22.08.2013 Views

扫描隧道显微镜诱导的发光 - 中国科学院物理研究所

扫描隧道显微镜诱导的发光 - 中国科学院物理研究所

扫描隧道显微镜诱导的发光 - 中国科学院物理研究所

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Introduction to STM induced Luminescence<br />

扫描隧道显微镜诱导发光研究简介<br />

Zhen-Chao Dong (董振超)<br />

University of Science and Technology of China<br />

(中国科学技术大学)<br />

Email: zcdong@ustc.edu.cn<br />

March 29, 2007<br />

e –<br />

+<br />

_<br />

hv


Why?<br />

Definition<br />

Motivation<br />

What?<br />

Outline<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

What have been done?<br />

What to do next?<br />

How?<br />

Experimental techniques<br />

Theoretical calculations


1. Brief Introduction to the Background<br />

• Definition<br />

• Motivations<br />

• Luminescence from metal-oxide-metal (MOM) tunnel junctions<br />

• Early studies of photon emission by STM<br />

2. Experimental Techniques<br />

• Photon collection systems<br />

• Photon detection systems<br />

• Modes of measurements<br />

3. Status of STM Induced Luminescence<br />

• Metals<br />

• Semiconductors<br />

• Molecules and Nanostructures<br />

• Theoretical models<br />

4. Summary<br />

Contents<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

1. Brief Introduction<br />

Scanning Tunneling Microscope<br />

(STM) Induced Luminescence:<br />

Definition?<br />

Motivations?<br />

Early History?


Definition: STM Induced Luminescence (STML)<br />

Beyond imaging and manipulation<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

e –<br />

+<br />

_<br />

e<br />

hv<br />

I = I elastic + I inelastic<br />

Elastic Tunneling Process:<br />

Conventional STM phenomena<br />

• Topography<br />

• Spectroscopy<br />

e.g., transport: I-V, dI/dV<br />

barrier height: I-s<br />

(Inelastic contributions exist!)<br />

Inelastic Process:<br />

Vibrational excitation: d 2 I/dV 2 (IETS)<br />

Tip-induced plasmon<br />

}<br />

Radiative decay!<br />

Electronic excitation STML or STL<br />

Tunneling electrons:<br />

Highly localized<br />

excitation source for photon emission!<br />

Tunneling electron excited luminescence!


Motivations<br />

Fundamental Interest:<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

• Photons offer various channels for probing tunnel junctions (inelastic process)<br />

(intensity, spectra, emission pattern, polarization, decay kinetics)<br />

• Coupling of electrons, excitons, plasmons, and photons in the nano-cavity<br />

