<br />

Docking<br />

QSAR<br />

structure-based<br />

information<br />

ligand-based<br />

information<br />

Binding<br />

mode<br />

Binding<br />

affinity<br />

Intrinsic geometrical<br />

information<br />

R<br />

HO<br />

3.45Å<br />

R<br />

2.55Å<br />

O<br />

1.22Å<br />

R<br />

∠(C.2-O.2-O.3) = 128°<br />

Phospholipase<br />

(1poc)<br />

Ca<br />

ISOSTAR<br />

HIV-1 protease<br />

(1hvr)<br />

O.sp2<br />

C.sp3<br />

Tailoring DrugScore towards<br />

one specific protein<br />

O.sp2<br />

O.sp3<br />

C.ar<br />

Goal: Improvement of predictive power for pK i values<br />

Idea:<br />

& &<br />

pK 1<br />

i<br />

pK 2<br />

i<br />

pK i 3<br />

pK i n<br />

2


Approach<br />

“Potential field” * Property = Interaction field<br />

T t<br />

Interaction fields ...<br />

... contain protein information<br />

... are atom-type specific<br />

... are orthogonal<br />

... are „free energy“-fields<br />

AFMoC<br />

Adaptation of Fields for Molecular<br />

Comparison<br />

T 1<br />

Comp. 1,<br />

pK i 1<br />

Comp. n,<br />

pK i n<br />

⎛c1<br />

, Τ ⎞ 1 ⎜ ⎟<br />

⎜ M ⎟<br />

1<br />

1<br />

1<br />

1<br />

⎛<br />

⎞<br />

⎜ ⎟<br />

1<br />

ΔW1,<br />

Τ LΔWg<br />

Τ LΔW<br />

Τ LΔWg<br />

Τ ⎜<br />

cg<br />

Τ ⎟ ⎛ ⎞<br />

⎜<br />

⎟<br />

pK<br />

1<br />

, 1 1,<br />

t<br />

, t , 1<br />

i ⎜ ⎟<br />

⎜M<br />

O<br />

M ⎟ * ⎜ M ⎟ = ⎜ M ⎟<br />

⎜<br />

⎟ ⎜ ⎟<br />

⎜ n<br />

n<br />

n<br />

n ⎟<br />

⎜ n ⎟<br />

⎝<br />

ΔW<br />

Τ LΔWg<br />

Τ LΔW<br />

Τ LΔWg<br />

Τ ⎠<br />

⎜c<br />

1,<br />

1,<br />

Τ ⎟ ⎝ pK<br />

1<br />

, 1 1,<br />

t<br />

, t<br />

t<br />

i ⎠<br />

⎜ ⎟<br />

⎜ M ⎟<br />

⎜ ⎟<br />

⎝<br />

cg<br />

, Τt<br />

⎠<br />

# Unknowns c i,Τj > # Equations<br />

c i,Τj from Partial-Least-Squares analysis<br />

Results of PLS analysis<br />

• Grid width: 1 Å,<br />

Half-width of Gaussian: 0.85 Å<br />

• Fields for:<br />

aliphat. C<br />

aromat. C<br />

hydroxyl-O<br />

carbonyl-O<br />

carboxyl-O<br />

amide-N<br />

mercapto-S<br />

N 61<br />

q 2<br />

sPRESS<br />

r 2<br />

0.62<br />

1.34<br />

0.97<br />

S 0.37<br />

F 166<br />

C om ponents 10<br />

Gohlke, Klebe, JMC 2002.<br />

Approach<br />

Correlation of interaction fields with known pK i values<br />

q 0,4<br />

0,3<br />

2<br />

T t<br />

T 1<br />

Comp. 1,<br />

pK i 1<br />

Comp. n,<br />

pK i n<br />

• 61 Inhibitors for training<br />

⎛c1<br />

, Τ ⎞ 1 ⎜ ⎟<br />

⎜ M ⎟<br />

1<br />

1<br />

1<br />

1<br />

⎛<br />

⎞<br />

⎜ ⎟<br />

1<br />

ΔW1,<br />

Τ LΔWg<br />

Τ LΔW<br />

Τ LΔWg<br />

Τ ⎜<br />

cg<br />

Τ ⎟ ⎛ ⎞<br />

⎜<br />

⎟<br />

pK<br />

1<br />

, 1 1,<br />

t<br />

, t , 1<br />

i ⎜ ⎟<br />

⎜M<br />

O<br />

M ⎟ * ⎜ M ⎟ = ⎜ M ⎟<br />

⎜<br />

⎟ ⎜ ⎟<br />

⎜ n<br />

n<br />

n<br />

n ⎟<br />

⎜ n ⎟<br />

⎝<br />

ΔW<br />

Τ LΔWg<br />

Τ LΔW<br />

Τ LΔWg<br />

Τ ⎠<br />

⎜c<br />

1,<br />

1,<br />

Τ ⎟ ⎝ pK<br />

1<br />

, 1 1,<br />

t<br />

, t<br />

t<br />

i ⎠<br />

⎜ ⎟<br />

⎜ M ⎟<br />

⎜ ⎟<br />

⎝<br />

cg<br />

, Τt<br />

⎠<br />

# Unknowns c i,Τj > # Equations<br />

c i,Τj from Partial-Least-Squares analysis<br />

Thermolysin<br />

• Superimpositioning inside the binding pocket of<br />

thermolysin using crystal structure templates<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,2<br />

