23.08.2013 Views

weak inversion in analog and digital circuits - Lund Institute of ...

weak inversion in analog and digital circuits - Lund Institute of ...

weak inversion in analog and digital circuits - Lund Institute of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Weak <strong><strong>in</strong>version</strong><br />

• Behaviour <strong>and</strong> model <strong>of</strong> MOS transistors <strong>in</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong> [1,2,3].<br />

• Examples <strong>of</strong> <strong>analog</strong> <strong>circuits</strong>.<br />

CCCD Workshop 2003, <strong>Lund</strong>, Oct. 2-3<br />

WEAK INVERSION IN<br />

ANALOG AND DIGITAL CIRCUITS<br />

Eric A.Vittoz<br />

CSEM, Centre Suisse d'Electronique et de Microtechnique SA<br />

Jaquet-Droz 1, CH 2007 Neuchâtel, Switzerl<strong>and</strong><br />

eric.vittoz@csem.ch<br />

• Exploratory analysis <strong>of</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong> logic [4,5].<br />

CSEM, E. Vittoz, 2003<br />

page 1


Weak <strong><strong>in</strong>version</strong><br />

W,L width, length <strong>of</strong> the channel<br />

Cox gate capacitance per unit area<br />

VS UT = kT/q ( = 26 mV at 300°K)<br />

V = local non-equilibrium voltage <strong>in</strong> channel : channel voltage<br />

(quasi-Fermi potential <strong>of</strong> electrons)<br />

• at source end <strong>of</strong> channel: V = VS • at dra<strong>in</strong> end <strong>of</strong> channel: V = VD Qi local mobile <strong><strong>in</strong>version</strong> charge <strong>in</strong> channel (electrons)<br />

gate threshold voltage for V=0.<br />

V T0<br />

B<br />

V S<br />

p<br />

MOS TRANSISTOR : DEFINITIONS<br />

n-channel<br />

V D<br />

D<br />

VG G<br />

S<br />

n+ n+<br />

local substrate<br />

I D<br />

CSEM, E. Vittoz, 2003<br />

V S<br />

symbols:<br />

B<br />

G<br />

page 2<br />

S D<br />

p-channel<br />

n-channel<br />

S D<br />

B<br />

V G<br />

V G<br />

V D<br />

I D<br />

I D<br />

V D


Weak <strong><strong>in</strong>version</strong><br />

• Given by:<br />

V G -V T0<br />

0<br />

- Q i /C ox<br />

slope -n<br />

I D<br />

β<br />

V S V D<br />

V D<br />

∫ ID = β - dV<br />

V S<br />

Q i<br />

C ox<br />

V G const.<br />

DRAIN CURRENT<br />

V<br />

CSEM, E. Vittoz, 2003<br />

with β = µC ox W<br />

L<br />

strong <strong><strong>in</strong>version</strong>, slope factor n =1.2 to 1.6<br />

-Qi Cox <strong>weak</strong> <strong><strong>in</strong>version</strong>: = 2nU T exp<br />

P<strong>in</strong>ch-<strong>of</strong>f voltage V P ≅ V G - V T0<br />

n<br />

V P -V<br />

U T<br />

page 3<br />

(µ=mobility)<br />

exponential<br />

• Weak <strong><strong>in</strong>version</strong> already possible for V S =0 if VG


Weak <strong><strong>in</strong>version</strong><br />

-Q i /C ox<br />

0<br />

slope -n<br />

V G -V T0 >0<br />

V P >0<br />

DRAIN CURRENT IN WEAK INVERSION<br />

(vertical axis magnified)<br />

V S<br />

I D /β<br />

V D<br />

V<br />

CSEM, E. Vittoz, 2003<br />

slope -n<br />

VP


Weak <strong><strong>in</strong>version</strong><br />

-Q i β/C ox<br />

Dra<strong>in</strong> current ID =<br />

I D<br />

V S V D<br />

FORWARD AND REVERSE CURRENTS<br />

V<br />

-Q i β/C ox<br />

V S<br />

forward<br />

current I F<br />

I F<br />

CSEM, E. Vittoz, 2003<br />

V<br />

-Q i β/C ox<br />

reverse<br />

current I R<br />

I R<br />

V D<br />

I D (V G ,V S ,V D ) = F(V G ,V S ) - F(V G ,V D ) = I F - I R<br />

page 5<br />

• Dra<strong>in</strong> current is the superposition <strong>of</strong> <strong>in</strong>dependent <strong>and</strong> symmetrical<br />

effects <strong>of</strong> source <strong>and</strong> dra<strong>in</strong> voltages.<br />

• basic property <strong>of</strong> long-channel transistors, <strong>in</strong>dependent <strong>of</strong> current [6].<br />

