24.08.2013 Views

Analyses of elastic waves in Aluminum/Barium sodium niobate and ...

Analyses of elastic waves in Aluminum/Barium sodium niobate and ...

Analyses of elastic waves in Aluminum/Barium sodium niobate and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

!"#$%&'(&"")(&'$*+,")(+-.$/0-.1$2345236$724489$::$;;;$FGH-(B+,(0&.I$JA(,K")-+&L<br />

Citation M&-(&"$+N+(-+H-"$.(&B"$2448@OG'@;P<br />

&<br />

Copyright (to be <strong>in</strong>serted by the publisher)<br />

<strong>Analyses</strong> <strong>of</strong> <strong>elastic</strong> <strong>waves</strong> <strong>in</strong> Alum<strong>in</strong>um/<strong>Barium</strong> <strong>sodium</strong> <strong>niobate</strong> <strong>and</strong><br />

Quartz/Epoxy phononic structures 1<br />

Zi-Gui Huang, Tsung-Tsong Wu 1 <strong>and</strong> S. L<strong>in</strong><br />

Institute <strong>of</strong> Applied Mechanics, National Taiwan University,<br />

Taipei 106, Taiwan<br />

Keywords: Surface wave, Bulk wave, Periodic structures, Phononic crystal, B<strong>and</strong> gap<br />

Abstract. This study was aimed at us<strong>in</strong>g the theory for two-dimensional phononic crystal consist<strong>in</strong>g<br />

<strong>of</strong> materials with general anisotropy to calculate the b<strong>and</strong> gaps phenomena <strong>in</strong> Alum<strong>in</strong>um/<strong>Barium</strong><br />

<strong>sodium</strong> <strong>niobate</strong> (Y-cut) with hexagonal lattice <strong>and</strong> Quartz/Epoxy with square lattice phononic<br />

structures. Wave propagation properties <strong>of</strong> solids <strong>in</strong> which the periodic modulation occurs along the<br />

bound<strong>in</strong>g surface has been discussed <strong>in</strong> this paper. Especially surface <strong>and</strong> bulk acoustic wave<br />

properties <strong>of</strong> solids were studied <strong>in</strong> both square <strong>and</strong> hexagonal lattices consist<strong>in</strong>g <strong>of</strong> isotropic, trigonal,<br />

<strong>and</strong> orthorhombic symmetry materials. From the previous laboratory study, we confirmed that the<br />

widths <strong>of</strong> the frequency b<strong>and</strong> gap were strongly affected by the fill<strong>in</strong>g ratio, density, <strong>and</strong> <strong>elastic</strong><br />

constants match<strong>in</strong>g ratios. In this study, the results have shown that surface wave b<strong>and</strong> gaps could be<br />

found along a specific direction. In the materials we <strong>in</strong>vestigated <strong>in</strong> this paper, we found that there is<br />

no full b<strong>and</strong> gap for surface <strong>waves</strong>. Instead, full b<strong>and</strong> gap for bulk acoustic wave can be obta<strong>in</strong>ed for<br />

transverse polarization mode. Results <strong>of</strong> this paper can serve as a basis for both numerical <strong>and</strong><br />

experimental <strong>in</strong>vestigations <strong>of</strong> phononic crystal related structures.<br />

Introduction<br />

The existence <strong>of</strong> complete b<strong>and</strong> gaps <strong>of</strong> electromagnetic <strong>waves</strong> <strong>in</strong> photonic structures extend<strong>in</strong>g<br />

throughout the Brillou<strong>in</strong> zone has demonstrated a variety <strong>of</strong> fundamental <strong>and</strong> practical <strong>in</strong>terests.[1,2]<br />

This has led to a rapid grow<strong>in</strong>g <strong>in</strong>terests <strong>in</strong> the analogous acoustic effects <strong>in</strong> periodic <strong>elastic</strong> structures<br />

called the phononic crystals. Surface wave propagation on layered superlattices with traction free<br />

surface parallel to the layers has been explored extensively <strong>in</strong> the past.[3] However, <strong>in</strong>vestigations on<br />

surface wave properties <strong>of</strong> solids <strong>in</strong> which the periodic modulation occurs on the traction free surface<br />

has not started until recently.[4-8] V<strong>in</strong>ces et al.[4,5] studied experimentally the surface <strong>waves</strong><br />

generated by a l<strong>in</strong>e-focus acoustic lens at the water-loaded surfaces <strong>of</strong> a number <strong>of</strong> two-dimensional<br />

superlattices that <strong>in</strong>tersect the surface normally. Propagation <strong>of</strong> Scholte-like acoustic <strong>waves</strong> at the<br />

liquid-loaded surfaces <strong>of</strong> period structures has also been studied.[6]<br />