0,1<br />

Internal validation<br />

Leave-Five-Out<br />

Leave-One-Out<br />

Leave-Five-Out<br />

0,0<br />

0 1 2 3 4 5<br />

run<br />

6 7 8 9 10<br />

Randomly selected pK i’s<br />

# of components<br />

0,0<br />

1 2 3 4 5 6 7 8 9 10<br />

-0,1<br />

-0,2<br />

q -0,3 2<br />

-0,4<br />

-0,5<br />

3


Predictive power by variation<br />

between generality and specificity<br />

• 15 Thermolysin inhibitors for test set<br />

• same treatment as before (“hand-docking”)<br />

r 2<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Original<br />

pair potentials<br />

PLS-model<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

θ<br />

Predictive power by variation<br />

between generality and specificity<br />

• Mix “general” and “specific” results<br />

pK = ( 1−θ<br />

) pK + θ pK<br />

i<br />

Paar<br />

i<br />

PLS<br />

i<br />

• How much additional<br />

information?<br />

100 times random<br />

choice of<br />

5, 15, 30, 45, 53<br />

training compounds<br />

⇒ PLS model<br />

⇒ prediction<br />

r 2<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

θ<br />

61<br />

61<br />

53<br />

45<br />

30<br />

15<br />

5<br />

Predictive power by variation<br />

between generality and specificity<br />

• Mix “general” and “specific” results<br />

pK = ( 1−θ<br />

) pK + θ pK<br />

i<br />

Paar<br />

i<br />

PLS<br />

i<br />

r 2<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Overview<br />

Original<br />

pair potentials<br />

PLS-model<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

θ<br />

Adaptation of Fields for Molecular Comparison<br />

AFMoC<br />

and<br />

Docking<br />

AFMoC<br />

and<br />

Conformational<br />

Variability<br />

A tailor-made objective function A tailor-made objective function<br />

AFMoC obj<br />

61<br />

4


Docking HIV-1 protease inhibitors<br />

# Complexes<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

• 66 complexes from<br />

the PDB<br />

• 48 compounds for<br />

training<br />

q 2 of the model > 0.6<br />

• Consensus docking:<br />

target structure 1ajv<br />

• Docking using<br />

AutoDock<br />

Radestock, Böhm, Gohlke, JMC 2005.<br />

Binding mode predictions<br />

0<br />

0 1 2 3 4 5 6<br />

rmsd [Å]<br />

AFMoC<br />

*<br />

obj<br />

DrugScore<br />

AutoDock<br />

improvement<br />

14%<br />

train and test<br />

data perform<br />

equally well<br />

Exploring new interactions<br />

DrugScore: 4.5 Å rmsd<br />

Fields for aliphatic C (C.3)<br />

AFMoC obj : 0.8 Å rmsd<br />

Processing of the fields<br />

1. Column filtering<br />

2. Remove repulsion<br />

3. Mixing<br />

“standard” PLS<br />

PLS with Shannon<br />

entropy based filtering<br />

Accentuate important regions<br />

DrugScore: 2.2 Å rmsd<br />

Fields for hydroxyl O (O.3)<br />

AFMoC obj : 1.4 Å rmsd<br />

Further benefits from AFMoC obj<br />

• Implicit consideration of multiple solvation<br />

schemes<br />

“flap water” absent “flap water” present<br />

5


Binding affinity predictions<br />

… in a multistep approach using AFMoC<br />

Method<br />

AFMoC obj<br />

DrugScore<br />

AFMoC<br />

r 2<br />

0.27<br />

0.13<br />

0.38<br />

Recipe:<br />

1. AFMoC obj for binding mode detection<br />

2. AFMoC on „good“ modes for affinity prediction<br />

Motivation: Use AFMoC on<br />

