25.08.2013 Views

The Contraction Method on C([0,1]) and Donsker's ... - Eurandom

The Contraction Method on C([0,1]) and Donsker's ... - Eurandom

The Contraction Method on C([0,1]) and Donsker's ... - Eurandom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong><br />

D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

Henning Sulzbach<br />

J. W. Goethe-Universität Frankfurt a. M.<br />

YEP VII Probability, r<strong>and</strong>om trees <strong>and</strong> algorithms<br />

Eindhoven, March 12, 2010<br />

joint work with Ralph Neininger<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Quickselect / Find<br />

Task: Given a list of n different elements S , FIND the element of<br />

rank k .<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Quickselect / Find<br />

Task: Given a list of n different elements S , FIND the element of<br />

rank k .<br />

Algorithm:<br />

◮ Choose <strong>on</strong>e element x at r<strong>and</strong>om (pivot),<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Quickselect / Find<br />

Task: Given a list of n different elements S , FIND the element of<br />

rank k .<br />

Algorithm:<br />

◮ Choose <strong>on</strong>e element x at r<strong>and</strong>om (pivot),<br />

◮ Comparing all other elements with x gives sublists S≤, S>,<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Quickselect / Find<br />

Task: Given a list of n different elements S , FIND the element of<br />

rank k .<br />

Algorithm:<br />

◮ Choose <strong>on</strong>e element x at r<strong>and</strong>om (pivot),<br />

◮ Comparing all other elements with x gives sublists S≤, S>,<br />

◮ If In = |S≤| ≥ k, search recursively in S≤ for the element of<br />

rank k, otherwise search recursively inS> for element of rank<br />

k − In.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Quickselect / Find<br />

Task: Given a list of n different elements S , FIND the element of<br />

rank k .<br />

Algorithm:<br />

◮ Choose <strong>on</strong>e element x at r<strong>and</strong>om (pivot),<br />

◮ Comparing all other elements with x gives sublists S≤, S>,<br />

◮ If In = |S≤| ≥ k, search recursively in S≤ for the element of<br />

rank k, otherwise search recursively inS> for element of rank<br />

k − In.<br />

◮ Stop, if the c<strong>on</strong>sidered set is of size 1.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


For simplicity k = 1.<br />

Quickselect / Find<br />

Xn = number of key comparis<strong>on</strong>s,<br />

In = size of left sublist<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


For simplicity k = 1.<br />

Quickselect / Find<br />

Xn = number of key comparis<strong>on</strong>s,<br />

In = size of left sublist<br />

This leads to<br />

Xn d = XIn<br />

+ n − 1,<br />

where (Xj), In are independent, In is distributed uniformly <strong>on</strong><br />

{0, . . . , n − 1}.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


For simplicity k = 1.<br />

Quickselect / Find<br />

Xn = number of key comparis<strong>on</strong>s,<br />

In = size of left sublist<br />

This leads to<br />

Xn d = XIn<br />

+ n − 1,<br />

where (Xj), In are independent, In is distributed uniformly <strong>on</strong><br />

{0, . . . , n − 1}.<br />

Scaling gives<br />

.<br />

Yn := Xn<br />

n<br />

d<br />

= In n − 1<br />

YIn +<br />

n n<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Recursive equati<strong>on</strong><br />

Yn := Xn<br />

n<br />

d<br />

= In n − 1<br />

YIn +<br />

n n .<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Recursive equati<strong>on</strong><br />

Yn := Xn<br />

n<br />

A possible limit Y should satisfy<br />

for ind. U, Y with U uniform <strong>on</strong> [0, 1].<br />

d<br />

= In n − 1<br />

YIn +<br />

n n .<br />

Y d = UY + 1, (1)<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Recursive equati<strong>on</strong><br />