• Transistor saturated if I R «I F , then I D =I F .<br />

V


Weak <strong><strong>in</strong>version</strong><br />

DRAIN CURRENTEXPRESSION IN WEAK INVERSION<br />

VP-V • -Qi /Cox = 2nUT e UT « 2nUT VG-VT0 VS VD<br />

- -<br />

ID = IS e nUT (e UT - e UT )<br />

IF IR CSEM, E. Vittoz, 2003<br />

VP -VS,D thus: IF,R = IS e UT • Def<strong>in</strong>ition: specific current <strong>of</strong> the transistor: IS = 2nβUT 2<br />

• Introduc<strong>in</strong>g V P ≅ (V G -V T0 )/n <strong>and</strong> I D =I F - I R , this yields:<br />

for I F <strong>and</strong> I R « I S<br />

page 6<br />

(10 to 300 nA for W=L)


I D /I F<br />

1<br />

Weak <strong><strong>in</strong>version</strong><br />

I D<br />

~ 1-e<br />

FORWARD CHARACTERISTICS IN WEAK INVERSION<br />

VG V V<br />

- S - D<br />

I nUT UT U<br />

D = ID0 e ( e - e T )<br />

• output<br />

VG ,VS = const.<br />

5%<br />

VD-VS -<br />

UT saturation<br />

VD-VS U<br />

0<br />

T<br />

0 1 2 3 4 5 6<br />

• transfer from gate<br />

VS, VD const.<br />

log ID<br />

ID0<br />

slope 1/n<br />

I D ~ e<br />

VG<br />

nUT<br />

CSEM, E. Vittoz, 2003<br />

V G<br />

U T<br />

where I D0 =I S e - V T0<br />

nU T<br />

slope 1<br />

I D ~ e<br />

-<br />

V S<br />

UT<br />

page 7<br />

• transfer from source<br />

VG , VD const.<br />

log ID<br />

ID0<br />

m<strong>in</strong>imum V DSsat exponential, slope 1/n exponential, slope 1<br />

-<br />

V S<br />

UT


Weak <strong><strong>in</strong>version</strong><br />

CONTINUOUS MODELS WEAK-STRONG INVERSION<br />

a. From charge analysis [7,8]:<br />

V P -V S,D<br />

U T<br />

b. Interpolation formula:<br />

IF , R<br />

= 1 + 4<br />

I<br />

-1<br />

S<br />

I F , R<br />

I S<br />

CSEM, E. Vittoz, 2003<br />

+ln<br />

IF , R<br />

1 + 4<br />

I<br />

-1<br />

S<br />

cannot be <strong>in</strong>verted to express I F , R (V P ,V S,D )<br />

VP -VS,D = ln<br />

2UT 2 (1 + e )<br />

Both converge asymptotically towards:<br />

I F , R<br />

I S<br />

I F , R<br />

I S<br />

VP -VS,D = e U for VP -VS,D «UT (<strong>weak</strong> <strong><strong>in</strong>version</strong>)<br />

T<br />

⎛<br />

= ⎝<br />

V P -V S,D<br />

2U T<br />

⎛<br />

⎝<br />

2<br />

for V P -V S,D »U T (strong <strong><strong>in</strong>version</strong>)<br />

2<br />

page 8<br />

• Only 3 parameters: V T0 , n (<strong>in</strong>side V P ) <strong>and</strong> I S (or β) to model the current<br />

from <strong>weak</strong> to strong <strong><strong>in</strong>version</strong>.<br />

[9]


Weak <strong><strong>in</strong>version</strong><br />

I F , R<br />

I S<br />

CONTINUOUS MODELS WEAK-STRONG INVERSION<br />

current<br />

102<br />

1<br />

10-2<br />

<strong>weak</strong><br />

b<br />

strong<br />

a<br />

10-4<br />

-20 20 40 60<br />

0<br />

• Def<strong>in</strong>ition: Inversion coefficient: IC = the larger <strong>of</strong> I F/I S <strong>and</strong> I R /I S<br />

<strong>weak</strong> <strong><strong>in</strong>version</strong>: IC « 1<br />

moderate <strong><strong>in</strong>version</strong>: IC ≅ 1<br />

⎛ VDSsat ⎞ 2<br />

strong <strong><strong>in</strong>version</strong>: IC = ⎝ 2U ⎠ » 1<br />

T<br />

CSEM, E. Vittoz, 2003<br />

voltage<br />

with:<br />

V P -V S,D<br />

U T<br />

page 9<br />

V P =(V G -V T0 )/n<br />

I D = I F - I R


Weak <strong><strong>in</strong>version</strong><br />

TRANCONDUCTANCE FROM WEAK TO STRONG INVERSION<br />

• Transonductance g m from gate <strong>in</strong> saturation<br />

nU T<br />

g m<br />

I D<br />

<strong>weak</strong> <strong><strong>in</strong>version</strong> asymptote: g m =I D /(nU T )<br />

CSEM, E. Vittoz, 2003<br />

page 10<br />

model a<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

model b<br />

strong <strong>in</strong>v.asymptote: gm = 2βID /n<br />

0.2<br />

0<br />

0.01<br />

<strong>weak</strong><br />

0.1<br />

moderate<br />

1<br />

strong <strong>in</strong>v.<br />

10 100<br />

IC=ID /IS • g m /I D decreases with <strong>in</strong>creas<strong>in</strong>g <strong><strong>in</strong>version</strong> coefficient IC.<br />

• g m /I D is maximum <strong>in</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong>.