The superlattices considered <strong>in</strong> Refs.[4-6,8] are <strong>of</strong> isotropic materials. As for superlattices consist<br />

<strong>of</strong> anisotropic materials, Tanaka <strong>and</strong> Tamura [7] reported detail calculations for surface <strong>waves</strong> on a<br />

square superlattice consist<strong>in</strong>g <strong>of</strong> cubic materials (AlAs/GaAs) <strong>and</strong> many salient features <strong>of</strong> surface<br />

<strong>waves</strong> <strong>in</strong> two-dimensional superlattices have been described. In addition, Tanaka <strong>and</strong> Tamura[8] also<br />

reported detail calculations for surface <strong>waves</strong> on a hexagonal superlattice consist<strong>in</strong>g <strong>of</strong> isotropic<br />

materials (Al/polymer).<br />

For the analysis <strong>of</strong> bulk acoustic <strong>waves</strong> [9-15], Kushwaha et al.[9] reported the first full<br />

b<strong>and</strong>-structure calculations <strong>of</strong> the transverse polarization mode for periodic, <strong>elastic</strong> composite. In the<br />

Ref.[10], Kushwaha et al. calculated the b<strong>and</strong> structures for the transverse polarization modes <strong>of</strong><br />

nickel alloy cyl<strong>in</strong>ders <strong>in</strong> alum<strong>in</strong>um alloy host, <strong>and</strong> vice versa. They also <strong>in</strong>vestigate the dependence <strong>of</strong><br />

spectral gap on the fill<strong>in</strong>g fraction <strong>and</strong> on the material parameters. Kafesaki et al.[11] reported the<br />

multiple-scatter<strong>in</strong>g theory (MST method) for three-dimensional periodic acoustic composites.<br />

1 Correspond<strong>in</strong>g author: wutt@spr<strong>in</strong>g.iam.ntu.edu.tw<br />

!""#$%&'()#$*)*$+*,-#./#01$(#/2#3/4(*4()#/2#('%)#010*$#516#7*#$*0$/,83*,#/$#($14)5%((*,#%4#146#2/$5#/$#76#146#5*14)#9%('/8(#('*#9$%((*4#0*$5%))%/4#/2#('*<br />

087"%)'*$:#;$14)#;*3'##999-((0-4*(-#ABC:#DEF-DDF-DFG-HIJEKLMELMI>MM:DN:ENO


!!"# $%&'()*+,-(,./(%*+012)0-&*,3&'42'0-/(<br />

Title <strong>of</strong> Publication (to be <strong>in</strong>serted by the publisher)<br />

Garcia-Pablos et al.[12] used the FDTD method to <strong>in</strong>terpret experimental data for two-dimensional<br />

systems consist<strong>in</strong>g <strong>of</strong> cyl<strong>in</strong>ders <strong>of</strong> fluids (Hg, air, <strong>and</strong> oil) <strong>in</strong>serted periodically <strong>in</strong> a f<strong>in</strong>ite slab <strong>of</strong> Al<br />

host. Psarobas <strong>and</strong> Stefanou[13] calculated the b<strong>and</strong> structure <strong>of</strong> a phononic crystal consist<strong>in</strong>g <strong>of</strong><br />

complex <strong>and</strong> frequency dependent Lame’ coefficients. Zhengyou Liu et al.[14] extended the<br />

multiple-scatter<strong>in</strong>g theory for <strong>elastic</strong> <strong>waves</strong> by tak<strong>in</strong>g <strong>in</strong>to account the full vector character, <strong>and</strong><br />

presented a comparison between theory <strong>and</strong> ultrasound experiment for a hexagonal-close-packed<br />

array <strong>of</strong> steel balls immersed <strong>in</strong> water. Jun Mei et al.[15] reported the same method <strong>in</strong> Ref.[16] to<br />

extend the method <strong>in</strong> the case <strong>of</strong> cyl<strong>in</strong>ders. However, the bulk <strong>waves</strong> analysis <strong>in</strong> phononic structures<br />

among the Refs.[9-15] are <strong>of</strong> isotropic materials only.<br />

In this paper, we extended Ref.[7] to study phononic b<strong>and</strong> gaps <strong>of</strong> <strong>elastic</strong>/acoustic <strong>waves</strong> <strong>in</strong><br />

two-dimensional Alum<strong>in</strong>um/<strong>Barium</strong> <strong>sodium</strong> <strong>niobate</strong> (Y-cut) (Ba2NaNb5O15) with hexagonal lattice<br />