• Fluorescence (exciton) decay kinetics & energy transfer at the nanoscale<br />

• Quantum tuning of photonic states for nano-objects in a nano-environment<br />

• Charge transport dynamics at the interface & through nanostructures<br />

• “Color” STM: chemical identification with high spatial resolution<br />

• New quantum phenomena (strong field enhancements and NF excitation)<br />

Practical Interest:<br />

• Interface parameter control for organic electronics (e.g., OLED, η↑)<br />

• Spectral imaging of single defects or impurities in electronic devices<br />

• Radiative decay engineering for bio-molecular (DNA) mapping<br />

• Nanoscale light source for optical spectroscopy and imaging<br />

• Single-molecule electroluminescence and single-photon sources


例子:<br />

I ( V<br />

)<br />

STM具有极高的空间分辨力,但缺乏化学分析能力:根源<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

∝<br />

∫<br />

E<br />

E<br />

v<br />

ρ ( r , E ) =<br />

f<br />

f<br />

+ eV<br />

∑<br />

i<br />

v<br />

ρ ( r , E ) dE<br />

v<br />

ψ ( r )<br />

i<br />

2<br />

δ ( E<br />

Atomic Imaging & Manipulation<br />

Si(111)-7x7<br />

z-direction: 0.01 nm<br />

x,y-direction: 0.1 nm<br />

−<br />

E<br />

i<br />

)<br />

单原子操纵<br />

“量子海市蜃楼”<br />

• STM原子分辨率起源:针尖具有类p z 或d z 2电子态、且结间距很小!<br />

• 隧穿事件几乎由费米面上的自由电子决定,而且涉及多种态;<br />

• 隧穿电流涉及样品和探针,是二者电子态密度的卷积。<br />

探针敏感性<br />

成象不确定性 !<br />

IBM<br />

D. Eigler


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

提高STM化学分析能力的途径?<br />

与谱学技术相结合!<br />

扫描隧道谱 荧光发射光谱<br />

王兵、裘晓辉等<br />

专题报告


提高STM化学分析能力的途径一:STM + STS<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

空间分辨<br />

(X,Y)<br />

扫描隧道谱: 能级结构信息<br />

空间分辨 + “Z”-分辨<br />

(X,Y) + I-z<br />

(X,Y) + I-V<br />

(X,Y) + dI/dV<br />

(X,Y) + d 2 I/dV 2<br />

空间分辨 + 能量分辨<br />

功函数<br />

电子态<br />

特定电子态<br />

特定振动态 }<br />

非弹性隧穿谱<br />

(IETS技术)<br />

“锁相”技术


提高STM化学分析能力的途径二:STM + FS<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

e –<br />

h +<br />

STM诱导发光<br />

ET<br />

HT<br />

+<br />

_<br />

hv<br />

e–h<br />

recombination<br />

原子分辨<br />

STM<br />

+<br />

单光子计数<br />

Optical Detectors<br />

空间、能量、时间<br />

高分辨<br />

隧道结<br />

电荷输运、光学跃迁、<br />

能量转化动力学<br />

高分辨<br />

形貌<br />

+<br />

发光光谱<br />

高分辨化学标识<br />

辐射衰变工程(RDE)<br />

纳米元件、生物分子识别?


e –<br />

h +<br />

表征检测工具<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

分子尺度调控研究的多功能复合技术<br />

光学技术 扫描探针技术 伏安曲线测量<br />

ET<br />

HT<br />

+<br />

_<br />

e–h<br />

recombination<br />

“三合一”技术<br />

hv<br />

原子分辨<br />

STM<br />

+<br />

单光子计数<br />

Optical Detectors<br />

空间、能量、时间<br />

高分辨<br />

STM诱导发光技术<br />

空间分辨<br />

(X,Y)<br />

“锁相”技术<br />

“二合一”技术<br />

空间分辨 + “Z”-分辨<br />

(X,Y) + “Z”<br />

(X,Y) + I-V<br />

(X,Y) + dI/dV<br />

(X,Y) + d 2 I/dV 2<br />

空间分辨 + 能量分辨


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Microscopy<br />

in the space domain<br />

单分子研究<br />

Single-Molecule Studies<br />

Spectroscopy<br />

in the frequency domain<br />

SNOM: high time resolution (朱星教授)<br />

Fluorescence decay<br />

in the time domain<br />

空间 能量 时间<br />

STML:<br />

imaging and I-V measurements with high spatial resolution<br />

+ spectra & lifetime


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

First report of luminescence<br />

excited by tunneling electrons:<br />

When?<br />

Who?<br />

What system?<br />

Early STML studies?


Luminescence from metal-oxide-metal (MOM) tunnel junctions<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

J. Lambe and S. L. McCarthy, Phys..Rev. Lett. 37 (923) 1976.<br />

Explanation:<br />

Radiative decay of plasmons!<br />

Inelastic tunneling excitation (IET)<br />

of<br />

optically coupled<br />

surface plasmon modes<br />

V<br />

Emission feature:<br />

hv<br />

Al<br />

Al2O3 Au or Ag<br />

CaF 2<br />

• Broad and continuous;<br />

• Quantum cutoff: hν ≤ eV;<br />

• Bias dependent color:<br />

red (2V) →yellow →blue<br />

• Visible by naked eye<br />

(dark room, η= 10-5 –10-4 )


Related Elementary Excitations: Concepts<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Plasmons(等离激元):<br />

Plasma oscillation― collective motion of the entire electron gas!<br />

Charge density oscillation: the oscillation quantum of charge density wave.<br />

Surface Plasmons(表面等离激元):<br />

Wave-like disturbance of the charge density confined to the surface,<br />

coherent superposition of electron-hole pairs generated by surface excitons<br />

Surface Plaritons(表面极化激元或表面极化声子):<br />

Coupled modes of the surface lattice + electromagnetic field system,<br />

very long wavelength elementary excitation of the surface coupled with the ambient field<br />

Surface Plasmon Plaritons(表面等离极化激元): → Surface Plasmons<br />

Coupled modes of the radiation field and the surface plasmon excitation,<br />

Surface Plasmons + Surface Plaritons (MOM)<br />

表面波的特征 :<br />

电场强度Ez 在界面两侧随距离的增加按指数关系<br />

快速衰减,在 z=0 处极大,故束缚于界面(表<br />

面)上,不能检测到远场光。<br />

A. Zangwill, Physics at Surfaces, 1988.


Oscillating at the plasma frequency<br />

Plasma oscillation,<br />

or, charge density oscillation<br />

Plasmons (等离激元)<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Displacement of the entire electron gas,<br />

as a whole, by a distance d<br />

relative to the fix positive background of ions!<br />

ε(ω) = 1−ω2 p / ω2<br />

ωτ>> 1<br />

Condition for the onset of<br />

propagation of radiation: ω = ω p (ε=0)<br />

If ε>0 (ω>ω p ), E → oscillatory → propagating<br />

If ε


Surface Plasmons(SPs, 表面等离激元)<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Δ•Ε = 0 真空-金属界面处<br />

