25.08.2013 Views

Formal asymptotics for blowup in the Willmore flow - Eurandom

Formal asymptotics for blowup in the Willmore flow - Eurandom

Formal asymptotics for blowup in the Willmore flow - Eurandom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Formal</strong> <strong>asymptotics</strong> <strong>for</strong> <strong>blowup</strong> <strong>in</strong> <strong>the</strong> <strong>Willmore</strong><br />

<strong>flow</strong><br />

Michelangelo Vargas and Jan Bouwe van den Berg<br />

April 15, 2010


Introduction<br />

Consider an elastic surface. The elastic energy of <strong>the</strong> surface is<br />

given by<br />

<br />

E = (α + βH 2 + γK)dµ,<br />

where <strong>the</strong> <strong>in</strong>tegral is over <strong>the</strong> surface Ω and<br />

◮ H is <strong>the</strong> mean curvature,<br />

◮ K is <strong>the</strong> Gaussian curvature.<br />


Introduction<br />

Consider an elastic surface. The elastic energy of <strong>the</strong> surface is<br />

given by<br />

<br />

E = (α + βH 2 + γK)dµ,<br />

where <strong>the</strong> <strong>in</strong>tegral is over <strong>the</strong> surface Ω and<br />

◮ H is <strong>the</strong> mean curvature,<br />

◮ K is <strong>the</strong> Gaussian curvature.<br />

The first term represents surface tension, while<br />

<strong>the</strong> second and third term model <strong>the</strong> bend<strong>in</strong>g<br />

energy. The equilibrium shape of certa<strong>in</strong> cells<br />

can be found by m<strong>in</strong>imis<strong>in</strong>g <strong>the</strong> bend<strong>in</strong>g energy.<br />

For example <strong>the</strong> red blood cell.<br />


Introduction<br />

Consider an elastic surface. The elastic energy of <strong>the</strong> surface is<br />

given by<br />

<br />

E = (α + βH 2 + γK)dµ,<br />

where <strong>the</strong> <strong>in</strong>tegral is over <strong>the</strong> surface Ω and<br />

◮ H is <strong>the</strong> mean curvature,<br />

◮ K is <strong>the</strong> Gaussian curvature.<br />

The first term represents surface tension, while<br />

<strong>the</strong> second and third term model <strong>the</strong> bend<strong>in</strong>g<br />

energy. The equilibrium shape of certa<strong>in</strong> cells<br />

can be found by m<strong>in</strong>imis<strong>in</strong>g <strong>the</strong> bend<strong>in</strong>g energy.<br />

For example <strong>the</strong> red blood cell.<br />


The <strong>Willmore</strong> <strong>flow</strong> I<br />

S<strong>in</strong>ce <strong>the</strong> <strong>in</strong>tegral over <strong>the</strong> Gaussian curvature is a constant<br />

(Gauss-Bonnet), m<strong>in</strong>imis<strong>in</strong>g <strong>the</strong> bend<strong>in</strong>g energy comes down to<br />

m<strong>in</strong>imis<strong>in</strong>g <strong>the</strong> <strong>Willmore</strong> functional<br />

<br />

H 2 dµ.<br />

Ω<br />

M<strong>in</strong>imis<strong>in</strong>g this <strong>in</strong>tegral gives <strong>the</strong> so-called <strong>Willmore</strong> <strong>flow</strong>. This is a<br />

partial differential equation on a surface.


Surface evolution<br />

Consider a mov<strong>in</strong>g surface φ(t) : M → R 3 parametrised by t, with<br />

metric gij = 〈∂iφ, ∂jφ〉.<br />

¯φt(p, t)<br />

p<br />

q<br />

¯φt(q, t)<br />

Here, ¯ φt is <strong>the</strong> displacement of <strong>the</strong> surface <strong>in</strong> <strong>the</strong> normal direction.


The <strong>Willmore</strong> <strong>flow</strong> II<br />

The <strong>Willmore</strong> <strong>flow</strong> is given by<br />

with<br />

◮ H : mean curvature,<br />

◮ K : Gaussian curvature,<br />

¯φt = −∆H − 2H(H 2 − K),<br />

◮ ∆ : Laplace-Beltrami operator. Generalisation of Laplacian<br />

given by<br />

1<br />

<br />

∆ = √ ∂i g<br />

det g ij <br />

det g∂j .


Curvatures<br />

Let κ1 and κ2 be <strong>the</strong> maximal and m<strong>in</strong>imal curvatures of a surface<br />

at a particular po<strong>in</strong>t. The mean and Gaussian curvatures at that<br />

po<strong>in</strong>t are given by<br />

H = 1<br />

2 (κ1 + κ2),<br />

K = κ1κ2.<br />

<strong>Willmore</strong> <strong>flow</strong> : ¯φt = −∆H − 2H(H 2 − K).


The sphere<br />

Consider a sphere of radius R. If we choose <strong>the</strong> normal such that it<br />

po<strong>in</strong>ts outwards, <strong>the</strong>n<br />

everywhere. Hence,<br />

H = − 1<br />

R<br />

on <strong>the</strong> whole sphere.<br />

We see immediately that<br />

κ1 = κ2 = − 1<br />

R ,<br />

1<br />

and K = ,<br />

R2 ¯φt = −∆H − 2H(H 2 − K) = 0.