<strong>and</strong> Quartz/Epoxy with square lattice phononic structures. The explicit formulations <strong>of</strong> the plane<br />

harmonic bulk wave <strong>and</strong> the surface wave dispersion relations <strong>in</strong> such a general phononic structure<br />

are discussed based on the plane wave expansion method.<br />

Equations <strong>of</strong> Motion <strong>of</strong> 2-D Phononic Crystals<br />

In an <strong>in</strong>homogeneous l<strong>in</strong>ear <strong>elastic</strong> anisotropic medium with no body force, the equation <strong>of</strong> motion for<br />

the displacement vector u ( r ,t ) can be written as<br />

ρ ( r) <br />

( r,<br />

t)<br />

= ∂ [ C ( r)<br />

∂ u ( r,<br />

t)]<br />

(1)<br />

ui j ijmn n m<br />

where r = ( x,<br />

z ) = ( x,<br />

y,<br />

z)<br />

is the position vector, ρ( r ) , C (r) are the position-dependent mass<br />

density <strong>and</strong> <strong>elastic</strong> stiffness tensor, respectively. In the follow<strong>in</strong>g, we consider a phononic crystal<br />

composed <strong>of</strong> a two dimensional periodic array (x-y plane) <strong>of</strong> material A embedded <strong>in</strong> a background<br />

material B. Due to the spatial periodicity, the material constants, ρ( x ) , C ( x ) can be exp<strong>and</strong>ed <strong>in</strong><br />

the Fourier series with respect to the two-dimensional reciprocal lattice vectors (RLV), G = ( G1, G2<br />

) ,<br />

as<br />

G x<br />

ρ x ρ<br />

⋅ i<br />

( ) = e<br />

(2)<br />

G<br />

G<br />

iG<br />

x ijmn<br />

ijmn x e C<br />

G<br />

⋅<br />

( ) =<br />

(3)<br />

ijmn<br />

C G<br />

where ρG <strong>and</strong> CG are the correspond<strong>in</strong>g Fourier coefficients.<br />

On utiliz<strong>in</strong>g the Bloch theorem <strong>and</strong> exp<strong>and</strong><strong>in</strong>g the displacement vector u( r , t)<br />

<strong>in</strong> Fourier series for<br />

bulk wave analysis, we have<br />

u(<br />

r,<br />

t)<br />

ik⋅x−iωt iG⋅x<br />

ikz<br />

z<br />

e<br />

( e AGe<br />

)<br />

(4)<br />

=<br />

G<br />

k = ( k1,<br />

k2<br />

is the Bloch wave vector, ω is the circular frequency <strong>and</strong> z<br />

where )<br />

k is the wave number<br />

along the z-direction, AG is the amplitude <strong>of</strong> the displacement vector. We note that as the component<br />

<strong>of</strong> the wave vector k z equals to zero, Eq. (6) degenerates <strong>in</strong>to the displacement vector <strong>of</strong> a bulk<br />

acoustic wave.<br />

Substitut<strong>in</strong>g Eqs. (2), (3) <strong>and</strong> (4) <strong>in</strong>to Eq. (1), <strong>and</strong> after collect<strong>in</strong>g terms systematically, we obta<strong>in</strong><br />

the generalized eigenvalue problem<br />

2<br />

( Ak z + Bk<br />

z + C)<br />

U = 0<br />

(5)<br />

where A, B <strong>and</strong> C are 3n× 3n<br />

matrices <strong>and</strong> are functions <strong>of</strong> the Bloch wave vector k , components <strong>of</strong><br />

the two-dimensional RLV, circular frequency ω, the Fourier coefficients <strong>of</strong> mass density ρ G <strong>and</strong><br />

components <strong>of</strong> <strong>elastic</strong> stiffness tensor<br />

expansion <strong>and</strong><br />

listed <strong>in</strong> Ref.[18, 19].<br />

ijmn<br />

ijmn<br />

CG . n is the total number <strong>of</strong> RLV used <strong>in</strong> the Fourier<br />

1 2 3 T<br />

U = [ A ' A ' A ' ] is the displacement vector. The expressions <strong>of</strong> the matrices are<br />

G G G<br />

ijmn


Title <strong>of</strong> Publication (to be <strong>in</strong>serted by the publisher)<br />

Eq. (5) is more complicated than that <strong>of</strong> the two-dimensional phononic crystal with cubic<br />

symmetry given by Tanaka <strong>and</strong> Tamura [7] <strong>in</strong> such a way that the coefficient matrix B is not vanished.<br />

However, it can be solved by <strong>in</strong>troduc<strong>in</strong>g V = k zU<br />