ε 2 =1<br />

ε 1 = −1 ω s = ω p /√2<br />

ω<br />

ω<br />

ω p<br />

ω<br />

p<br />

1+ ε<br />

p<br />

2<br />

2<br />

ε(ω) = 1-ω2 p / ω2<br />

ω = c ⋅ k<br />

~ k<br />

p<br />

x<br />

ο −1<br />

~ 0.<br />

3 A<br />

0<br />

The dispersion of the SPs<br />

k x<br />

表面等离激元(表面电磁波)<br />

存在的条件:<br />

ε 1 = −|A| ε 2<br />

界面两侧的介电常数异号!<br />

光滑结表面:<br />

k ‖ ≤k r +ω/c<br />

k ‖ >ω/c<br />

波矢(动量)不守恒!不能发光!<br />

粗糙度 破坏平移对称性<br />

波矢匹配!发光!


E F −eV<br />

MOM 隧道结发光机制<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

IET<br />

Metal Barrier Metal<br />

隧道结发光是个两步过程:<br />

HED<br />

E F<br />

1、IET electrons excite SPs;<br />

2、SPs couple with the radiation field<br />

→ photon emission!<br />

Optical coupling? → Roughness!<br />

Radiative decay of plasmons!<br />

IET: Inelastic Tunneling<br />

HED: Hot electron decay<br />

Roughness (粗糙度的引入方式):<br />

• Intrinsic sample surface roughness<br />

• Grating structure on the surface<br />

• Prism coupler via ATR<br />

• Nanoparticles on the surface<br />

• Proximity of a sharp tip to the surface<br />

+ Interband transition of semiconductors


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Young et al. (1972)<br />

FE electrons<br />

↓<br />

hν, sec. e− ↓<br />

topography<br />

(NIST)<br />

R. Berndt, Wittenberg 2004<br />

of Junction Luminescence<br />

Lambe & McCarthy (1976)<br />

MOM junction, radiative decay of plasmons, IET<br />

Gimzewski et al. (1988)<br />

Isochromat Spectra<br />

↓<br />

hν, local IPES<br />

(IBM Zurich)


First report on STM induced luminescence!<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Photon-emission Experiments with the Scanning Tunneling Microscope<br />

J. K. Gimzewski, B. Reihl, J. H. Coombs and R. R. Schlittler<br />

IBM Research Division, Zurich Research Laboratory<br />

Z. Phys. B72 (1988) 497; J. Microscopy-Oxford 152 (1988) 325.<br />

Sample<br />

STM tip<br />

Detector<br />

Sample:<br />

Polycrystalline Ta, Si(111); Ag films<br />

Mode of measurements:<br />

Isochromatic spectra with photon energies at 9.5 eV<br />

Results:<br />

Spectra reveal electronic structure information<br />

comparable to inverse photoemission spectroscopy!<br />

Since 1988, extensive research on the surfaces of<br />

metals, semiconductors, and adsorbed molecules has been going on!<br />

Europe, Japan, USA… (30-40 groups)


2. Experimental Techniques<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

• Photon collection<br />

• Photon detection<br />

• Modes of measurements<br />

Why limited number of research groups<br />

around the world on STML?<br />

Bias<br />

Adsorbate<br />

Reference<br />

current<br />

Tip<br />

Spectroscopy<br />

Radiated<br />

power<br />

Sample<br />

Spectrometer<br />

S. Ushioda


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

STM-Induced Light Emission<br />

Requiring:<br />

good well-defined sample<br />

‘good’ tip!<br />

efficient light collector<br />

highly sensitive photon detector<br />

Success!


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Light Collection System<br />

Target: to achieve a large solid angle coverage<br />

Three types according to optical parts:<br />

Mirror system: Ellipsoidal/parabolic<br />

Fiber system<br />

Lens system<br />

Two types according to collection modes:<br />

Far field collection<br />

Near field collection


UHV Photon STM: Ellipsoidal Mirror Design<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Advantage:<br />

Large solid angle coverage; 48-61%<br />

Free of chromatic aberration<br />

Disadvantage:<br />

Difficult to make and use;<br />

Difficult to align and focus<br />

R. Berndt, R. R. Schlittler, J.K. Gimzewski, J. Vac. Sci. Technolog. B9 (1991) 573. (IBM Zurich)<br />

Y. Suzuki, H. Minoda, N. Yamamoto, Surf. Sci. 438 (1999) 297. (TIT, Japan)


Advantage:<br />

Eclipsing of luminescence by STM<br />

largely minimized →<br />

UHV Photon STM: Parabolic Mirror Design<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

