26.08.2013 Views

Design of in vitro protein digestibility d h i l h i k assays ... - Europabio

Design of in vitro protein digestibility d h i l h i k assays ... - Europabio

Design of in vitro protein digestibility d h i l h i k assays ... - Europabio

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Design</strong> <strong>of</strong> <strong>in</strong> <strong>vitro</strong> prote<strong>in</strong> <strong>digestibility</strong><br />

<strong>assays</strong> and d their h i relevance l to the h risk ik<br />

assessment<br />

Clare Mills<br />

Institute <strong>of</strong> Inflammation and Repair<br />

The University <strong>of</strong> Manchester


Declaration <strong>of</strong> Interests<br />

Research fund<strong>in</strong>g<br />

• UK Biological and Biotechnological Sciences Research<br />

Council<br />

• UK Technology T h l Strategy St t BBoard dP Project j t( (collaborative ll b ti with ith<br />

Waters Corporation, Romer Labs, The Laboratory <strong>of</strong> the<br />

Government Chemist)<br />

• UK Food Standards Agency (contractor to Food Allergy<br />

Branch; member <strong>of</strong> the Advisory Committee on Novel<br />

Foods and Processes [ACNFP]*) [ACNFP] )<br />

• European Union –CHANCE<br />

• Novartis, , DBV Technology gy<br />

• European Food Safety Authority


Why is <strong>digestibility</strong> important for<br />

food allergy? gy


Lipid<br />

droplets<br />

Events <strong>in</strong> the gut lumen affect<strong>in</strong>g prote<strong>in</strong><br />

release and breakdown<br />

Lipid‐adsorbed<br />

allergen<br />

Impact on release<br />

ffrom <strong>in</strong>tact i t t<br />

cells<br />

Proteolysed<br />

prote<strong>in</strong><br />

aggregates<br />

Resistant<br />

allergen<br />

Prote<strong>in</strong><br />

stabilised<br />

emulsions<br />

How does the form <strong>of</strong> a<br />

prote<strong>in</strong> determ<strong>in</strong>e its<br />

release from food and<br />

stability to digestion?


Uptake and <strong>in</strong>tracellular process<strong>in</strong>g <strong>of</strong> allergens…….<br />

HHow do d prote<strong>in</strong>s i cross the h mucus<br />

layer?......<br />

……and how does this affect their uptake p by y the<br />

epithelium and immune cells.............<br />

……. mak<strong>in</strong>g g an antigen g <strong>in</strong>to an allergen? g<br />

Maciercenka, et al 2011 S<strong>of</strong>t Matter 7 (18) 8077‐8084


This is important for<br />

•Elicitation <strong>of</strong> allergic g reactions <strong>in</strong> sensitised<br />

<strong>in</strong>dividuals<br />

•Severity Severity <strong>of</strong> reaction and conditions like exercise‐ exercise<br />

<strong>in</strong>duced anaphylaxis<br />

•Affect<strong>in</strong>g Affect<strong>in</strong>g the balance between tolerance and<br />

sensitisation to dietary prote<strong>in</strong>


Digestion also plays an important role <strong>in</strong><br />

antigen presentation<br />

The endosome – a “stomach stomach <strong>in</strong>side a cell” cell is <strong>in</strong>volved <strong>in</strong><br />

•Generat<strong>in</strong>g peptides taken up by a diverse range <strong>of</strong><br />

cells<br />

•pH is ~2<br />

•Proteases <strong>in</strong>clude aspartate and cyste<strong>in</strong>e proteases<br />

•R •Redox d enzymes such h as γ‐<strong>in</strong>terferon i t f llysosomal l<br />

thioreductase (GILT)<br />

Hast<strong>in</strong>gs and Cresswell (2011) ANTIOXIDANTS & REDOX SIGNALING 15: 657‐668


Digestibility and allergenicity risk assessment<br />

Digestibility g ystudies provide p useful data regard<strong>in</strong>g g gthe<br />

properties and characteristics <strong>of</strong> the novel prote<strong>in</strong> affect<strong>in</strong>g<br />

•Gut llum<strong>in</strong>al i lprocess<strong>in</strong>g i and d uptake k<br />