<strong>and</strong> rewritten <strong>in</strong> the form as[9]<br />

0 I U<br />

U<br />

<br />

<br />

= k<br />

−<br />

−<br />

z <br />

(6)<br />

1 1<br />

−<br />

A C − A BV<br />

V<br />

Bulk <strong>and</strong> Surface Waves <strong>in</strong> 2-D Phononic Crystals<br />

It is worth not<strong>in</strong>g that the case <strong>of</strong> bulk wave is a special case <strong>of</strong> Eq. (5). When k z <strong>in</strong> Eq. (5) is equal to<br />

zero, the equation degenerates <strong>in</strong>to the eigenvalue problem <strong>of</strong> bulk <strong>waves</strong> as<br />

CU = 0<br />

(7)<br />

The dispersion relations <strong>of</strong> bulk <strong>waves</strong> propagat<strong>in</strong>g <strong>in</strong> two-dimensional phononic crystals with both<br />

the fill<strong>in</strong>g material <strong>and</strong> the background material belong to the tricl<strong>in</strong>ic system; can be obta<strong>in</strong>ed by<br />

sett<strong>in</strong>g the determ<strong>in</strong>ant <strong>of</strong> matrix C equal to zero.<br />

For material with symmetry higher (<strong>and</strong> equal to) than orthorhombic symmetry, the matrix C can<br />

be decoupled <strong>in</strong>to two different polarization modes as<br />

(1) 2 (1) (1) 1<br />

M ′ ω R ′ L ′ <br />

G,G − G,G G,G A ′ G<br />

0<br />

(2) (2) 2 (2) 2 =<br />

(8)<br />

LG,G′ M G,G′ −ω RG,G′ AG ′ <br />

for mixed polarization modes (i.e., longitud<strong>in</strong>al (L) <strong>and</strong> shear horizontal (SH)) <strong>and</strong><br />

(3) 2 (3) 3<br />

M − ω R A = 0<br />

G,G′ G,G′ G ′ <br />

(9)<br />

for shear vertical (SV) modes with polarization <strong>of</strong> the displacement along the z direction (i.e., the<br />

filler’s length direction). The expressions <strong>of</strong> the components <strong>in</strong> Eqs.(8) <strong>and</strong> (9) are listed <strong>in</strong> Ref.[18,<br />

19].<br />

It is worth not<strong>in</strong>g that for material with symmetry lower than orthorhombic symmetry, the matrix C<br />

can’t be decoupled <strong>in</strong>to two different polarization modes. The full matrix C must be considered <strong>and</strong><br />

dist<strong>in</strong>guish different modes as quasi shear vertical modes, quasi shear horizontal modes <strong>and</strong> quasi<br />

longitud<strong>in</strong>al modes.<br />

(l )<br />

For the case <strong>of</strong> surface wave, the 6n eigenvalues k z <strong>of</strong> Eq. (6) are the apparent wave numbers <strong>of</strong><br />

the plane <strong>waves</strong> <strong>in</strong> the z direction. Accord<strong>in</strong>g to the exponential dependence <strong>of</strong> z <strong>in</strong> Eq. (4), the real<br />

(l )<br />

part <strong>of</strong> k z denotes the plane wave propagation <strong>in</strong> the z direction, <strong>and</strong> a positive nonvanish<strong>in</strong>g<br />

imag<strong>in</strong>ary part represents attenuation <strong>in</strong> the z direction. For surface <strong>waves</strong> propagate <strong>in</strong> a half space (z<br />

(l )<br />

> 0), only 3n eigenvalues, which attenuate <strong>in</strong> the positive z direction are chosen, i.e., Im ( k z ) > 0.<br />

Accord<strong>in</strong>gly, the surface wave displacement can be expressed as<br />

3n<br />

<br />

( l )<br />

' i(<br />

k+<br />

G)<br />

⋅x−iωt<br />

ik z z<br />

u(<br />

r,<br />

t)<br />

= e <br />

AGe<br />

<br />

G l=<br />

1 <br />

(10)<br />

3n<br />

i k+<br />

G ⋅x−i<br />

t <br />

( l )<br />

' ( ) ω<br />

( l ) ik z z<br />

= e <br />

X l<br />

G e <br />

G l=<br />

1 <br />

(l )<br />

)<br />

where<br />

is the associated eigenvector <strong>of</strong> the eigenvalue k . The prime <strong>of</strong> the summation denotes<br />

G<br />

5*6,3(7-(**1-(7,8'0*1-'4+,9/4+:,";#


!!"" $%&'()*+,-(,./(%*+012)0-&*,3&'42'0-/(<br />

H<br />

<br />

H<br />

<br />

H<br />

( 1)<br />

1,<br />

G<br />

( 1)<br />

2,<br />

G<br />

( 1)<br />

3,<br />

G<br />

H<br />

H<br />

H<br />

( 2)<br />

1,<br />

G<br />

( 2)<br />

2,<br />

G<br />

( 2)<br />

3,<br />

G<br />

<br />

<br />

<br />

Title <strong>of</strong> Publication (to be <strong>in</strong>serted by the publisher)<br />