Weak <strong><strong>in</strong>version</strong><br />

SUMMARY OF FEATURES OF WEAK INVERSION<br />

• Large-signal DC model:<br />

+ exponential :<br />

+ m<strong>in</strong>. V DSsat<br />

+ m<strong>in</strong>. gate voltage<br />

+ m<strong>in</strong>. gate capacitance<br />

+ max. g m /I D :<br />

+ g m (I D ) l<strong>in</strong>ear<br />

– + gm <strong>in</strong>dependent <strong>of</strong> β<br />

– Low speed: fT≅<br />

⇒<br />

⇒<br />

µU T<br />

2πL 2<br />

VG-VT0 VS VD<br />

- -<br />

ID = IS e nUT ( e UT - e UT )<br />

+ max. I on /I <strong>of</strong>f for given voltage sw<strong>in</strong>g<br />

CSEM, E. Vittoz, 2003<br />

page 11<br />

+ transl<strong>in</strong>ear <strong>circuits</strong> <strong>and</strong> log doma<strong>in</strong> filters<br />

– <strong>in</strong>termodulation <strong>in</strong> RF front ends<br />

+ max. <strong>in</strong>tr<strong>in</strong>sic voltage ga<strong>in</strong><br />

+ m<strong>in</strong>. <strong>in</strong>put noise density for given I D<br />

+ max. b<strong>and</strong>width for given kT/C <strong>and</strong> I D<br />

+ m<strong>in</strong>. <strong>in</strong>put <strong>of</strong>fset voltage<br />

– max. output noise current for given I D<br />

– max. current mismatch :<br />

dom<strong>in</strong>ated by V T -mismatch:<br />

∆I D<br />

I D<br />

=<br />

∆V T0<br />

nU T


Weak <strong><strong>in</strong>version</strong><br />

EVOLUTION OF IC WITH SCALED-DOWN PROCESSES<br />

• Scal<strong>in</strong>g-down <strong>of</strong> process:<br />

• dimension scal<strong>in</strong>g by factor k<br />

• all voltages decreased by k, except U T :<br />

- <strong>analog</strong> <strong>circuits</strong>: V DSsat must be decreased by k, thus<br />

V DSsat<br />

2U T<br />

- <strong>digital</strong> <strong>circuits</strong>: V B decreased by k, thus<br />

VB -V<br />

IC<br />

⎛ T0<br />

on =<br />

⎝<br />

decreased by k<br />

2nUT • Weak <strong><strong>in</strong>version</strong> approached for constant temperature T.<br />

2<br />

µVDSsat • Transition frequency: fT = <strong>in</strong>creased by k<br />

2πL2 - <strong>weak</strong> <strong><strong>in</strong>version</strong> with L=100nm : fT >4 GHz<br />

⎛<br />

⎝<br />

CSEM, E. Vittoz, 2003<br />

⎛<br />

⎝ IC =<br />

2<br />

⎛<br />

⎝<br />

2<br />

decreased by k 2<br />

page 12


V D2<br />

Weak <strong><strong>in</strong>version</strong><br />

V DS2<br />

LOW-VOLTAGE CASCODE IN WEAK INVERSION<br />

T 2 T 3<br />

T 1<br />

I<br />

V DS1<br />

I<br />

V R<br />

T 4<br />

T 5<br />

• Model <strong>in</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong> yields:<br />

V DSsat = 4 to 6U T per transistor<br />

substrate<br />

for P = M = 8 : V DS1=5U T,<br />

V DS1 = U T ln [ P (1+ 2M)]<br />

thus V D2 = 10U T sufficient to saturate T 1 <strong>and</strong> T 2<br />

CSEM, E. Vittoz, 2003<br />

β 2<br />

β 3<br />

β4 β5 = P <strong>and</strong> =M<br />

[2]<br />

page 13<br />

All transistors <strong>in</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong> with:


Weak <strong><strong>in</strong>version</strong><br />

EXTRACTION OF U T AND CURRENT REFERENCE<br />

V+<br />

T6<br />

source<br />

s<strong>in</strong>k<br />

V-<br />

T 5<br />

I 1<br />

T3<br />

T 1<br />

T4≡T3<br />

I2 T2≡KT1<br />

R V R<br />

• For T 1 <strong>and</strong> T 2 <strong>in</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong>:<br />

CSEM, E. Vittoz, 2003<br />

I 2<br />

slope K<br />

Q (unstable)<br />

V R = RI 2 =U T lnK<br />

• Self-start<strong>in</strong>g if leakage <strong>of</strong> T 2 larger than that <strong>of</strong> T 1 .<br />

mirror T 1 -T 2<br />

mirror T 3 -T 4<br />

[1]<br />

P(stable)<br />

I 1<br />

page 14


Weak <strong><strong>in</strong>version</strong><br />

CURRENT GENERATION WITHOUT RESISTOR<br />

• Resistor replaced by transistor T 8 <strong>in</strong> conduction [10]:<br />

• T6 =T3 =T4 =T7 <strong>and</strong> T5 = T1<br />

• T8 <strong>and</strong> T9 <strong>in</strong> strong <strong><strong>in</strong>version</strong> with<br />