Yn := Xn<br />

n<br />

A possible limit Y should satisfy<br />

for ind. U, Y with U uniform <strong>on</strong> [0, 1].<br />

d<br />

= In n − 1<br />

YIn +<br />

n n .<br />

Y d = UY + 1, (1)<br />

Observe: µ ∈ M(R) satisfies (1), iff F (µ) = µ for<br />

F : M(R) → M(R), F (µ) = L(UY + 1)<br />

with U, Y ind. <strong>and</strong> L(Y ) = µ .<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g><br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


For µ, ν ∈ M1(R) let<br />

<str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g><br />

ℓ1(µ, ν) = inf E[|X − Y |]<br />

X ,Y :L(X )=µ,L(Y )=ν<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


For µ, ν ∈ M1(R) let<br />

<str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g><br />

ℓ1(µ, ν) = inf E[|X − Y |]<br />

X ,Y :L(X )=µ,L(Y )=ν<br />

ℓ1 is a complete metric <strong>on</strong> M1(R) <strong>and</strong><br />

ℓ1(µn, µ) → 0 ⇒ µn w → µ.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


For µ, ν ∈ M1(R) let<br />

<str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g><br />

ℓ1(µ, ν) = inf E[|X − Y |]<br />

X ,Y :L(X )=µ,L(Y )=ν<br />

ℓ1 is a complete metric <strong>on</strong> M1(R) <strong>and</strong><br />

ℓ1(µn, µ) → 0 ⇒ µn w → µ.<br />

Show: F is a c<strong>on</strong>tracti<strong>on</strong> according to ℓ1 in M1(R).<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g><br />

Proof: Let X , Y s.t. L(X ) = µ, L(Y ) = ν <strong>and</strong><br />

E[|X − Y |] ≤ d(µ, ν) + ε.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g><br />

Proof: Let X , Y s.t. L(X ) = µ, L(Y ) = ν <strong>and</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>n<br />

E[|X − Y |] ≤ d(µ, ν) + ε.<br />

ℓ1(F (µ), F (ν)) ≤ E[|UX + 1 − (UY + 1)|] = EUE[|X − Y |]<br />

≤ EU(ℓ1(µ, ν) + ε).<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g><br />

Proof: Let X , Y s.t. L(X ) = µ, L(Y ) = ν <strong>and</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>n<br />

E[|X − Y |] ≤ d(µ, ν) + ε.<br />

ℓ1(F (µ), F (ν)) ≤ E[|UX + 1 − (UY + 1)|] = EUE[|X − Y |]<br />

This gives<br />

≤ EU(ℓ1(µ, ν) + ε).<br />

ℓ1(F (µ), F (ν)) ≤ EUℓ1(µ, ν)<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>The</str<strong>on</strong>g> stochastic fixed-point equati<strong>on</strong><br />

has a unique soluti<strong>on</strong> in M1(R)<br />

Y d = UY + 1<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>The</str<strong>on</strong>g> stochastic fixed-point equati<strong>on</strong><br />

Y d = UY + 1<br />

has a unique soluti<strong>on</strong> in M1(R) <strong>and</strong> it is easy to show<br />

for L(Y ) = µ.<br />

ℓ1(Yn, Y ) → 0<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Process versi<strong>on</strong><br />

◮ C<strong>on</strong>sider all 1 ≤ k ≤ n uniformly in the same algorithm<br />

Xn(k, )<br />

<br />

◮ k Xn(k)<br />

Rescaling gives a the r.v. Yn n = n defined <strong>on</strong> lattice<br />

points k<br />

n<br />

◮ Fit Yn to a stepfuncti<strong>on</strong> in D([0, 1])<br />

◮ Grübel, Rösler (’95) prove<br />

in (D([0, 1]), dSk)<br />

Yn d → Y<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

Let X1, X2, . . . be iid r.v. with EX1 = 0, EX 2 1 = 1 <strong>and</strong><br />

E|X1| 2+ε < ∞ for some ε > 0.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

Let X1, X2, . . . be iid r.v. with EX1 = 0, EX 2 1 = 1 <strong>and</strong><br />