H<br />

H<br />

H<br />

( 3n)<br />

1,<br />

G<br />

( 3n)<br />

2,<br />

G<br />

( 3n)<br />

3,<br />

G<br />

X 1 <br />

<br />

<br />

<br />

X 2 ~<br />

≡ HX<br />

= 0<br />

<br />

<br />

<br />

<br />

X<br />

3n<br />

<br />

where H ~ is a 3n×3n matrix <strong>and</strong> its components are listed <strong>in</strong> Ref.[18, 19].<br />

For the existence <strong>of</strong> a nontrivial solution <strong>of</strong> X l , the follow<strong>in</strong>g condition must be satisfied, i.e.,<br />

~<br />

det( H ) = 0<br />

(13)<br />

Eq. (13) is the dispersion relation for surface <strong>waves</strong> propagat<strong>in</strong>g <strong>in</strong> two-dimensional phononic<br />

crystals with both the fill<strong>in</strong>g material <strong>and</strong> the background material belong to the tricl<strong>in</strong>ic system. The<br />

relative magnitude <strong>of</strong> the eigenvectors X l can be obta<strong>in</strong>ed by substitut<strong>in</strong>g k z <strong>and</strong> ω, which satisfy Eq.<br />

(13), <strong>in</strong>to Eq. (12).<br />

Numerical Examples<br />

The Fourier coefficients, ρ G <strong>and</strong><br />

ijmn<br />

CG <strong>in</strong> Eqs. (2) <strong>and</strong> (3), can be expressed as<br />

α<br />

A f + α B ( 1−<br />

f )<br />

α G = <br />

(<br />

α A −α<br />

B ) FG<br />

for G = 0<br />

for G ≠ 0<br />

(14)<br />

ijmn<br />

where α = ( ρ,<br />

C ) , f is the fill<strong>in</strong>g fraction that def<strong>in</strong>es the cross-sectional area <strong>of</strong> a cyl<strong>in</strong>der relative<br />

to a unit-cell area, <strong>and</strong> FG is called the structure function def<strong>in</strong>ed as<br />

2 fJ1<br />

( Gr0<br />

)<br />

F G =<br />

Gr<br />

(15)<br />

0<br />

with J 1( x)<br />

a first order Bessel function.<br />

In this paper, phononic structures with square lattice <strong>and</strong> hexagonal lattice are considered. These<br />

lattices are consist<strong>in</strong>g <strong>of</strong> circular cyl<strong>in</strong>ders (A) embedded <strong>in</strong> a background material (B) form<strong>in</strong>g<br />

two-dimensional lattices with lattice spac<strong>in</strong>g a as shown <strong>in</strong> Fig. 1a (square lattice) <strong>and</strong> Fig. 1b<br />

(hexagonal lattice). Figs. 2a <strong>and</strong> 2b are the Brillou<strong>in</strong> regions <strong>of</strong> the square lattice <strong>and</strong> the hexagonal<br />

G = πN<br />

/ a,<br />

2πN<br />

/ a ,<br />

lattice, respectively. In the square lattice, the reciprocal lattice vector is ( )<br />

2 1<br />

2<br />

where N1 , N 2 = 0,<br />

± 1,<br />

± 2,<br />

<strong>and</strong> fill<strong>in</strong>g fraction is<br />

2 2<br />

f = ( πr0<br />

) / a . For anisotropic materials, the<br />

irreducible part <strong>of</strong> the Brillou<strong>in</strong> zone <strong>of</strong> a square lattice is shown <strong>in</strong> Fig. 2a, which is a square with<br />

vertexes Γ, X, M, Y. The reciprocal lattice vector <strong>of</strong> a hexagonal lattice is<br />

G = πN<br />

/ a,<br />

2π<br />

( 2N<br />

− N ) / 3a<br />

, where N N = 0,<br />

± 1,<br />

± 2,<br />

<strong>and</strong> fill<strong>in</strong>g fraction is<br />

( )<br />

2 1<br />

2 1<br />

2 2<br />

( 2 r ) / 3a<br />

0<br />

1 , 2<br />

f = π . The irreducible part <strong>of</strong> the Brillou<strong>in</strong> zone <strong>of</strong> a hexagonal lattice is shown <strong>in</strong> Fig. 2b,<br />

which is a quadrangle with vertexes Γ, K, L, Y. The <strong>elastic</strong> properties <strong>of</strong> the materials utilized <strong>in</strong> the<br />

follow<strong>in</strong>g examples are adopted from Ref.[17].<br />

In this paper, we consider a phononic structure consist<strong>in</strong>g <strong>of</strong> circular cyl<strong>in</strong>ders <strong>of</strong> Al embedded<br />

