26.08.2013 Views

Estimation of Isomorphism Degree of Fuzzy Graphs - EUSFLAT

Estimation of Isomorphism Degree of Fuzzy Graphs - EUSFLAT

Estimation of Isomorphism Degree of Fuzzy Graphs - EUSFLAT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Estimation</strong> <strong>of</strong> <strong>Isomorphism</strong> <strong>Degree</strong> <strong>of</strong> <strong>Fuzzy</strong> <strong>Graphs</strong><br />

Bershtein L.S.<br />

Department <strong>of</strong> Informatics<br />

Taganrog State University <strong>of</strong> Radioengineering<br />

Nekrasovsky Street 44<br />

347900 Taganrog, Russia<br />

Tel.: +78634383289, Fax: +78634315300<br />

e-mail: lsb@pbox.ttn.ru<br />

Abstract<br />

The questions <strong>of</strong> isomorphism degree<br />

estimation <strong>of</strong> fuzzy graphs are discussed in<br />

this paper. The definition <strong>of</strong> independent<br />

fuzzy set <strong>of</strong> fuzzy graph is presented. The<br />

estimation method <strong>of</strong> isomorphism degree<br />

<strong>of</strong> fuzzy graphs is suggested and proved.<br />

The example <strong>of</strong> isomorphism degree<br />

estimation is considered.<br />

Keywords: <strong>Fuzzy</strong> Graph, <strong>Isomorphism</strong> <strong>Degree</strong>,<br />

Independent <strong>Degree</strong>, <strong>Fuzzy</strong> Independent Vertex<br />

Set, Independent <strong>Fuzzy</strong> Set.<br />

1 Introduction<br />

A graph isomorphism search is important problem <strong>of</strong><br />

graph theory. It consists to define <strong>of</strong> bijective<br />

correspondence existence which preserve adjacent<br />

relation between vertex sets <strong>of</strong> two graphs [7]. In a<br />

case <strong>of</strong> fuzzy graphs the notion <strong>of</strong> isomorphism is<br />

