Molecular Beam Mass Spectrometry for Analysis of ... - EVUR

Molecular Beam Mass Spectrometry for Analysis of ... - EVUR Molecular Beam Mass Spectrometry for Analysis of ... - EVUR

evur.tu.berlin.de
from evur.tu.berlin.de More from this publisher
26.08.2013 Views

Molecular Beam Mass Spectrometry for Analysis of Condensable Gas Components Tar Analysis Workshop 19 th EU Biomass Conference Berlin Daniel Carpenter June 8 th 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

<strong>Molecular</strong> <strong>Beam</strong> <strong>Mass</strong> <strong>Spectrometry</strong> <strong>for</strong><br />

<strong>Analysis</strong> <strong>of</strong> Condensable Gas Components<br />

Tar <strong>Analysis</strong> Workshop<br />

19 th EU Biomass Conference<br />

Berlin<br />

Daniel Carpenter<br />

June 8 th 2011<br />

NREL is a national laboratory <strong>of</strong> the U.S. Department <strong>of</strong> Energy, Office <strong>of</strong> Energy Efficiency and Renewable Energy, operated by the Alliance <strong>for</strong> Sustainable Energy, LLC.


Background<br />

MBMS analysis technique developed and<br />

used by NREL <strong>for</strong> >30 years (originally to<br />

study prompt thermochemical phenomena):<br />

1. Line-<strong>of</strong>-sight extraction <strong>of</strong> vapor-phase sample from<br />

high T, ambient P environment into mass<br />

spectrometer (P source/P Stage1 ≥ 10 4 )<br />

2. Supersonic expansion,<br />

rapid cooling/rarefaction<br />

preserves sample<br />

without condensation or<br />

reaction<br />

3. <strong>Mass</strong> analysis provides<br />

instantaneous chemical<br />

fingerprint <strong>of</strong> sample<br />

4. Useful <strong>for</strong> tar and alkali<br />

metal vapor analysis<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

0.30 mm<br />

orifice<br />

Stage 1 Stage 2 Stage 3<br />

10<br />

1.0 mm<br />

skimmer<br />

-5 Torr 10-7 10 Torr<br />

-3 Torr<br />

440 L/s 520 L/s 260 L/s<br />

Formation <strong>of</strong> molecular beam<br />

2


Transportable instrument <strong>for</strong> process monitoring<br />

•Constructed field-deployable MBMS<br />

(~1995)<br />

•<strong>Mass</strong> spectrometer cart: ~1 m 2 , 300 kg<br />

•On-board, PC-based sample handling and<br />

calibration control (temperature, pressure,<br />

flow control, gas & liquid standards)<br />

= 450°C<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

1<br />

filters liquid standard<br />

mass<br />

spectrometer<br />

3<br />

4<br />

P<br />

dP<br />

2<br />

dilution gas, calibration<br />

gas, scrubbed gas<br />

5 6<br />

7<br />

9<br />

8<br />

vent<br />

1. Sample<br />

manifold<br />

2.Flow control<br />

valve<br />

3.Orifice plate<br />

flow meter<br />

4.Sampling<br />

orifice<br />

5.Condenser<br />

6.Coalescing<br />

filter<br />

7.Pressure<br />

control valve<br />

8.Sample pump<br />

9.Dry test meter<br />

3


Results and experience<br />

•Provides real-time, continuous, and robust<br />

process monitoring <strong>of</strong> hot, untreated process gas<br />

•Near-universal detection (typical sensitivity ~1<br />

ppmv)<br />

•Reproducible and stable with routine<br />

maintenance<br />

•Learning curve is steep, complex system<br />

•Quantitation is somewhat cumbersome (requires<br />

careful injection <strong>of</strong> liquid standard <strong>for</strong> each<br />

species <strong>of</strong> interest and good measurement <strong>of</strong> wet<br />

