23.08.2013 Views

Lösningar till Tentamen i Signaler och kommunikation, ETT080 ... - EIT

Lösningar till Tentamen i Signaler och kommunikation, ETT080 ... - EIT

Lösningar till Tentamen i Signaler och kommunikation, ETT080 ... - EIT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lösningar</strong> <strong>till</strong> <strong>Tentamen</strong> i <strong>Signaler</strong> <strong>och</strong> <strong>kommunikation</strong>, <strong>ETT080</strong>, 2 juni 2006, kl 14–19 1<br />

Uppgift 1<br />

(a) In the z-transform domain the transfer function becomes<br />

H(z) = 1 − 0.8z−1 + 0.6z −2<br />

1 − 0.2z −1 − 0.9z −2 = z2 − 0.8z + 0.6<br />

z 2 − 0.2z − 0.9z 2 = z2 − 0.8z + 0.6<br />

(z − 1.05)(z + 0.85)<br />

Hence, the system is non-stable.<br />

Answer:False<br />

(b) Counter example: The system with impulse response h[n] = δ[n] is clearly stable. The unit step<br />

response is ys[n] = µ[n]. The energy is<br />

∞<br />

n=−∞<br />

y 2 s[n] =<br />

∞<br />

1 = ∞<br />

n=0<br />

Answer:False<br />

(c) As the unit circle is followed from 0 rad to π rad, there are two zeros both in the beginning and<br />

in the end. In between the zeros there are a couple of poles affecting the frequency response. We<br />

conclude that the amplitude response should be more attenuated in the beginning and the end of<br />

the frequency interval, and less attenuated in between. Therefore, it should be a band pass filter.<br />

Answer:True<br />

(d) Firstly, assume that d0 = 0. The series expansion of H(z) is then<br />

H(z) = p0<br />

+ h1z<br />

d0<br />

−1 + h2z −2 + · · ·<br />

Z−1 → p0<br />

d0<br />

δ[n] + h1δ[n − 1] + h2δ[n − 2] + · · ·<br />

and we see that the system is causal. Secondly, assume that d0 = 0. Then the transfer function<br />

becomes<br />

H(z) = po + p1z−1 + · · · + pMz −M<br />

d1z−1 + · · · + dNz −N = z po + p1z−1 + · · · + pMz −M<br />

d1 + · · · + dNz −N+1<br />

<br />

= z ˜h0 + ˜ h1z −1 + ˜ h2z −2 <br />

+ · · ·<br />

Z −1<br />

→ ˜ h0δ[n + 1] + ˜ h1δ[n] + ˜ h2δ[n − 1] + · · ·<br />

which is non-causal.<br />

Answer:True<br />

(e) Consider the 8 point DFT of x = (10000000). This becomes x = (11111111). Clearly, the<br />

relation is not true for this example.<br />

Answer:False<br />

Uppgift 2<br />

(a) The frequency response becomes (from the figure)<br />

H(e jω ) = 1 − 0.1ejω − 0.9e jω2<br />

1 − 0.8e jω + 0.64e jω2<br />

The transfer function is<br />

H(z) = 1 − 0.1z−1 − 0.9z −2<br />

1 − 0.8z −1 + 0.64z −2 = z2 − 0.1z − 0.9<br />

z 2 − 0.8z + 0.64<br />

Hence, the zeros are 1 and −0.9, and the poles are 0.8e ±j π<br />

3 . From a pole/zero plot we can sketch<br />

the amplitude response as below.


<strong>Lösningar</strong> <strong>till</strong> <strong>Tentamen</strong> i <strong>Signaler</strong> <strong>och</strong> <strong>kommunikation</strong>, <strong>ETT080</strong>, 2 juni 2006, kl 14–19 2<br />

Imaginary Part<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1 −0.5 0<br />

Real Part<br />

0.5 1<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 pi<br />

we can easily derive that the ending point is |H(e jπ )| = 0.08 and that |H(e jπ/3 )| = 5.3.<br />