<strong>in</strong> a background material <strong>of</strong> Y-cut barium <strong>sodium</strong> <strong>niobate</strong> form<strong>in</strong>g a two-dimensional hexagonal<br />

lattice. The material <strong>of</strong> the fill<strong>in</strong>g cyl<strong>in</strong>ders is isotropic alum<strong>in</strong>um <strong>and</strong> the base material is barium<br />

<strong>sodium</strong> <strong>niobate</strong> with orthorhombic symmetry. In the follow<strong>in</strong>g calculations, the x-z plane is parallel to<br />

the (001) plane <strong>and</strong> the x-axis is parallel to the [100] direction <strong>of</strong> barium <strong>sodium</strong> <strong>niobate</strong>. The fill<strong>in</strong>g<br />

fraction is f = 0.6.<br />

Shown <strong>in</strong> Figure 3 are the dispersion curves <strong>of</strong> the bulk modes <strong>and</strong> surface acoustic modes <strong>of</strong> the<br />

Al/<strong>Barium</strong> <strong>sodium</strong> <strong>niobate</strong> (Y-cut) phononic structure with hexagonal lattice. The vertical axis is the<br />

normalized frequency t C<br />

* *<br />

ω = ωa<br />

/ <strong>and</strong> the horizontal axis is the reduced wave number k = ka / π .<br />

As the <strong>elastic</strong> <strong>waves</strong> propagate along the x axis, the nonvanish<strong>in</strong>g displacement <strong>of</strong> the shear<br />

horizontal mode, shear vertical mode <strong>and</strong> longitud<strong>in</strong>al mode are uy, uz, <strong>and</strong> ux respectively. For the<br />

(12)


5*6,3(7-(**1-(7,8'0*1-'4+,9/4+:,";#


!!"> $%&'()*+,-(,./(%*+012)0-&*,3&'42'0-/(<br />

Normalized Frequency (ωa/C t )<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Title <strong>of</strong> Publication (to be <strong>in</strong>serted by the publisher)<br />

L<br />

SV 0<br />

SV 1<br />

SAW<br />

PSAW<br />

SH 0<br />

SH 1<br />

SAW modes<br />

PSAW modes<br />

Shear horizontal modes (SH0)<br />

Higher shear horizontal modes (SH1)<br />

Longitud<strong>in</strong>al modes (L)<br />

Shear vertical modes (SV0, SV1)<br />

0<br />

Γ K L Y<br />

Reduced Wave Vector (ka/π)<br />

Fig. 3. Dispersion Relations <strong>of</strong> BAW & SAW modes (Al/<strong>Barium</strong> <strong>sodium</strong> <strong>niobate</strong><br />

(Y-cut), f = 0.6, Hex.)<br />

Fig. 4. Dispersion Relations <strong>of</strong> BAW modes (Quartz/Epoxy, f = 0.426, Sq.)<br />

sequence modes appear, we dist<strong>in</strong>guish the same type mode as the fundamental, the first <strong>and</strong> the<br />

second modes et al. For example <strong>in</strong> Figure 3, the th<strong>in</strong> solid l<strong>in</strong>es represent the SV bulk acoustic modes<br />

(the fundamental mode is SV0 <strong>and</strong> the first mode is SV1), <strong>and</strong> the square symbols are those for the<br />

longitud<strong>in</strong>al mode (L). The th<strong>in</strong> dashed l<strong>in</strong>e represents the fundamental shear horizontal mode SH0,<br />

while the l<strong>in</strong>es with “+” symbols represent the first shear horizontal mode SH1. The longitud<strong>in</strong>al<br />

modes L are shown as square symbols. It is seen that the dispersion relations <strong>in</strong> K-L section are almost<br />

symmetric respect to the center <strong>of</strong> the section (M po<strong>in</strong>t <strong>in</strong> Fig.2(b)). It is worth not<strong>in</strong>g that <strong>in</strong> the L-Y<br />

section, sharp bends <strong>of</strong> the dispersion curves occur between SH1 <strong>and</strong> L modes (T1 po<strong>in</strong>t) <strong>and</strong> between<br />

T 1<br />

T 2<br />

Γ


Title <strong>of</strong> Publication (to be <strong>in</strong>serted by the publisher)<br />

