22.08.2013 Views

An single electron bashes into an atom in a discharge lamp If atom ...

An single electron bashes into an atom in a discharge lamp If atom ...

An single electron bashes into an atom in a discharge lamp If atom ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>An</strong> <strong>s<strong>in</strong>gle</strong> <strong>electron</strong> <strong>bashes</strong> <strong><strong>in</strong>to</strong> <strong>an</strong> <strong>atom</strong> <strong>in</strong> a <strong>discharge</strong> <strong>lamp</strong><br />

Electron leaves hot filament with<br />

nearly zero <strong>in</strong>itial k<strong>in</strong>etic energy<br />

10 V<br />

-10eV<br />

<strong>If</strong> <strong>atom</strong> fixed at the center of the tube,<br />

list all the possible photon energies (colors) that you might see?<br />

A. 1eV, 2eV, 3eV, 4eV, 7eV, 8eV<br />

B. 4eV, 7eV, 8eV<br />

C. 1eV, 3eV, 4eV<br />

D. 4eV<br />

E. Impossible to tell.<br />

-<br />

+<br />

-2 eV<br />

-3 eV<br />

-6 eV


<strong>An</strong> <strong>s<strong>in</strong>gle</strong> <strong>electron</strong> <strong>bashes</strong> <strong><strong>in</strong>to</strong> <strong>an</strong> <strong>atom</strong> <strong>in</strong> a<br />

<strong>discharge</strong> <strong>lamp</strong><br />

d<br />

-<br />

10 V<br />

+<br />

D<br />

-2 eV<br />

-3 eV<br />

-6 eV<br />

<strong>If</strong> <strong>atom</strong> fixed at this po<strong>in</strong>t <strong>in</strong> tube,<br />

-10eV<br />

list all the possible photon energies (colors) that you might see?<br />

A. 1eV, 2eV, 3eV, 4eV, 7eV, 8eV<br />

B. 4eV, 7eV, 8eV<br />

C. 1eV, 3eV, 4eV<br />

D. 4eV <strong>An</strong>swer is D. Electron only ga<strong>in</strong>s about 5eV!<br />

E. Impossible to tell.<br />

Electron energy = qV = e(Ed),<br />

where E is the electric field = (battery V)/(total dist<strong>an</strong>ce D),<br />

<strong>an</strong>d d is the dist<strong>an</strong>ce it goes before a collision.


<strong>An</strong>nouncements<br />

• Read<strong>in</strong>g next class F<strong>in</strong>ish chapter 5.<br />

• Homework 7 assigned today.<br />

• Exam 2 next week (Thursday)<br />

– Old Exam up today on CULearn.<br />

– List of topics up today on CULearn


Bohr, Moseley, <strong>an</strong>d<br />

Fr<strong>an</strong>ck/Hertz


Balmer/Rydberg had a mathematical formula to describe<br />

hydrogen spectrum, but no mech<strong>an</strong>ism for why it worked!<br />

Why does it work?<br />

410.3 486.1 Balmer’s formula 656.3 nm<br />

434.0<br />

<br />

91.<br />

19nm<br />

1 1<br />

2 2<br />

m n<br />

<br />

where m=1,2,3<br />

<strong>an</strong>d where n = m+1, m+2<br />

Hydrogen energy levels<br />

m=1, n=2


The Balmer/Rydberg formula is a<br />

mathematical representation of <strong>an</strong><br />

empirical observation.<br />

It doesn’t expla<strong>in</strong> <strong>an</strong>yth<strong>in</strong>g, really.<br />

How c<strong>an</strong> we calculate the energy levels<br />

<strong>in</strong> the hydrogen <strong>atom</strong>?<br />

A semi-classical expl<strong>an</strong>ation of the<br />

<strong>atom</strong>ic spectra (Bohr model)


Bohr Model<br />

• When Bohr saw Balmer’s formula, he came up<br />

with a new model that would predict it <strong>an</strong>d<br />

'solve' the problem of <strong>electron</strong>s spiral<strong>in</strong>g <strong><strong>in</strong>to</strong><br />

the nucleus.<br />

• The Bohr model has some problems, but it's<br />

still useful.<br />

• Why doesn’t the <strong>electron</strong> fall <strong><strong>in</strong>to</strong> the nucleus?<br />

– Accord<strong>in</strong>g to classical physics, It should!<br />

– Accord<strong>in</strong>g to Bohr, It just doesn’t.<br />

– Modern QM will give a satisfy<strong>in</strong>g <strong>an</strong>swer, but you’ll<br />

have to wait a little longer.<br />

Orig<strong>in</strong>al paper: Niels Bohr: On the Constitution of Atoms <strong>an</strong>d Molecules,<br />

Philosophical Magaz<strong>in</strong>e, Series 6, Volume 26, p. 1-25, July 1913.)