β 8 =Aβ 9 (A»1 to have T 8 <strong>in</strong> conduction)<br />

• T2 <strong>and</strong> T1 <strong>in</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong> with<br />

β 2 = Kβ 1<br />

yields:<br />

2<br />

I = 2nβ8UT.Aln2K = IS8.Aln2K<br />

CSEM, E. Vittoz, 2003<br />

I<br />

I<br />

T6<br />

T5<br />

T3<br />

T1<br />

V-<br />

V R<br />

T4<br />

I<br />

T2<br />

page 15<br />

• Reference current I proportional to specific current IS8 • Useful to bias transistors at <strong><strong>in</strong>version</strong> coef.IC <strong>in</strong>dependently <strong>of</strong> process.<br />

• If mobility ~ T -2 , then compensation by U T : I ~ I S <strong>in</strong>dependent <strong>of</strong> T<br />

2<br />

V+<br />

T8<br />

I<br />

T7<br />

T9


Weak <strong><strong>in</strong>version</strong><br />

MOS TRANSISTOR OPERATED AS A PSEUDO-RESISTOR<br />

[11,12,13,6]<br />

Consequence <strong>of</strong> basic property I D = F(V S ) - F(V D ):<br />

CSEM, E. Vittoz, 2003<br />

page 16<br />

• Networks <strong>of</strong> transistors with same gate voltage are<br />

• l<strong>in</strong>ear with respect to currents<br />

• thus equiv. for currents to a resistive prototype, with Gi =1/Ri ~ISi • ground <strong>in</strong> res. prototype correspond to saturated transistors.<br />

• example <strong>of</strong> application: current-mode l<strong>in</strong>ear attenuator (e.g. R-2R).<br />

• In <strong>weak</strong> <strong><strong>in</strong>version</strong>:<br />

• l<strong>in</strong>earity <strong>of</strong> currents even for different gate voltages<br />

with G i = 1/R i ~ I Si exp V Gi<br />

nU T


GN<br />

IN<br />

Weak <strong><strong>in</strong>version</strong><br />

Gk<br />

simple example <strong>of</strong> pseudo-R network <strong>in</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong>:<br />

ground 0<br />

Ik<br />

I1 G1<br />

CALCULATION OF HARMONIC MEAN<br />

GN<br />

Gk<br />

I<br />

G<br />

GN*<br />

IN<br />

CSEM, E. Vittoz, 2003<br />

0*<br />

Gk*<br />

Ik<br />

0*<br />

I1<br />

0*<br />

I<br />

G N *<br />

Gk*<br />

G1<br />

V-<br />

G1*<br />

0*<br />

G1*<br />

V-<br />

resistive prototype pseudo-resistive version<br />

(0*=pseudo-ground)<br />

1<br />

• Series comb<strong>in</strong>ation <strong>of</strong> Gi : G =<br />

Σ1/G harmonic mean<br />

i<br />

• Same voltage across G <strong>and</strong> Gi , thus I =<br />

1 Ihm =<br />

Σ1/I N<br />

i<br />

• Can be used as a fuzzy AND gate.<br />

[14,13]<br />

page 17


Weak <strong><strong>in</strong>version</strong><br />

With bipolar transistors:<br />

+<br />

+<br />

I i<br />

V BEi<br />

[15]<br />

+ <strong>and</strong> - directions <strong>of</strong> BEi (any sequence)<br />

∑V BEi = ∑V BEi<br />

with: VBEi = UT ln I +<br />

i<br />

Isi ∏I i ∏I si<br />

+<br />

=<br />

+<br />

+<br />

+<br />

∏I i ∏I si<br />

+<br />

= λ<br />

TRANSLINEAR CIRCUITS<br />

With MOS transistors <strong>in</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong>:<br />

∑(VGi - VSi ) = ∑(VGi - VSi )<br />

+<br />

V Gi<br />

n<br />

with:<br />

-V Si = U T ln I i<br />

I D0i<br />

CSEM, E. Vittoz, 2003<br />

V Gi<br />

I i -1<br />

I i<br />

V Si<br />

common substrate<br />

• Otherwise: separate wells connected to<br />

sources to impose V Si = 0<br />

• Precision degraded by VT0 mismatch<br />

page 18<br />

[16,17]<br />

• If + <strong>and</strong> - are alternated then: pairs <strong>of</strong> equal<br />

VGi both sides <strong>of</strong> equation:<br />

V Gi ⇒ V Gi /n for each pair,<br />

<strong>and</strong> then


Weak <strong><strong>in</strong>version</strong><br />

BASIC CONSIDERATIONS FOR WEAK INVERSION LOGIC<br />

• Dynamic power consumption: P dyn = f C ∆V V B<br />

• Weak <strong><strong>in</strong>version</strong> model can be rewritten as<br />

