23.08.2013 Views

A Reconfigurable Pipelined ADC in 0.18?m CMOS

A Reconfigurable Pipelined ADC in 0.18?m CMOS

A Reconfigurable Pipelined ADC in 0.18?m CMOS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A reconfigurable<br />

pipel<strong>in</strong>ed <strong>ADC</strong> <strong>in</strong><br />

<strong>0.18</strong> μm <strong>CMOS</strong><br />

Mart<strong>in</strong> Anderson, Karl Norl<strong>in</strong>g,<br />

Andreas Dreyfert, Jiren Yuan<br />

CCCD workshop 2005


Outl<strong>in</strong>e of Presentation<br />

• Introduction<br />

• Prior work and contribution<br />

• Sampl<strong>in</strong>g rate reconfiguration<br />

• Resolution reconfiguration<br />

• Implementation overview<br />

• Performance summary<br />

• Conclusions


Multistandard mobile term<strong>in</strong>als<br />

• WLANs, W-CDMA, GSM, Bluetooth ...<br />

• Vary<strong>in</strong>g BW requirement<br />

• Vary<strong>in</strong>g DR requirement<br />

• Higher data rates leads to wide<br />

bandwidth baseband signals


Prior work<br />

• GSM / DECT / UMTS reconfigurable deltasigma<br />

modulators [1 (1997), 2 (2001), 3<br />

(1998)]<br />

• Pipel<strong>in</strong>e / Delta-Sigma modulator<br />

comb<strong>in</strong>ation [4 (2001)]<br />

• Time <strong>in</strong>terleaved reconfigurable pipel<strong>in</strong>ed<br />

<strong>ADC</strong>s [5 (2004)]


This work<br />

• Measurement verification of an <strong>ADC</strong><br />

comb<strong>in</strong><strong>in</strong>g cyclic and pipel<strong>in</strong>ed<br />

techniques to achieve flexibility at a very<br />

low cost<br />

• No changes of bias currents => robust<br />

performance<br />

• No clock rate changes => constant settl<strong>in</strong>g<br />

time requirement for amplifiers<br />

• Sampl<strong>in</strong>g rate and resolution can be<br />

designed orthogonally (with<strong>in</strong> limits)