Bohr's approach:<br />

#1: Treat the mech<strong>an</strong>ics classical (<strong>electron</strong> sp<strong>in</strong>n<strong>in</strong>g around<br />

a proton):<br />

- Newton's laws assumed to be valid<br />

- Coulomb forces provide centripetal acceleration.


Electrostatic potential energy<br />

Potential energy of a <strong>s<strong>in</strong>gle</strong> <strong>electron</strong> <strong>in</strong> <strong>an</strong> <strong>atom</strong><br />

PE of <strong>an</strong> <strong>electron</strong> at dist<strong>an</strong>ce r from the proton is<br />

, ke2 2<br />

ke<br />

PE <br />

= 1.440eV·nm<br />

r<br />

+ + PE = -ke(Ze)<br />

+ r<br />

+ (For Z protons)<br />

potential<br />

energy<br />

0<br />

dist<strong>an</strong>ce from proton


Bohr Model. # 1: Classical mech<strong>an</strong>ics<br />

The centripetal acceleration<br />

a = v 2 / r is provided by the coulomb<br />

force F = k·Ze 2 /r 2 .<br />

(k = 1/( 4πε 0 ): Coulomb force const.)<br />

Newton's second law mv 2 /r = k·e 2 /r 2<br />

or: mv 2 = k·Ze 2 /r<br />

The <strong>electron</strong>'s k<strong>in</strong>etic energy is KE = ½ m v 2<br />

The <strong>electron</strong>'s potential energy is PE = - kZe 2 /r<br />

E= KE + PE = -½ kZe 2 /r = ½ PE<br />

Therefore: <strong>If</strong> we know r, we know E <strong>an</strong>d v, etc…<br />

F=k e 2 /r 2<br />

v<br />

+ E


<strong>An</strong>gular Momentum…<br />

<strong>An</strong> <strong>electron</strong> is orbit<strong>in</strong>g a proton at a radius r.<br />

What is its <strong>an</strong>gular momentum?<br />

a) m enr <strong><strong>in</strong>to</strong> the board<br />

b) m en out of the board<br />

c) m en o the right<br />

d) m en <strong><strong>in</strong>to</strong> the board<br />

e) m enr po<strong>in</strong>ted out of the board<br />

<strong>An</strong>gular momentum


Bohr's approach:<br />

#1: Treat the mech<strong>an</strong>ics classical (<strong>electron</strong> sp<strong>in</strong>n<strong>in</strong>g around<br />

a proton):<br />

- Newton's laws assumed to be valid<br />

- Coulomb forces provide centripetal acceleration.<br />

#2: Bohr's hypothesis (Bohr had no proof for this; he just<br />

assumed it – leads to correct results!):<br />

- The <strong>an</strong>gular momentum of the <strong>electron</strong>s is qu<strong>an</strong>tized <strong>in</strong><br />

multiples of ћ.<br />

- The lowest <strong>an</strong>gular momentum is ћ.<br />

ћ = h / 2π


Bohr Model. #2: Qu<strong>an</strong>tized <strong>an</strong>gular momentum<br />