homology models<br />

Structure q 2 rmsd [Å]<br />

Exp. 0.57 -<br />

HM1 0.61 1.48 (2.90)<br />

HM2 0.42 1.10 (2.35)<br />

HM3 0.39 1.44 (3.37)<br />

Exp.<br />

HM1 HM2 HM3<br />

60 loop<br />

Approach I: Extended X-Matrix<br />

⇒ Multimode binding<br />

Overview<br />

Adaptation of Fields for Molecular Comparison<br />

AFMoC<br />

and<br />

Docking<br />

AFMoC<br />

and<br />

Conformational<br />

Variability<br />

Idea: Inclusion of receptor and<br />

ligand flexibility<br />

+ + +<br />

Consensus-Model<br />

Consensus Model<br />

Approach I: Extended X-Matrix<br />

• „Obvious“ treatment<br />

→ „Weighted fields approach“<br />

→ ln K i = Σ w j ln K ij<br />

→ K i = Π K ij wj WRONG!<br />

• Right treatment<br />

→ „Multimode binding approach“<br />

→ K i = Σ K ij<br />

→ Requires iterative solution of QSAR equation<br />

Lukacova & Balaz, JCICS 2003<br />

6


Approach II: Variable-Selection<br />

Combination of multiple models<br />

Models HM 1+2 HM 1+3 HM 2+3 HM 1+2+3<br />

w/o varselect.<br />

q 2 0.59 0.45 0.42 0.57<br />

w/ varselect.<br />

q 2 0.61 0.56 0.43 0.60<br />

r 2 (test set) 0.64 0.61 0.41 0.64<br />

Preval. 1 2 1 3 2 3 1 2 3<br />

(Exp.: q 2 = 0.57; r 2 = 0.65)<br />

0.50 0.50 0.50 0.50 0.51 0.49 0.38 0.33 0.29<br />

Overview<br />

con<br />

Breu, Silber, Gohlke, JCIM 2007.<br />

Adaptation of Fields for Molecular Comparison<br />

AFMoC<br />

and<br />

Docking<br />

Where to from here?<br />

AFMoC<br />

and<br />

Conformational<br />

Variability<br />

Validation: Thrombin inhibitors<br />

Structurally diverse<br />

ligand set<br />

Graphical<br />

interpretation<br />

Aromatic carbon<br />

Exp. 1 / 2 / 3<br />

1 + 2 + 3<br />

If the protein moves …<br />

„… deform binding pocket region accordingly“<br />

7


Potential fields as elastic bodies<br />

Problem: Determine displacement components<br />

under prescribed forces<br />

Solution: Elasticity theory via<br />

Navier‘s equation<br />

2 v<br />

v v<br />

μ∇<br />

u + ( μ + λ)<br />

∇Div<br />

u + F = 0<br />

Limiting conformational space<br />

HIV-1 Protease<br />

re: 0.30 Å<br />

apo: 3.86 Å<br />

def: 0.91 Å<br />

- apo<br />

- deformed<br />

Repulsive fields of aromatic carbon<br />

Elastic, adaptive potential grids<br />

Kazemi, Krüger, Sirockin, Gohlke, ChemMedChem 2009.<br />

Mimicking sidechain movement<br />

CAPK<br />

re: 0.33 Å<br />

apo: 3.05 Å<br />

def: 0.75 Å<br />

- apo<br />

- deformed<br />

Scope and limitations Summary<br />

Attractive fields of aromatic carbon<br />

PHE122<br />

- apo<br />

- holo<br />

• AFMoC incorporates additional structural and<br />

energetic information about already known<br />

ligands<br />

• Binding-mode predictions can be improved<br />

using AFMoC obj<br />

• Conformational variability can be considered<br />

using AFMoC con<br />

• Possibility to mix adapted and original fields<br />

• Implicit consideration of multiple solvation<br />

schemes<br />

8


Acknowledgements<br />

• Sebastian Radestock<br />

• Benjamin Breu<br />

• Markus Böhm (Pfizer)<br />

• Hans Velec (Marburg)<br />

• Katrin Silber<br />

• Gerhard Klebe<br />

• DFG<br />

• HWP/FIAS/FIGSS/OSS<br />

• Merck, Darmstadt<br />

• Boehringer, Biberach<br />

• Novartis, Basel<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!