M. J. Romero, et al., Nanolett. released 2006-11-24<br />

(Natl Renewable Energy Lab, USA)<br />

High collection efficiency: >10%<br />

1. N. Nilius, et al., Prog. Surf. Sci. 67 (2001)<br />

99; Chem. Phys. Lett. 413 (2005) 10.<br />

2. S. Egusa, et al., Appl. Phys. Lett.<br />

84 (2004) 1257.<br />

Disadvantage:<br />

Difficult to make, align and focus


UHV Photon STM: Fiber Bundle Design<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Single Fiber (Tohoku Univ)<br />

Φ=600μm, d=1mm, NA=0.2 →<br />

Solid angle coverage: 0.13 sr,<br />

Hemisphere collection efficiency: 2%<br />

T. Tsuruoka and S. Ushioda,<br />

J. Elec. Micr. 53 (2004) 169.<br />

Four Fiber-bundles (NIMS)<br />

M. Sakurai, C. Thirstrup, and M. Aono,<br />

Applied Physics A 80 (2005) 1153. (~5%)<br />

Reasonable collection efficiency,<br />

but relatively difficult to align.


Fiber Tip Design―Near Field Collection Mode<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

D. Fujita, et al. (NIMS),<br />

Micr. Res. Techn. 64(2004)403.<br />

T. Murashita (NTT)<br />

J. Vac. Sci. Technol. B 15(1997)32.<br />

Est: 100-fold better than lens system?<br />

Collection efficiency: ~10%<br />

The fiber tip is difficult to<br />

make. Expensive!<br />

Good coupling difficult!


UHV Photon STM: Double Lens Design<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Hemisphere collection efficiency: ~9%<br />

G. Hoffmann, J. Kroger, R. Berndt (Univ. Kiel)<br />

Rev. Sci. Inst. 73 (2002) 305.<br />

Reasonable<br />

collection efficiency<br />

(2−15%)<br />

+<br />

Relatively easy<br />

To align<br />

Light collection systems<br />

used most often<br />

in the STML community!


UHV Photon STM: Photon Detection Systems<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Photon signals emitted from the STM tunnel junction is very weak!<br />

• Inelastic Tunneling (IET) Process: Small excitation efficiency<br />

• Nanoscale junction: Small excitation and emission area<br />

• Emission (angular) over hemi-sphere: Low collection efficiency<br />

Required conditions for photon detectors:<br />

• High sensitivity<br />

• Low dark counts (noise)<br />

Distinguish the signal above the noise!<br />

High S/N ratio!<br />

Ordinary photon detectors operating in the linear mode fail.<br />

X<br />

e.g., non-avalanche photodiode: the photon/electron ratio is one to one.<br />

Multiplier/Gain<br />

or<br />

Integration over Pixels<br />

Single Photon Counting?<br />

tip<br />

-<br />

+ e


Single Photon Counting Techniques<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Three Technologies:<br />

• Silicon Avalanche Photodiode (APD) 雪崩光电二极管<br />

Single Photon Counting Modules (SPCMs),<br />

1 photon → many electrons after avalanche effect, Gain = 1―1000<br />

high quantum efficiency (500-1100 nm, up to 70% at 650 nm), visible-infrared<br />

• Photomultiplier Tubes (PMT) & MCP-PMT 光电倍增管<br />

• Charge Coupled Devices (CCD) 电荷耦合器件<br />

Factors:<br />

• Wavelength<br />

• Sample size<br />

• Speed<br />

• Cost<br />

PerkinElmer-APD: Φ=200 μm, point-like nanoscale sample (focusing not good for large)<br />

fast response (count a photon every 50ns), low dark counts (Peltier cooled, 50 cps)<br />

photon → photocathode (photovoltaic effect) → many electrons, Gain = 105―106 115-900 nm, most sensitive for UV and blue (20%); low dark counts (3-50 cps)<br />

several mm – cm in size, wide range of sample size;<br />

very fast response (30ns), MCP-PMT (TTS=25ps + electronic shutter)<br />

An array of ordinary (non-avalanche) photodiodes, the amount of charge on capacitor<br />

300-1000 nm, up to 90% for LN2-cooled BCCD<br />

CCD pixel: 7μm, but array in mm; very wide range of sample size<br />

low dark count and noise, high SN ratio, but slow.


