23.08.2013 Views

A 10-bit 500-MS/s Folding ADC in 130nm CMOS

A 10-bit 500-MS/s Folding ADC in 130nm CMOS

A 10-bit 500-MS/s Folding ADC in 130nm CMOS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>10</strong>-<strong>bit</strong> <strong>500</strong>-<strong>MS</strong>/s <strong>Fold<strong>in</strong>g</strong><br />

<strong>ADC</strong> <strong>in</strong> <strong>130nm</strong> <strong>CMOS</strong><br />

Cheng Chen<br />

Department of Electroscience, Lund University<br />

Cheng.Chen@es.lth.se<br />

CCCD Workshop 2006


Outl<strong>in</strong>e<br />

Introduction<br />

Proposed <strong>ADC</strong> Architecture<br />

Circuit Design<br />

Simulation Results<br />

Conclusions<br />

CCCD Workshop 2006 2


Specification<br />

Resolution: <strong>10</strong><strong>bit</strong><br />

Conversion rate: <strong>500</strong>MHz<br />

Input bandwidth: >250MHz<br />

Power supply: 1.2V<br />

Power consumption:


Speed vs. Resolution<br />

+<br />

CCCD Workshop 2006 4


Proposed <strong>ADC</strong> Architecture<br />

CCCD Workshop 2006 5


Internal Converter Tim<strong>in</strong>g<br />

CCCD Workshop 2006 6


Distributed S/H & Amplifiers (I)<br />

8 first-stage amplifiers + 2 dummies<br />

CCCD Workshop 2006 7


Distributed S/H & Amplifiers (II)<br />

Simple amplifiers can be<br />

employed<br />

Absolute ga<strong>in</strong> is uncritical<br />

for fold<strong>in</strong>g <strong>ADC</strong><br />

They can operate at<br />

open-loop mode<br />

Bootstrapped switch for<br />

sampl<strong>in</strong>g <strong>in</strong>put signal<br />

CCCD Workshop 2006 8


Distributed S/H & Amplifiers (III)<br />

Fr<strong>in</strong>ge capacitor is used<br />

Between f<strong>in</strong>ger metal wires<br />

Compatible with pure digital process<br />

CCCD Workshop 2006 9


Auto-Zero Calibration<br />

φ0:<br />

φ1, φ2<br />

:<br />

V<strong>in</strong> −Vr<br />

Cs<br />

Cp<br />

Cs<br />

Cs + Cp<br />

Vp<br />

V<strong>in</strong> p os<br />

os A( Vos −Vp)<br />

+ 1<br />

Cs<br />

Cp<br />

( )<br />

V − V + V<br />

<strong>in</strong> r p<br />

Input Referred Offset:<br />

V<br />

Vos<br />

A<br />

A<br />

⎛ Cs ⎞<br />

A⎜Vos −Vp− ( V<strong>in</strong>−Vr) ⎟<br />

⎝ Cs + Cp ⎠<br />

os _ <strong>in</strong><br />

A<br />

V = V<br />

A<br />

C p : <strong>in</strong>put capacitance of amplifier<br />

V<br />

⎛ Cp ⎞ Vos<br />

= ⎜1+ ⎟<br />

⎝ Cs⎠1+ A<br />

CCCD Workshop 2006 <strong>10</strong>


7<strong>bit</strong> <strong>Fold<strong>in</strong>g</strong> <strong>ADC</strong><br />

<strong>Fold<strong>in</strong>g</strong> factor: 4<br />

CCCD Workshop 2006 11


Current Comparator<br />

CLK=1: Reset<br />

Va and Vb are low,<br />

but unequal<br />

Latch keeps the<br />

former results<br />

CLK=0: Compare<br />

M1 and M2 are off<br />

to save power<br />

consumption<br />

CCCD Workshop 2006 12


Layout Plot<br />

Standard s<strong>in</strong>gle-poly<br />

8-metal digital <strong>130nm</strong><br />

<strong>CMOS</strong> technology<br />

Core Area:<br />

0.65mmX0.83mm=0.54mm 2<br />

CCCD Workshop 2006 13


Simulation Results (I)<br />

Spectrum: f<strong>in</strong>=<strong>10</strong>MHz<br />

CCCD Workshop 2006 14


Simulation Results (II)<br />

Dynamic performance at <strong>500</strong><strong>MS</strong>ample/s<br />

CCCD Workshop 2006 15


Performance Comparison<br />

Process (µm)<br />

Supply Voltage (V)<br />

Resolution (<strong>bit</strong>)<br />

Sampl<strong>in</strong>g Frequency (MHz)<br />

SNDR (f<strong>in</strong>=<strong>10</strong>MHz)<br />

Power Consumption (mW)<br />

Chip Area (mm 2 )<br />

This work<br />

0.13<br />

1.2<br />

<strong>10</strong><br />

<strong>500</strong><br />

56.9 dB<br />

124<br />

0.54<br />

CICC2002[1]<br />

0.18<br />

160<br />

56.5 dB<br />

190<br />

1.02<br />

0.13<br />

220<br />

54.3 dB<br />

135<br />

CCCD Workshop 2006 16<br />

1.8<br />

<strong>10</strong><br />

ISSCC2004[2]<br />

[1] M. Clara, et al, “A 1.8V Fully Embedded <strong>10</strong>b 160<strong>MS</strong>/s Two-Step <strong>ADC</strong> <strong>in</strong> 0.18µm<br />

<strong>CMOS</strong>,” <strong>in</strong> Proc. CICC, pp. 437-440, May 2002.<br />

[2] B. Hernes, et al, “A 1.2V 220<strong>MS</strong>/s <strong>10</strong>b Pipel<strong>in</strong>e <strong>ADC</strong> Implemented <strong>in</strong> 0.13µm Digital<br />

<strong>CMOS</strong>,” <strong>in</strong> ISSCC Dig. Tech. Papers, pp. 256-526, Feb. 2004.<br />

1.2<br />

<strong>10</strong><br />

1.3


Conclusions<br />

<strong>10</strong>-<strong>bit</strong> <strong>500</strong>-<strong>MS</strong>/s <strong>ADC</strong> realized<br />

<strong>Fold<strong>in</strong>g</strong> + subrang<strong>in</strong>g architecture<br />

Simple amplifiers work at open-loop mode<br />

to achieve a high speed<br />

Auto-zero offset calibration to improve<br />

accuracy<br />

Standard digital <strong>CMOS</strong> process<br />

CCCD Workshop 2006 17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!