E|X1| 2+ε < ∞ for some ε > 0.<br />

with<br />

S n t = 1<br />

√ n<br />

⎛<br />

⌊nt⌋ <br />

⎝<br />

k=1<br />

S n = (S n t ) t∈[0,1]<br />

Xk + (nt − ⌊nt⌋)X ⌊nt⌋+1<br />

⎞<br />

⎠ , t ∈ [0, 1]<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

Let X1, X2, . . . be iid r.v. with EX1 = 0, EX 2 1 = 1 <strong>and</strong><br />

E|X1| 2+ε < ∞ for some ε > 0.<br />

with<br />

S<br />

−4 −2 0 2 4<br />

S n t = 1<br />

√ n<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

⎛<br />

⌊nt⌋ <br />

⎝<br />

●<br />

●<br />

k=1<br />

●<br />

●<br />

●<br />

S n = (S n t ) t∈[0,1]<br />

Xk + (nt − ⌊nt⌋)X ⌊nt⌋+1<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

S^n<br />

−1.0 −0.5 0.0 0.5 1.0<br />

⎞<br />

⎠ , t ∈ [0, 1]<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


S n t = 1<br />

√ n<br />

⎛<br />

⌊nt⌋ <br />

⎝<br />

D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

k=1<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>orem (D<strong>on</strong>sker, 1951)<br />

Xk + (nt − ⌊nt⌋)X ⌊nt⌋+1<br />

⎞<br />

⎠ , t ∈ [0, 1]<br />

S n d → B in (C([0, 1]), || · ||sup), where B is a st<strong>and</strong>ard Brownian<br />

Moti<strong>on</strong>.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


In space:<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


In space:<br />

B<br />

−1.5 −0.5 0.5 1.0 1.5<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

B'<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

−1.5 −0.5 0.5 1.5


In space:<br />

B<br />

−1.5 −0.5 0.5 1.0 1.5<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

(B+B')/Sqrt(2)<br />

−1.5 −0.5 0.5 1.5<br />

B'<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

−1.5 −0.5 0.5 1.5


It holds<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

(Bt) t<br />

d<br />

=<br />

<br />

Bt + B ′ <br />

t √<br />

2 t<br />

for two independent st<strong>and</strong>ard Brownian Moti<strong>on</strong>s B, B ′ .<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(2)


It holds<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

(Bt) t<br />

d<br />

=<br />

<br />

Bt + B ′ <br />

t √<br />

2 t<br />

for two independent st<strong>and</strong>ard Brownian Moti<strong>on</strong>s B, B ′ .<br />

In general, there is no spacian decompositi<strong>on</strong> of S n .<br />

Equati<strong>on</strong> (2) is satisfied by any gaussian process.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(2)


In time:<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


In time:<br />

B<br />

−1.5 −0.5 0.5 1.0 1.5<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

C<strong>on</strong>catenati<strong>on</strong><br />

−1.5 −0.5 0.5 1.5<br />

B'<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

−1.5 −0.5 0.5 1.5


(Bt) t<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

d<br />

=<br />

<br />

1 1<br />

√2 1{t≤1/2}B2t + 1 {t>1/2}B1 + √21 {t>1/2}B ′ <br />

2t−1<br />

t<br />

= 1<br />

√ 2 ϕ2(B) + 1<br />

√ 2 ψ2(B ′ ), (3)<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


(Bt) t<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

d<br />

=<br />

<br />

1 1<br />

√2 1{t≤1/2}B2t + 1 {t>1/2}B1 + √21 {t>1/2}B ′ <br />

2t−1<br />

t<br />

= 1<br />

√ 2 ϕ2(B) + 1<br />

√ 2 ψ2(B ′ ), (3)<br />

with (c<strong>on</strong>tinuous <strong>and</strong> linear) functi<strong>on</strong>s ϕβ, ψβ : C([0, 1]) → C([0, 1])<br />

ϕβ(f )(t) = 1 {t≤1/β}f (βt) + 1 {t>1/β}f (1),<br />

ψβ(f )(t) = 1 {t≤1/β}f (0) + 1 {t>1/β}f<br />

βt − 1<br />

β − 1<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

<br />

.