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Data acquisition / Modes of Measurements<br />

Emission intensity<br />

STM-Induced Light Emission<br />

Bias and current dependency −Threshold, QE(η), excitation nature<br />

Photon maps −Threshold, quantum efficiency, spectral imaging map<br />

Isochromat spectra −Nature of particular emission feature, e.g, IET vs HET<br />

Angular distribution −Polarization effects, dipolar coupling<br />

Optical emission spectra<br />

λ-resolved luminescent spectra −Nature of opt. transition, interaction, ET…<br />

Bias dependence −Threshold, excitation behavior, excitation map<br />

Site dependency −Chemical mapping, spectral imaging map<br />

Time-resolved spectroscopy and photon statistics<br />

Lifetime −Nature of optical transitions and excited states; exciton decay kinetics<br />

Bunching vs antibunching −Photon emission statistics


Examples:<br />

Photon Map & Spectral Imaging Map<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

G. Hoffmann, J. Kroger, R. Berndt<br />

Rev. Sci. Inst. 73 (2002) 305.<br />

topograph spectral imaging map<br />

Ag(111) at -3V, 5nA, 100ms/pixel<br />

10 5 cps at 5 nA →η= ~10 -4


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Excitation Spectroscopy<br />

― Excitation Map<br />

G. Hoffmann, J. Kroger, R. Berndt<br />

Rev. Sci. Inst. 73 (2002) 305.<br />

Ag(111)<br />

V t=1.8−9.5 V, I t= 5 nA


Isochromat spectra<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

―A support to the IET excitation mechanism<br />

Photon intensity ― Bias voltage<br />

at fixed current (It=5nA) & photon energy ( 2.1 eV, optical bandpass filter)<br />

Example: Cu(111) in the Proximity Field Emission Regime<br />

Resonance state<br />

Vn:<br />

Resonance-state energy<br />

Ep:<br />

Tip-induced-mode energy<br />

• Oscillation of dI/dV ↔ electron standing wave in the tip-sample gap (interference)<br />

• Isochromat spectra: Similar oscillatory behavior but with a constant offset of 2.2 eV!<br />

Field emission resonance states confined in the gap region<br />

Interaction of electrons with tip-induced modes occurs within the tunneling gap!<br />

Inelastic energy loss occurs within the gap → IET excitation mechanism!<br />

Berndt & Gimzewski<br />

Ann. Phys. 2(1993)133


Isochromat spectra<br />

―The “Universal” Intensity Maximum Issue<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Photon intensity ― Bias voltage<br />

at fixed current (It=5nA) & photon energy ( 2.1 eV, optical bandpass filter)<br />

Example: Cu(111) in the Proximity Field Emission Regime<br />

“Universal” intensity maximum at V ~ 3.7 V!<br />

In the tunneling regime: universal intensity maxima at Vb ~ 3 – 4 V,<br />

Independent of tip & sample material, wavelength of detected photons!<br />

Model: Competition of two counteracting mechanisms―<br />

Berndt & Gimzewski<br />

Ann. Phys. 2(1993)133<br />

Johansson, Monreal, Apell, PRB 42(1990)9210.<br />

1. Initial increase: growing number of energetically allowed channels;<br />

2. Drop above ~3.5 V: s-V relation! vertical tip retraction much stronger for 3.5−4V!<br />

→ Smaller field enhancement → Decrease in intensity!


3. Status of STM Induced Luminescence<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

• Metals<br />

• Semiconductors<br />

• Molecules and Nanostructures<br />

• Theoretical models and calculations<br />

R. Berndt, Wittenberg 2004


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Young et al. (1972)<br />

FE electrons<br />

↓<br />

hν, sec. e− ↓<br />

topography<br />

(NIST)<br />

R. Berndt, Wittenberg 2004<br />

of Junction Luminescence<br />

Lambe & McCarthy (1976)<br />

MOM junction, radiative decay of plasmons, IET<br />

Gimzewski et al. (1988)<br />

Isochromat Spectra: Ta, Ag<br />

↓<br />

hν, local IPES<br />

(IBM Zurich)


Photon Emission from Metal Surfaces by STM<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

R. Berndt, J. K. Gimzewski, P. Johansson, PRL 67(3796)1991<br />

Field emission regime Tunneling regime<br />

Photon emission<br />

dramatically enhanced!<br />

Strikingly different<br />

spectra:<br />

greatly red-shifted!


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Extent: ~5 nm<br />

TIP: coupled, localized plasmons of both sample and tip!<br />

Symmetric/antisymmetric charge density oscillation<br />

Lowest-order mode―dipolar plasmon resonance<br />

Field enhancement G(ε) → Im(ε),damping<br />

η~10 -4 , IET vs HED<br />

Quantum cutoff: hν ≤eV


数理学部实验物理讲习班<br />

photon<br />

experiment theory<br />

Physical Review Letter 74(102) 1995<br />

First report atomic resolution<br />

in STM-induced photon emission!<br />

height 国家自然科学基金委员会


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Uehara, Fujita, Ushioda, PRL 83(1999)2445; Uehara & Ushioda, PRB 66(2002)165420<br />

Recombination of d-band holes with sp electrons + LSP<br />

?