L <strong>and</strong> SH0 modes (T2 po<strong>in</strong>t). Therefore, there are mode conversions (SH <strong>and</strong> L) exist <strong>in</strong> this phononic<br />

structure with hexagonal lattice.<br />

From Figure 3, the solid circles represent the dispersion relations <strong>of</strong> the surface wave modes<br />

(SAW) <strong>and</strong> the open circles are those for the pseudo-surface wave (PSAW) modes. For the<br />

convenience <strong>in</strong> discuss<strong>in</strong>g the <strong>in</strong>teraction <strong>of</strong> the surface wave <strong>and</strong> bulk wave, the dispersion <strong>of</strong> the<br />

surface <strong>and</strong> bulk modes are shown <strong>in</strong> the same figure. Result showed that as the normalized frequency<br />

<strong>of</strong> the surface wave mode lies between the SH0 <strong>and</strong> SH1 modes, the surface wave degenerates <strong>in</strong>to the<br />

pseudo-surface wave mode. Unlike the normal surface wave mode, the displacement <strong>of</strong> the<br />

pseudo-surface wave mode does not decay to zero at large depth. In the present case, one f<strong>in</strong>ds that at<br />

K po<strong>in</strong>t, there is no surface wave b<strong>and</strong> gap existed. However, along the Γ -Y boundary, a<br />

PSAW-PSAW b<strong>and</strong> gap exists at the boundary po<strong>in</strong>t Y. The phenomenon showed the characteristics<br />

<strong>of</strong> an anisotropic material.<br />

In the second example, we consider a phononic structure consist<strong>in</strong>g <strong>of</strong> quartz circular cyl<strong>in</strong>ders<br />

embedded <strong>in</strong> a background epoxy material <strong>of</strong> form<strong>in</strong>g a two-dimensional square lattice with lattice<br />

spac<strong>in</strong>g a . Figure 4 shows the dispersion relations <strong>of</strong> all bulk <strong>waves</strong> along the boundaries <strong>of</strong> the<br />

irreducible part <strong>of</strong> the Brillou<strong>in</strong> zone with fill<strong>in</strong>g ratio f = 0.426. For the quartz cyl<strong>in</strong>ders, the matrix C<br />

<strong>in</strong> Eq. (7) can’t be decoupled <strong>in</strong>to mixed polarization modes <strong>and</strong> transverse polarization modes. The<br />

similar modes for the different polarizations <strong>in</strong> this phononic structure are dist<strong>in</strong>guished as quasi<br />

shear vertical modes, quasi shear horizontal modes <strong>and</strong> quasi longitud<strong>in</strong>al mode. In Figure 4, the<br />

vertical axis is the normalized frequency <strong>and</strong> the horizontal axis is the reduced wave number<br />

propagat<strong>in</strong>g along full Brillou<strong>in</strong> zone <strong>of</strong> a square lattice shown <strong>in</strong> Figure 2(a). The square symbols<br />

represent the quasi longitud<strong>in</strong>al modes <strong>and</strong> quasi shear horizontal modes. The solid circles represent<br />

the dispersion relations <strong>of</strong> quasi shear vertical modes. We can f<strong>in</strong>d that there are three total b<strong>and</strong> gaps<br />

between quasi SV0 <strong>and</strong> quasi SV1, between quasi SV2 <strong>and</strong> quasi SV3, <strong>and</strong> between quasi SV4 <strong>and</strong><br />

quasi SV5 <strong>in</strong> the normalized frequency range *<br />

ω = 0 ~ 40 .<br />

Conclusion<br />

In this paper, we studied the phononic b<strong>and</strong> gaps <strong>of</strong> surface <strong>waves</strong> <strong>and</strong> bulk <strong>waves</strong> <strong>in</strong> two-dimensional<br />

phononic structures consisted <strong>of</strong> general anisotropic materials. The explicit formulations <strong>of</strong> the plane<br />

harmonic bulk wave <strong>and</strong> the surface wave dispersion relations <strong>in</strong> such a general phononic structure<br />

are derived based on the plane wave expansion method. Al/<strong>Barium</strong> <strong>sodium</strong> <strong>niobate</strong> (Y-cut) phononic<br />

structure with hexagonal lattice <strong>and</strong> Quartz/Epoxy phononic structure with square lattice are<br />

considered <strong>in</strong> the numerical examples. Total b<strong>and</strong> gap characteristics <strong>of</strong> the phononic structures with<br />

anisotropic materials are calculated <strong>and</strong> discussed. It is worth not<strong>in</strong>g that some <strong>of</strong> the cross<strong>in</strong>g over <strong>of</strong><br />

the dispersion curves (apparently) is <strong>in</strong>deed sharp bends <strong>of</strong> the dispersion curves. Around this sharp<br />

bend area, the mode exchange suddenly. Results <strong>of</strong> this paper can serve as a basis for both numerical<br />