(Bt) t<br />

Decompositi<strong>on</strong> of Brownian Moti<strong>on</strong><br />

d<br />

=<br />

<br />

1 1<br />

√2 1{t≤1/2}B2t + 1 {t>1/2}B1 + √21 {t>1/2}B ′ <br />

2t−1<br />

t<br />

= 1<br />

√ 2 ϕ2(B) + 1<br />

√ 2 ψ2(B ′ ), (3)<br />

with (c<strong>on</strong>tinuous <strong>and</strong> linear) functi<strong>on</strong>s ϕβ, ψβ : C([0, 1]) → C([0, 1])<br />

ϕβ(f )(t) = 1 {t≤1/β}f (βt) + 1 {t>1/β}f (1),<br />

ψβ(f )(t) = 1 {t≤1/β}f (0) + 1 {t>1/β}f<br />

βt − 1<br />

β − 1<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

<br />

.


<str<strong>on</strong>g>The</str<strong>on</strong>g>orem (Uniqueness - Characterizati<strong>on</strong> of Brownian Moti<strong>on</strong>)<br />

Let X = (Xt) t∈[0,1] be a c<strong>on</strong>tinuous real-valued stochastic process<br />

satisfying (3). <str<strong>on</strong>g>The</str<strong>on</strong>g>n there exists a c<strong>on</strong>stant σ ≥ 0 such that σX is<br />

a st<strong>and</strong>ard Brownian Moti<strong>on</strong>.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Time-decompositi<strong>on</strong> of the r<strong>and</strong>om walk<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


S_1<br />

Time-decompositi<strong>on</strong> of the r<strong>and</strong>om walk<br />

−1.5 −0.5 0.5 1.0 1.5<br />

C<strong>on</strong>catenati<strong>on</strong><br />

−1.5 −0.5 0.5 1.5<br />

S_2<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

−1.5 −0.5 0.5 1.5


Time-decompositi<strong>on</strong> of the r<strong>and</strong>om walk<br />

It holds:<br />

S n d =<br />

<br />

⌈n/2⌉<br />

n ϕ <br />

n S<br />

⌈n/2⌉<br />

⌈n/2⌉<br />

<br />

⌊n/2⌋<br />

+<br />

n ψ <br />

n S ⌊n/2⌋<br />

⌈n/2⌉<br />

<br />

, (4)<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Time-decompositi<strong>on</strong> of the r<strong>and</strong>om walk<br />

It holds:<br />

Now<br />

S n d =<br />

<br />

⌈n/2⌉<br />

n ϕ <br />

n S<br />

⌈n/2⌉<br />

⌈n/2⌉<br />

<br />

⌊n/2⌋<br />

+<br />

n ψ <br />

n S ⌊n/2⌋<br />

⌈n/2⌉<br />

<br />

, (4)<br />

⌈n/2⌉<br />

n<br />

→ 1<br />

√ 2 ,<br />

suggests weak c<strong>on</strong>vergence S n → B.<br />

⌊n/2⌋<br />

n<br />

→ 1<br />

√ 2 .<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>The</str<strong>on</strong>g> Zolotarev metric <strong>on</strong> C([0, 1])<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>The</str<strong>on</strong>g> Zolotarev metric <strong>on</strong> C([0, 1])<br />

Let M(C([0, 1])) be the set of probability measures <strong>on</strong> C([0, 1]).<br />

For µ, ν ∈ M(C([0, 1])) <strong>and</strong> s > 0 define the Zolotarev distance of<br />

µ <strong>and</strong> ν by<br />

with L(X ) = µ, L(Y ) = ν<br />

ζs(µ, ν) = sup |E[f (X ) − f (Y )]|,<br />

f ∈Fs<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>The</str<strong>on</strong>g> Zolotarev metric <strong>on</strong> C([0, 1])<br />