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Phys. Rev. Lett. 93 (2004) 076102<br />

a: Au(110) topograph, b & c: photon map<br />

I: on top, II: below a step, III: in-between<br />

“No variation in spectral shape,<br />

except for a minute, rigid shift.”<br />

PRL 83(1999)2445


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Photon Emission from<br />

Semiconductor Surfaces


Nanometer resolution in luminescence microscopy of III-V heterostructures<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado<br />

First report: IBM Zurich: Appl. Phys. Lett. 56(1564)1990; JVSTB 9(1991)409<br />

Photon Map<br />

GaAs/Al x Ga 1-x As<br />

Quantum well/barrier heterstructures<br />

Renaud & Alvarado: Phys. Rev. B 44(1991)6340.<br />

Mechanism: p-type GaAs<br />

Conventional band edge luminescence:<br />

Electron-hole pair recombination<br />

between CV and VB (E g )!


Injection luminescence from CdS(1120) studied with scanning tunneling microscopy<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

R. Berndt, et al., Physical Review B 45 (14095) 1992<br />

G: band-edge emission<br />

C: emission from deep levels<br />

Mechanism:<br />

-V: e-h pair recombination<br />

+V: impact ionization


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

A. Downes & M.E. Welland, Phys. Rev. Lett. 81 (1998) 1857<br />

Si(111)-7x7, 3.4 V, 30 nA<br />

Mechanism: Radiative decay of TIP modes!<br />

Lateral:<br />

Vertical:<br />

Plasmon wave function:<br />

Resolution of photon map:<br />

Lateral extent of plasmon modes<br />

~2 nm for R=3 nm and s=0.6 nm


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

C.Thirstrup, M. sakurai, K. Stokbro, M. Aono, Phy. Rev. Lett. 82 (1999) 1241<br />

Si(100)-3x1-H (-3 V, 8 nA)<br />

Spatially indirect dipole transition<br />

Between tip (DOS) and sample (DBs) ?


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Photon Emission from<br />

Molecules and Nanostructures<br />

• 0D-Quantum dots<br />

• 1D-Quantum chains<br />

• 2D-Quantum wells<br />

• Organic molecules


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Emission mechanism:<br />

the (1,0) mode of the Mie resonance in Ag nanoclusters<br />

Quantum size effect<br />

Size dependence of the Mie resonance (plasmons)!<br />

vs. shape transition?


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Quantum confinement effect!<br />

MBE<br />

InAs QDs<br />

20-30 nm<br />

Photon Map


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

IET emission (TIP) Isochromat spectra<br />

hν=1.63 eV → = offset!<br />

LDOS of 1D-chain resonance states No direct interband transition from Ag chains!


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

No direct “interband” transition<br />

from 1D-Ag quantum chains on metal surfaces!<br />

How about<br />

2D-quantum wells on metal surfaces?


Luminescence from Metallic Quantum Wells in a Scanning Tunneling Microscope<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Germar Hoffmann,* Jörg Kliewer, and Richard Berndt<br />

Physical Review Letter 87(176803) 2001


Luminescence from Metallic Quantum Wells in a Scanning Tunneling Microscope<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Germar Hoffmann,* Jörg Kliewer, and Richard Berndt<br />

Physical Review Letter 87(176803) 2001<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

q<br />

p<br />

p: plasmon<br />

modes<br />

q: quantum<br />

well state<br />

带间跃迁:<br />

OK!


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

STM Induced Luminescence from Molecules?<br />

hv<br />

tip<br />

-<br />

+ e-<br />

Excitation source: Highly localized tunneling electrons<br />

Single molecules DIRECTLY adsorbed on the metal surface<br />

Molecule based fluorescence from tunnel junctions?<br />

hv<br />

Feasibility?


Absorbance energy<br />

Light Absorption and Fluorescence<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Absorption=10 -15 s<br />

Fluorescence =10 -9 s<br />

Ground State<br />

Electrons<br />

S 2 excited state<br />

S 1 excited state<br />

Nonradiative<br />

dissipation<br />

Basics of molecular photophysics<br />

光致发光<br />

LUMO<br />

HOMO<br />

π*<br />

π


Organic Electroluminescence (EL)<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

E F<br />

注入式电致发光<br />

OLED (Thin Film)<br />

+<br />

h +<br />

LUMO<br />

HOMO<br />

LUMO<br />

HOMO<br />

exciton decay<br />

-<br />

e -<br />

ITO HTL EL ETL Mg<br />

Excitation of Electroluminescence:<br />

• Intrinsic EL: Field/impact excitation (>106 V/cm)<br />

• Injection EL: Excitation by the potential energy<br />

of opposite charge carriers (∼106 V/cm)<br />

Charge carrier: Injection, transport? Spin statistics?<br />

Excition: formation and decay?<br />

E F<br />

电致发光


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Photon Map<br />

C60 on Au(110)