VGS nUT ID = I0 e 1 - e- ⎛<br />

⎝<br />

V DS<br />

nU T<br />

• exponential <strong>in</strong> V GS , with maximum g m /I D , thus:<br />

- m<strong>in</strong>imum sw<strong>in</strong>g ∆V for given I on / <strong>of</strong>f , hence<br />

- m<strong>in</strong>imum P dyn for given I <strong>of</strong>f<br />

CSEM, E. Vittoz, 2003<br />

page 19<br />

supply voltage<br />

logic sw<strong>in</strong>g<br />

- with: I0 = IS e- VT0 +(n-1)VS nU adjustable by VS .<br />

T<br />

• Assumptions on process:<br />

1. Threshold VT0 close to 0 (VS cannot be too negative).<br />

2. Triple well (true tw<strong>in</strong> well): separate local p <strong>and</strong> n substrates<br />

- adjustment <strong>of</strong> I0 by VS for n- <strong>and</strong> p-channel.<br />

⎛<br />

⎝<br />

[5]


Weak <strong><strong>in</strong>version</strong><br />

STABLE STATES OF CMOS FLIP-FLOP<br />

• Simplify<strong>in</strong>g assumptions: n n =n p =n, I 0n =I 0p =I 0<br />

• Normalized voltages v k =V k /U T<br />

high <strong>and</strong> low logic states<br />

8<br />

6<br />

4<br />

2<br />

v B<br />

n=1.6<br />

sw<strong>in</strong>g<br />

stable<br />

stable<br />

0 2 4 6<br />

v H (high)<br />

metastable<br />

v L (low)<br />

normalized supply voltage v B<br />

8<br />

CSEM, E. Vittoz, 2003<br />

V i<br />

<strong>in</strong>verter<br />

I p<br />

I n<br />

C<br />

V o<br />

page 20<br />

V B<br />

• bistable for V B > 1.91U T<br />

• 95% sw<strong>in</strong>g for V B = 4U T<br />

V+<br />

V


Weak <strong><strong>in</strong>version</strong><br />

STATIC CURRENT AT LOGIC STATES<br />

CSEM, E. Vittoz, 2003<br />

page 21<br />

• S<strong>in</strong>ce V L =V B -V H >0, static current I stat at each state is larger than I 0<br />

I stat<br />

I 0<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

n = 1.6<br />

0.8<br />

1 2 4 6 8<br />

normalized supply voltage vB • I stat


Weak <strong><strong>in</strong>version</strong><br />

• Cha<strong>in</strong> <strong>of</strong> <strong>in</strong>verters<br />

Vo2 Vo4 Vo6 Vo8 V L<br />

V H<br />

3<br />

von =v<strong>in</strong>+1 2<br />

STANDARD TRANSITIONS IN HOMOGENEOUS SYSTEM<br />

4<br />

1<br />

v o1<br />

v o2<br />

v o3<br />

v o4<br />

v o5<br />

v o6<br />

0<br />

0 1 2 3<br />

CSEM, E. Vittoz, 2003<br />

v o7<br />

2T d /T 0<br />

v o8<br />

2T d<br />

n = 1.6<br />

v B = 4<br />

normalized time t /T 0<br />

• Characteristic time : T 0 =CU T /I 0<br />

• Transitions become st<strong>and</strong>ard after a few stages<br />

• Normalized delay time T d /T 0 only depends on V B <strong>and</strong> n.<br />

v H<br />

v L<br />

page 22


Weak <strong><strong>in</strong>version</strong><br />

1<br />

Td T0 0.1<br />

DELAY TIME FOR STANDARD TRANSITIONS<br />

n = 1.6<br />

0.01<br />

3 4 5 6 7 8 9 10 11<br />

normalized supply voltage vB CSEM, E. Vittoz, 2003<br />

• Approximation:<br />

CV<br />

Td ≅ B ≅<br />

Ion page 23<br />

CV B<br />

I 0 e V B /nU T<br />

or I 0 ≅ e -V B /nU T<br />

CV B<br />

T d<br />

(for calcul. <strong>of</strong> P stat )<br />

• T d decreases approximately exponentially with <strong>in</strong>creas<strong>in</strong>g V B .