•Intracellular process<strong>in</strong>g and antigen presentation<br />

These may <strong>in</strong>fluence properties such as tolerance <strong>in</strong>duction<br />

or sensitisation <strong>in</strong> a host.<br />

They may also provide data on the stability and molecular<br />

mobility bili <strong>of</strong> f polypeptide l id cha<strong>in</strong>s hi<br />

MMutschlechner hl h et al l J Allergy All Cli Cl<strong>in</strong> IImmunoll2010 2010;125:711‐8<br />

125 711 8


Gastroduodenal digestion and the gut as a<br />

bi biological l i lprocess<strong>in</strong>g i plant l<br />

Biomechanics and motility y determ<strong>in</strong>e<br />

lum<strong>in</strong>al flow and mix<strong>in</strong>g behaviour<br />

+<br />

Variation <strong>in</strong> activity, content and<br />

secretion <strong>of</strong> digestive enzymes<br />

Determ<strong>in</strong>e the rate <strong>of</strong> delivery <strong>of</strong><br />

absorbable species to the gut wall<br />

All <strong>of</strong> this is under tight biological control, <strong>in</strong>clud<strong>in</strong>g<br />

gut‐bra<strong>in</strong> signall<strong>in</strong>g<br />

9


Dynamic y a cGast Gastric c Model ode ( (DGM): G ): Full u ssimulation uato o<strong>of</strong> gast gastric c<br />

forces and motility<br />

Ma<strong>in</strong> Body:<br />

Gentle 3 contraction<br />

wave<br />

per p m<strong>in</strong> cycle y<br />

In‐homogenously mixed<br />

environment<br />

AAntrum: t<br />

High shear well mixed<br />

environment<br />

Shear at 10‐100 sec 1 ‐1<br />

Phase II contraction waves<br />

Inventors: Mart<strong>in</strong> Wickham, Richard Faulks<br />

Licensed to PBL


Dynamic Duodenal Model: comb<strong>in</strong><strong>in</strong>g<br />

segmented and peristaltic flow.<br />

Bostjan Hari, Serafim Bakalis, Peter Fryer,<br />

UUniversity i i <strong>of</strong> f Birm<strong>in</strong>gham<br />

Bi i h


β‐Lactoglobul<strong>in</strong> β Lactoglobul<strong>in</strong> ‐ normally resists peps<strong>in</strong>olysis<br />

<strong>in</strong> solution but is partially digested as an<br />

emulsion<br />

β-Case<strong>in</strong>: Emulsification alters the digestion k<strong>in</strong>etics<br />

<strong>of</strong> giv<strong>in</strong>g g g rise to Mr 6,000 , resistant peptides p p<br />

Maceirczenka et al S<strong>of</strong>t Matter 2009;5(3):538‐550<br />

; ( )<br />

T=60m<strong>in</strong>


Physical models <strong>of</strong> digestion are<br />

Mimics Mimics <strong>of</strong> flow and mix<strong>in</strong>g behaviour <strong>in</strong> the GI<br />

tract<br />

Addition Addition <strong>of</strong> digestive enzymes and pH adjustment<br />

more like a “real” gut<br />

<strong>Design</strong>ed es g ed to dgest digest real ea foods oods aand dmeal‐sized ea s ed<br />

portions<br />

Easier to sample p than human volunteers<br />

X Not necessarily validated aga<strong>in</strong>st the human<br />

situation<br />

XNot adapted to analysis <strong>of</strong> small amounts <strong>of</strong><br />

material or purified p prote<strong>in</strong> p


Modell<strong>in</strong>g Digestion –Biochemical Biochemical Models<br />

pH 2.5<br />

I=0.15<br />

Sh Shake, k 37ºC<br />

Shake Shake, 37ºC<br />

Sample over<br />

time<br />

pH 7.5<br />

I=0.15<br />

pH 6.5<br />

I=0.15<br />

Gastric mix:<br />

Stop gastric<br />

Duodenal mix:<br />

Peps<strong>in</strong><br />

digestion by Tryps<strong>in</strong>,<br />

Phosphatidyl addition <strong>of</strong> chymotryps<strong>in</strong><br />

chol<strong>in</strong>e h li vesicles il NOH NaOH Li Lipase/colipase / li<br />

Amylase<br />

Bile salts<br />

Sample over<br />

time<br />

pH 6.5<br />

I=0.15<br />

Stop duodenal<br />

digestion by<br />

addition <strong>of</strong>SBTI or<br />

PMSF


Unfold<strong>in</strong>g <strong>of</strong> prote<strong>in</strong>s at gastric pH: Bet v 1<br />

homologues unfold at low pH<br />

AApi ig 1 partially illunfolds f ld at pH2.5 H2 5<br />

BUT<br />

Mal d 1 is completely unfolded<br />

Sancho, et al 2011 Mol Nutr Food Res. 55(11):1690‐9.