The sphere and more<br />

◮ The <strong>Willmore</strong> energy <strong>for</strong> a sphere is 4π.<br />

◮ The <strong>Willmore</strong> energy is scale <strong>in</strong>variant.<br />

◮ The sphere is a global m<strong>in</strong>imum <strong>for</strong> closed immersed surfaces.


The sphere and more<br />

◮ The <strong>Willmore</strong> energy <strong>for</strong> a sphere is 4π.<br />

◮ The <strong>Willmore</strong> energy is scale <strong>in</strong>variant.<br />

◮ The sphere is a global m<strong>in</strong>imum <strong>for</strong> closed immersed surfaces.<br />

A surface with κ1 = −κ2, everywhere, is also a stationary solution<br />

(H = 0). This surface is given by <strong>the</strong> graph<br />

<br />

z<br />

<br />

r(z) = q cosh ,<br />

q<br />

rotated around <strong>the</strong> z-axis.


Properties of <strong>Willmore</strong> <strong>flow</strong><br />

◮ The <strong>Willmore</strong> <strong>flow</strong> is a fourth order, nonl<strong>in</strong>ear, differential<br />

equation.<br />

◮ Short time existence (parabolic quasi l<strong>in</strong>ear)<br />

◮ Long time existence<br />

◮ <strong>for</strong> solutions close to a local m<strong>in</strong>imum<br />

◮ <strong>for</strong> immersed spheres with <strong>Willmore</strong> energy lower equal to 8π<br />

◮ two-dimensional graphs<br />

◮ If <strong>blowup</strong> occurs, <strong>the</strong> <strong>blowup</strong> profile must be stationary.


Problem<br />

Can <strong>the</strong> <strong>Willmore</strong> <strong>flow</strong> create a s<strong>in</strong>gularity on a smooth surface <strong>in</strong><br />

f<strong>in</strong>ite time?


Problem<br />

Can <strong>the</strong> <strong>Willmore</strong> <strong>flow</strong> create a s<strong>in</strong>gularity on a smooth surface <strong>in</strong><br />

f<strong>in</strong>ite time?<br />

Numerical computations suggest that this can happen. Consider<br />

<strong>the</strong> follow<strong>in</strong>g curve (a so-called Limaçon) rotated around <strong>the</strong><br />

horizontal axes.


Numerical computations<br />

Numerical computations suggest that a Limaçon, governed by <strong>the</strong><br />

<strong>Willmore</strong> <strong>flow</strong>, creates a s<strong>in</strong>gularity <strong>in</strong> f<strong>in</strong>ite time.<br />

Note<br />

◮ a self <strong>in</strong>tersection is not a s<strong>in</strong>gularity<br />

◮ <strong>the</strong> tip drops with a quasi stationary rate<br />

◮ <strong>the</strong> different scales<br />

Goal of our research is to determ<strong>in</strong>e <strong>the</strong> rate with which <strong>the</strong> tip<br />

drops. Call this rate λ.


Different scales<br />

There are three regions <strong>in</strong> this problem correspond<strong>in</strong>g to three<br />

different scales.<br />

◮ In <strong>the</strong> remote region <strong>the</strong> solution hardly moves.<br />

◮ In <strong>the</strong> outer region <strong>the</strong> solution evolves (by def<strong>in</strong>ition) with<br />

<strong>the</strong> self similar scale (T − t) 1/4 .<br />

◮ In <strong>the</strong> <strong>in</strong>ner region <strong>the</strong> solution is governed by <strong>the</strong> <strong>blowup</strong> rate.<br />

Remote Region<br />

r(s)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Outer Region<br />

Inner Region<br />

–1 –0.5 0<br />

0.5 1<br />

z(s)


Matched <strong>asymptotics</strong><br />

On every region we can simplify <strong>the</strong> equation differently.<br />

◮ In <strong>the</strong> remote region one can use κ1 ∼ κ2.<br />

◮ In <strong>the</strong> outer region we use zr → 0.<br />

◮ In <strong>the</strong> <strong>in</strong>ner region we can use κ1 ∼ −κ2.<br />

Match<strong>in</strong>g means that <strong>the</strong> solutions should behave <strong>the</strong> same <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>termediate regions.


Results<br />

◮ Match<strong>in</strong>g gives<br />

(T − t)1/2<br />

λ ∼ <br />

1 | ln | 4<br />

.<br />

T −t


Results<br />

◮ Match<strong>in</strong>g gives<br />

(T − t)1/2<br />

λ ∼ <br />

1 | ln | 4<br />

.<br />

T −t<br />

◮ But we do not f<strong>in</strong>d a Limaçon that becomes s<strong>in</strong>gular.<br />

◮ We f<strong>in</strong>d a dumbbell.


Future work<br />

◮ Study <strong>the</strong> dumbbell more carefully.<br />

Numerically and analytically.<br />

◮ Use o<strong>the</strong>r match<strong>in</strong>g to describe <strong>the</strong> <strong>blowup</strong> of <strong>the</strong> Limaçon.<br />

Use mov<strong>in</strong>g mesh methods to study <strong>the</strong> evolution.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!