<strong>Pipel<strong>in</strong>ed</strong> A/D conversion<br />

s k-1<br />

s 0<br />

m-bit<br />

<strong>ADC</strong><br />

Stage<br />

1<br />

Output Register<br />

m bits m bits m bits<br />

s 1<br />

S/H Σ G<br />

m-bit<br />

DAC<br />

m bits<br />

Odd number stages<br />

Even number stages<br />

Stage<br />

k<br />

A/D & S/H<br />

s k<br />

s k<br />

Stage<br />

p<br />

00 01 10 11<br />

D/A & G A/D & S/H<br />

D/A & G A/D & S/H D/A & G<br />

D out<br />

s k-1


s0 sk-1 Sampl<strong>in</strong>g rate reconfiguration<br />

s0 Stage<br />

1<br />

s1 s k+1<br />

m-bit<br />

<strong>ADC</strong><br />

Synchronization and output register<br />

m bits m bits m bits m bits<br />

S/H Σ G<br />

m-bit<br />

DAC<br />

m bits<br />

Stage<br />

2<br />

Odd number stages<br />

Even number stages<br />

s 2<br />

Stage<br />

3<br />

A/D & S/H<br />

s k<br />

s 3<br />

Stage<br />

p<br />

Sampl<strong>in</strong>g rate<br />

reconfiguration by<br />

recycl<strong>in</strong>g of<br />

residue voltage<br />

D/A & G A/D & S/H<br />

D/A & G A/D & S/H D/A & G<br />

D out


s 0<br />

Resolution reconfiguration<br />

Stage<br />

1<br />

Synchronization and output register<br />

m bits m bits m bits m bits m bits<br />

s 1<br />

Stage<br />

2<br />

s2 Stage s3 Stage<br />

3<br />

p-1<br />

Resolution reconfiguration<br />

by shorten<strong>in</strong>g the pipel<strong>in</strong>e<br />

s p-1<br />

Stage<br />

p<br />

[7] M. Anderson, J. Yuan, A novel reconfigurable<br />

pipel<strong>in</strong>ed A/D conversion technique... , 2004.<br />

D out


Implemented configurations<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

R<br />

0<br />

0.5<br />

1<br />

F S / F CLK


Prototype system overview<br />

s2 s0 fb_ctrl<br />

conf_ctrl<br />

Stage<br />

1<br />

s 1<br />

Digital<br />

control unit<br />

Stage<br />

2<br />

s4 s2 s k-1<br />

Stage<br />

3<br />

1.5-bit<br />

<strong>ADC</strong><br />

S/H Σ 2<br />

1.5-bit<br />

DAC<br />

1.5 bits<br />

s<br />

Stage Stage<br />

3 s4 s5 4 5<br />

Stage<br />

9<br />

D1 D2 D3 D4 D5 D9 Synchronization and output register<br />

s k


+V R /4<br />

The flexible pipel<strong>in</strong>e stages (k=1,3)<br />

s k+1<br />

s k-1<br />

-V R /4<br />

-VR 0 +VR D 1,k<br />

D 0,k<br />

DSU<br />

D 1,k+2<br />

D 0,k+2<br />

s k<br />

Extra analog:<br />

- 4 switches<br />

Extra digital:<br />

- Input signal<br />

selection<br />

- Digital signal<br />

selection<br />

- Separate<br />

power down of<br />

SCA and ADSC


V IN<br />

The implemented amplifier<br />

V B4<br />

V B5<br />

V OP<br />

V B3<br />

V B1<br />

CMFB<br />

V B2<br />

V ON<br />

V B4<br />

V B5<br />

V IP<br />

• Fully differential<br />

• Hybrid (SC / active)<br />

CMFB<br />

• Ga<strong>in</strong> boost amplifiers<br />

• 4 bias modes


fb ctrl<br />

D x,k<br />

fb ctrl<br />

Pipel<strong>in</strong>e stage digital logic<br />

D x,selected<br />

fb ctrl<br />

D x,k+2<br />

fb ctrl<br />

Tri-state <strong>in</strong>verters to<br />

select comparator signal<br />

φ 2<br />

sca pd<br />

fb ctrl<br />

φ 2_fb<br />

Comb<strong>in</strong>atorial logic to<br />

control SCA clocks<br />

φ 2_Nfb


The prototype chip<br />

Voltage<br />

reference<br />

Flexible<br />

pipel<strong>in</strong>e<br />

Input<br />

signal<br />

Clock<br />

generator<br />

2.6 mm<br />

1P6M <strong>0.18</strong> um RF - <strong>CMOS</strong><br />

Deep n-well, MiM-capacitors<br />

Bias circuits Decoupl<strong>in</strong>g<br />

1.8 mm<br />

Digital control and<br />

synchronization<br />

unit


Performance summary<br />

Max sampl<strong>in</strong>g rate 80 MSPS<br />

Max <strong>in</strong>put amplitude 500 mV<br />

Supply voltage 1.8 V<br />

SNR 56.9 dBc<br />

SNDR 56.5 dBc<br />

SFDR 69.1 dBFS<br />

THD - 67.0 dBc<br />

Power consumption 94 mW<br />

Configurations 7+1<br />

Active area 1.9 mm 2


Configurations summary<br />

Configuration<br />

with Fclk = 10 MHz<br />

10 bits @ Fclk 10 bits @ F clk /2<br />

10 bits @ F clk /4<br />

SCAs /<br />

ADSCs<br />

8 / 9<br />

4 / 5<br />

2 / 3<br />

PD [mW]<br />

93.7<br />

52.6<br />

30.3<br />

SNDR<br />

[dBc]<br />

56.2<br />

55.9<br />

56.0<br />

SFDR<br />

[dBFS]<br />

76.5<br />

72.0<br />

73.8<br />

8 bits @ Fclk 6 / 7 73.0 46.9 69.3<br />

8 bits @ Fclk /2 4 / 5 52.4 47.0 66.5<br />

6 bits @ Fclk 4 / 5 51.8 35.4 54.4<br />

6 bits @ Fclk /2 2 / 3 30.4 36.1 59.8<br />

12 bits @ Fclk /5 2 / 3 30.2 58.1 79.9


Performance vs f <strong>in</strong><br />

dBc<br />

80<br />

60<br />

40<br />

20<br />

• Fclk = 80 MHz<br />

• A<strong>in</strong> = -1 dBFS<br />

• 10b @ Fclk Input frequency sweep<br />

0<br />

0 10 20 30<br />

Input frequency [MHz]<br />

SFDR<br />

SNR<br />

SNDR


Performance vs f s<br />

dBc<br />

80<br />

60<br />

40<br />

20<br />

• F<strong>in</strong> = 1.54 MHz<br />

• A<strong>in</strong> = 0 dBFS<br />

• 10b @ Fclk Sampl<strong>in</strong>g frequency sweep<br />

SFDR<br />

SNR<br />

SNDR<br />

0<br />

0 20 40 60 80<br />

Sampl<strong>in</strong>g frequency [MHz]