Peach LTP is highly resistant to peps<strong>in</strong>olysis<br />

IIt has h many candidate did peps<strong>in</strong> i cleavage l sites i but b iis<br />

completely resistant to digestion <strong>in</strong> its native<br />

folded form<br />

Wijes<strong>in</strong>ha‐Bettoni j et al 2010 Biochemistry. y 49(10):2130‐9. ( )


Duodenal digestion ‐ only 2 out <strong>of</strong> 14 tryptic and<br />

chymotryptic are hydrolysed!<br />

Chymotryps<strong>in</strong> Tryps<strong>in</strong> yp<br />

Three digestion products can be<br />

Unreduced<br />

identified – residues 1‐79 1 79, 1‐39 1 39 and<br />

40‐79 which are only observed <strong>in</strong><br />

unreduced prote<strong>in</strong>


Local side cha<strong>in</strong> dynamics may expla<strong>in</strong> preferential<br />

cleavage <strong>of</strong> certa<strong>in</strong> sites<br />

Residues <strong>in</strong> cleavage sites are more mobile<br />

This may allow more effective location <strong>of</strong> side<br />

cha<strong>in</strong>s <strong>in</strong>to protease specificity pockets


Biochemical models <strong>of</strong> digestion<br />

Can Can be scaled down to analyse small amounts <strong>of</strong><br />

s<strong>in</strong>gle prote<strong>in</strong>s<br />

Some Some collaborative trials published show<strong>in</strong>g <strong>in</strong>ter‐ <strong>in</strong>ter<br />

laboratory validation<br />

Homogeneously o oge eous y mixed ed so sa sampl<strong>in</strong>g p g is s eas easier e<br />

Can mimic the GI tract‐ a model system with<br />

assumptions p and limitations [enzyme:substrate<br />

[ y<br />

ratios, pH titration, homogeneous mix<strong>in</strong>g]<br />

XNot well suited to analysis y <strong>of</strong> foods [sampl<strong>in</strong>g, [ p g,<br />

soluble versus <strong>in</strong>soluble phases]


How to measure digestiblity?


SDS‐PAGE and IgE b<strong>in</strong>d<strong>in</strong>g capacity:<br />

Bet v 1 homologues susceptible to gastric<br />

di digestion ti<br />

MMass spectrometry t t mapp<strong>in</strong>g i <strong>of</strong> f digestion di ti products d t –<br />

A way <strong>of</strong> pr<strong>of</strong>il<strong>in</strong>g peptides<br />

Cleavage patterns are similar for both prote<strong>in</strong>s but Api g<br />

1 is digested more slowly than Mal d 1<br />

IE IgE epitopes it are ddestroyed t dbbut tdi digestion ti products d t can<br />

still activate T‐cells<br />

Sancho, et al 2011 Mol Nutr Food Res. 55(11):1690‐9.


Gastric Gast c digestion dgesto <strong>of</strong> o pea peanut ut Araa h 1 does not ot<br />

alter its allergenic activity<br />

PC<br />

0 1 2 4 8 16 30 60 90 120 m<strong>in</strong><br />

Ara h 1<br />

Eiwegger, Rigby et al Cl<strong>in</strong> Experimental Allergy 2006<br />

releasee<br />

is ta m <strong>in</strong><br />

% H<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Ara h 1<br />

Ara h1 Phase 1<br />

Phase 1+2 Digestion Fluid P1<br />

Digestion Fluid P1+2 Gastro‐duodenal<br />

Gastric Gast c digestion dgesto<br />

MMedium di<br />

control<br />

0001 0.001 001 0.01 01 0.1 1<br />

Concentration (µg/ml)<br />

di digestion i


Tests for resistance to gastroduodenal g digestion g<br />

Validation is needed regard<strong>in</strong>g<br />

•Levels L l <strong>of</strong> f enzymes and d bi biosurfactants f [h [these<br />

change with age, food composition]<br />

•Standardisation S d di i <strong>of</strong> f mix<strong>in</strong>g ii conditions di i<br />