(b) The Z-transform of the step response is<br />

Y (z) =<br />

=<br />

=<br />

1<br />

H(z) =<br />

1 − z−1 1 + 0.9z −1<br />

π<br />

j (1 − 0.8e 3 z−1 π<br />

−j )(1 − 0.8e 3 z−1 )<br />

1 + 0.9z−1 1 − 2 · 0.8 cos( π<br />

3 )z−1 + 0.82z−2 1 − 0.8 cos( π<br />

3 )z−1<br />

1 − 2 · 0.8 cos( π<br />

3 )z−1 + 0.82 2.6<br />

+<br />

z−2 from the Z-transform table we get<br />

0.8 √ 3<br />

y[n] = 0.8 n cos( π 2.6<br />

n)µ[n] +<br />

3 0.8 √ 3 0.8n sin( π<br />

3 n)µ[n]<br />

= 0.8 n<br />

<br />

cos( π<br />

n) + 1.9 sin(π<br />

3 3 n)<br />

<br />

µ[n]<br />

0.8 sin( π<br />

3 )z−1<br />

1 − 2 · 0.8 cos( π<br />

3 )z−1 + 0.82z−2 (c) We know that if the input is x[n] = A cos( π<br />

π<br />

n + φ), the output is x[n] = A|H(ej 2 )| cos( 2 πn<br />

+ 2<br />

) + φ). To get the desired result we put<br />

Θ( π<br />

2<br />

Uppgift 3<br />

A =<br />

1<br />

π<br />

j |H(e 2 )|<br />

≈ 0.46<br />

φ = −Θ( π<br />

) ≈ 1.095<br />

2<br />

Sampling with sampling rate Fs gives a periodic repetition of the spectra with period Fs. Therefore, a<br />

signal frequency f0 will occur at the frequencies<br />

f = ±f0 + kFs, k ∈ Z<br />

The reconstructed signal is the part of the spectra that lies in the interval −Fs/2 < f < Fs/2.<br />

(a) If Fs = 320Hz the reconstructed signal is in −160Hz < f < 160Hz. The recorded sounds in the<br />

problem becomes reconstructed at<br />

Insekt f [Hz]<br />

Ollonborre 50<br />

Blomfluga 120<br />

Humla 130<br />

Husfluga 120<br />

Mygga 40<br />

Knott 86


<strong>Lösningar</strong> <strong>till</strong> <strong>Tentamen</strong> i <strong>Signaler</strong> <strong>och</strong> <strong>kommunikation</strong>, <strong>ETT080</strong>, 2 juni 2006, kl 14–19 3<br />

(b) Use a sapling frequency such that the bumble bees are reconstructed at 20Hz. Then everything<br />

below cannot be heard, and the frequencies above can be attenuated by the analog filter after<br />

reconstruction. Use, e.g., Fs = 150Hz to do this. In the following table we check that it is only<br />

the bumble bees that are aliased to 20Hz.<br />

Insekt f [Hz]<br />

Ollonborre 50<br />

Blomfluga 30<br />

Humla 20<br />

Husfluga 50<br />

Mygga 0<br />

Knott 4<br />

Use Fc = 25Hz as a cut off frequency for the filter.<br />

Uppgift 4<br />

Construct the filter as a cascade of two filters, one LP filter and one notch filter. Together they should<br />

have at most order 5, which means that we can construct an order 2 notch filter and an order 3 LP filter.<br />

Start with the LP filter. The frequencies between 3400Hz and 4000Hz should be attenuated. In the<br />

sampled frequency this corresponds to ω3400 = 3400 17 π = 4000 20π and ω4000 = π. One (easy) way to<br />

17π<br />

17π<br />

±j ±j construct such filter is to consider zeros at e 20 and -1, and the corresponding poles at Ae 20 and -B,<br />

where both A and B are positive constants less than 1. The transfer function becomes<br />

HLP (z) =<br />

=<br />

(1 + z−1 17π<br />

j )(1 + e 20 z−1 17π<br />

−j )(1 + e 20 z−1 )<br />

(1 + Bz−1 17π<br />

j )(1 + Ae 20 z−1 17π<br />

−j )(1 + Ae 20 z−1 )<br />

1 + (1 − 2 cos 17<br />

20 )z−1 + (1 − 2 cos 17<br />

20 )z−2 + z−3 1 + (B − 2A cos 17<br />

20 )z−1 + (A2 − 2AB cos 17<br />

20 )z−2 + A2Bz −3<br />

With A = 0.8 and B = 0.7 the zero/pole plot and the amplitude response becomes<br />

Imaginary Part<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1 −0.5 0<br />