fuzzy.<br />

a<br />

We consider fuzzy graphs [5]<br />

a<br />

* ; 8 and<br />

<br />

<br />

a a<br />

* < 8 , where X and Y are sets <strong>of</strong> vertices<br />

<br />

<br />

a<br />

and 8 ; ^ ¬ ; [ L [ M [ L [ M > _ [ L [ M ∈ ; ` and<br />

a<br />

<br />

8 ^ ¬ \ \ \ \ > _ \ \ ∈<<br />

` are<br />

<br />

<br />

<br />

fuzzy sets <strong>of</strong> edges with membership functions<br />

µX:X 2 →[0,1] and µY:Y 2 →[0,1]. Let numbers <strong>of</strong><br />

vertices coincide (|X|=|Y|=n).<br />

Let Φ ={F:X→Y} be a set <strong>of</strong> all bijective<br />

correspondences which may be define on the set<br />

X×Y.<br />

Bozhenyuk A.V.<br />

Department <strong>of</strong> Informatics<br />

Taganrog State University <strong>of</strong> Radioengineering<br />

Nekrasovsky Street 44<br />

347900 Taganrog, Russia<br />

Tel.: +78634310866, Fax: +78634315300<br />

avb@pbox.infotecstt.ru<br />

Definition 1 [3]. A value<br />

PD[ ¬ [ [ ↔ ¬ \ \<br />

I ; L M < L M<br />

∀)<br />

∈Φ<br />

L = Q M = Q<br />

is called an isomorphism degree <strong>of</strong> fuzzy graphs<br />

* ;<br />

a and * <<br />

a .<br />

A task <strong>of</strong> search degree isomorphism is NPcomplete<br />

task as since |Φ|=n!<br />

Here & is conjunction operation, which is defined as<br />

a&b=min{a,b}. Operation ↔ is equivalence<br />

operation, which is defined as<br />

D ↔ E = D → E E → D . Operation →<br />

is implication operation, which has property 0→b=1<br />

(falsity implies anything) [4]. In Lukasiewicz logic it<br />

is defined as D → E = PLQ^ − D + E`.<br />

Crisp graphs may be consider as fuzzy graphs which<br />

have membership functions equal 0 or 1.<br />

Consequently, their isomorphism degree f may be 0<br />

or 1 also. If f=1, then crisp graphs are isomorphous.<br />

If f=0, then crisp graphs aren’t isomorphous.<br />

Crisp graphs are defined some invariants:<br />

independent number, dominating vertex number,<br />

chromatic number and others [6]. If crisp graphs are<br />

isomorphous (f=1), then their invariants coincide. If<br />

invariants don’t coincide, then crisp graphs aren’t<br />

isomorphous (f=1)<br />

When we deal with fuzzy graphs, their invariants are<br />

fuzzy values also. A task <strong>of</strong> fuzzy invariants<br />

influence on degree isomorphism <strong>of</strong> fuzzy graphs<br />

arises in this case. A correlation between<br />

isomorphism degree and independent fuzzy sets <strong>of</strong><br />

fuzzy graphs is considered in this paper.


2 <strong>Isomorphism</strong> degree estimation<br />

Consider a fuzzy subgraph a<br />

* ;<br />

<br />

<br />

<br />

a<br />

8 <br />

, where<br />

Xi⊆X, |Xi|=k ( N = Q ).<br />

Definition 2 [1]. A value = − PD[ µ [ [<br />

α <br />

∈<br />

<br />

is called an independence degree <strong>of</strong> fuzzy subgraph<br />

* ; <br />

a<br />

.<br />

Definition 3 [1]. A subset <strong>of</strong> vertices XK⊆X <strong>of</strong> fuzzy<br />

graph * ;<br />

a is called a maximal fuzzy independent<br />

vertex set with degree α ; , if the condition<br />

; ; α α ′ < is true for all X’⊃XK.<br />

<br />

<br />

<br />

We define as α = PD[^α<br />

α α `,<br />

where<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

α <br />

<br />

<br />

α <br />

<br />

<br />

α are the degrees <strong>of</strong> maximal fuzzy<br />

<br />

<br />

independent vertex sets, which have k elements. A<br />

PD[<br />

volume α means that fuzzy graph<br />

a a<br />

;<br />

* ; 8<br />

<br />

<br />

<br />

includes a fuzzy subgraph with k vertices and with<br />

PD[<br />

independent degree α and it doesn’t include any<br />

; <br />

subgraphs more than k vertices and with independent<br />

PD[<br />

degree more than α .<br />

; <br />

Definition 4. A fuzzy set<br />

a <br />

<br />

<br />

$ = ^<<br />

> < > < Q > `<br />

<br />

<br />

<br />

<br />

<br />

α α α is called<br />

an independent fuzzy set <strong>of</strong> fuzzy graph * <br />

a .<br />

Property 1. The following proposition is true:<br />

<br />

<br />

<br />

≥ ≥ ≥ ≥ ≥<br />

<br />

<br />

<br />

<br />

α α α .<br />

PD[<br />

Volume α equals 1 if set X doesn’t contain any<br />

; <br />

PD[<br />

vertices with loop, and volume α equals 0 if set<br />

; <br />

8 ;<br />

a contains an edge with membership function<br />

equals 1.<br />

We consider a some bijective correspondence<br />

) ; → < between vertex sets X and Y. Let f be<br />

an isomorphism degree <strong>of</strong> fuzzy graphs<br />

a a a a<br />

* ; 8 and * < 8 . Let fk be an<br />

<br />

<br />

<br />

<br />

isomorphism degree <strong>of</strong> fuzzy subgraphs<br />

a a<br />

* ; 8 and a a<br />

* < 8 .<br />

<br />

<br />

<br />

<br />

Property 2. The following proposition is true:<br />

N Q IN<br />

I ≥ = ∀ .<br />

Pro<strong>of</strong>. We renumber vertices <strong>of</strong> sets X and Y. We<br />