Let M(C([0, 1])) be the set of probability measures <strong>on</strong> C([0, 1]).<br />

For µ, ν ∈ M(C([0, 1])) <strong>and</strong> s > 0 define the Zolotarev distance of<br />

µ <strong>and</strong> ν by<br />

ζs(µ, ν) = sup |E[f (X ) − f (Y )]|,<br />

f ∈Fs<br />

with L(X ) = µ, L(Y ) = ν <strong>and</strong> for s = m + α with 0 < α ≤ 1 <strong>and</strong><br />

m := ⌈s⌉ − 1 ∈ N0<br />

Fs := {f ∈ C m (C([0, 1]), R) : D m f (x)−D m f (y) ≤ x−y α , x, y ∈ C(<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>The</str<strong>on</strong>g> Zolotarev metric <strong>on</strong> C([0, 1])<br />

Let M(C([0, 1])) be the set of probability measures <strong>on</strong> C([0, 1]).<br />

For µ, ν ∈ M(C([0, 1])) <strong>and</strong> s > 0 define the Zolotarev distance of<br />

µ <strong>and</strong> ν by<br />

ζs(µ, ν) = sup |E[f (X ) − f (Y )]|,<br />

f ∈Fs<br />

with L(X ) = µ, L(Y ) = ν <strong>and</strong> for s = m + α with 0 < α ≤ 1 <strong>and</strong><br />

m := ⌈s⌉ − 1 ∈ N0<br />

Fs := {f ∈ C m (C([0, 1]), R) : D m f (x)−D m f (y) ≤ x−y α , x, y ∈ C(<br />

Set ζs(X , Y ) = ζs(L(X ), L(Y )).<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Properties of the Zolotarev distance ζs<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Properties of the Zolotarev distance ζs<br />

It holds ζs(X , Y ) < ∞, if<br />

E||X || s , E||Y || s < ∞, E[g(X , . . . , X )] = E[g(Y , . . . , Y )]<br />

for all k ≤ m <strong>and</strong> multilinear, bounded functi<strong>on</strong>s<br />

g : C([0, 1]) k → R.<br />

In the following assume finiteness of the c<strong>on</strong>sidered ζs-distances<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Lemma<br />

Properties of the Zolotarev distance ζs<br />

ζs is (s,+) - ideal, i.e.<br />

ζs(ϕ(X ), ϕ(Y )) ≤ ||ϕ|| s ζs(X , Y )<br />

for any c<strong>on</strong>tinuous <strong>and</strong> linear functi<strong>on</strong> ϕ : C([0, 1]) → C([0, 1]) with<br />

||ϕ|| = sup<br />

f ∈C([0,1]),||f ||=1<br />

||ϕ(f )||.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Lemma<br />

Properties of the Zolotarev distance ζs<br />

ζs is (s,+) - ideal, i.e.<br />

ζs(ϕ(X ), ϕ(Y )) ≤ ||ϕ|| s ζs(X , Y )<br />

for any c<strong>on</strong>tinuous <strong>and</strong> linear functi<strong>on</strong> ϕ : C([0, 1]) → C([0, 1]) with<br />

Furthermore<br />

||ϕ|| = sup<br />

f ∈C([0,1]),||f ||=1<br />

||ϕ(f )||.<br />

ζs(X1 + X2, Y1 + Y2) ≤ ζs(X1, Y1) + ζs(X2, Y2)<br />

for (X1, Y1) <strong>and</strong> (X2, Y2) independent.<br />

Proof: Zolotarev (’76)<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Proof of D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem (Sketch)<br />

We are in the case 2 < s < 3 <strong>and</strong> have to c<strong>on</strong>sider E[f (X , X )] for<br />

c<strong>on</strong>tinuous, bilinear functi<strong>on</strong>s f : C([0, 1]) 2 → R.<br />

This is d<strong>on</strong>e by c<strong>on</strong>trolling the covariance functi<strong>on</strong>.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Proof of D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem (Sketch)<br />