STM induced molecular luminescence<br />

• 1993, Spatially resolved photon map of molecules<br />

C60/Au(110)<br />

——R. Berndt, R. Gaisch, J. K. Gimzewski, et al.,<br />

•••<br />

•••<br />

Science 262 (1993) 1425.<br />

No optical emission spectra!<br />

Nature of emission remains unclear.<br />

• 2002,Spectrally resolved photon maps;<br />

HBDC/Cu(111);<br />

Spacer! Submolecular resolution!<br />

—— Hoffmann, Libioulle and Berndt,<br />

Phys. Rev. B 65 (2002) 212107.<br />

Role of molecules?<br />

Spacer or direct emitter?<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

IBM’s need<br />

for sharper display!


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Photon Emission from HBDC on Cu(111) with submolecular resolution<br />

G. Hoffman, L. Libioulle, R. Berndt, Phys. Rev. B65 (2002) 212107<br />

• Spectra: Blue-shifted<br />

• Fluorescence: quenched!<br />

• Role of molecules: “Spacer”!


Photon emission from monolayered porphyrins on Cu(100)<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

H2TBPP Porphyrin<br />

H<br />

H<br />

H<br />

H<br />

H H<br />

H H<br />

NH<br />

N<br />

H<br />

H<br />

N<br />

HN<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

Z.-C. Dong, et al., Surf. Sci. 532 (2003) 237<br />

STL Intensity (cps/nA)<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

ML-H2TBPP/Au(100), -2.9 V, 0.1 nA<br />

Au(100), -3.0 V, 10 nA<br />

Theory, 3 V, R = 50 nm, d = 0.4 nm<br />

Blue-shift<br />

400 450 500 550 600 650 700 750 800<br />

Wavelength Sample Bias (nm) (V)<br />

ω 1 ∝ω p (d/8R) 1/4<br />

Monolayer case: Role of molecules: Spacer!


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Photon Emission from Organic Molecules?<br />

Plasmon mediated emission<br />

+<br />

Molecular fluorescence<br />

Coupled / mixed! Fluorescence quenching!<br />

Complication!<br />

Role of molecules?<br />

Spacer or direct emitter?<br />

Evidence to look for: Distinct molecular-specific signals!


分子荧光复杂性根源: Nonradiative Energy Transfer near Metal Surfaces<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Fluorescence Quenching<br />

or, dipole quenching<br />

Nonradiative damping<br />

ε 0<br />

Molecule<br />

ε<br />

Metal 1<br />

Substrate<br />

Dipole<br />

d<br />

Dipole<br />

Image<br />

dipole<br />

Classical electromagnetic theory:<br />

For large distances, the surface acting as a mirror<br />

to cause electric field interference,<br />

the luminescent lifetime oscillates as a function of d.<br />

τ<br />

0 250 500<br />

d (nm)<br />

For small distances (


Strategy to generate molecular fluorescence<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Decoupling & nanoprobe excitation<br />

_<br />

Nanoprobe<br />

Strong field enhancement at the tip apex<br />

Emissive layer<br />

Decoupling layer<br />

Substrate<br />

Motivation: to avoid fluorescence quenching…


Vibrationally resolved fluorescence excited with submolecular precision<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

X. H. Qiu, G. V. Nazin, W. Ho: Science, 299 (2003) 542<br />

ZnEtioI/Al 2O 3/NiAl(110)<br />

Use of an oxide spacer!


Vibrationally resolved fluorescence excited with submolecular precision<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

X. H. Qiu, G. V. Nazin, W. Ho: Science, 299 (2003) 542<br />

LUMO+1 → LUMO!<br />

Anionic fluorescence!


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

X. H. Qiu, G. V. Nazin, W. Ho: Science, 299 (2003) 542<br />

LUMO+1 → LUMO!<br />

Anionic fluorescence!<br />

?<br />

Can we generate by STM<br />

conventional fluorescence<br />

from neutral molecules<br />

due to<br />

LUMO → HOMO transition?


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Distinct fluorescent peak: Molecular specific!<br />

Clear molecular origin!


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

• Bipolar operation ! →<br />

Electrons injected into LUMO at +/- bias!<br />

• Double-barrier junction model!<br />

• Two processes:<br />

LSP + Molecular Fluorescence<br />

• Anomalous upconversion EL:<br />

Hot- electron excitation +<br />

Franck-Condon radiative decay<br />

hν > eV !!! Why? Z.-C. Dong, et al. PRL 92 (2004) 086801.


