24.08.2013 Views

PDF version of the Equation Sheet

PDF version of the Equation Sheet

PDF version of the Equation Sheet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Miscellaneous<br />

If ax 2 + bx + c = 0, <strong>the</strong>n x =<br />

Rectilinear (1-D) Motion<br />

<strong>Equation</strong> <strong>Sheet</strong> for EMch 112H<br />

Mechanics <strong>of</strong> Motion<br />

<br />

−b ± √ b2 <br />

− 4ac 2a.<br />

Position: s(t); Velocity: v = ˙s = ds/dt; Acceleration: a =¨s = dv/dt = d2s/dt2 = vdv/ds. F or<br />

constant acceleration ac:<br />

v 2 = v 2 0 +2ac(s − s0) v = v0 + act s = s0 + v0t + 1 2<br />

2act There are corresponding equations for constant angular acceleration α.<br />

2D Motions—Cartesian Coordinates<br />

Position: r = x î+yˆj; Velocity: v = dr/dt =˙x î+ ˙yˆj; Acceleration: a = dv/dt = d 2 r/dt 2 =¨x î+¨yˆj<br />

2D Motions—Normal-Tangential (Path) Coordinates<br />

v = v êt = ρ ˙ β êt<br />

2D Motions—Polar Coordinates<br />

Relative Motion<br />

a =˙v êt +(v 2 /ρ)ên,<br />

r = r êr v =˙r êr + r ˙ θ êθ a =(¨r − r ˙ θ 2 )êr +(r ¨ θ +2˙r ˙ θ)êθ<br />

Newton’s Second Law<br />

rB = rA + r B/A vB = vA + v B/A aB = aA + a B/A<br />

F = ma; Fx = max; Fy = may; Fn = man; Ft = mat; Fr = mar; Fθ = maθ<br />

Work-Energy Principle<br />

<br />

U1–2 =<br />

path<br />

F · dr T = 1<br />

2 mv2<br />

Vg = mgh Ve = 1<br />

2 kδ2<br />

T1 + U1–2 = T2<br />

T1 + Vg1 + Ve1 + U ′ 1–2 = T2 + Vg2 + Ve2<br />

Linear Impulse-Momentum Principle<br />

G = mv F ˙<br />

= G<br />

t2<br />

mv1 + F dt= mv2<br />

Angular Impulse-Momentum Principle<br />

HO = r P/O × mvP<br />

MO = ˙ HO<br />

t1<br />

HO1 +<br />

t2<br />

t1<br />

MO dt = HO2<br />

Last modified: March 25, 2001


Impact <strong>of</strong> Smooth Particles<br />

m1(v1)n + m2(v2)n = m1(v ′ 1)n + m2(v ′ 2)n; (v1)t =(v ′ 1)t; (v2)t =(v ′ 2)t; e = (v′ 2 )n − (v ′ 1 )n<br />

Systems <strong>of</strong> Particles<br />

F = maG<br />

T = 1<br />

2mv2 G + 1<br />

<br />

MP = ˙ HG<br />

+ r G/P × maG (M&K)<br />

T1 + V1 + U ′ 1–2 = T2 + V2<br />

(v1)n − (v2)n<br />

2mi| ˙ ρ| 2 G = mvG<br />

<br />

MP =( ˙ HP<br />

)rel + r G/P × maP (M&K)<br />

<br />

MP = ˙ HP<br />

+ m˙ rP × ˙ rG (GLG)<br />

<br />

MP = ˙ hP + mρG × ¨ rP (GLG)<br />

Under <strong>the</strong> appropriate conditions, <strong>the</strong> GLG moment-angular momentum relations simplify to:<br />

<br />

MP = ˙ HP<br />

or MP<br />

= ˙ hP Rigid Body Kinematics<br />

Moments <strong>of</strong> Inertia<br />

(IG)disk = 1<br />

2 mr2<br />

vB = vA + v B/A<br />

vB = vA + ω × r B/A<br />

(IG)rod = 1<br />

12 ml2<br />

aB = aA + a B/A<br />

aB = aA + α × r B/A + ω × (ω × r B/A)<br />

aB = aA + α × r B/A − ω 2 r B/A<br />

(IG)plate = 1<br />

12 m(a2 + b 2 ) (IG)sphere = 2<br />

5 mr2<br />

Parallel Axis Theorem: IA = IG + md 2 ; Radius <strong>of</strong> Gyration: IA = mk 2 A<br />

Angular Momentum and <strong>Equation</strong>s <strong>of</strong> Motion for a Rigid Body<br />

Angular Momentum<br />

<strong>Equation</strong>s <strong>of</strong> Motion<br />

HG = IGω<br />

The translational equations are given by<br />

F = maG<br />

HO = IGω + r G/O × mvG<br />

The rotational equation. For <strong>the</strong> mass center G: MG = IGα and for a fixed point O: MO = IOα.<br />

For an arbitrary point A:<br />

MP = IGα + r G/P × maG<br />

Work-Energy for a Rigid Body<br />

MP = IP α + r G/P × maP<br />

<br />

MA<br />

FBD =<br />

<br />

MA<br />

KD<br />

The work-energy principle is <strong>the</strong> same as that for particles. The kinetic energy <strong>of</strong> a rigid body is:<br />

T = 1 2<br />

2IOω T = 1<br />

2mv2 G + 1<br />

2<br />

IGω 2<br />

Last modified: March 25, 2001

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!