mark vertices <strong>of</strong> subsets XK and YK as 1,2,…,k and<br />

vertices <strong>of</strong> subsets X\XK and Y\YK as k+1, k+2,…,n.<br />

Then the degree <strong>of</strong> isomorphism may be write as:<br />

<br />

<br />

<br />

<br />

<br />

I<br />

=<br />

L=<br />

N M = N<br />

L=<br />

Q M = N + Q<br />

I<br />

N<br />

L=<br />

Q M = Q<br />

¬<br />

¬<br />

L=<br />

N + Q M = Q<br />

L=<br />

Q M = N + Q<br />

L=<br />

N + Q M = Q<br />

¬<br />

;<br />

;<br />

;<br />

¬<br />

¬<br />

[<br />

[<br />

;<br />

;<br />

[<br />

L<br />

L<br />

L<br />

[<br />

[<br />

¬<br />

[<br />

[<br />

Property 2 is proved.<br />

Property 3. Let<br />

; <br />

L<br />

;<br />

[<br />

L<br />

M<br />

M<br />

M<br />

[<br />

[<br />

[<br />

↔<br />

↔<br />

α and<br />

M<br />

L<br />

M<br />

↔<br />

[<br />

M<br />

¬<br />

¬<br />

↔<br />

↔<br />

¬<br />

<<br />

<<br />

<<br />

¬<br />

¬<br />

\<br />

\<br />

<<br />

↔<br />

degrees <strong>of</strong> fuzzy subgraphs<br />

<br />

following proposition is true:<br />

∀N = Q α ; ↔ α < ≥ I N (1)<br />

Pro<strong>of</strong>. If α and α are an independence<br />

; <br />

< <br />

degrees, then there are some vertices . ; [ [ ∈ ,<br />

for which α ; = − µ ; [ [ , and there are<br />

some \ \ ∈ < . , for which α< = − µ < \ \ .<br />

This case is presented in Figure1.<br />

<<br />

\<br />

L<br />

L<br />

L<br />

\<br />

\<br />

\<br />

¬<br />

\<br />

\<br />

L<br />

<<br />

L<br />

M<br />

M<br />

M<br />

\<br />

\<br />

\<br />

M<br />

L<br />

M<br />

\<br />

=<br />

M<br />

=<br />

≤<br />

α be an independence<br />

< <br />

* a and * < <br />

a . Then<br />

Figure 1: Example <strong>of</strong> case α = − µ [ [<br />

; <br />

and α = − µ \ \<br />

< <br />

We consider two cases.<br />

Case 1. Vertex y1 corresponds vertex x1, (F(x1)=y1),<br />

vertex y2 corresponds vertex x2 (F(x2)=y2). Then the<br />

volume I may be estimate as:<br />

I<br />

=<br />

a<br />

* ;<br />

N<br />

≤<br />

N<br />

µ<br />

−α<br />

;<br />

;<br />

<br />

<br />

[<br />

↔<br />

[<br />

− α<br />

<<br />

<br />

<<br />

↔ µ<br />

<<br />

<br />

\<br />

= α<br />

;<br />

<br />

\<br />

;<br />

=<br />

↔ α<br />

Case 2. Vertex \ corresponds vertex x1<br />

( ) [ = \ ′ ), vertex \<br />

<br />

corresponds vertex x2<br />

( ) [ = \ ′ ), but \ ′ ≠ \ and (or) \ ′ ≠ \ .<br />

<br />

<br />

; ? ; <br />

; <br />

< ? <<br />

<br />

µ [ [<br />

<br />

µ \ \<br />

[ <br />

[<br />

\<br />

\<br />

<<br />

I<br />

<br />

N<br />

< <br />

a<br />

*


Then the expression<br />

<br />

true. Hence we have <br />

−<br />

This case is presented in Figure 2.<br />

a<br />

* ;<br />

µ \ \ ≥ µ \ ′ \ ′ is<br />

<br />

W = µ \ ′ \ ′ ≥ α .<br />

<br />

<br />

Figure 2: Example <strong>of</strong> case \ ′ ≠ \ and \ ′ ≠ \<br />

We consider two cases again.<br />

Case 2.1. The following proposition is true<br />

<<br />

α ↔ α ≥ α ↔ W . Then volume<br />

;<br />

<br />

may be estimate as:<br />

I<br />

=<br />

N<br />

≤<br />

= α<br />

;<br />

N<br />

<<br />

<br />

µ<br />