Performance vs A <strong>in</strong><br />

dBc<br />

80<br />

60<br />

40<br />

20<br />

0<br />

• F clk = 80 MHz<br />

• F <strong>in</strong> = 1.54 MHz<br />

• 10b @ F clk<br />

Input amplitude sweep<br />

10 -1<br />

SFDR<br />

SNR<br />

SNDR<br />

Normalized <strong>in</strong>put amplitude<br />

10 0


Conclusions<br />

• Low cost techniques for reconfiguration of<br />

pipel<strong>in</strong>ed <strong>ADC</strong>s have been proposed,<br />

implemented and verified by measurement.<br />

• Sampl<strong>in</strong>g rate and resolution can be selected<br />

<strong>in</strong>dependently without the need of variable<br />

bias<strong>in</strong>g or clock rate.<br />

• The power consumption, and area is not<br />

significantly changed by add<strong>in</strong>g the flexibility.<br />

• It has been verified that the static l<strong>in</strong>earity and<br />

thermal noise properties is not affected<br />

significantly by the implementation of the<br />

reconfigurability.


Bibliography<br />

[1] A.R. Feldmann, High Speed Low Power Delta Sigma<br />

Modulators for RF Baseband Channel Applications,<br />

Ph.D. Diss., University of California, Berkeley, 1997.<br />

[2] T. Burger, Q. Huang, A 13.5-mW 185-MSamples/s,<br />

ΔΣ Modulator for UMTS/GSM Dual-Standard IF<br />

Reception, IEEE Journal of Solid State Circuits,<br />

36(12), 2001, 1868-1878.<br />

[3] K.B-H. Khoo, Programmable, high dynamic range<br />

sigma-delta A/D Converters for multi-standard, fully<br />

<strong>in</strong>tegrated RF receivers, Ph.D. Diss, University of<br />

California, Berkeley, 1998.


Bibliography<br />

[4] K. Gulati, H.-S. Lee, A Low-Power <strong>Reconfigurable</strong><br />

Analog-to-Digital Converter, IEEE Journal of Solid<br />

State Circuits, 36(12), 2001, 1900-1911.<br />

[5] Bo Xia, A. Valdes-Garcia, E. Sanchez-S<strong>in</strong>encio, A<br />

configurable time-<strong>in</strong>terleaved pipel<strong>in</strong>e <strong>ADC</strong> for multistandard<br />

wireless receivers, Proc. Of the 30th<br />

European Solid State Circuis Conference, Leuven,<br />

Belgium, Sept. 2004, 259-262.<br />

[6] J. Elbornsson, Analysis, Estimation and<br />

Compensation of Mismatch Effects <strong>in</strong> A/D<br />

Converters, Ph.D. Diss. No 811, L<strong>in</strong>köp<strong>in</strong>g<br />

University, L<strong>in</strong>köp<strong>in</strong>g, Sweden, 2003.


Bibliography<br />

[7] M. Anderson, J. Yuan, A novel reconfigurable<br />

pipel<strong>in</strong>ed A/D conversion technique for<br />

multistandard wideband receivers, Proceed<strong>in</strong>gs of<br />

the IASTED Circuits Signals and Systems<br />

Conference, Clearwater Beach, Florida, USA, 2004.<br />

[8] S.H. Lewis, P.R. Gray, A pipel<strong>in</strong>ed 5-MSample/s 9-bit<br />

analog-to-digital converter, IEEE Journal of Solid<br />

State Circuits, vol. 22, pp. 954-961, Dec 1987.


Amplifier settl<strong>in</strong>g simulation


Static performance<br />

LSB<br />

LSB<br />

1<br />

0<br />

-1<br />

0.5<br />

0<br />

• Fclk = 80 MHz<br />

-0.5<br />

• F<strong>in</strong> = 1.54 MHz<br />

• A<strong>in</strong> = 0 dBFS<br />

• 10b @ Fclk INL<br />

200 400 600 800 1000<br />

DNL<br />

200 400 600 800 1000<br />

Input level


Typical frequency spectrum<br />

Power spectrum<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

8192 po<strong>in</strong>t FFT<br />

-100<br />

0 1 2 3 4<br />

Frequency<br />

• Fclk = 80 MHz<br />

• F<strong>in</strong> = 1.54 MHz<br />

• A<strong>in</strong> = 0 dBFS<br />

• 10b @ Fclk x10 7


Chip on board bond<strong>in</strong>g<br />

- Expensive<br />

- Sensitive<br />

- Keep more area<br />

free around the chip<br />

- Solder before<br />

bond<strong>in</strong>g !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!