Bohr postulated that the <strong>an</strong>gular<br />

momentum of the <strong>electron</strong> could only<br />

have the qu<strong>an</strong>tized values of:<br />

L= nћ<br />

<strong>An</strong>d therefore: mvr = nћ, (n=1,2,3…)<br />

or: v = nћ/(mr)<br />

Substitut<strong>in</strong>g this <strong><strong>in</strong>to</strong> mv 2 = k·e 2 /r :<br />

m(nћ/(mr)) 2 =k·Ze 2 /r: Solve for r <strong>an</strong>d get:<br />

rn 2<br />

rBn<br />

, with rB<br />

<br />

2<br />

2<br />

ke<br />

m<br />

2<br />

2 m(<br />

ke )<br />

En ER<br />

/ n , with ER<br />

2<br />

2<br />

52.<br />

9pm<br />

F=k e 2 /r 2<br />

, r B: Bohr radius Z=1<br />

2<br />

<br />

13.<br />

6<br />

eV<br />

v<br />

, E R: Rydberg<br />

Energy


Bohr Model. Results<br />

2<br />

r rBn<br />

, with rB<br />

<br />

2<br />

2<br />

ke<br />

, r B: Bohr radius<br />

m<br />

2<br />

2 m(<br />

ke )<br />

En ER<br />

/ n , with ER<br />

2<br />

2<br />

52.<br />

9pm<br />

2<br />

<br />

13.<br />

6<br />

eV<br />

, E R: Rydberg<br />

Energy<br />

The Bohr model not only predicts a reasonable <strong>atom</strong>ic radius<br />

r B, but it also predicts the energy levels <strong>in</strong> hydrogen to 4 digits<br />

accuracy!<br />

Possible photon energies: 1 1 <br />

E En<br />

Em<br />

ER<br />

2 2 <br />

m n <br />

(n > m)<br />

The Bohr model 'expla<strong>in</strong>s' the Rydberg formula!!


Only discrete energy levels possible.<br />

Electrons hop down towards lowest level, giv<strong>in</strong>g off photons<br />

dur<strong>in</strong>g the jumps. Atoms are stable <strong>in</strong> lowest level.<br />

potential<br />

energy<br />

0 dist<strong>an</strong>ce from proton<br />

Lm<strong>in</strong><br />

<br />

<br />

Bohr couldn't expla<strong>in</strong> why the <strong>an</strong>gular<br />

momentum is qu<strong>an</strong>tized but his<br />

model lead to the Rydberg-Balmer<br />

formula, which matched to the<br />

experimental observations very well!<br />

He also predicted <strong>atom</strong>ic radii reasonably well <strong>an</strong>d<br />

was able to calculate the Rydberg const<strong>an</strong>t.


Successes of Bohr Model<br />

• 'Expla<strong>in</strong>s' source of Balmer formula <strong>an</strong>d predicts<br />

empirical const<strong>an</strong>t R (Rydberg const<strong>an</strong>t) from<br />

fundamental const<strong>an</strong>ts: R= 1 / 91.2 nm=mk 2 e 4 /(4c 3 )<br />

Expla<strong>in</strong>s why R is different for different <strong>s<strong>in</strong>gle</strong><br />

<strong>electron</strong> <strong>atom</strong>s (called hydrogen-like ions).<br />

• Predicts approximate size of hydrogen <strong>atom</strong><br />

• Expla<strong>in</strong>s (sort of) why <strong>atom</strong>s emit discrete spectral<br />

l<strong>in</strong>es<br />

• Expla<strong>in</strong>s (sort of) why <strong>electron</strong> doesn’t spiral <strong><strong>in</strong>to</strong><br />

nucleus


Which of the follow<strong>in</strong>g pr<strong>in</strong>ciples of classical<br />

physics is violated <strong>in</strong> the Bohr model?<br />

A. Opposite charges attract with a force <strong>in</strong>versely<br />

proportional to the square of the dist<strong>an</strong>ce between<br />

them.<br />

B. The force on <strong>an</strong> object is equal to its mass times its<br />

acceleration.<br />

C. Accelerat<strong>in</strong>g charges radiate energy.<br />

D. Particles always have a well-def<strong>in</strong>ed position <strong>an</strong>d<br />

momentum.<br />

E. All of the above.<br />

Note that both A & B are used <strong>in</strong> derivation of Bohr model.


Moseley.


Basic questions<br />

1. Does the Bohr model tell us <strong>an</strong>yth<strong>in</strong>g else? Is it <strong>an</strong>yth<strong>in</strong>g<br />

more th<strong>an</strong> <strong>an</strong> oddity that expla<strong>in</strong>s Hydrogen?<br />

2. All of the <strong>in</strong>teractions we’ve seen <strong>in</strong> connection with<br />

“qu<strong>an</strong>tization” <strong>in</strong>volves light. Is “qu<strong>an</strong>tization” a property of<br />

light alone?