Weak <strong><strong>in</strong>version</strong><br />

10 -2<br />

Q sc<br />

Q C<br />

PROPORTION OF SHORT-CIRCUIT CHARGE<br />

FOR STANDARD TRANSITIONS<br />

0<br />

3 4 5 6 7 8 9 10<br />

normalized supply voltage vB CSEM, E. Vittoz, 2003<br />

n = 1.6<br />

page 24<br />

• Short-circuit charge Q sc < 1.4% capacitor charge Q C : negligible, thus:<br />

• dynamic power P dyn ≅ fQ C V B ≅ fCV B<br />

• with static power P stat = I stat V B ≅ I 0 V B<br />

2


Weak <strong><strong>in</strong>version</strong><br />

PT d<br />

CU T 2<br />

normalized<br />

power-delay product<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

POWER-DELAY PRODUCT<br />

• Def<strong>in</strong>ition: duty factor α = 2f Td ≤ 1<br />

• proportion <strong>of</strong> time dur<strong>in</strong>g which the gate is <strong>in</strong> transition.<br />

• Then, total power P = P dyn + P stat ⇒ P = v B (α/2 + e -v B /n)<br />

α=1 0.5<br />

0.2<br />

2 4 6 8 10<br />

normalized supply voltage vB 0.05<br />

0.03<br />

0.01<br />

0.003<br />

12<br />

CSEM, E. Vittoz, 2003<br />

2<br />

CUT Td n =1.6<br />

• P dyn dom<strong>in</strong>ates for large α ⇒ m<strong>in</strong>. V B for m<strong>in</strong>. PT d<br />

0.1<br />

• P stat dom<strong>in</strong>ates for small α ⇒ <strong>in</strong>crease V B to <strong>in</strong>crease I on /I <strong>of</strong>f<br />

2<br />

page 25


Weak <strong><strong>in</strong>version</strong><br />

P/f<br />

C(nU T ) 2<br />

normalized total power<br />

1000<br />

100<br />

10<br />

POWER/FREQUENCY RATIO<br />

• By re-us<strong>in</strong>g α =2f Td : P/f = C(nUT ) 2 (vB /n) 2 (1+ e-vB /n α<br />

)<br />

2<br />

1<br />

e -3<br />

P dyn<br />

10 -2<br />

e -3<br />

10 -3<br />

CSEM, E. Vittoz, 2003<br />

P stat<br />

P dyn for V B =25nU T ≅1V<br />

10 -2<br />

10 -4<br />

parameter α<br />

10 -3<br />

10 -4<br />

page 26<br />

1<br />

1<br />

2 4 6 8 10 12 14<br />

normalized supply/slope factor vB /n<br />

• VBopt <strong>and</strong> Pm<strong>in</strong> <strong>in</strong>crease for decreas<strong>in</strong>g α<br />

• At Pm<strong>in</strong> : Pdyn »Pstat • Increas<strong>in</strong>g I0 does not allow to reduce VB significantly for Td const.<br />

• For α > 5%, power reduction by >20 compared to Pdyn at 1V.


Weak <strong><strong>in</strong>version</strong><br />

MAXIMUM SPEED<br />

CSEM, E. Vittoz, 2003<br />

page 27<br />

CV<br />

• S<strong>in</strong>ce Td ≅ B <strong>and</strong> Ionmax ≅ ICon IS (<strong>in</strong>v. coeff * spec. current), thus:<br />

Ion • Limit <strong>of</strong> <strong>weak</strong> <strong><strong>in</strong>version</strong>: IC on ≅1, thus<br />

T dm<strong>in</strong> ≅<br />

V B<br />

IC on<br />

C<br />

I S<br />

process<br />

T dm<strong>in</strong>(<strong>weak</strong>) ≅ V B C<br />

I S<br />

• Higher speed can only be obta<strong>in</strong>ed by enter<strong>in</strong>g moderate or strong <strong>in</strong>v.


Weak <strong><strong>in</strong>version</strong><br />

EFFECT OF ENTERING MODERATE AND STRONG INVERSION<br />

(us<strong>in</strong>g cont<strong>in</strong>uous model <strong>of</strong> I D )<br />

• More voltage sw<strong>in</strong>g needed<br />

to obta<strong>in</strong> I on /I <strong>of</strong>f<br />

• from cont<strong>in</strong>uous current model:<br />

• Degeneration <strong>of</strong> logic states:<br />

• reduction <strong>of</strong> logic sw<strong>in</strong>g<br />

• large <strong>in</strong>crease <strong>of</strong> static current I stat<br />

• loss <strong>of</strong> bistability<br />

• more supply voltage needed.<br />

CSEM, E. Vittoz, 2003<br />

4<br />

3<br />

2<br />

1<br />

∆V GS<br />

nU T<br />

V GS sw<strong>in</strong>g<br />

60<br />

40<br />

20<br />

param.<br />

I on /I <strong>of</strong>f<br />

10 5<br />

10 3<br />

page 28<br />

10<br />

102 101 10-1 1 103 0<br />

"on" <strong>in</strong>v. coeff. IC on<br />

v H<br />

logic<br />

sw<strong>in</strong>g<br />

v L<br />

vB =4<br />

n=1.6<br />

I stat<br />

I S<br />

0<br />

0 1 2 3 4 ICon


Weak <strong><strong>in</strong>version</strong><br />

NUMERICAL RESULTS<br />

• Simple <strong>in</strong>verter replaced by 3-<strong>in</strong>put NAND-gate:<br />

• approx. equivalent to <strong>in</strong>verter with<br />

L = 3-time that <strong>of</strong> n-ch transistor<br />

C = 6-time that <strong>of</strong> m<strong>in</strong>. <strong>in</strong>verter<br />