<strong>and</strong> experimental <strong>in</strong>vestigations <strong>of</strong> phononic crystal structures consisted <strong>of</strong> general anisotropic<br />

materials.<br />

Acknowledgments<br />

The authors thank the f<strong>in</strong>ancial supports <strong>of</strong> this research from the National Science Council <strong>of</strong><br />

Taiwan, Academia S<strong>in</strong>ica <strong>of</strong> Taiwan <strong>and</strong> the NTU-ITRI center.<br />

References<br />

5*6,3(7-(**1-(7,8'0*1-'4+,9/4+:,";#


!!"@ $%&'()*+,-(,./(%*+012)0-&*,3&'42'0-/(<br />

Title <strong>of</strong> Publication (to be <strong>in</strong>serted by the publisher)<br />

[3] T. Aono <strong>and</strong> S. Tamura, Phys. Rev. B 58, 4838, (1998).<br />

[4] R.E V<strong>in</strong>es, J.P. Wolfe, <strong>and</strong> A. G. Every, Phys. Rev. B 60, 11871, (1999).<br />

[5] R.E V<strong>in</strong>es <strong>and</strong> J.P. Wolfe, Physica B 263-264, 567, (1999).<br />

[6] A.G. Every, R.E. V<strong>in</strong>es <strong>and</strong> J.P. Wolfe, Phys. Rev. B 60, 11755, (1999).<br />

[7] Y. Tanaka <strong>and</strong> S. Tamura, Phys. Rev. B 58, 7958, (1998).<br />

[8] Y. Tanaka <strong>and</strong> S. Tamura, Phys. Rev. B 60, 13 294, (1999).<br />

[9] M.S. Kushwaha, P. Halevi, L. Dobrzynski, <strong>and</strong> B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022,<br />

(1993).<br />

[10] M.S. Kushwaha, P. Halevi, G. Mart<strong>in</strong>ez, L. Dobrzynski, <strong>and</strong> B. Djafari-Rouhani, Phys. Rev. B<br />

49, 2313, (1994).<br />

[11] M. Kafesaki <strong>and</strong> E.N. Economou, Phys. Rev. B 60, 11993, (1999).<br />

[12] D. Garica-Pablos, M. Sigalas, F.R. Montero de Esp<strong>in</strong>osa, M. Kafesaki <strong>and</strong> N. Garcia, Phys. Rev.<br />

Lett. 84, 4349, (2000).<br />

[13] I.E. Psarobas <strong>and</strong> N. Stefanou, Phys. Rev. B 62, 278, (2000).<br />

[14] Zhengyou Liu, C.T. Chan, <strong>and</strong> P<strong>in</strong>g Sheng, Phys. Rev. B 62, 2446, (2000).<br />

[15] Jun Mei, Zhengyou Liu, J<strong>in</strong>g Shi, <strong>and</strong> Decheng Tian, Phys. Rev. B 67, 245107, (2003).<br />

[16] J.H. Wilk<strong>in</strong>son, “The algebraic eigenvalue problem,” Clarendon Press, Oxford. (1965).<br />

[17] B.A. Auld, “Acoustic Fields <strong>and</strong> Waves <strong>in</strong> Solids,” Volume I, 2nd edition, Robert E. Kreiger,<br />

Malabar, Florida. (1990).<br />

[18] S. L<strong>in</strong>, “A Study on Frequency B<strong>and</strong> Gap <strong>in</strong> Two-dimensional Phononic Crystals,” Master<br />

Thesis, Institute <strong>of</strong> Applied Mechanics, National Taiwan University, (2001).<br />

[19] Tsung-Tsong Wu, Zi-Gui Huang <strong>and</strong> S. L<strong>in</strong>, “Surface <strong>and</strong> bulk acoustic <strong>waves</strong> <strong>in</strong><br />

two-dimensional phononic crystal consist<strong>in</strong>g <strong>of</strong> materials with general anisotropy,” Phys. Rev.<br />

B, to be published, (2004).


$%&'()*+,-(,./(%*+012)0-&*,3&'42'0-/(<br />

doi:10.4028/0-87849-948-2<br />

$('46+*+,/A,34'+0-),B'&*+,-(,$42C-(2CDE'1-2C,F/%-2C,.-/G'0*,'(%,H2'10ID3J/K6<br />

LM/(/(-),F012)021*+<br />

doi:10.4028/0-87849-948-2.1119<br />

5*6,3(7-(**1-(7,8'0*1-'4+,9/4+:,";#

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!