Balmer-Rydberg <strong>an</strong>d Bohr<br />

v<br />

<br />

91.<br />

19nm<br />

1 1<br />

2 2<br />

m n<br />

<br />

L= nћ<br />

mvr = nћ, (n=1,2,3…)<br />

<br />

ke<br />

rn 2<br />

rBn<br />

, with rB<br />

<br />

2<br />

2<br />

m<br />

2<br />

2 m(<br />

ke )<br />

En ER<br />

/ n , ER<br />

2<br />

2<br />

2<br />

<br />

52.<br />

9<br />

<br />

pm<br />

13.<br />

6eV<br />

Hydrogen energy levels<br />

m=1, n=2


Hydrogen like <strong>an</strong>d Electron<br />

2<br />

<br />

/ Z,<br />

with r 2<br />

ke m<br />

2<br />

rn rBn<br />

B<br />

2<br />

En Z<br />

ER<br />

R<br />

2<br />

2 m(<br />

ke )<br />

/ n , E 2<br />

2<br />

2<br />

shells<br />

<br />

<br />

52.<br />

9<br />

pm<br />

13.<br />

6eV<br />

As more <strong>an</strong>d more <strong>electron</strong>s are added<br />

they fill up <strong>in</strong> a particular order<strong>in</strong>g (more<br />

on this later)<br />

Import<strong>an</strong>t fact: only 1 <strong>electron</strong> per<br />

allowed state<br />

The closest ones (core <strong>electron</strong>s) are<br />

bound quite similarly to this equation.<br />

For Hydrogen like <strong>atom</strong>s<br />

(one <strong>electron</strong>)


How do we make x-rays?<br />

High velocity<br />

KE > 1 keV


How do we make x-rays?<br />

Knocks out a core <strong>electron</strong> <strong>an</strong>d then moves on.<br />

Do we know <strong>an</strong>yth<strong>in</strong>g about KE or KE?<br />

No. We c<strong>an</strong> but we don’t


How do we make x-rays?<br />

Level 2 <strong>electron</strong> falls <strong><strong>in</strong>to</strong> empty state releas<strong>in</strong>g photon<br />

This process produces someth<strong>in</strong>g called a K x-ray<br />

What is the energy of such a photon?


Basic experimental setup


X-ray energies (K-a l<strong>in</strong>e)<br />

The energy scales are<br />

likely related to the<br />

Bohr model.<br />

What is the charge<br />

seen by the bound<br />

<strong>electron</strong>s?


Moseley Balmer <strong>an</strong>d Rydberg<br />

This <strong>electron</strong> sees what<br />

charge from the nucleus?<br />

Turns out we c<strong>an</strong> ignore <strong>an</strong>y<br />

<strong>electron</strong>s outside this.<br />

a) Ze b) (Ze) 2<br />

c) e(Z-2) d) e(Z-1)


Moseley Balmer <strong>an</strong>d Rydberg<br />

This <strong>electron</strong> sees what<br />

charge?<br />

a) Ze b) (Ze) 2<br />

c) e(Z-2) d) e(Z-1)<br />

Nucleus has Z charge <strong>an</strong>d one<br />

<strong>electron</strong> is screen<strong>in</strong>g it. So<br />

e(Z-1)


Implications<br />

All <strong>atom</strong>s measured agree with Balmer, Rydberg <strong>an</strong>d Bohr<br />

with only slight modifications.<br />

With only slight modifications this expla<strong>in</strong>s other x-ray<br />

spectral l<strong>in</strong>es<br />

L<strong>an</strong>th<strong>an</strong>ide series: M<strong>an</strong>y elements “discovered” but<br />

chemistry wasn’t yet enough to sort them all out.<br />

Moseley’s work ordered them, found how m<strong>an</strong>y there were,<br />

<strong>an</strong>d predicted miss<strong>in</strong>g elements (promethium).<br />

"You see actually the Rutherford work [the nuclear <strong>atom</strong>] was not taken seriously.<br />

We c<strong>an</strong>not underst<strong>an</strong>d today, but it was not taken seriously at all. There was no<br />

mention of it <strong>an</strong>y place. The great ch<strong>an</strong>ge came from Moseley.“ N. Bohr.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!