We are in the case 2 < s < 3 <strong>and</strong> have to c<strong>on</strong>sider E[f (X , X )] for<br />

c<strong>on</strong>tinuous, bilinear functi<strong>on</strong>s f : C([0, 1]) 2 → R.<br />

This is d<strong>on</strong>e by c<strong>on</strong>trolling the covariance functi<strong>on</strong>.<br />

Since S n <strong>and</strong> B do not share their covariance functi<strong>on</strong> (of course<br />

E[S n s , S n t ] → min(s, t)) we also c<strong>on</strong>sider the process B n defined by<br />

B n t = B ⌊nt⌋<br />

n<br />

B<br />

−1.0 −0.5 0.0 0.5 1.0<br />

+ (nt − ⌊nt⌋)<br />

<br />

B ⌊nt⌋+1<br />

n<br />

− B ⌊nt⌋<br />

n<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

<br />

.


Proof of D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem (Sketch)<br />

An c<strong>on</strong>tracti<strong>on</strong> argument shows<br />

for δ < ε/2.<br />

ζ2+ε(S n , B n ) = O(n −δ )<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Proof of D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem (Sketch)<br />

An c<strong>on</strong>tracti<strong>on</strong> argument shows<br />

for δ < ε/2. Together with<br />

ζ2+ε(S n , B n ) = O(n −δ )<br />

||B n − B|| → 0 a.s.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Proof of D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem (Sketch)<br />

An c<strong>on</strong>tracti<strong>on</strong> argument shows<br />

for δ < ε/2. Together with<br />

ζ2+ε(S n , B n ) = O(n −δ )<br />

||B n − B|| → 0 a.s.<br />

D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem follows with the following properties of<br />

Zolotarev’s distance.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


Properties of ζs in C([0, 1])<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

Properties of ζs in C([0, 1])<br />

Let B = C([0, 1]) <strong>and</strong> 0 < s ≤ 3, i.e, m ∈ {0, 1, 2}. Let (Xn)n≥1, X<br />

be r<strong>and</strong>om variables in (C([0, 1]), · ) where, for each n ≥ 1, Xn is<br />

piecewise linear with intervals of length at least rn. If<br />

<br />

−m 1<br />

ζs(Xn, X ) = o log , as n → ∞,<br />

rn<br />

then Xn → X in distributi<strong>on</strong>.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

Properties of ζs in C([0, 1])<br />

Let B = C([0, 1]) <strong>and</strong> 0 < s ≤ 3, i.e, m ∈ {0, 1, 2}. Let (Xn)n≥1, X<br />

be r<strong>and</strong>om variables in (C([0, 1]), · ) where, for each n ≥ 1, Xn is<br />

piecewise linear with intervals of length at least rn. If<br />

<br />

−m 1<br />

ζs(Xn, X ) = o log , as n → ∞,<br />

rn<br />

then Xn → X in distributi<strong>on</strong>.<br />

Proof: This basically follows from a result of Barbour from the<br />

c<strong>on</strong>text of Stein’s method.<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem


<str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

Properties of ζs in C([0, 1])<br />

Suppose 0 < s ≤ 3, i.e, m ∈ {0, 1, 2}. Let (Xn)n≥1, (Yn)n≥1, Z be<br />

r<strong>and</strong>om variables in (C([0, 1]), · ) where, for each n ≥ 1, Xn, Yn<br />

are piecewise linear with intervals of length at least rn. If Yn → Z<br />

in distributi<strong>on</strong> <strong>and</strong><br />

ζs(Xn, Yn) = o<br />

then Xn → Z in distributi<strong>on</strong>.<br />

<br />

−m 1<br />

log , as n → ∞,<br />

rn<br />

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tracti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <strong>on</strong> C([0, 1]) <strong>and</strong> D<strong>on</strong>sker’s <str<strong>on</strong>g>The</str<strong>on</strong>g>orem

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!