•Interlaboratory comparisons<br />

•Agreed A d“ “outcome” ” measures (SDS (SDS‐PAGE, PAGE<br />

mass spectrometry to monitor digestion <strong>of</strong><br />

polypeptides, l tid bi bioactivity ti it measurements t lik like<br />

IgE b<strong>in</strong>d<strong>in</strong>g, T‐cell reactivity)<br />

NB –variation <strong>in</strong> outcomes <strong>of</strong> <strong>in</strong>terlaboratory trials maybe<br />

determ<strong>in</strong>ed more by measurement and sampl<strong>in</strong>g than the<br />

protocol per se!


Peps<strong>in</strong> resistance test


1996: Astwood et al identify a correlation between<br />

resistance to peps<strong>in</strong> digestion and allergenicity [Nat<br />

Biotechnol. 1996 Oct;14(10):1269‐73.]. This<br />

•Posed the hypothesis ‘that food allergens must exhibit<br />

sufficient gastric stability to reach the <strong>in</strong>test<strong>in</strong>al mucosa<br />

where absorption and sensitization (development <strong>of</strong><br />

atopy) can occur.’<br />

BUT<br />

•The test is non physiological<br />

•the pH is lower than found <strong>in</strong> vivo and changes<br />

peps<strong>in</strong> specificity,<br />

•Peps<strong>in</strong> is present <strong>in</strong> a gross excess which affects<br />

k<strong>in</strong>etics <strong>of</strong> digestion


Is the peps<strong>in</strong> resistance test more a biochemical<br />

surrogate <strong>of</strong> “stability” than simulated gastric digestion?<br />

•Peps<strong>in</strong>, like other endoproteases (tryps<strong>in</strong>, chymotryps<strong>in</strong>)<br />

cleaves mobile, surface accessible sites on a substrate<br />

•Resistance to peps<strong>in</strong>olysis is a function <strong>of</strong><br />

•Resistance Resistance to low pH unfold<strong>in</strong>g<br />

•Polypeptide mobility at the cleavage site<br />

•Resistance to peps<strong>in</strong> maybe a surrogate measure <strong>of</strong><br />

endosomal process<strong>in</strong>g <strong>in</strong>volved <strong>in</strong> antigen presentation<br />

•It may hhave validity ld as a correlative l test def<strong>in</strong>ed df dus<strong>in</strong>g<br />

panels <strong>of</strong> “allergens” and “non‐allergens” <strong>in</strong>cluded <strong>in</strong> the<br />

i<strong>in</strong>tegrative i risk ikassessment approach<br />

h


In <strong>vitro</strong> prote<strong>in</strong> <strong>digestibility</strong> <strong>assays</strong> and their<br />

relevance to the risk assessment<br />

•Simulated Gastroduodenal Digestion provides<br />

<strong>in</strong>formation relevant to understand<strong>in</strong>g the context <strong>of</strong><br />

how a prote<strong>in</strong> is presented to the immune system <strong>in</strong> a<br />

physiologically relevant context<br />

•The Peps<strong>in</strong> Resistance Test is a dist<strong>in</strong>ctly different<br />

biochemical test which provides complimentary<br />

<strong>in</strong>formation on the biochemical stability <strong>of</strong> a prote<strong>in</strong><br />

which may be predictive <strong>of</strong> allergenic potential<br />

(<strong>of</strong> course if we had a good animal model we would<br />

not have to rely on these tests so much!)


Manchester Team: Phil Johnson, Claire Eyers, Adnan Custovic,<br />

Angela l Simpson, Mark k Travis, John h McLaughlan hl<br />

IFR Team: Neil Rigby, Guisy Mandalari, Andrew Watson, Alan<br />

MMackie ki<br />

Past Team Members: Javier Moreno, Ana Sancho, Yuri<br />

Al Alexeev, Emi E iVVassilopolou, il l JJohn h Jenk<strong>in</strong>s J ki<br />

Collaborators: Peter Shewry, Lorna Smith, Jean‐Michel Wal,<br />

KKar<strong>in</strong>e i ZZsolt ltSSzefalusi, f l i Nik Nikos PPapadopolous, d l BBarbara b Ballmer‐ Bll<br />

Weber, Charlotte Madsen<br />

Plus l numerous other h UK and d European collaborators! ll b !<br />

Protall

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!