(<strong>in</strong>cludes C<strong>in</strong>terconnect =C/2).<br />

CSEM, E. Vittoz, 2003<br />

C<br />

page 29<br />

parameter process A process B unit<br />

m<strong>in</strong>. channel length<br />

equiv. spec. current<br />

equiv. load capac.<br />

Lm<strong>in</strong> IS C<br />

500<br />

200<br />

20<br />

180<br />

400<br />

4<br />

nm<br />

nA<br />

fF<br />

specific energy C(nUT ) 2 P/f for α=1 VB =4UT (P/f) m<strong>in</strong> for α=0.01 <strong>and</strong> VBopt =6nUT Pdyn /f at VB =1V<br />

fmax1 for α=1 <strong>and</strong> VB =4UT fmax2 for α=0.01 <strong>and</strong> VB =VBopt Pm<strong>in</strong> at fmax2 28<br />

228<br />

1.46<br />

20<br />

50<br />

0.22<br />

32.5<br />

4.2<br />

44<br />

0.22<br />

4<br />

500<br />

2.56<br />

56.3<br />

aJ<br />

aJ<br />

fJ<br />

fJ<br />

MHz<br />

MHz<br />

nW<br />

V B


Weak <strong><strong>in</strong>version</strong><br />

PRACTICAL CONSIDERATIONS AND LIMITATIONS<br />

CSEM, E. Vittoz, 2003<br />

page 30<br />

• Low-voltage power source<br />

• should be proportional to UT (PTAT)<br />

• need for power-efficient adapter from higher supply voltage.<br />

• Asymmetry<br />

• p/n asymmetry may result <strong>in</strong> speed reduction.<br />

• Mismatch<br />

• dom<strong>in</strong>ated by threshold mismatch δVT • may result <strong>in</strong> speed reduction proportional to δVT /VB .<br />

• Short channel effects: should not drastically degrade the results.<br />

• Gate leakage current : should be alleviated by very low VB .<br />

• Adjustment <strong>of</strong> I0 orTd to required value<br />

• control by VS with charge pump <strong>in</strong> loop [18]; n>1 needed (no SOI!)<br />

• corresponds to threshold adjustment unavoidable at very low V B .<br />

• System architectures <strong>and</strong> applications.


Weak <strong><strong>in</strong>version</strong><br />

SYSTEM ARCHITECTURE AND APPLICATIONS<br />

CSEM, E. Vittoz, 2003<br />

page 31<br />

• Duty factor α must be maximized to reach m<strong>in</strong>imum P/f,<br />

(where f is the average transition frequency), thus<br />

• avoid idl<strong>in</strong>g gates (contrary to traditional CMOS culture)<br />

• new architectures needed:<br />

- maximally active gates <strong>of</strong> m<strong>in</strong>imum speed (max. delay time Td )<br />

- particular problem with RAMs (short Td but sparse activity)<br />

- how? new constra<strong>in</strong>ts should result <strong>in</strong> novel solutions.<br />

• partition the system <strong>in</strong> blocks <strong>of</strong> comparable α <strong>and</strong> Td - optimum VB <strong>and</strong> I0 for each block (separate I0 control).<br />

• Maximum frequency much lower than for strong <strong><strong>in</strong>version</strong>:<br />

• best applicable when no high local speed is required<br />

• m-parallelize: mTd but same power if same α (m units with P/m)<br />

- <strong>digital</strong> image process<strong>in</strong>g ?


Weak <strong><strong>in</strong>version</strong><br />

CONCLUSION<br />

• Weak <strong><strong>in</strong>version</strong> permits very low supply voltage V B<br />

• approached with scaled-down V B : IC ~ V B<br />

• limit for scaled-down V B .<br />

• Analog: • V B >10U T = 250 mV<br />

• provides maximum g m /I D<br />

• bipolar-like behaviour can be exploited <strong>in</strong> new schemes.<br />

• Digital: • V B > 4U T = 100mV<br />

• transistor not a switch but a current modulator (I on /I <strong>of</strong>f )<br />

• new architectural approaches for max. duty factor α.<br />

• ultimum (asymptotic) limit for low power * delay.<br />

CSEM, E. Vittoz, 2003<br />

page 32<br />

• Low speed, but keeps <strong>in</strong>creas<strong>in</strong>g with 1/L 2 <strong>in</strong> scaled down processes.<br />

2


Weak <strong><strong>in</strong>version</strong><br />

REFERENCES<br />

CSEM, E. Vittoz, 2003<br />

page 33<br />

[1] E.Vittoz <strong>and</strong> J.Fellrath, "CMOS <strong>analog</strong> <strong>in</strong>tegrated <strong>circuits</strong> based on <strong>weak</strong> <strong><strong>in</strong>version</strong> operation", IEEE J.Solid-State Circuits, vol.SC-12, pp.224-231, June 1977.<br />