volumetric flow)<br />

•Compares well with EU Tar Protocol, but<br />

estimations <strong>of</strong> “gravimetric” tar difficult with limited<br />

standard set (injection <strong>of</strong> heavy tar standards into<br />

hot oven problematic due to solvent vaporization<br />

and capillary plugging)<br />

•Expensive (approx. $300K U.S.)<br />

•Most valuable during plant startup and initial<br />

product gas characterization, less valuable <strong>for</strong><br />

routine analysis<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

Intensity (arb.)<br />

Intensity (arb.)<br />

1.5e+8<br />

1.0e+8<br />

5.0e+7<br />

2.5e+8<br />

2.0e+8<br />

1.5e+8<br />

1.0e+8<br />

5.0e+7<br />

16 (methane)<br />

40 (argon)<br />

78 94 108<br />

3.0e+7<br />

2.0e+7<br />

1.0e+7<br />

108<br />

110<br />

122<br />

132<br />

144 158<br />

100 150 200 250 300<br />

0 50 100 150 200 250 300 350 400<br />

16 (methane)<br />

40 (argon)<br />

78<br />

8.0e+7<br />

6.0e+7<br />

4.0e+7<br />

2.0e+7<br />

104<br />

116<br />

128<br />

m/z<br />

m/z<br />

160<br />

650 C<br />

0.0<br />

100 150 200 250 300<br />

128<br />

178<br />

142<br />

0 50 100 150 200 250 300 350 400<br />

152<br />

166<br />

178<br />

202<br />

216<br />

228<br />

875 C<br />

<strong>Mass</strong> spectra observed with MBMS during<br />

wood gasification at 650° C and 875°C<br />

252<br />

4<br />

276<br />

290


Current status and future work<br />

•System works, but can be made smaller, lighter, more energy efficient<br />

with recent equipment advancements (vacuum pumps, electronics)<br />

•Phase-sensitive detection (molecular beam chopper) could be added to<br />

increase sensitivity by >100x<br />

•Commercial MBMS systems are now available (Extrel CMS, Hiden<br />

Analytical) that could easily be outfitted <strong>for</strong> the field<br />

References:<br />

•Evans, R.J., Milne, T.A., “<strong>Molecular</strong> Characterization <strong>of</strong> the Pyrolysis <strong>of</strong> Biomass. 1. Fundamentals” Energy & Fuels 1987, 1 (2), 123-137.<br />

•Carpenter, D.L., Deutch, S.P., French, R.J. “Quantitative Measurement <strong>of</strong> Biomass Gasifier Tars Using a <strong>Molecular</strong>-<strong>Beam</strong> <strong>Mass</strong><br />

Spectrometer: Comparison with Traditional Impinger Sampling” Energy & Fuels 2007, 21, 3036-3043.<br />

•Dayton, D.C., French, R.J., Milne, T.A., “Direct Observation <strong>of</strong> Alkali Vapor Release during Biomass Combustion and Gasification. 1.<br />

Application <strong>of</strong> <strong>Molecular</strong> <strong>Beam</strong>/<strong>Mass</strong> <strong>Spectrometry</strong> to Switchgrass Combustion” Energy &Fuels 1995, 9 (5), 855-865.<br />

•Carpenter, D.L., Bain, R.L., Davis, R.E., Dutta, A., Feik, C.J., Gaston, K.R., Jablonski, W., Phillips, S.D., Nimlos, M.R., “Pilot-Scale<br />

Gasification <strong>of</strong> Corn Stover, Switchgrass, Wheat Straw, and Wood: 1. Parametric Study and Comparison with Literature” Ind. Eng. Chem.<br />

Res. 2010, 49 (4), 1859-1871.<br />

NREL/National Bioenergy Center: http://www.nrel.gov/biomass<br />

DOE Biomass Program: http://www.eere.energy.gov/biomass<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

5


Supplemental Slides<br />

Additional syngas analysis methods<br />

under development at NREL<br />

•High-resolution mass spectrometry<br />

•Diode laser spectroscopy<br />

•Laser ablation, REMPI/TOF<br />

•Advanced gas chromatography<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

6


High-resolution mass spectrometry<br />

JMS-GCmate II (JEOL Ltd., Japan) high-resolution<br />

magnetic sector mass spectrometer installed in<br />

TCPDU<br />

•Motivation: analysis <strong>of</strong> very low levels <strong>of</strong> DOEtargeted<br />