−α<br />

;<br />

;<br />

N<br />

[<br />

↔α<br />

<<br />

N<br />

;<br />

[<br />

↔<br />

<br />

↔µ<br />

−W<br />

<<br />

<<br />

\ ′<br />

= α<br />

;<br />

N<br />

\ ′<br />

↔W<br />

Case 2.2. The following proposition is true<br />

α ; ↔ α < < α ; <br />

<<br />

↔ W . (2)<br />

Let vertices \ \ ∈ < correspond vertices<br />

<br />

<br />

− <br />

− <br />

[ ′ [ ′ ∈ ; , ( ) \ = [ ′ and ) \ = [ ′ ).<br />

<br />

<br />

<br />

<br />

<br />

<br />

Then µ [ [ ≥ µ [ ′ [ ′ is true and we<br />

<br />

<br />

may write<br />

<br />

W = − µ [ ′ [ ′ ≥ α . (3)<br />

<br />

Proposition (2) involves α ; ↔ α < <br />

;<br />

> W ↔ α < <br />

by condition (3). In this case volume I may be<br />

N<br />

estimate as:<br />

I ≤ µ [ ′ [ ′ ↔ µ \ \ =<br />

=<br />

µ <br />

N<br />

= W<br />

[ [<br />

;<br />

− W<br />

; ? ; <br />

[<br />

[µ<br />

[<br />

µ [ µ [ µ<br />

<br />

; <br />

[µ<br />

;<br />

;<br />

↔ α<br />

↔<br />

<<br />

<br />

< α<br />

−α<br />

;<br />

<br />

<<br />

<br />

<<br />

=<br />

↔ α<br />

< ? <<br />

<br />

The property 3 is proved for any N = Q .<br />

a <br />

<br />

<br />

Let $ = ^<<br />

> < > < Q><br />

`<br />

<br />

<br />

<br />

<br />

<br />

α α α and<br />

a <br />

<br />

<br />

$ = ^<<br />

> < > < Q > `<br />

<br />

<br />

<br />

<br />

<br />

α α α<br />

be<br />

* a<br />

independent fuzzy sets <strong>of</strong> fuzzy graphs * ;<br />

a and <<br />

\µ<br />

\<br />

<<br />

<br />

µ<br />

<br />

µ <br />

\ \ µ<br />

<br />

µ<br />

\µ<br />

<<br />

\ \ <br />

<br />

\<br />

=<br />

<<br />

=<br />

a<br />

* <br />

<br />

I<br />

N<br />

correspondingly, and f be an isomorphism degree <strong>of</strong><br />

these fuzzy graphs.<br />

Property 4. The following proposition is true:<br />

<br />

<br />

I ≤ α ↔ α . (4)<br />

<br />

<br />

= <br />

<br />

Pro<strong>of</strong>. Let a a<br />

* ; 8 and a a<br />

* < 8 be<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

some fuzzy subgraphs with independence degrees<br />

<br />

α and <br />

<br />

<br />

α correspondingly. We consider two<br />

cases.<br />

Case 1. Subset YK corresponds to subset XK<br />

( ) ; = < ). This case is presented in Figure3.<br />

<br />

a<br />

* ;<br />

<br />

Figure 3: Example <strong>of</strong> case<br />

) ; = <<br />

I ≤ I ≤ α ↔ α on<br />

Then we can write<br />

<br />

<br />

<br />

the base <strong>of</strong> properties 2 and 3.<br />

<br />

<br />

Case 2. Subset YK doesn’t correspond to subset XK<br />

( ) ; <br />

Figure4.<br />

= < ′ ≠ < ). This case is presented in<br />

<br />

<br />

a<br />

* ;<br />

a<br />

* ; <br />

a<br />

* µ<br />

;<br />

<br />

a<br />

* ; <br />

) ; N < N<br />

) ; N < N µ<br />

µ<br />

) ; N < N<br />

Figure 4: Example <strong>of</strong> case<br />

<br />

a<br />

* <br />

<br />

a<br />

* <br />

<br />

a<br />

* µ<br />

<br />

) ; = < ′ ≠ <<br />

Then independence degree α ′ <strong>of</strong> fuzzy subgraph<br />

<br />

a a<br />

<br />

* ′ < ′ 8 ′ may be estimate as α ′ ≤ α . We<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