Decoupling and Charge Carrier Confinement: pn-type Heterostructuring<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Photoluminescence (a.u.)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

PL, ex 442 nm, He-Cd laser<br />

STML, +25 V, 2 nA<br />

658<br />

0<br />

0<br />

400 450 500 550 600 650 700 750 800<br />

Wavelength (nm)<br />

723<br />

H 2TBPP<br />

TPD<br />

Cu(100)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

STM Luminescence (a.u.)<br />

-<br />

+<br />

+<br />

e −<br />

Substrate surface<br />

Tip<br />

Dong, et al.: PRL 92, 086801(2004); APL 84, 969(2004); PRB 70, 233204(2004); SRL 13(2006)143.<br />

-<br />

+


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

C 60 /NaCl/Au(111)


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

STM Photon Emission<br />

Model and Theory?


E F<br />

E F<br />

hv<br />

hv<br />

E F<br />

surface<br />

states<br />

E F<br />

Models?<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Tip-induced-plasmon (TIP) Electron-hole recombination<br />

Metals Semiconductors (direct Eg )<br />

Tip Sample<br />

E F<br />

E F<br />

hv<br />

EC EF EV hv<br />

LUMO<br />

HOMO<br />

Tip Sample<br />

Spatially indirect dipole transition Intramolecular radiative transition<br />

Semiconductors (indirect Eg )<br />

Molecules<br />

E F


Questions?<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Which part, electrons or photons, influences<br />

the light emission spectrum most?<br />

Depends on the system!<br />

• Metals: photons (plasmons)<br />

• Semiconductors: electrons (bandgap, etc.)<br />

• Quantum wells: both<br />

• Molecules: < 1ML, photons; decoupled: both?


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Theoretical Models<br />

Radiation Field Electrons<br />

H = H el-n + H L + H s<br />

H s ↔ A•p<br />

P. Johansson


2 3<br />

o<br />

G ( θ, r ′ , ω)<br />

Local field enhancement<br />

(Boundary charge method)<br />

Radiated power<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

2 2<br />

d P ω<br />

2<br />

3<br />

= ∑ d r′ G ( θ, ′ , ω) ⋅ jif<br />

( ′ , ω ) ⋅δ<br />

( Ei− E f − ω)<br />

dΩd( ω) 4π<br />

ε c ∫ r r<br />

h<br />

h<br />

i,<br />

f<br />

z<br />

G z jif<br />

P. Johansson et al., PRB 42, 9210 (1990)<br />

d<br />

ε tip<br />

b<br />

ε sample<br />

j<br />

φ<br />

θ<br />

hω<br />

hω<br />

j ( r ′ , ω )<br />

if<br />

Current density<br />

(Tersoff & Hamann extended)<br />

e<br />

V b<br />

hω<br />

Tip induced plasmon (TIP) modes for a metal tip on a metal surface<br />

P. Johansson et al., PRB 42, 9210 (1990)<br />

J. Aizpurua et al., PRL 89, 156803 (2002)


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

G = G(ε, R, d), sensitive to the tip status!<br />

Molecules: No theory for STML yet!<br />

P. Johansson et al., PRB 42, 9210 (1990)<br />

J. Aizpurua et al., PRL 89, 156803 (2002)


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Summary<br />

• STM induced luminescence (STML):<br />

-Photon emission out of inelastic tunneling processes!<br />

(高度局域化隧穿电子 → 非弹性隧穿 → 光子发射!)<br />

-Various information on the nature of tunnel junctions and transitions<br />

-Good tool for studying optoelectronic behavior of single molecules<br />

• Factors affecting STML:<br />

-Geometrical: R, d, ε! (几何因素)<br />

Elastic tunneling current is also important: I t ↔ d ↔ TIP ↔ IET!<br />

-Electronic: Initial and final DOS! (电子结构因素)<br />

Energy level matching (DOS of resonance states/hybrid states)<br />

• Status of the STML research:<br />

-Metals and semiconductors: relatively mature;<br />

-Molecules: many unsolved issues! active and exciting!<br />

e –<br />

in the space, energy, and time domains (单分子光电行为)<br />

(molecular scale electronics and optoelectronics)<br />

+<br />

_<br />

hv


Perspectives:<br />

• Role of molecules?<br />

• Role of substrates (plasmons)?<br />

• Coupling among electron, exciton, plasmon, phonon, photon?<br />

• Raising quantum efficiency (OLED)? Light sources for imaging?<br />

• Single molecule electroluminescence? Single photon sources?<br />

• Lifetime measurements? Luminescence decay kinetics?<br />

• Fluorescence IETS? Chemical mapping?<br />

• Spin injection STML? Spin decay kinetics (population)?<br />

Near-field detection<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Coupled<br />

system!<br />

Far-field detection<br />

• Quantum tuning of photonic states for molecular optoelectronics?<br />

Molecule<br />

Tip<br />

Fiber<br />

-<br />

+<br />

Substrate<br />

Dipolar<br />

radiation


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Thank you !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!