[2] E.Vittoz, "Micropower techniques", <strong>in</strong> Design <strong>of</strong> VLSI Circuits for Telecommunications <strong>and</strong> Signal Process<strong>in</strong>g, J.E.Franca <strong>and</strong> Y.P.Tsividis Editors, Prentice<br />

Hall, 1991<br />

[3]. C.Enz, F.Krummenacher <strong>and</strong> E.Vittoz, "An analytical MOS transistor model valid <strong>in</strong> all regions <strong>of</strong> operation <strong>and</strong> dedicated to low-voltage <strong>and</strong> low-current<br />

applications", Analog Integrated Circuits <strong>and</strong> Signal Process<strong>in</strong>g, Vol.8, pp.83-114, 1995.<br />

[4] R.M Swanson <strong>and</strong> J.D.Me<strong>in</strong>dl,"Ion-implanted complementary MOS transistors <strong>in</strong> low-voltage <strong>circuits</strong>", IEEE J.Solid-State Circuits, vol.SC-7, pp.146-153, April<br />

1972.<br />

[5] E. Vittoz, "Weak <strong><strong>in</strong>version</strong> for ultimate low-power logic", to be published <strong>in</strong> Low-Power Electronic Design, ed. C. Piguet, CRC Press LLC (2003?), Chapter 16.<br />

[6] E. Vittoz, C. Enz <strong>and</strong> F. Krummenacher, "A basic property pf MOS transistors <strong>and</strong> its circuit implications", Workshop on Compact Model<strong>in</strong>g, WCM<br />

MSM.2003, Febr. 23-27, San F.rancisco, pp. 246-249. Slide <strong>of</strong> presentation can be downloaded at www.nanotech2003.com/WCM2003.html#Slides.<br />

[7] M.A. Maher <strong>and</strong> C. Mead, "A physical charge-controlled model for the MOS transistors", Advanced research <strong>in</strong> VLSI, Proc. <strong>of</strong> the 1987 Stanford Conference,<br />

MIT Press, Cambridge MA, 1987.<br />

[8] A. Cunha et al., "An MOS transistor model for <strong>analog</strong> circuit design", IEEE J.Solid-State Circuits, vol.33, pp.1510-1519, Oct. 1998.<br />

[9] H. Oguey <strong>and</strong> S. Cserveny, "MOS modell<strong>in</strong>g at low current density", Summer Course on "Process <strong>and</strong> Device Modell<strong>in</strong>g", ESAT Leuven-Heverlee, Belgium,<br />

June 1983.<br />

[10] H.J.Oguey <strong>and</strong> D.Aebischer. "CMOS current without resistance."IEEE Journal <strong>of</strong> Solid-State Circuits, vol 32, pp.1132-1135 July 1997.<br />

[11] K.Bult <strong>and</strong> G.Geelen, "A <strong>in</strong>herently l<strong>in</strong>ear <strong>and</strong> compact MOST-only current division technique", Dig. ISSCC Tech. Papers, February 1992, pp.198-199.<br />

[12] E.Vittoz <strong>and</strong> X.Arreguit,"L<strong>in</strong>ear networks based on transistors", Electronics Letters, vol.29, pp.297-299, 4th Febr. 1993.<br />

[13] E.Vittoz, ÒPseudo-resistive networks <strong>and</strong> their applications to <strong>analog</strong> collective computationÓ, Proc. MicroNeuroÕ97, Dresden , pp.163-173.<br />

[14] T. DelbrŸck, "Bump circuit for comput<strong>in</strong>g similarity <strong>and</strong> dissimilarity <strong>of</strong> <strong>analog</strong> voltages", Proc. <strong>of</strong> International Jo<strong>in</strong>t Conf. on Neural Networks, vol.1, pp. I -<br />

475-479. 1991.<br />

[15] B. Gilbert, "Transl<strong>in</strong>ear <strong>circuits</strong>: a proposed classification", Electron. Letters, vol.11, p.14, 1975.<br />

[16] A. Andreou <strong>and</strong> K. Boahen, "Neural <strong>in</strong>formation process<strong>in</strong>g II" <strong>in</strong> Analog VLSI Signal <strong>and</strong> Information Process<strong>in</strong>g, M. Ismail <strong>and</strong> T. Fiez, editors, pp.358-409,<br />

McGraw-Hill, 1994.<br />

[17] E.Vittoz, "Analog VLSI implementation <strong>of</strong> neural networks", published <strong>in</strong> the H<strong>and</strong>book <strong>of</strong> Neural Computation, <strong>Institute</strong> <strong>of</strong> Physics Publish<strong>in</strong>g <strong>and</strong> Oxford<br />

University Press, USA, 1996.<br />

[18] V. von Kaenel et al. "Automatic adjustment <strong>of</strong> threshold <strong>and</strong> supply voltage for m<strong>in</strong>imum power consumption <strong>in</strong> CMOS <strong>digital</strong> <strong>circuits</strong>'', Proc. IEEE Symposium<br />

on Low Power Electronics, San Diego, 1994, pp.78-79.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!