also consider two cases.<br />

Case 2.1. The following proposition is true<br />

PD[ PD[ PD[<br />

α ; ↔ α<<br />

≥ α<br />

<br />

<br />

; ↔ α′<br />

< . Then<br />

<br />

isomorphism degree may be estimate as:<br />

<br />

<br />

<br />

a<br />

* <br />

a<br />

*


I ≤ I ≤ α ↔ α ≤ α ↔ α<br />

<br />

<br />

<br />

<br />

.<br />

Case 2.2. The following proposition is true<br />

PD[ PD[ PD[<br />

α ↔ α < α ↔ α ′ . (5)<br />

; <br />

<<br />

; <br />

′<br />

<br />

Let subset ; corresponds to subset <<br />

<br />

<br />

( ) ; ′ = < ). Let α ′ be an independence degree<br />

<br />

′<br />

<br />

<br />

<strong>of</strong> subset ; <br />

. Then we write<br />

α ′ <br />

<br />

≤ α . (6)<br />

<br />

Proposition (5) involves inequality<br />

PD[<br />

α ; <br />

PD[<br />

↔ α < < α ′ ; <br />

PD[<br />

↔ α < <br />

by condition (6).<br />

In this case isomorphism degree may be estimate as:<br />

I ≤ I ≤ α ′ <br />

<br />

<br />

<br />

↔ α ≤ α ↔ α .<br />

<br />

<br />

<br />

Property 4 is proved because we consider all cases.<br />

Example. Estimate <strong>of</strong> isomorphism degree <strong>of</strong> the<br />

fuzzy graphs, shown in the Figure 5.<br />

[ [<br />

\<br />

[ \<br />

[ \<br />

Figure 5: Example <strong>of</strong> fuzzy graphs<br />

′<br />

<<br />

<br />

* <br />

a and<br />

Independent fuzzy sets <strong>of</strong> these fuzzy graphs are<br />

a<br />

defined as $ = ^<<br />

> < > < > < > `<br />

<br />

and<br />

a<br />

$ = ^<<br />

> < > < > < > `.<br />

<br />

Then isomorphism degree is estimated as:<br />

PD[ PD[<br />

I α ↔ α =<br />

≤<br />

N =<br />

= PLQ<br />

;<br />

↔<br />

<br />

↔<br />

↔<br />

↔ =<br />

Hence, we may assert that isomorphism degree <strong>of</strong><br />

these fuzzy graphs will not be larger then 0,8.<br />

3 Conclusion<br />

Proven proposition (4) allows estimate a possible<br />

isomorphism degree <strong>of</strong> fuzzy graphs by fuzzy<br />

independent sets. It is necessary to remark that the<br />

estimate <strong>of</strong> isomorphism degree may be receive by<br />

another invariants <strong>of</strong> fuzzy graphs, such as<br />

dominating vertex sets, fuzzy graph kernels [1],<br />

fuzzy chromatic set [2].<br />

<<br />

<br />

* a<br />

<br />

\<br />

References<br />

[1] L. Bershtein, A. Bozhenuk (2001). Maghout<br />

Method for Determination <strong>of</strong> <strong>Fuzzy</strong> Independent,<br />

Dominating Vertex Sets and <strong>Fuzzy</strong> Graph Kernels.<br />

In Int. J. General Systems, volume 30, ‹1, pages<br />

45-52.<br />

[2] L. Bershtein and A. Bozhenuk (2001). A KRORU<br />

Problem for <strong>Fuzzy</strong> Graph. In Proceedings <strong>of</strong> the<br />

international conference 7 th <strong>Fuzzy</strong> Days, volume<br />

2206, pages 500-505 Dortmund, Germany, October<br />

1-3, 2001.<br />

[3] L. Bershtein, V. Karelin, A. Tcelych (1999).<br />

Models and Methods <strong>of</strong> Decision Making in<br />

Intelligence Systems. Rostov-on-Don State<br />

University, Russia.<br />

[4] D. Dubois, H. Prade (1999). <strong>Fuzzy</strong> Sets in<br />

Approximate Reasoning, Part 1: Inference With<br />

Possibility Distributions. In <strong>Fuzzy</strong> Sets and Systems,<br />

‹ SDJHV<br />

[5] A. Kaufmann (1977). Introduction a la theorie<br />

des sous-ensemles flous, Masson, Paris, France.<br />

[6] A. Kaufmann. (1968). Introduction a la<br />

combinatorique en vue des applications, Dunod,<br />

Paris, France.<br />

[7] A. Zykov (1987). Graph Theory Base. Moscow,<br />

Nayka.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!