Real Part<br />

0.5 1<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 pi<br />

The 50Hz disturber can be cancelled with a notch filter with notch frequency ω50 = 50<br />

transfer function is<br />

HN(z) =<br />

π<br />

(1 + ej 80 z−1 π<br />

−j )(1 + e 80 z−1 )<br />

π<br />

j (1 + Ce 80 z−1 π<br />

−j )(1 + Ce 80 z−1 )<br />

where C is a positive constant less than 1. With C = 0.9 we get<br />

= 1 − 2 cos 1<br />

80 z−1 + z −2<br />

1 − 2C cos 1<br />

80 z−1 + C 2 z −2<br />

4000<br />

1 π = π. The<br />

80


<strong>Lösningar</strong> <strong>till</strong> <strong>Tentamen</strong> i <strong>Signaler</strong> <strong>och</strong> <strong>kommunikation</strong>, <strong>ETT080</strong>, 2 juni 2006, kl 14–19 4<br />

Imaginary Part<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1 −0.5 0<br />

Real Part<br />

0.5 1<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 pi<br />

Using those two filters in cascade we get the following zero/pole plot and amplitude function<br />

Imaginary Part<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1 −0.5 0<br />

Real Part<br />

0.5 1<br />

The figures of the filters realisations are omitted.<br />

Uppgift 5<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 pi<br />

(a) There are 48 channels. If each uses M signal alternatives the total number of signals becomes<br />

⎧<br />

M 48 ⎪⎨<br />

=<br />

⎪⎩<br />

2 48 ≈ 10 14 , 2-PAM<br />

4 48 ≈ 10 30 , 4-QAM<br />

16 48 ≈ 10 58 , 16-QAM<br />

64 48 ≈ 10 87 , 64-QAM<br />

(b) Let k ∈ {1, 2, 4, 6} be the number of bits per transmitted signal in one channel. Then, the actual<br />

transmitted bit rate for channel n is<br />

Rb,n = k<br />

·<br />

Ts<br />

3<br />

⎧<br />

0.1875Mbps,<br />

⎪⎨<br />

0.375Mbps,<br />

4<br />

⎪⎩<br />

0.75Mbps,<br />

1.125Mbps,<br />

2-PAM<br />

4-QAM<br />

16-QAM<br />

64-QAM<br />

The maximum and minimum bit rate becomes<br />

Rb,min = 0.1875 · 48 = 9Mbps<br />

Rb,max = 1.125 · 48 = 54Mbps<br />

(c) The signal in channel n is<br />

si,n(t) = ainA cos(2πfnt) − binA sin(2πfnt)


<strong>Lösningar</strong> <strong>till</strong> <strong>Tentamen</strong> i <strong>Signaler</strong> <strong>och</strong> <strong>kommunikation</strong>, <strong>ETT080</strong>, 2 juni 2006, kl 14–19 5<br />

This is the formula for QAM with a rectangular base pulse. Hence, the spectral density for channel<br />

n is a sinc, see figure below. The sinc has zero for all values of fn + m/Ts, where m is a nonzero<br />

integer. These zeros are used to position other carriers, see the following figure with 4 carriers.<br />

Therefore, at the carrier frequencies, the signals in different channels do not interfear, which is the<br />

origin of orthogonal in OFDM.<br />

1<br />

0<br />

(d) For a rectangular pulse W99 = 20.6/Ts. That means that the contribution on each side of the<br />

main lobe is ∆ = 9.3/Ts. An estimate of the 99% bandwidth of a 48 channel OFDM can be<br />

given by the width of the main lobes plus a ∆ on each side,<br />

W99,OFDM 48<br />

+ 2∆ = 14.3MHz<br />

Ts<br />

The maximum bandwidth efficiency is<br />

ρmax = Rb,max<br />

W99,OFDM<br />

≈ 3.8bps/Hz<br />

The bit rate for a comparable 64-QAM system is<br />

Rb = k<br />

T<br />

· 3<br />

4<br />

= 6<br />

T<br />

· 3<br />

4<br />

= 54Mbps<br />

The symbol time then becomes T = 8.3 · 10 8 s. The 99% bandwidth is (with a rectangular pulse)<br />

W99 = 20.6/T = 247MHz, and the bandwidth efficiency becomes ρ = 0.22bps/Hz. We see in<br />

this comparison that OFDM is an efficient way to use the band width.<br />

1<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!