syngas impurities, e.g. NH 3, HCl, H 2S<br />

•Modified inlet system <strong>for</strong> continuous<br />

monitoring <strong>of</strong> syngas (still working on heated<br />

capillary inlet <strong>for</strong> tars)<br />

•Can resolve at m/z… 16: NH 2 + /CH4 + /O +<br />

17: OH + /NH 3 + / 13 CH4 +<br />

27: 13 C 2H 2 + /HCN + /C2H 3 +<br />

28: CO + /N 2 + /C2H 4 +<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

•Resolution <strong>of</strong> 5000<br />

(m/ m) enables “accurate<br />

mass” measurements<br />

(elemental compositions)<br />

•<strong>Mass</strong> range: 1-3000 amu<br />

•Sensitivity: 30 pg/ L (ppt)<br />

•Capable <strong>of</strong> CI and direct<br />

insertion probe operation<br />

Relative Intensity (%)<br />

80<br />

44-CO2 60<br />

100 16.0239-CH +<br />

4<br />

15.8 16.0 16.2 16.4 16.6 16.8 17.0<br />

m/z<br />

40<br />

20<br />

15.9877-O +<br />

16.9957-OH +<br />

Limitations:<br />

•Capillary inlet may limit<br />

throughput <strong>of</strong> high-mass<br />

compounds<br />

•Magnet stability vs.<br />

ambient temperature<br />

•Ion source robustness?<br />

16.9957-NH 3 + 27.9912-CO + 28.0024-N 2 +<br />

27.96 27.98 28.00<br />

m/z<br />

28.02 28.04<br />

0<br />

0 20 40 60 80 100<br />

m/z<br />

28.0276-C 2H 4 +<br />

<strong>Mass</strong> spectrum <strong>of</strong> scrubbed, wood-derived syngas observed<br />

with high-resolution mass spectrometer<br />

7


Diode laser spectroscopy<br />

Ramp<br />

generator<br />

oscilloscope<br />

DFB-DL<br />

BD<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

Herriott cell<br />

Photograph showing Herriott cell (top) and schematic <strong>of</strong> diode<br />

laser spectrometer. BD – balanced detector, DFB-DL – distributed<br />

feedback diode laser<br />

•Based on near-IR absorption spectroscopy<br />

• Detection limit: 0.1 ppmv<br />

•Response time ~ 2 sec<br />

•Expandable to multispecies detection at<br />

roughly $5000/component<br />

Limitations:<br />

•Susceptible to absorption interferences,<br />

especially water vapor<br />

•High resolution spectroscopy unknown <strong>for</strong><br />

most species<br />

Multipass pattern<br />

observed on 2” mirror<br />

using 660 nm alignment<br />

laser. Effective pathlength<br />

~ 49 meters.<br />

Contact: David Robichaud (david.robichaud@nrel.gov)<br />

8


Laser ablation, REMPI/TOF<br />

• Laboratory unit <strong>for</strong> fundamental<br />

studies<br />

• Highly selective towards lignin<br />

pyrolysis products (see below)<br />

•Screening <strong>of</strong> catalysts <strong>for</strong> biomass<br />

pyrolysis<br />

•Study effects <strong>of</strong> mineral salts on<br />

pyrolysis <strong>of</strong> lignin<br />

•Classification <strong>of</strong> lignin <strong>for</strong>m different<br />

biomass feedstocks<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

Sample inlet<br />

Linear<br />

translator Biomass<br />

vapor<br />

Biomass sample (wood<br />

section/leaf/disk)<br />

Rev. Sci. Instrum. 82, 033104 (2011)<br />

355 nm Laser Ablation <strong>Beam</strong><br />

REMPI: λ = 278 nm<br />

(4.46 eV)<br />

He Carrier Gas<br />

Under Free Jet<br />

Expansion<br />

Contact: Calvin Mukarakate (calvin.mukarakate@nrel.gov)<br />

9


Advanced gas chromatography<br />

•Customized Agilent 6890N & 7890A<br />

gas chromatographs<br />

•Accepts heated sample to 325°C<br />

•Dual FID detectors (hydrocarbons<br />

through C 20)<br />

•Dual TCD detectors (permanent gases,<br />

tracer gases)<br />

•Nitrogen chemiluminescence detector<br />

– NCD (9 N compounds, including NH 3,<br />

HCN, pyrrole, pyridine at 0.05 ppmv)<br />

•Sulfur chemiluminescence detector –<br />

SCD (16 S compounds, including H 2S,<br />

mercaptans, thiophene at 0.1 ppmv)<br />

Limitations:<br />

•Some compounds not detectable at<br />

325°C<br />

•<strong>Analysis</strong> time – fast analysis: 8 min.,<br />

detailed analysis: 40 min.<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

sample oven<br />

auxiliary isothermal ovens<br />

Isothermal injector ovens<br />

heater/valve control<br />

NCD & SCD<br />

Wasson-ECE Instrumentation (Ft. Collins, CO) customized GC<br />

system <strong>for</strong> analysis <strong>of</strong> hot syngas up to 325°C.<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!